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Abstract

Astrophysical radio signals are excellent probes of extreme physical processes that emit them. However, to reach
Earth, electromagnetic radiation passes through the ionized interstellar medium, introducing a frequency-dependent
time delay (dispersion) to the emitted signal. Removing dispersion enables searches for transient signals like fast
radio bursts or repeating signals from isolated pulsars or those in orbit around other compact objects. The sheer
volume and high resolution of data that next-generation radio telescopes will produce require high-performance
computing solutions and algorithms to be used in time-domain data-processing pipelines to extract scientifically
valuable results in real time. This paper presents a state-of-the-art implementation of brute force incoherent
dedispersion on NVIDIA graphics-processing units and on Intel and AMD central-processing units. We show that
our implementation is 4× faster (8-bit 8192 channels input) than other available solutions, and we demonstrate,
using 11 existing telescopes, that our implementation is at least 20× faster than real time. This work is part of the
AstroAccelerate package.

Unified Astronomy Thesaurus concepts: GPU computing (1969); Computational methods (1965); Computational
astronomy (293); Pulsars (1306)

1. Introduction

An upcoming new generation of radio telescopes, such as the
Square Kilometre Array5 (SKA; Carilli & Rawlings 2004), will
simultaneously observe many different regions of the radio sky.
Each simultaneous observation will have high time resolution
and fine channelization of the observed bandwidth, giving rise
to large data volumes at high data rates. These data are
expected to make storing all data for offline analysis
impractical, necessitating faster-than-real-time data-processing
software.

To extract the very faint signals present in the noisy data
produced by these telescopes, many processing steps have to be
performed on the data. One of the more computationally
expensive steps is dedispersion. The dedispersion process
increases the signal-to-noise ratio (S/N) of received signals
from the emitting object being studied by shifting samples in
different frequency channels in time, thus correcting for the
time delay introduced by dispersion. Samples at the same time
stamp are then summed over frequency channels, increasing
the S/N and probability of detection.

The dispersion of the emitted pulse occurs due to the
interaction between photons in the pulse and the ionized
interstellar medium (ISM) through which they travel. Disper-
sion has the effect of causing a frequency-dependent time delay
(Δτ) in the photonʼs propagation. Specifically, lower-fre-
quency photons within the pulse ( flow) are observed later than
their high-frequency ( fhigh) counterparts (see Lorimer &
Kramer 2004). This time delay is proportional to the inverse

square of the frequency, given by the cold plasma dispersion
law:
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with the constant of proportionality CDM= 4148.8×
103 MHz2 pc−1 cm3 s. The parameter DM in Equation (1) is
referred to as the dispersion measure and is defined as the
integral of the electron column density (ne) along the line of
sight (distance d) between source and observer, i.e.,
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Given the quadratic relationship between time delay and
frequency (see Equation (1)), dispersion is governed by a single
free parameter, the dispersion measure. When searching for
new events from unknown sources, the distance between the
object and the observer is unknown, which means all possible
dispersion measures must be calculated and searched. Detect-
ing and studying such events in real time on the scale required
for the next generation of radio telescopes, together with the
computational complexity of dedispersion, necessitates a high-
performance computing (HPC) solution for real-time observa-
tion and detection (Barsdell et al. 2010; Armour et al. 2012;
Fluke 2012).
To remove the effects of dispersion, two different

approaches can be used: coherent and incoherent dedispersion.
The coherent approach uses information about the observed
phase of the pulse to reconstruct the pulse profile as it was
emitted (within the limits of the inhomogeneous scattering of
the ISM). The incoherent method applies the appropriate time
delay to each independent frequency channel in channelized
intensity data. Although the coherent method is more accurate
and has higher sensitivity, its computational requirements are
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far more demanding than those for the incoherent method. As
such, when performing surveys of the radio sky, it is common
to employ incoherent dedispersion.

Several different codes exist with differing implementations
of dedispersion specifically for graphics-processing units
(GPUs; Magro et al. 2011; Barsdell et al. 2012; Sclocco
et al. 2016; Bassa et al. 2017; Zackay & Ofek 2017; Kong et al.
2021). There are other implementations of the dedispersion
transform—for example, using fast Fourier transforms (Bassa
et al. 2022). However, that approach is not capable of detecting
FRBs or accelerated pulsars, due to there being weak or no
Fourier response to these signals. In this article, we present our
implementations of dedispersion for different computer archi-
tectures, NVIDIA GPUs, and Intel and AMD central-proces-
sing units (CPUs). We compare the performance of these
implementations with the state-of-the-art packages, specifically
looking at data-processing rates and sensitivity.

All of the implementations that we present in this article
have been developed for AstroAccelerate6 (Dimoudi et al.
2018; Adámek & Armour 2020; Adámek et al. 2020, 2022;
Armour et al. 2020; Novotný et al. 2022; White et al. 2023), a
many-core accelerated software package for processing time-
domain radio astronomy data. AstroAccelerate is actively used
as part of scientific pipelines like MeerTRAP (Rajwade et al.
2020; Morello et al. 2022) and Greenburst (Agarwal et al.
2020).

Incoherent dedispersion is described in Section 2. The
implementation for the CPU is presented in Section 3, and that
for the GPU is in Section 4. In Section 5, we discuss
performance results of AstroAccelerate for different scenarios
on selected many-core platforms, and compare these results
with the performance of other software packages like Heimdall.
Real-time performance on selected telescopes is presented in
Section 5.5, and our conclusions are summarized in Section 6.

2. The Direct Dispersion Transform

Incoherent dedispersion is the process of shifting detected
power data in time inside each individual frequency channel,
which collectively make up the total telescope bandwidth.
Shifts are applied to counter the effect of interstellar (or
intergalactic) dispersion before integrating the data over the
frequency bandwidth of the telescope, to increase the S/N of
astrophysical signals detected by the telescope.

Here, we present the direct (sometimes called brute force)
approach to dedispersing measured power data. As well as
being the simplest approach for performing the task of
dedispersion, it has two significant advantages. The first is
that the algorithm is exact; by this, we mean that the errors
associated with this approach are at the discretization level of
the instrument. The second is that the algorithm can be written
in such a way that is particularly suited to execution on many-
core devices.

Incoherent dedispersion can be algebraically expressed as
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where a frequency-dependent shift in time Δt(DM, t, f ) is
calculated for each digitized frequency channel. By substituting
flow= fc−Δf/2 and fhigh= fc+Δf/2 into Equation (1), we can

express the time shift in the form
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where fc corresponds to the central frequency of the band and
Δf is a finite bandwidth that is Δf = fc. Applying the correct
time shifts to each frequency channel results in a shifted signal
that appears as though it has arrived at the same instant in time.
The process of incoherent dedispersion is shown pictorially in
Figure 1, in which dotted lines (red and black) correspond to
different DM trials 1, 2,K, N. From Equation (3), we can
derive a simple pseudocode (see Algorithm 1) that outlines the
direct dedispersion approach.

Algorithm 1. Pseudocode for the direct dispersion transform,
where Nt is the number of time samples, Nf is the number of
dispersion measures searched, and Nf is the number of
frequency channels.

Data: x f t,( )
Result: DM dm t,( )
for t N0, , 1t= ¼ - do
for dm N0, , 1DM= ¼ - do
S dm t, 0.0( ) = ;
for f N0, , 1f= ¼ - do
h t dm t f, ,( )= D
S dm t S dm t x f t h, , ,( ) ( ) ( )¬ + +
end
DM dm t S dm t, ,( ) ( )¬
end
end
return DM dm t,( )

From Algorithm 1, we see that, for NDM trial dedispersion
searches over power data that have Nt time samples and Nf

frequency samples, the computational complexity of the
algorithm is N N Nt fDM( ) .
The arithmetic intensity I is another important characteristic of

an algorithm. The roofline model of Williams et al. (2009) defines
I as a ratio of the number of floating point operations performed
by the algorithm per amount of data required in bytes read or
written by the algorithm to RAM—or GPU main memory, in the

Figure 1. Representation of the incoherent dedispersion approach. The top
panel represents the input data, and the bottom shows the results (output). For
simplicity, we present a clear single signal. The dotted lines correspond to
individual DM trials (the summation of data points along the line) computed for
a given time sample (showed for DM trials 1, 2, i and N). The sum of the line
maps to one point (cross) in the output field.
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case of GPUs. The value of I can help us to identify what will
limit the performance of an algorithm. When the algorithm is
limited by the number of floating point operations it needs to
perform, it is called a compute-bound algorithm. If the memory
bandwidth limits the algorithm by not providing enough data per
second, we have a memory-bound problem.

In order to decide whether an algorithm on a given hardware
platform (CPU, GPU) is compute-bound or memory-bound, we
need to look at the critical arithmetic intensity Icrit that
represents a turning point from an algorithm being memory-
bound to being compute-bound and vice versa. For a given
hardware platform, the critical arithmetic intensity Icrit is a ratio
of computational performance in FLOPS and the memory
bandwidth in bytes. If Ialg of an algorithm is Ialg< Icrit, that
algorithm is memory-bound. For Ialg> Icrit, the algorithm will
be compute-bound. On the modern hardware Icrit> 1, see
Table 1 for values of Icrit.

The dedispersionʼs arithmetic intensity for a single DM trial
is given as
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where no is the number of floating point operations performed, Nf

is the number of frequency channels, and nb is the number of
bytes required. We have assumed that incoming data are 8-bit and
the output data from the dedispersion is FP32 (4 bytes). Thus, the
dedispersion transform will be memory-bound on the most
modern hardware platforms. Therefore, data reuse in an available
cache must be utilized to increase dedispersion performance.

3. CPU Implementation

Our CPU implementation of the incoherent dedispersion
algorithm is written in the C programming language with

OpenMP and Cilk Plus, where OpenMP is used for
parallelization across cores on multi-core CPUs and Cilk Plus
is used to express fine-grained parallelism and allows the
compiler to effectively vectorize parts of the code.

Algorithm 2. Pseudocode of the parallel CPU direct dedisper-
sion transform.

Data: x f t,( )
Result: DM
#pragma omp parallel for collapse(2)
for i = 0 to Nt; by Dt do
for jj 0= to NDM by Ddm do
for kk 0= to Nf by Df do
for j jj= to jj D ;dm( )+ j++ do
int S[Dt];
if kk = 0 then
S[:] = 0; else
S[:] = DM[ j N i: Dt t´ + ];
end
for k kk= to kk D ;f( )+ k++ do
h= t j i k, ,( )D ; S[:] += x[k N i h: Dt t´ + + ]; end
DM[ j N i: Dt t]´ + = S[:];
end
end
end
end DM[0: N NDM t´ ]/= channels; return DM

As discussed in the previous section, dedispersion is a
memory bandwidth bound algorithm. Hence, to achieve good
performance, careful use of CPU cache is required. As such,
our CPU algorithm implements a very well-known optim-
ization technique called loop tiling (see Figure 2), also known
as loop blocking, or strip mine and interchange (Wolf &

Table 1
Hardware Specifications and Compiler Specifications on the Tested GPUs and CPUs

V100 SXM2 A100 SXM4 Xeon Gold 6230 Xeon Phi 7290 AMD EPYC 7601

CUDA cores 5120 6912 No. of cores/threads 20/40 72/288 32/64
No. of SMs 80 108 Base clock frequency 2.1 GHz 1.5 GHz 2.2 GHz
Boost core clock 1455 MHz 1410 MHz Frequency for AVX-512 2.0 GHz 1.3 GHz L
Memory clock 877 MHz 1215 MHz Mem. bandwidth 140.8 GB s−1 115.2 (400+) GB s−1 276.573 GB s−1

Dv. m. bandwidth 900 GB s−1 1555 GB s−1 Cache size 27.5 MB L3 36 MB L2 64 MB L3
Shared m. bandwidth 14,899 GB s−1 19492 GB s−1 DP compute L L 1126 GFLOPS
Memory size 32,768 MiB 40,960 MiB DP compute (AVX-512) 1280 GFLOPS 2995.2 GFLOPS L
TDP 300 W 400 W TDP 125 W 245 W 180 W
Critical arithmetic intensity 15.4 11.6 Critical arithmetic intensity 9 7.5 4

Other specifications

NVIDIA driver 495.29.05
CUDA version 11.5.119
ICC version 18.0.3
OpenCL version (CPU) Intel 2019.3.208

Compiler flags

AMD EPYC 7601 -std=c99 -O2 -Wall -Wextra -qopenmp -march=core-avx2 -qopt-prefetch
-fma -ftz -fomit-frame-pointer -finline-functions -qopt-streaming-stores=never

Xeon Phi 7290 -qopenmp -fp-model fast=2 -std=c99 -O2 -fma -xMIC-AVX512 -align
-finline-functions -no-prec-div -ipo -DOPEMP_SPEC -qopt-streaming-stores=never

Xeon Gold 6230 same as Xeon 7290 except: -march=core-avx2

Note. The value of the memory bandwidth in brackets on Xeon Phi 7290 corresponds to the case of using the 16 GB Multi-Channel DRAM (MCDRAM).
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Lam 1991), which transforms the input domain (memory) to
smaller chunks able to fit into cache, thereby improving the
locality of data accesses in loops. This technique also helps
reduce the number of cache misses.7 Specifically, we use
“tiling” in frequency channels as well as in dedispersion trials
(DMs), where each thread calculates: (1) several DM trials for
neighboring time samples (achieving good spatial locality in
cache) and (2) several neighboring DM trials (achieving good
temporal locality in cache,8 as a cacheline can be used multiple
times to update multiple DM trials). A schematic overview of
our partitioning of the data space is shown in Figure 3.

In the pseudocode (see Algorithm 2), the sizes of the tiles are
represented by Df for frequency channels and Ddm in the case
of the DM. For the code to achieve the best performance,
optimal values of Df, Ddm need to be found, as well as the
optimal number of time samples per thread (Dt). These optimal
values are dependent not only on the CPU used, but also on the
input telescope data parameters (like central frequency, number
of frequency channels, etc.) and the DM survey plan.

4. GPU Implementation

For a GPU code limited by the memory bandwidth to the
GPU main memory, it is essential to reuse data and effectively
and efficiently use the L1/L2 cache or the user-managed cache
called the shared memory. For peak performance, we need to
ensure three things. First, the accumulator that stores the
integrated value of the frequency channels Sloc must be stored
in the fastest area of memory available. Second, the data for
each frequency channel that will undergo the dedispersion
transform must be readily available to the GPUʼs streaming
multiprocessors; a compute unit analogous to CPU cores.
Finally, to avoid costly evaluation of the power law by each
thread, the value of the dedispersion shift should be calculated
using as few operations as possible.

The advantage of the shared memory over an L1/L2 cache is
that the user can control data locality. The shortfall of the shared
memory is its size. Where the L1 cache can defer to the larger but
slower L2 cache, the shared memory has no such option. Any
implementation that uses shared memory and relies on a custom

data structure will be limited by its size. This limitation gives rise
to the two different algorithms outlined below. In short, the
shared-memory version of the direct dedispersion transform can
process most shift values with high performance; a cache version,
while slower, can handle even large shifts, which are often present
at lower central frequencies.
Both of our GPU algorithms are written in the CUDA

C/C++ programming language and use the following methodol-
ogy: One GPU thread processes several time elements for a fixed
value of dispersion. A thread stores accumulated values into
registers.9 Nearby values of time and DM in the output
DM(dm, t) space are grouped together into thread blocks
(Figure 4) such that a single thread block calculates Dt time
samples and Ddm dispersion steps. The size of the area
processed by a single thread block is tunable. Data from the
input x( f, t) are read in a coalesced manner, ensuring the best
possible performance.
The higher-performing shared-memory version is described

below. The cache version will not be described further. In the
results section, the cache version is only used where we cannot
use the shared-memory version of our code.

Figure 2. Schematic example of tiling optimization technique in the case of
two dimensions (i and j). On the left and on the right, we see the situation when
loop blocking is not used and the case when it is, respectively. The original
large array is partitioned into smaller blocks (blue rectangle), which can fit into
cache size.

Figure 3. Example of the loop tiling in the case of the CPU dedispersion
algorithm. One thread computes a partial sum of Df frequency channels ( f1–f4)
of Ddm for a number of DM trials (DM1 and DM2) and for Dt time samples with
the same DM trials (t0–t4); all of these are represented by the colored dashed
lines, where different colors correspond to different DM trials, the x-axis to the
time samples, and the y-axis to the frequency channels.

7 When working with caches, it is important to optimize for cache hits. In
principle, a cache hit occurs when the cache contains data needed by a thread;
otherwise, a cache miss is generated, meaning that data must be reloaded from
main memory, thus reducing performance.
8 The amount of reuse is dependent on the closeness of neighboring DM
trials.

9 Registers are the fastest area of GPU memory. However, increasing the
number of registers that a GPU kernel uses reduces the number of resident
thread blocks that can occupy each SM.
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4.1. Shared-memory Algorithm

The pseudocode for the GPU kernel is presented in
Algorithm 3. In the shared-memory GPU implementation of
the dedispersion algorithm, each thread block calculates a
different part of the output DM(dm, t) space, as shown in
Figure 4. A single thread from a thread block loops over
frequency channels with steps of Dch channels, where it loads a
single element of the x( f, t) data into a local buffer Bloc using
the shift

t T t , 6bl bl pc ( )D = D

where the coefficient Tbl in Equation (6) represents the lowest
DM calculated by the thread block, and Δtpc are the
coefficients of the cold plasma dispersion law for each
frequency channel. All threads in the thread block thus form
a contiguous (in time) block of x( f, t) data in shared memory.
This is shown in Figure 5.

When local buffer Bloc is loaded, each thread sums
appropriate elements in shared memory using the differential
shift Δtdiff= TdiffΔtpc and updates their value of the partial
sum Sloc, held in registers, that in the end will result in the
dedispersed value expressed by Equation (3). The coefficient
Tdiff represents DM values calculated by different threads
within the range of DM values calculated by a thread block
(Ddm). After this, threads integrate the loop over frequency
channels and a new block of x( f, t) data is loaded.

To avoid costly evaluation of the power law by each thread,
the calculation of the dispersion shift Δt was split into two
parts. The first part is an array of precalculated coefficients of
the cold plasma dispersion law Δtpc, which are evaluated as

⎛
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where Δtpc(i) represents the time shift for the ith frequency
channel, fhigh is the highest frequency of the telescope
bandwidth, and Δf is the bandwidth of a single frequency
channel. This array is then scaled in the thread block by the
DM value that is being evaluated. The second part required for
calculation of Δt consists of the two DM coefficients: Tbl,
which is constant within the thread block; and Tdiff, which
relates to the DM calculated by a thread (see Algorithm 3).

Further performance improvements can be achieved by
processing multiple time samples NREG per thread. This

exploits instruction-level parallelism, where a thread can
process multiple independent instructions. The adverse effect
is that processing too many time samples per thread increases
register usage too much, leading to fewer active threads and
lower performance.
When working with input data of 8 bits or less, we pack the

data into 32-bit words and then use integer addition to achieve
SIMD (single instruction, multiple data) in word. In the case of
8-bit data, this allows us to process two time samples per
operation, increasing throughput significantly.
The values of NREG, Dt, Ddm, and Dch have a significant

impact on the performance of this code and must be tuned for a
given telescope configuration and DM plan in order to gain
maximum performance.

Algorithm 3. Pseudocode (GPU kernel) for the shared-memory-
based GPU algorithm.

Data: x f t,( ), DMstart, DMstep, tpcD
Result: DM dm, t( )
Initiate local accumulator;
S N 0loc REG[ ] = ;
Shared memory buffer to store local copy of x(f,t);
__shared__B f t,loc( );
Time shift depends on position in DM dm, t( ) plane;
Tdiff = ThreadIdx.y DMstep´ ;
T DMbl start= + BlockIdx.y D DMdm step´ ´ ;
for c = 0 to Nch by Dch do
Data segment is stored into shared memory;
B f t,loc( ) = x f t T t c, bl pc( ( ))+ D ;
__synchthreads();
for l = 0 to Dch do
Dedisperse local data into accumulators;
Sloc= Dedispers B f t T t l,loc diff pc( ( ( )))+ D ;
end
end
Store local results into output DM dm, t( );

SDM dm, t loc( ) = ;
return DM dm, t( );

5. Results

In this section, we first explore how the performance of
our GPU dedispersion code, which is part of the Astro-
Accelerate package, depends on the parameters of input data
and the dedispersion plan. To compare our dedispersion to
other implementations, we have considered two test cases.
The first test measures the execution time of the direct
dedispersion transform for a varying number of frequency
channels using a fixed dedispersion plan (Section 5.2). The

Figure 4. The output (dm, t) plane is partitioned into sections of size (Ddm, Dt)
that are each processed by a single thread block, shown in blue.

Figure 5. Data are loaded from cache lines of constant frequency and
contiguous time (gray boxes). Multiple dedispersion trials DM = constant, t
values (red lines) are held in registers, and each thread updates a set of these in
parallel.
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second test, described in Section 5.3, demonstrates the
performance of our dedispersion implementation when used
in a data-processing pipeline. For this test, we have used
three data sets with different central frequencies and
dedispersion plans. We compare the output from the
different implementations tested in Section 5.4. Finally, we
demonstrate AstroAccelerate performance on selected radio
telescopes in Section 5.5.

We compare our results with currently existing and in-use
implementations of direct dedispersion suited for HPC
environments. Specifically, for the first test and the numerical
difference test, we use the codes “Dedisp” (Barsdell et al. 2012)
and “Dedispersion” (Sclocco et al. 2016). Due to their similar
names, we will refer to these dedispersion implementations by
the names of their associated processing pipelines. The
Heimdall10 pipeline is a GPU-accelerated transient detection
pipeline that utilizes “Dedisp,” while “Dedispersion” is used in
the Amber pipeline (Sclocco et al. 2020).

The Amber dedispersion code is written using the Open
Computing Language (OpenCL) programming language, while
Heimdallʼs Dedisp uses the CUDA C/C++ programming
model. Both implementations can run in two modes /regimes.
Heimdall, in “adaptive” mode, changes the DM step during
dedispersion depending on the parameter of DM tolerance set
by the user. The number of DM trials thus varies. The second
mode of Heimdall can be described as “fixed,” meaning that the
user selects a fixed step size in the DM range. Thus, the
pipeline outputs a fixed number of DM trials. In the case of
Amber, for single DM, the frequency channels are divided into
sub-bands, which are first dedispersed (“step one”) and then
dedispersed within each sub-band (“step two”). Our code
performs a fixed number of DM trials with a fixed DM step for
each DM range, akin to the “fixed” mode in Heimdall and one
of the modes in Amber.

In all following tests, the input signal is generated using
“fake” from the pulsar processing package SIGPROC. We
generated synthetic filterbank files for 4-bit, 8-bit, and 16-bit
precisions.
We have used two GPU cards (NVIDIA Tesla V100 –Volta

generation and NVIDIA A100 –Ampere generation), two Intel
processors (Xeon Phi 7290 –Knights Landing (KNL) and Xeon
Gold 6230 –Cascade Lake), and an AMD processor EPYC
7601 –Naples. Their hardware specifications can be found in
the Table 1, where the GPU shared memory bandwidth is
calculated as

BW bytes s bank bandwidth bytes
clock frequency Hz
32 banks No. multiprocessors ,

8

1( ) ( ( ))
( ( ))
( ) ( )

( )

=
´
´ ´

-

and the theoretical peak performance of the CPUs by

Peak GFLOPS clock frequency  GHz
No. of cores vector width

instructions cycle FLOPS instruction , 9

( ) ( ( ))
( ) ( )

( ) ( ) ( )

=
´ ´

´ ´

where FLOPS/instruction= 2 in the case of fused multiply add
(FMA), and the vector width is 16 for single precision and 8 for
double precision. The Intel CPUs (Xeon Gold 6230 and Xeon
Phi 7290) have two AVX-512 units, and thus instructions/
cycle= 2, while the AMD EPYC 7601 has instructions/

Figure 6. Flow plot representing how AA performance (GFLOPS) depends on parameters of the data and dedispersion plan. Each line symbolizes one run of the
autotuned AA GPU dedispersion, with data and a dedispersion plan described by parameters shown in the figure. These parameters are the number of channels, DM
trials, DM step, sampling time of the data, and observation time. For simplicity, only the 8-bit input data and a telescope central frequency set to 1400 MHz are shown.
The left plot, where we have fixed the observation time and emphasized the DM step (color) and sampling time (hue), shows that the performance is mainly affected
by the combination of two parameters: the DM step and the sampling time. Lines of rich dark color, where high sampling time is combined with a large DM step, show
the lowest-performing case, where shared-memory GPU code cannot be used. Lines of brighter color have increasing performance as the sampling time gets lower.
The right plot, where the sampling time is fixed and only the DM step is emphasized, shows that the performance is independent of the observation time.

Table 2
Dedispersion Plans Used in the Frequency Resolution Test (Section 5.2)

DM Range DM Step No. of DM Trials
(pc cm−3) (pc cm−3)

0–150 0.10 1500
150–300 0.20 750
300–500 0.25 800

10 https://sourceforge.net/projects/heimdall-astro/
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cycle= 1. In the case when all cores utilize AVX-512
instructions, the core clock frequency is reduced by
100–200 GHz.11

For the time measurements of Heimdall and AstroAccele-
rate, we used the NVIDIA Compute profiler software (ncu) for
the GPUs and the omp_get_wtime function for the CPU
case, while in the case of Amber, we followed the supplied
timer using OpenCL functions. Where possible, we use the
supplied autotuning scripts for each test and all codes to
achieve the best performance. Unless otherwise stated, all
execution times show kernel runtime only; that is, no data
transfers from host to device (GPU) are taken into account. The

GPU codes are compiled with nvcc compiler, and the CPU
codes with the Intel compiler (ICC). Codes based on OpenCL
are compiled with nvcc for GPUs and ICC for CPUs, with the
appropriate OpenCL flag enabled. The compiler flags we used
are summarized in Table 1.

5.1. Performance Dependency

To illustrate the dependency of AstroAccelerateʼs perfor-
mance on different input data parameters, we have visualized
all distinct cases in the form of a flow plot shown in Figure 6.
The parameters used are the number of frequency channels,
sampling time of the data, observation time, the number of DM
trials, and the size of the DM step. The performance is
expressed in GFLOPS, as this can be understood as an average
performance per second. The execution time will still depend
on the size of the task. The left plot in Figure 6 shows that the
right combination of time sampling with DM step size is
essential for high performance. The plot on the right of Figure 6

Figure 7. The execution time of the corresponding dedispersion plan (see
Table 2) for 4-bit, 8-bit, and 16-bit precision (from top to bottom) input data
with an increasing number of channels, observation time T = 10 s, central
frequency fc = 1400 MHz, and total bandwidth of 300 MHz.

Figure 8. Performance in FLOPS with an increasing number of channels for all
tested codes. The first three rows correspond to 4-bit, 8-bit, and 16-bit
precision.

11 See the Intel Xeon Phi Processor product brief (https://objects.icecat.biz/
objects/mmo_32741035_1471257902_943_16737.pdf), and the Intel Xeon
Processor Scalable Family Specification Update (https://www.intel.com/
content/www/us/en/content-details/613537/intel-xeon-processor-scalable-
family-specification-update.html).
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shows that the performance of the AA dedispersion code does
not depend on the observation time, as in all other tested codes.

5.2. Frequency Resolution Test

The following test shows the behavior of the execution time
of all mentioned codes when we change the number of
channels.

For testing, we created a synthetic signal with 4-bit, 8-bit,
and 16-bit samples with a time sampling of 64μs for five
different channelizations: 512, 1024, 2048, 4096, and 8192,
where the last one corresponds to the maximum number of
channels that Heimdall can safely process, due to integer
overflow. The length of the input signal corresponds to 10 s of
observation data with a central frequency 1400MHz and a total
bandwidth of 300MHz. This observation length is sufficient to
get representative performance measurements. Moreover, it
allows us to also extend our testing up to 8192 channels for the
Heimdall dedispersion code, which cannot be run at this
number of channels for longer observation times. For the
survey plan, we use three DM ranges without time binning
(also known as downsampling), which together search for
signals ranging from DM 0 to 500 pc cm−3. We limited the
search to 500 pc cm−3 because at high DM it is common to use
a downsampling/scrunch factor, which we do not include in
this test. Moreover, the high-DM searches are covered in the
second test. The dedispersion plan used is summarized in
Table 2.

The execution times of the dedispersion plan using differing
numbers of frequency channels and bit precisions for all tested
codes are shown in Figure 7. The results of Amber dedispersion
for the 4-bit and 16-bit are missing because the code did not

return the correct results for the injected signal from SIGPROC.
There are also no results for our CPU implementation because
it only supports 8-bit precision. Although the OpenCL parallel
language can be used across platforms, Intel officially does not
support KNL. Therefore, we do not show execution times for
Amber.12 Figure 8 shows how performance, expressed in the
floating point operations per second (FLOPS), changes with
increasing numbers of channels.
By analyzing our implementation of the incoherent ded-

ispersion on the GPU using the NVIDIA Nsight Compute, we
see that, in the cases of 4-bit and 8-bit precision, our
implementation is limited by the shared memory bandwidth
on both GPU cards, while the 16-bit precision version is limited
by the special function units (≈95% of utilization) also on both
GPU cards. The special function units take care of type
conversions that are required by the 16-bit implementation. The
summary of shared memory bandwidth utilization by Astro-
Accelerate for each card and bit precision is presented in
Figure 9.

5.3. Processing Pipelines

In this section, we analyze the execution time of the
AstroAccelerate running the dedispersion plan with different
DM ranges (0–3000 pc cm−3) and time binning factors (also
known as downsampling/scrunch factors). We compare the
results alongside the GPU-accelerated pipeline—Heimdall. We
have not compared the Amber pipeline, as this was compared
to Heimdall by Sclocco et al. (2020).
As the radio telescopes operate on a wide range of central

frequencies, we selected three scenarios to demonstrate the
performance and behavior of both AstroAccelerate and
Heimdall. The selected central frequencies are fc= 400 (low),
fc= 800 (mid), and fc= 1400 (high), each with the typical
bandwidth, sampling rate, number of channels, and DM survey
plans (for details see Table 3). The synthetic input data were
generated as in the previous cases using SIGPROC “fake.” The
observation lengths correspond to ∼300 s for the low central
frequency case, and ∼50 s for the others.
To compare both pipelines fairly and use all the implemented

features, we must ensure they use the same or a comparable

Figure 9. Shared memory bandwidth, shown as a percentage of the theoretical
maximum achieved by AstroAccelerate dedispersion for different bit precisions
and an increasing number of channels. The theoretical maximum of shared
memory bandwidth for each GPU card is in the top right corner.

Figure 10. Visualization of the continuous Heimdall survey DM plan with a
discrete AstroAccelerate DM plan for all three cases: fc = 400, 800, and
1400 MHz (from left to right). Details can be found in Table 3.

Table 3
Specifications of the Input Data Used for Pipeline Comparison

Central Total Sampling No. of Channels DM
Frequency Bandwidth Rate Range

Low 400 MHz 200 MHz 256 μs 1024 0–1500
Mid 800 MHz 200 MHz 128 μs 4096 0–2000
High 1400 MHz 300 MHz 64 μs 4096 0–3000

Note. The observation length corresponds ∼300 s for the low central frequency
and ∼50 s for medium and high central frequencies.

12 Even though it is still possible to get OpenCL code running on KNL by
using an older Intel OpenCL driver without the support of AVX-512 (Johnston
& Milthorpe 2018), i.e., it provides only half of the theoretical peak
performance.
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DM plan. Heimdall, by default, uses an “adaptive” mode. That
is, Heimdall generates a list of DMs during the startup phase of
the pipeline based on the smearing tolerance factor between
individual DM trials (default value 1.25), thereby changing its
DM step for each DM trial. AstroAccelerate, on the other hand,
uses a user-defined fixed DM step for each DM range. To
obtain a similar DM plan for AstroAccelerate, we used the
“continuous” plan from Heimdall and created the closest
“discrete” plan for our pipeline. A visualization of these plans
for all three cases is shown in Figure 10. We note that the
highest DM is different for each case (∼1500, 2000, and
3000 pc cm−3).

The execution times for each bit precision and many-core
system (GPU or CPU) are summarized in Figure 11. Similarly,
as in the previous subsection, we found that our implementa-
tion is limited by the shared memory bandwidth (4-bit and
8-bit) or by special functional units (16-bit).

5.4. Comparison of the Dedispersed Planes

The dedispersion output plane normalized to its own
maximum from AstroAccelerate, Heimdall, and Amber are
presented in Figure 12. We used synthetic 8-bit data with an
injected signal of DM= 90.0 pc cm−3. Each code was run in
“fixed” mode with a simple survey plan searching pulses
between DMs of 0–200 pc cm−3 with a step 0.5 pc cm−3. As
shown in Figure 12, all implementations recover the correct
dispersion measure of the injected signal. However, as shown
in Figure 13, there are small numerical differences (∼1%).

These are introduced by the differences in the calculation of the
time shift function, including the use of a slightly different
constant of proportionality (CDM) used in Equation (1) in the
different implementations. In addition, Heimdall dedispersion
internally rescales the output dedispersed values, thus incurring
a round-off error. Finally, in Figure 14, we provide a view of a
single DM trial from the dedispersed outputs between
AstroAccelerate, Heimdall, Amber, and our CPU implementa-
tion around the DM of the injected signal and their percentage
difference.

5.5. Performance on Selected Telescopes

In this section, we provide performance results for Astro-
Accelerate for 10 selected telescopes and their settings for two
GPUs, namely the Tesla V100 GPU and A100 GPU. We have
determined the DM survey plan for each telescope setup using
the DDplan.py tool from the PRESTO pulsar search
and analysis software (Ransom 2011). We measure the
performance in units of fractions of real time computed as

R
t

t
, 10obs

c
( )=

where tobs is the observation time that is being processed and tc
is the execution time of the AstroAccelerate pipeline. The
execution time tc includes the time required for dedispersion,
the transpose of the input data (if necessary), and down-
sampling (time binning). We do not include the input data
transfer time from the host to the GPU device memory. It

Figure 11. Execution times of AstroAccelerate and Heimdall on different many-core platforms for three central frequencies and bit precisions operating on a simulated
signal of an observation length of ∼300 s for the low central frequency and ∼50 s for all other central frequencies. The top row corresponds to the central frequency
fc = 400, the middle row to fc = 800, and the bottom row to fc = 1400 MHz (low, mid, and high). In the left column are the results for 4-bit precision, in the middle
column those for 8-bit precision, and in the right column those for 16-bit precision. The gray boxes show the execution time including all PCIe transfers and overheads
needed to finish the plan. The color (lime green or dark green) bar shows the execution time of all kernels, for example, transposing of the input data, downsampling
data, etc., needed by the pipeline.
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should be noted that R> 1 means that the computing is
performed in real time or greater, that is, the observation time is
longer than the time needed for its processing.

Table 4 summarizes the basic characteristics of the selected
telescopes, the range of the DM survey plan, and the
performance of the autotuned AstroAccelerate software pipe-
line on NVIDIA Tesla V100 and NVIDIA A100 GPU in units
of fractions of real time. As can be seen, in all cases,
AstroAccelerate operates in real time or greater. In the worst-
case scenario, AstroAccelerate achieved R= 20 on the
NVIDIA Tesla V100 GPU and R= 25 on NVIDIA A100
GPU. For more details, such as the DM survey plans for
individual telescopes, memory transfers, CPU performance
tests, etc., please see https://github.com/AstroAccelerateOrg/
SupportingMaterialForPapers/tree/main/Dedispersion.

6. Discussion and Conclusions

In this paper, we present our CPU and GPU implementations
of the incoherent dedispersion method for removing the effect
of the frequency delay introduced due to the interstellar
medium. Although dedispersion is only a part of the pulsar

search process, its computational intensity scales rapidly with
the amount of data, and as such, it becomes a substantial
contribution to the total processing time of the pipeline. We
compare three different many-core implementations of the
incoherent dedispersion transform, namely Dedisp by Barsdell

Figure 12. Zoomed-in normalized output of the dedispersion transform
(DDTR) for Heimdall (top, green), Amber (middle, purple), and AstroAcce-
lerate (bottom, orange) of an injected signal with DM = 90.0 pc cm−3.

Figure 13. Percentage difference of the normalized dedispersion outputs. From
top to bottom: AstroAccelerate and Heimdall; AstroAccelerate and Amber.

Figure 14. Comparison of the dedispersed (DDTR) outputs and their
percentage difference at DM = 90 pc cm−3 between AstroAccelerate, Heim-
dall, and Amber at the top, and our CPU implementation at the bottom.
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et al. (2012) that is part of the Heimdall pipeline, Dedispersion
by Sclocco et al. (2016) from the Amber pipeline, and our
implementation that is part of the AstroAccelerate project. We
demonstrate that our implementation of dedispersion is faster
and covers a wider range of different input data parameters.

In Figure 6, we show how the performance of AstroAcce-
lerate depends on different input data parameters. The most
important parameter for performance is the combination of
sampling time and DM step. For a large enough DM step, the
required data may no longer fit into the GPUʼs shared memory,
and the cache dedispersion algorithm that relies on L1 or a
slower L2 cache must be used. This leads to a performance loss
of up to 4×. In such a case, it might be beneficial to lower the
data sampling rate—for example, through time binning—and
benefit from higher performance due to the smaller data size
and being in a more cache-friendly regime.

In the first benchmark in Section 5.2, we compare all three
implementations (Heimdall, Amber, and our AstroAccelerate),
processing input data of 4-bit, 8-bit, and 16-bit precision, and
producing a fixed number of DM trials but using different
numbers of frequency channels. We demonstrate that the
AstroAccelerate GPU implementation is at least 10× faster in
the case of Heimdall and from 6× (with 512 channels) to 3.4×
(8192 channels) faster than Amber on the NVIDIA Ampere
generation A100 GPU. Similar results apply for the previous-
generation card, the NVIDIA Tesla V100 GPU. The worst
performance compared to Heimdall is for 16-bit precision,
where AstroAccelerate is only 2× faster.

Our CPU version of the incoherent dedispersion on all tested
CPUs is comparable in performance to the Heimdall code on an
NVIDIA Tesla V100 GPU for a higher number of frequency
channels. Compared to the CPU version of Amber, our code is

from 2× (512 channels) to 15× (8192 channels) faster for all
tested CPUs.
Figure 8 shows that our implementations achieve, on

average, stable performance for all tested frequency channels
in terms of FLOPS. That is, except for the case of 8192
channels for 4-bit input data, due to the algorithm change. Our
implementation achieves an average of ∼6.5 TFLOPS on a
Tesla V100 GPU for 4-bit, ∼4.5 TFLOPS for 8-bit precision
data, and ∼1.6 TFLOPS for 16-bit input data. On a Tesla A100,
it achieves ∼8.5 TFLOPS for 4-bit precision data, ∼5 TFLOPS
for 8-bit, and ∼2 GFLOPS in the case of 16-bit. The
performance improvement of the Ampere generation compared
to the Volta generation is mainly due to the increased shared
memory bandwidth (from ∼ 14 TB s−1 to ∼ 18 TB s−1. On the
tested CPUs, we get ∼0.4 TFLOPS on KNL, ∼0.33 TFLOPS
in the case of the AMD EPYC 7601, and ∼0.31 TFLOPS for
an Intel Xeon Gold 6230.
The performance of other tested codes is mostly stable or

improves with an increasing number of channels. However,
Heimdall has a particular problem with the NVIDIA Tesla
V100 GPU, as the performance decreases significantly for a
high number of frequency channels, something that is not
observed with the same code on the NVIDIA A100 GPU. We
have observed an unusual behavior of the Amber pipeline on
the AMD CPU, where the performance decreases significantly
for a higher number of frequency channels. This contradicts our
expectations based on Amberʼs performance on the Intel CPU
and the NVIDIA GPUs. This may indicate the use of platform-
specific optimization in Amber or the lack of OpenCL support
for AMD EPYC CPUs. It also shows that, even though the
OpenCL programming model is easily portable to different
many-core systems, it does not always guarantee good
performance.

Table 4
List of Selected Radio Telescopes, Their Characteristics, and Their Search Ranges, and the Performance of the AstroAccelerate in Fractions of Real Time

Telescope Central Frequency Bandwidth Time Sampling Channels DM Range

Fractions of
Real Time

(MHz) (MHz) (μs) (pc cm−3)
Tesla
V100 A100

Apertifa ALERT 1400 300 40.92 1536 0–10,000 28 41
Arecibob PALFA 1375 322 65.5 1024 0–9866 75 91
ASKAPc 1400 336 1265 336 0–3763 4613 5835
CHIMEd FRB 600 400 1000 16384 0–2000 20 25
Green Bank Telescopee 820 200 20.48 512 0–2000 69 110

2000 800 (600) 10.24 512 0–1000 59 82
GMRTf 400 200 1310.72 4096 0–2000 187 239
Lovellg 1532 400 256 800 0–10,000 622 837
Parkes—SUPERBh F-pipeline 1382 400 64 1024 0–2000 98 133

T-pipeline 1382 400 64 1024 0–10,000 89 127
UTMOSTi 835.5 31.25 655.36 320 0–10,000 7940 8930
VLAj 3000 1024 5000 256 0–10,000 254,200 327,665

Notes.
a Maan & van Leeuwen (2017).
b Spitler et al. (2014); Scholz et al. (2016).
c Bannister et al. (2017).
d Amiri et al. (2018); Mikhailov & Sclocco (2018).
e Masui et al. (2015); Scholz et al. (2016).
f Bhattacharyya (2017); Bhattacharyya et al. (2019); Singh et al. (2022).
g Scholz et al. (2016).
h Keane et al. (2017).
i Bailes et al. (2017); Caleb et al. (2017).
j Law et al. (2017).
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In Section 5.3, we perform a pipeline test for three different
central frequencies ( fc= 400 (low), fc= 800 (mid), and fc= 1400
(high)), with searches running from 0 up to 1500, 2000, and
3000 pc cm−3, respectively, with the sampling rates and the
numbers of channels depending on the central frequencies. We
execute all benchmarks for AstroAccelerate and Heimdall for 4-bit,
8-bit, and 16-bit precision input data (where applicable) on the
GPUs as well as on the CPUs. We find that both AstroAccelerate
and Heimdall on all tested platforms operate in real-time regimes.
That is, the end-to-end execution time of a pipeline (which
includes all required operations like time binning, data transfers to
the GPU memory, dedispersion, etc.) for the selected dedispersion
plan is lower than the observation time of the input data. Overall,
our GPU version, compared to Heimdall, is 4–8× faster for all
tested central frequencies and input data precisions.

The performance of our CPU implementation is comparable
with Heimdall running on either an NVIDIA V100 GPU or an
NVIDIA A100 GPU. Only at mid-central frequencies is
Heimdall substantially faster. Depending on the structure of
the pipeline, the CPU dedispersion code may offer a way to
distribute the tasks between the CPU and GPU, where the GPU
can, for example, perform FDAS (Ransom et al. 2002;
Dimoudi et al. 2018) or JERK search (Andersen & Ran-
som 2018; Adámek et al. 2020) while the CPU calculates DM
trials, thus enabling heterogeneous systems.

Finally, we run AstroAccelerate on several telescope setups
with different survey plans. The plans are created with the
DDplan.py tool from PRESTO up to the typical dispersion
measures ranges given in the corresponding telescope articles.
On both the NVIDIA V100 GPU and NVIDIA A100 GPU, we
achieve real-time performance in all cases, i.e., from 20 to 5000
fractions of real time and even 200,000 fractions of real time
for the VLA telescope.
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