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Abstract 
A large number of atom probe tomography (APT) datasets from past experiments were collected into a database to conduct statistical 
analyses. An effective way of handling the data is shown, and a study on hydrogen is conducted to illustrate the usefulness of this 
approach. We propose to handle a large collection of APT spectra as a point cloud and use a city block distance–based metric to measure 
dissimilarity between spectra. This enables quick and automated searching for spectra by similarity. Since spectra from APT experiments 
on similar materials are similar, the point cloud of spectra contains clusters. Analysis of these clusters of spectra in this point cloud allows 
us to infer the sample materials. The behavior of contaminant hydrogen is analyzed and correlated with voltage, electric field, and sample 
base material. Across several materials, the H+

2 /H+ ratio is found to decrease with increasing field, likely an indication of postionization of 
H+

2 ions. The absolute amounts of H+
2 and H+ are found to frequently increase throughout APT experiments.
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Introduction
The field of atom probe tomography (APT) has experienced 
significant expansion in the past 30 years. Modern instru
ments can routinely produce multiple datasets, incorporating 
more than 10 M (million) detected ions, every day. This has 
over time led to the amassing of many APT datasets. With 
more than 120 atom probes worldwide currently in use, we as
sume that the number of APT datasets collected to date well 
exceeds 1 M. We believe that a vast amount of yet undiscov
ered knowledge exists within these data archives and explore 
their potential use.

Experiments in current APT research are set up in a targeted 
way to specifically investigate particular materials or condi
tions. In order to gain new knowledge about materials, more 
experiments need to be conducted. However, the availability 
of large collections of experimental data enables an alternative 
avenue of research, looking for statistical observations across 
many prior experiments. This type of analysis is common and 
established in many other areas of science, for example, drug 
discovery and high-energy particle physics (Radovic et al., 
2018; Zhu, 2020).

Similar studies have not yet been published in the field of 
APT. This is due to the use of closed file formats for storing 
raw experimental data (which is forced through restrictions 
in the control software on the commonly used commercial 
APT instruments), making them inaccessible to custom soft
ware and analysis scripts. While extensive efforts to develop 
open APT software exist (Kühbach et al., 2021), they cannot 
escape from the issue that most raw APT data that has been 
produced to date is only available in proprietary formats. 
We have developed a simple method, based on user interface 
(UI) automation, to circumnavigate this problem and 

automatically collect the data from past experiments in our 
own research group to firstly build a database. We then con
ducted various analyses on this new database as a proof of 
concept, as presented in this paper.

For easy handling of a collection of APT mass spectra, we 
propose a city block distance–based metric (Craw, 2010) 
which corresponds to the similarity of two spectra. We can 
then regard our collection of spectra as a point cloud, enabling 
an effective search of spectra by similarity. Similar spectra are 
grouped in this space such that a cluster search can uncover 
groups of experiments that result in similar mass spectra. 
More advanced analyses, such as on contaminant hydrogen, 
can be conducted based on this structure.

Contaminant hydrogen in APT has long been focus of dif
ferent strands of research (Sundell et al., 2013; Kolli, 2017; 
Mouton et al., 2019; Jones et al., 2021; Meier et al., 2021; 
Rigutti et al., 2021). It appears in virtually every APT experi
ment; however, the source of and contamination mechanism 
remain controversial despite increasing levels of activity in 
this area (Felfer et al., 2021; Yoo et al., 2022). Due to this ubi
quitous detection of hydrogen, nearly every APT dataset also 
can be regarded as an experiment investigating the factors af
fecting the measurement of contaminant hydrogen. Our col
lection of automatically exported datasets therefore contains 
a vast amount of data about contaminant hydrogen.

The clearest evidence of contaminant hydrogen in APT 
mass-to-charge-state ratio (m/n) spectra are the peaks at 1 
and 2 Da, corresponding to H+ and H+

2 , respectively. Due to 
their low mass, these peaks cannot possibly overlap with 
any ions that we would realistically expect in APT spectra. 
This means we can automatically extract the counts in these 
peaks for a large number of experiments and conduct analyses 
on these. In this paper, we aim to analyze the field dependence 
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of hydrogen in the contaminant peaks at m/n = 1,2 Da across 
past experiments in our collection.

Background and Theory
Data
The primary data of interest collected in APT experiments are 
the detector coordinates and time-of-flight information. Data 
processing is then required in order to convert this data into 
mass-to-charge spectra and 3D real space atom-by-atom recon
structed datasets. The detector data is complemented with add
itionally monitored parameters during the experiment, e.g., 
pressure or sample temperature. On Cameca LEAP instru
ments, this data is stored in a proprietary file format, and their 
reconstruction software (IVAS or APSuite) is needed for extrac
tion of spectra and reconstruction data from these files. To date, 
there exists no direct and fully automatable method for analyz
ing or exporting batches of many datasets.

To overcome this problem, a Python script for UI automa
tion was devised that can automatically open raw APT experi
ment files in IVAS (.rhit, .hits) and export the available 
experimental data into .epos and.csv files. These file formats 
are open and suitable for use with a wide range of free and ex
isting tools and also allow conducting large-scale data analysis 
outside using our own tools.

A full spatial reconstruction of APT data, at present, re
quires a significant amount of information to be manually in
put by the user, e.g., for assigning ion identities in the mass– 
charge spectrum and selection of reconstruction parameters. 
Development of capabilities to automate this is beyond our 
scope of research. Our UI automation script skips these steps 
or falls back to default values. This means that the reconstruc
tion is often not constrained with sensible reconstruction pa
rameters, rendering the spatial reconstruction coordinates 
that we export less meaningful.

City Block Distance of APT Spectra
A crucial capability for successful research on a large library of 
APT spectra is the ability to search for spectra with certain fea
tures or similarities or to discover groups (or clusters) in this 
collection. We propose to use a method based on the city block 
distance (Craw, 2010) to achieve this.

We create APT spectra for all experiments in the collection 
with the same histogram binning and normalize them such 
that the counts (or intensities) in each spectrum sum up to a 
fixed value of 1. The collection of spectra obtained is regarded 
as a high dimensional point cloud. Each dataset corresponds 
to one data point, and each bin corresponds to one dimension 
in the point cloud. Thus, m spectra with n bins each amount to 
a m*n point cloud. We then use the inverse city block distance 
between two spectra in the point cloud as a measure for their 
similarity, enabling the retrieval of spectra by similarity 
through a nearest-neighbor search in the spectral point cloud.

The city block distance between two spectra a and b with n 
bins is

d(a, b) =
􏽘n

k=1

abs(ak − bk) (1) 

where ak and bk are the measured intensities of the k-th bin in 
spectrum a and  b. d is scalar.

The intensities in APT spectra are measured as a number 
of detector events. However, we normalize the spectra ak 

and bk such that the intensities in all bins sum up to one for 
distance calculations. This removes the influence of the total 
number of counts (ion yield of an experiment) and machine de
tection efficiency on the calculated distance between any two 
spectra.

Figure 1 illustrates an example. Figures 1a and 1b each show 
two normalized example spectra. In the case of Figure 1a, these 
spectra are similar, while they are dissimilar in Figure 1b. The city 
block distance between these spectra corresponds to the 
summed-up differences between intensities per bin, shown as 
black arrows. For the case of dissimilar spectra, this sum is high
er, resulting in a greater city block distance between spectra.

The spectra in our collection are not represented by a uni
form distribution of points in the point cloud. Instead, there 
are groups of experiments that have been run on the same or 
similar base materials, resulting in groups of similar spectra. 
In a point cloud where the inverse distance corresponds to 
similarity, these groups appear as clusters. Cluster search in 
this point cloud can therefore identify the base materials of 
the samples in our point cloud, as will be shown in 
Searching and Clustering in the Data. It can also be used to es
timate the base material of a sample, based on the cluster in 
which the spectrum is found.

Analysis of Hydrogen Behavior
Hydrogen is a common contaminant in APT spectra, appear
ing in peaks at m/n = 1 (H+), m/n = 2 (H+

2 ), m/n = 3 (H+
3 ) and 

Fig. 1. Examples for two similar (a) or dissimilar (b) APT spectra (simplistic 
drawing with one or two peaks only per spectrum). The city block distance is 
the sum of all black arrows. It is seen that the dissimilarity of the spectra in 
(b) directly leads to a higher distance than in (a).
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more complex hydride ions. The behavior of this contaminant 
has attracted significant research interest; however, it is still 
not fully understood, and relevant supply and evaporation 
mechanisms remain controversial (Tsong & Liou, 1985; 
Mouton et al., 2019; Felfer et al., 2021; Jones et al., 2021; 
Rigutti et al., 2021; Yoo et al., 2022). One of the reasons 
for this is the highly material dependent behavior of contam
inant hydrogen in APT. Insights obtained using a particular 
type of experiment and/or sample may not be fully transferra
ble to other settings.

Properties of contaminant hydrogen that have been previ
ously investigated are the ratio of the H+ and H+

2 peaks, their 
absolute ionic fractions within the dataset, and their evolution 
over voltage or electric field strength during the experiment 
(Sundell et al., 2013; Haley et al., 2014; Jones et al., 2021). 
With a large collection of APT experiments available, it is pos
sible to study H behavior across many datasets and search for 
parameters that influence it. A basic approach to conduct this 
analysis is to automatically extract the height of the H+ and H+

2 
peaks (at 1 and 2 Da) and to calculate their ratio as a function 
of the voltage applied during the course of the experiment.

It is however important to keep in mind that the voltage 
does not directly influence the evaporation at the tip of the 
APT sample. Instead, the relevant underlying parameter is 
the strength of the electric field at the apex of the specimen. 
The relationship between actual voltage and field at the tip 
surface is dependent on many other factors, including sample 
geometry, which is difficult to estimate. However, for a range 
of materials, the approximate field can be estimated from the 
charge state ratios (CSR) of ions in the spectrum, using look- 
up from Kingham curves (Kingham, 1982). This approach 
has some limitations, e.g., reduced accuracy in materials hav
ing strong molecular ion evaporation (Schreiber et al., 2014; 
Gault et al., 2016); however, it is suitable for most metallic 
materials.

Once the base material of a sample is known (and this can be 
determined using a cluster analysis, as shown in Searching and 
Clustering Data in the Data), the CSR of the majority ions can 
usually be extracted easily and automatically as the ratio of 
two peaks whose position in the spectrum is known. This 
means that an analysis of hydrogen over voltage in our collec
tion of APT spectra can be easily extended to an analysis of 
hydrogen over electric field.

Experimental
Data
We created a UI automation script that automatically operates 
the commercial APT software IVAS to export data from the 
proprietary formats into open formats that can be used 
for our research. To this end, the script needs to load the 
raw experiment files into IVAS and process it using a 
“Reconstruction Wizard”. This function leads the user 
step-by-step through reconstruction of the APT data. Our 
script does not aim to accurately reconstruct a spatial image 
from the data, but only at exporting it, and hence skips as 
many of the steps in this process as possible or uses default val
ues. A list of parameters that our script feeds into the recon
struction wizard is given in Table 1.

After completing the reconstruction wizard, the UI automa
tion script saves the APT dataset as an .epos file. This file along 
with the .csv files of additional sensor data that were exported 
in step 2 (Table 1) is copied, and the reconstruction is re- 
started to export the next raw experiment file. An overview 
showing all of the data that is retrieved per raw experiment 
file is provided in Supplementary Material S1.

This method has been applied to APT experiment data files 
(.rhit files) that have been obtained between 2012 and 2015 on 
a Cameca LEAP 3000X HR atom probe and with a file size 
above 100 MB. Unlike more recent generations of LEAP in
struments, this atom probe does not support changes of pulse 
frequency and laser energy during experiments, meaning that 
experiments are at constant pulse rate and laser energy (if laser 
evaporation is used). The selection by file size leads to the se
lection of datasets with more than approximately 6.8 M de
tector events. The reason for this minimum file size is that in 
short APT experiments, the influence of spurious effects occur
ring in the beginning of the experiment (e.g., due to evapor
ation of surface contaminants from the sample, initially poor 
laser targeting, slow voltage ramp up to the onset of evapor
ation) on the results may be outsized. It is noted however 
that this also biases the selection of experiments toward ex
periments with parameters that typically yield long runs, i.e., 
laser-assisted evaporation modes and high-yielding materials.

A crucial step skipped during the reconstruction in IVAS is 
the calibration of the mass–charge spectra. This step typically 
involves a (piecewise) linear scaling of the m/n values of the 

Table 1. Reconstruction Steps in IVAS and Approach of our UI Automation Script.

Step in reconstruction 
wizard Purpose UI automation script action

1. Setup Review experiment data –
2. Ion sequence range 

selection
Select part of the raw experiment file to include in reconstruction, select 

initial voltage for reconstruction, and export graphs: voltage, pressure, 
laser energy, etc.

Select everything, and export all graphs as 
.csv format

3. Select detector region of 
interest (ROI)

Select detector area to include in reconstruction Leave at preselected default

4. Time-of-flight (TOF) 
correction

Apply voltage and bowl correction to TOF spectrum Run with default values

5. Mass calibration Apply (piecewise) linear correction to m/n spectrum to match position of 
clearly identified peaks with their correct locations

Skip (this is corrected during 
postprocessing of the data, outside of 
IVAS)

6. Ranged-ion 
assignments

Assign peaks in the mass-to-charge-state ratio spectrum to ions for 
reconstruction

Load a dummy range file containing only 
one range for H+ at the m/n−1 peak

7. Reconstruction Adjust reconstruction parameters Run with default values (voltage-based 
reconstruction)
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detected ions, such that prominent and easily identifiable 
peaks in the spectra align with their expected positions. In 
our database, we apply a semi-automated mass calibration 
on the exported data. First, datasets which contain clear iso
topic fingerprints of one or more out of Ti2+, U3+, Si+, Mo2+, 
Cr2+, Zr2+, and Ga+ are selected through manual inspection. 
These ions were chosen as they are commonly present in the 
experimental data collection and their fingerprints have char
acteristic shapes that can be easily visually identified by an op
erator. In addition, we attempt to automatically identify the 
location of the m/n = 1 peak in our datasets. The m/n = 1 
peak is present in almost every APT experiment due to con
taminant H+ ions, and as such, this peak was located success
fully in 843 out of 848 datasets.

For all datasets where the H+ peak and at least one other iso
topic fingerprint was identified (by manual inspection), linear 
correction of the m/n spectrum can be applied directly and 
automatically by shifting and scaling the spectra such that 
peak maxima of identified fingerprints align with their ex
pected positions. For all datasets where H+, but no other fin
gerprint was identified, we apply a shift such that the m/n =  
1 peak is at its expected position and subsequently determine 
the scaling factor through optimization.

To this end, we assume that for all of these datasets, there 
will be at least one dataset amongst the previously corrected 
ones that at least in parts looks similar, i.e., contains shared 
ionic fingerprints. This is a reasonable assumption as our spec
tra are typically dominated by ions from one out of a low num
ber of base materials (as will be shown in Searching and 
Clustering in the Data, Fig. 3), for which reason at least one 
dataset with the same main ion should be present for every da
taset. For all of the spectra where the scaling is to be deter
mined, we iterate through a range of scaling factors and 
select the scaling factor where the distance to any of the (cor
rected) spectra with one or more known isotopic fingerprints is 
minimal.

No such optimization was conducted for those five datasets 
where no H+ peak was found.

Searching and Clustering in the Data
The distance between respective spectra [Equation (1)] can be 
used as an effective mean for searching spectra or parts of 
spectra that are similar to a given input spectrum. To find 
the spectra in the database that are most similar to a given can
didate, the spectra with lowest distance are computed. We 
demonstrate this capability on three example spectra from 
outside the database, where we search the database to see if 
it contains similar-looking spectra. The run numbers and 
hash values of these search candidates are provided in 
Supplementary Material S5.

The first example is a Ti2+ isotopic fingerprint that overlaps 
with Cr2+ obtained from a nickel-based superalloy that was 
analyzed at the APT and 3D Nanoanalytics group (P.J. 
Felfer) in Erlangen, Germany, on a Cameca LEAP 4000X 
HR. This search candidate combines two favorable aspects 
that are likely beneficial for the search for similar neighbors. 
Firstly, Ti and Cr are common alloying elements in Ni-based 
superalloys and steels, of which many samples have been pre
viously analyzed at the Oxford APT facility, leading to a high 
number of potentially well-matched candidates. Secondly, 
Ti2+ and Cr2+ have been used in the calibration of those m/n 
spectra where they have been identified, leading to a 

particularly good calibration of the spectra at the locations 
of Ti2+ and Cr2+.

The second example is a lift-out of a pure tungsten sample 
that has been run on a Cameca LEAP 5000 XS. Like for the 
Ti–Cr case, there are many datasets in our collection of spectra 
that should be a good match. However, the search candidate 
was intentionally chosen as a spectrum with relatively few 
counts and a poor peak shape (due to deliberately poor appli
cation of the voltage/bowl correction in the IVAS software). 
This represents an intermediate case, meaning that we expect 
a nearest-neighbor search to be more prone to pick up datasets 
that are a poor match to the search candidate.

The third example is a complex peak overlap of SiO+
2 , 

Na4P2+, PO+
2 , and PO2H+ ions in a bioactive glass sample 

that was analyzed by Ren et al. on a Cameca LEAP 5000 
XR (Ren et al., 2021). There are no similar samples in our col
lection of datasets. This represents a hard, or impossible, case, 
where we expect our approach will retrieve only “false” leads 
from a nearest-neighbor search, i.e., spectra that may look 
similar, but which are chemically different.

As mentioned in City Block Distance of APT Spectra, it is 
expected that the point cloud of all spectra in the database 
contains clusters. Due to the high dimensionality of the point 
cloud, direct visual inspection of these is impossible. We there
fore apply t-distributed stochastic neighbor embedding 
(t-SNE) to embed the high-dimensional point cloud into two- 
dimensional space while preserving the spatial relationships as 
much a possible (van der Maaten & Hinton, 2008). t-distrib
uted stochastic neighbor embedding works by calculating a 
probability distribution based on the point distances in high- 
dimensional space and then tries to find a distribution of 
points in low-dimensional space with similar distribution by 
minimizing the difference between the probability distribution 
in high-dimensional and low-dimensional space. This enables 
an approximate overview over the similarity (distance) rela
tions between our spectra. In this work, we use a spectrum 
bin size of 0.1 Da for the t-SNE embedding to reduce compu
tation time and memory usage. This is lower than the bin sizes 
commonly used in APT spectra (usually in the range 0.001– 
0.01 Da), but is sufficient for our application.

To provide additional information about sample chemistry, 
we fit isotopic fingerprints of common sample base materials 
from our group (Fe, Ni, Zr, W, Si, Ti, Ga, U) into our spectra, 
taking charge states +1 and +2 into account. If one of these fin
gerprints accounts for more than a certain fraction of all de
tector events in the spectra (critical fractions listed in Fig. 3a, 
legend), we draw the points in a color specific to that element. 
This effectively highlights the main elements of the samples in 
the diagram, where they have been identified. For clarification, 
no manual identification of peaks was conducted in this step, 
unlike for the identification of peaks for spectra calibration.

It is noted that visual inspection of t-SNE embeddings is not 
an ideal method for proving the existence of clusters. This is 
due to human bias, but also t-SNE possibly introduces arte
facts, such as clusters that are not contained in the original 
data (Wattenberg et al., 2016). To confirm that our observa
tions are not artefacts, we apply the “Ordering Points To 
Identify the Clustering Structure” algorithm (OPTICS) to 
our point cloud of spectra (not to the t-SNE coordinates) in or
der to create a reachability diagram. This algorithm travels 
through all data points (spectra) in the point cloud by visiting 
the nearest, not yet visited, neighbor of the current data point 
(Ankerst et al., 1999; Daszykowski et al., 2002). For each 
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point, the so-called reachability distance is calculated as the 
maximum out of the distance that needs to be travelled to 
this point and the radius around this point within which a cer
tain minimum number of Points (“MinPoints”) is found. The 
reachability plot contains the reachability distances for all 
points, in the order in which they are visited. Spectra in clus
ters have low-reachability distances, but they are surrounded 
by distanced points that are not part of the cluster and thus ap
pear as sinks in the reachability plot.

Analysis of Hydrogen Behavior
We analyze the ratio of H+

2 to H+ as function of voltage in our 
collection of spectra. Typically, APT experiments are run us
ing a constant detection rate (ions per applied pulse). The volt
age during the experiment is adjusted to achieve a certain 
target detection rate. This usually leads to the voltage slowly 
increasing during the experiment as the specimen evolved 
throughout.

We separate each dataset into voltage bins of 500 V width. 
For each voltage bin, we fit a constant TOF background to the 
areas around the hydrogen peaks, where no other ions are ex
pected (Haley et al., 2020). We then extract the amount of H+

2 
and H+ detector events as the background-corrected counts at 
m/n = 0.9…1.1 and m/n = 1.9…2.1. Bins with less than 
50,000 total atoms or less than 500 H+

2 or H+ ions are rejected. 
A side effect of this is the rejection of all datasets where the H+

2 
or H+ peaks are missing. From this, the evolution of the H+

2 H+ 

ratio over voltage can be calculated for each dataset. Since it is 
possible to infer the base material of samples through associ
ation with clusters in our spectra’s point cloud (Searching 
and Clustering in the Data), this enables drawing diagrams 
of the fraction of H+

2 and H+ and the ratio H+
2 /H

+ as function 
of voltage per material for many experiments.

As will be shown in Searching and Clustering in the Data, 
some base materials of the samples in our collection can be 
easily identified, including Fe, Si, Ni, Zr, and W. For these ma
terials, we extract the CSRs of Fe2+/Fe+,  Si2+/Si+,  Ni2+/Ni+, 

Zr3+/Zr2+, and  W3+/W2+ for all voltage bins where the counts 
of H+

2 and H+ were estimated from the counts in the (noise- 
corrected) spectra. It is noted that this will be inaccurate if 
the peaks that are used for measuring the CSR overlap with 
other ions. Given that we will have determined the base mater
ial with confidence and that our conclusions will be drawn 
from averaged data across many experiments, we believe 
that the errors that this introduces will not critically influence 
our results. We then use Kingham curves [as calculated by Yao 
et al. (Gault, 2012)] to estimate electric fields from the CSR. 
This enables us to analyze the evolution of H+ and H+

2 and 
their ratio H+

2 /H
+ as a function of voltage and electric field 

in these materials.

Results
Searching and Clustering
For the three example spectra that we use to demonstrate 
nearest-neighbor search, we show histograms of the spectra 
as well as of the nearest four neighbors in Figure 2. In the 
“easy” case of the Ti–Cr overlap (Fig. 2a) it is seen that all 
of the nearest neighbors are very similar to the search candi
dates. In fact, all of these are Ti–Cr overlaps which look just 
like the search candidate, and the closest neighbor is even a 
sample from exactly the same alloy (Inconel 718) that was an
alyzed as part of a project in Oxford in 2012 that was unre
lated to the search candidate, which was run in 2016 at the 
APT group of Erlangen (Pröbstle et al., 2016).

For the intermediate case of a W spectrum with few counts 
and a less well-defined peak shape, all of the four nearest 
neighbors (Fig. 2b) are tungsten fingerprints too. However, 
none of these correspond to a sample that is pure tungsten 
or one of its alloys. All of these samples only contain minor 
amounts of W, so have small peaks slightly above the noise 
floor. In the very difficult (or “impossible’) case of the bioglass 
samples (Fig. 2c), all of the four nearest neighbors are spectra 
showing Ni and Cu fingerprints from APT runs on materials 
that have no similarity to bioglass (Yeli et al., 2017).

Fig. 2. Three sections from APT spectra that are not contained in our database (top lines, black) and their four nearest neighbors in the Oxford APT 
database, corresponding to an easy (a), intermediate (b) or difficult (c) case of retrieving spectra by similarity. It is seen that in all three cases, neighbors 
with similar peak structures are found.
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A t-SNE embedding of all spectra in our collection of data
sets is shown in Figure 3a. Datasets where common isotopic 
fingerprints (Fe, Zr, Si, W, Ni, Ti, Ga, U) were found to fit 

well have been highlighted in different colors; these are data
sets where these elements were found to account for more 
than a certain fraction of all counts (thresholds in Fig. 3a, le
gend). There are distinct clusters in our point cloud, and the 
clustering occurs mainly in line with the chemical composition 
of the samples. The cluster of datasets where none of the tested 
fingerprint fits well (in the center of the map) was found to in
clude mostly spectra with very a high noise floor, i.e., unsuc
cessful experiments where the noise floor dominates the 
spectrum.

From visual inspection, the cluster of iron spectra in 
Figure 3a contains several sub-clusters. This structure inherent 
to the cluster seems to be due to the peak shape and the alloy
ing elements, such as Mn, Cr, and Ni. This is demonstrated in 
Figure 3b and Figure 4. In Figure 3b, only the iron cluster is 
plotted, and eight manually chosen regions of interest (ROI) 
are highlighted in numbered polyhedrons. Figure 4 shows 
the spectra around the Fe2+  isotopic fingerprints from these 
eight regions of interest. It is seen that while the spectra in 
all ROIs contain an iron fingerprint, all of them also have in
dividual features that set them apart from spectra in other 
ROIs

It is important to note that the t-SNE coordinates are due to 
the full spectra and not just the regions around the Fe2+ ion as 

Fig. 3. (a) t-SNE of the spectra point cloud with black arrows highlighting 
outliers, (b) zoomed-in iron cluster in the t-SNE of the cloud with the 
datasets plotted in Figure 4 highlighted, (c) OPTICS reachability plot of 
the point cloud. It is seen that clusters are present in the APT spectra 
point cloud and that this segregation strongly occurs along the sample 
base material.

Fig. 4. Sections around the iron isotopic fingerprints in the APT spectra in 
the eight ROIs highlighted in Figure 3b. It is seen that clear iron 
fingerprints are contained in all spectra in all ROIs; however all of the 
ROIs also contain features that set them apart from other ROIs. The bin 
size (0.1 Da) is relatively wide, as chosen for t-SNE.
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drawn in Figure 4. However, the region around the Fe2+ peaks 
contains most of the largest peaks in APT experiments on typ
ical steels (Fe2+, Cr2+, Mn2+, Ni2+). For this reason, inspection 
of just this region provides a good clue to understanding the 
structure of the Fe cluster. The full spectra are shown in the 
Supplementary Material S2.

The OPTICS reachability diagram, using the same markers 
as the t-SNE diagram, is shown in Figure 3c. It is seen that 
there are clear sinks in the plot and that these sinks correspond 
to the different base materials. This confirms that the point 
cloud of spectra indeed contains separable clusters along the 
sample base material, as has been expected from the t-SNE 
diagram.

Hydrogen Behavior
Figure 5 shows the evolution of the H+

2 /H
+ as function of volt

age for the most common materials in our collection, for laser 
mode experiments only. The curves of the fractions of H+

2 and 
H+ are supplied in Supplementary Materials S3.

It is seen that the H+
2 /H

+ in most experiments on iron- and 
nickel-based materials lie in a relatively narrow channel around 
0.2. However, it is also seen that outliers can extend far away 
from this value, to below 0.1 and above 1. Similarly narrow 
channels are observed in titanium and tungsten, however, at low
er ratios of approximately 0.1. It is noted that the number of ti
tanium datasets (24) is comparably small. In zirconium, the 
H+

2 /H
+ ratio lies slightly higher at approximately 0.2–0.3 and 

increases with rising standing voltage throughout the experi
ment. There seems to be a number of Zr experiments where 
the H+

2 /H
+ ratio spikes at a certain point between 3 and 6 kV 

to clearly above the 75th percentile—an observation that is not 
made in any tungsten experiment.

A curious observation can be made for silicon. There is a 
spike in the H+

2 /H
+ ratio at approximately 4–5 kV, which is 

observed in a high number of experiments as well as in the 
average across all data points. Inspection of the curves for 
H+

2 and H+ reveals that this is due to an increase of H+
2 at 

this voltage (Supplementary Material S3). Both H+
2 and H+ in

crease with voltage in silicon; however, at 4–5 kV, the increase 
in H+

2 is much stronger, while the H+ increases relatively more 
at higher voltages.

Curves of the absolute fractions of H+
2 and H+ throughout 

the experiments are provided in Supplementary Material S3. 
It is seen in these curves that both median H+

2 and H+ increase 
with increasing voltage in experiments on Fe, Ni, Si, and 
W. For W, the increase is however less pronounced, and the 
scatter at the lower and upper ends (<4 kV and >9 kV) of 
the voltage range is more pronounced due to poor statistics, 
presumably arising from the low number of experiments 
that were analyzed in such voltage ranges. For Zr, the trend 
is opposite, with H+

2 and H+ decreasing throughout the experi
ment. For Ti, it is possible that a decrease similar to Zr is ob
served; however, this is not clear due to the high amount of 
scatter (and poor statistics from only 24 experiments) for 
this material.

Fig. 5. Evolution of the H+
2 /H

+ ratio as functionof voltage in six base material–related clusters in our collection of spectra. In Fe, Ni, and W, H+
2 /H

+ 

converges into a relatively small channel during a large number of experiments. In Ti and Zr, there may be different trends. In Si, an interesting maximum at 
approximately 4.5 kV is observed. Overall, a material dependence of the behavior of contaminant hydrogen becomes evident.
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Figure 6 shows a scatter plot of the same experiments and 
voltage bins as used in Figure 5, but instead of the voltage, 
the electric field as calculated from CSRs is used. We were un
able to calculate meaningful field estimates for the titanium 
datasets as most do not have Ti+ peaks (needed for calculating 
Ti2+/Ti+  CSR) or they are overlapped; therefore, these are ex
cluded from the diagram. It is seen that across the base mate
rials iron, nickel, and silicon, a consistent trend of H+

2 /H
+ 

decreasing with increasing field strength down to approxi
mately 0.1–0.3 is observed.

It is noted that the Si data points (Fig. 6) are bimodal, where 
there are also a number of data points where a relatively low 
field is not paired with a high H+

2 /H
+ ratio. Matching up 

data between Figure 5 and Figure 6 reveals that these Si data 
points of low fields and low H+

2 /H
+ ratio in Figure 6 correspond 

to the data points at the lower voltage range in Figures 5–6 (sili
con), i.e., before the spike in H+

2 /H
+ that is seen in this diagram. 

This, along with the fact that such a clear maximum of the 
H+

2 /H
+ versus voltage curve (Figs. 5–6) is observed at all, could 

indicate the observation of a field- or voltage-dependent phe
nomenon in Si that is not made in the other materials.

The calculated fields for tungsten and zirconium are higher 
than for Si, Fe, and Ni. The ratio of H+

2 /H
+ in tungsten is al

ways low (approximately 0.1), such that it continues the trend 
of low H+

2 /H
+ ratios at high fields that is observed in Fe, Ni, 

and Si. Like in tungsten, no decrease or increase of H+
2 /H

+ 

is seen in zirconium, but the absolute values and scatter are 
higher (approximately 0.2–0.3). It is noted that, unlike for 
Fe, Ni, Si, and W, Zr easily forms hydrides during APT sample 
preparation, which means that a different behavior of hydro
gen in this material would not be surprising (also see discus
sion in Hydrogen Behavior).

Discussion
Searching APT Spectra by Similarity
The three example datasets in Figure 2 illustrate that nearest 
neighbor search based on city block distance of normalized 
spectra is well suited for retrieving similar spectra (or sections 
of spectra) from a database. In particular, the fact that the 
nearest neighbor of the Inconel 718 Ni superalloy (data 
from the APT group in Erlangen) in the Oxford database is an
other Inconel 718 specimen from an unrelated project 

demonstrates how well this method can match isotopic finger
prints under good conditions.

However, it is also clear that there are limits to this. In the 
case of the poor quality tungsten fingerprint (Fig. 2b), all of 
the neighbors are similar to the tungsten fingerprint, but none 
of the data are from tungsten-based materials. Instead, all of 
these datasets are from materials that happen to contain a 
low amount of tungsten as an alloying element, which appears 
in rather poorly defined peaks that do not stand as well above 
the noise floor as the peaks in the Inconel 718 case. This shows 
that nearest neighbor search can in principle retrieve similar da
tasets when neighbors of low-quality spectra are searched. 
However, random noise in the retrieved nearest neighbors 
seems to be a major marker for their similarity, rather than ac
tual similarity of sample or composition. It is therefore believed 
that sufficient data quality (and counts) is needed for reliable re
sults. Our search method may thus be most applicable to 
searching through fingerprints above a reasonable threshold 
number of atoms and with low levels of noise.

The impossible case of bioglass illustrates that (somewhat) 
similar fingerprints can be found in sets of APT spectra that 
do not contain any similar materials or fingerprints. Nearest 
neighbor searches cannot guarantee that the composition of 
the retrieved spectra is even remotely similar, and additional 
plausibility checks are needed to confirm that a retrieved spec
trum actually originates from a similar experiment.

It is noted that computation time of nearest neighbor 
searches is of no concern in the current study. This is because 
computation of nearest neighbor distances on modern hard
ware is sufficiently fast, such that a brute force approach to 
nearest neighbor search (for a given candidate, distances to 
all datasets in the point cloud are calculated and the datasets 
with lowest distance are selected) concludes in less than 0.1 s 
for parameters as used in this study (848 datasets, 17,999 
spectrum bins, Intel Xeon 4,114 Dual CPU). Potential meth
ods for the speed-up of the search, such as dimensionality re
duction (Broderick et al., 2013) or k-d trees (Bentley, 1975), 
were not required for this study.

Clustering in the APT Spectra Point Cloud
The t-SNE map (Fig. 3a) and the OPTICS reachability distan
ces (Fig. 3c) confirm that the point cloud of APT spectra 

Fig. 6. Hydrogen ratio H+
2 /H

+ for common materials in our collection of spectra as function of field, calculated from CSR. An overarching, decreasing trend 
of the ratio with increasing field is found for Fe, Ni, Si, and W. This likely indicates that an influence of the electric field on contaminant hydrogen behavior 
exists across a wide range of material systems.
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contains clusters. It is seen that the association of datasets with 
clusters on the t-SNE map and the OPTICS reachability dia
gram agrees well with our estimation of sample material, 
based on the fitting of isotopic fingerprints. This demonstrates 
that sample base material is the main criterion for spectra simi
larity in our set of spectra or association with certain clusters. 
There are only very few cases of outliers where samples with a 
certain estimated base material are not located in their respect
ive clusters. Four examples are highlighted in Figure 3a with 
arrows.

It is seen that most clusters do contain some datasets that 
were not identified as having the base material of the other da
tasets in the clusters (the black dots in Fe, Si, Ni, Ti, W, and Zr 
clusters in Fig. 3a). This shows that an estimation of sample 
base material based on similarity (i.e., association with certain 
clusters in the point cloud) could possibly be more accurate 
than a naive estimation based on fitting of fingerprints. In par
ticular, a clustering approach does not rely on fingerprints and 
fit parameters provided by the operator. In this sense, experi
ment categorization based on clusters in the point cloud poses 
an unsupervised machine learning approach, while sample 
identification based on fingerprints and content thresholds is 
supervised.

As illustrated by the spectra in the different ROIs in the iron 
cluster (Fig. 3b), sample similarity is not only guided by base 
material, but also by peak shape, possible alloying elements, 
and, if sufficiently high, the noise floor.

Association of peaks with ions, known as ranging, is a fun
damental challenge in APT. A high amount of effort from ex
perienced operators is needed for accurate results. Methods 
for automatic ranging or giving a list of potential ions for given 
peaks have been developed; however, these are still not suffi
ciently reliable and accurate for ranging arbitrary spectra 
with little to no human input (Johnson et al., 2013; 
Vurpillot et al., 2019; Meisenkothen et al., 2020). Existing 
methods usually rely on recognizing and fitting isotopic finger
prints into spectra (a supervised approach) (Larson et al., 
2013; London, 2019). Our work indicates that an alternative 
approach where a spectrum with unknown ranging is com
pared with spectra in an existing database of well-ranged data
sets could provide superior potential ionic identities, provided 
that the database contains sufficient similar datasets. A large 
database of well-ranged APT spectra could allow for the train
ing of machine learning models that range APT spectra more 
accurately than current approaches. Unfortunately, we do 
not currently have high-quality range files for the spectra in 
our collection, meaning that this exercise will be left for future 
research.

Hydrogen Behavior
Despite a significant amount of prior research investigating the 
source and supply route of the contaminant hydrogen ob
served in APT spectra, the proposed mechanisms still lack con
sensus (Sundell et al., 2013; Breen et al., 2020; Felfer et al., 
2021; Chen et al., 2022; Yoo et al., 2022). Contaminant 
hydrogen may originate from residual gas in the APT vacuum, 
the tip or crimp tube/puck, and it may either arrive directly at 
the tip while the experiment is running or diffuse along the 
shaft onto the tip apex during the experiment. While our study 
cannot fully answer this problem, we believe that it can con
tribute some unique insights into the behavior of contaminant 
hydrogen.

Figure 5 shows that for Fe, Ni, Ti, and W, in a large number 
of past experiments, there seem to be relatively narrow ranges 
toward which the H+

2 /H
+ ratios converge with increasing volt

age. However, it is also seen that there is a significant number 
of outlier data points in these plots. This suggests that there are 
material-dependent H+

2 /H
+ ratios that are likely to be ob

served under typical experimental conditions (or conditions 
that were commonly chosen in past experiments in our group), 
though this may only apply statistically and not strictly for 
every experiment.

Figure 6 confirms that for laser evaporation experiments on 
Fe, Ni, and Si, the H+

2 /H
+ ratio is field dependent. Since the 

probability of postionization is greater at higher fields, this 
could indicate that postionization of H+

2 and subsequent 
breaking into two H+ is the underlying cause for this.

The absolute amounts of H+
2 and H+ in Fe, Ni, Si, and W 

clearly increase during the experiments with increasing vol
tages (Supplementary Fig. S3). Assuming that in Fe, Si, Ni, 
and W, only a comparably low amount of contaminant hydro
gen evaporates as complex molecules (e.g., FeH+), this indi
cates that the supply of contaminant H commonly increases 
throughout experiments on such materials. From our data, it 
is not directly obvious which mechanism is underlying this in
crease in supply. It may be due to changes in field or surface 
area, which we shall briefly discuss, or other yet unknown 
factors.

In a study on multi-layered semiconductors, it has been 
found that the amount of detected contaminant hydrogen is 
negatively correlated with the electric field required to evapor
ate the respective layers, when several layers are compared. 
However, inside of the layers, the amount was positively cor
related with the field strength (Rigutti et al., 2021). This led to 
the conclusion that the relationship between field and hydro
gen is complex and possibly compounded with other factors, 
including sample geometry. We have tested the possibility of 
the supply of contaminant hydrogen being field dependent in 
our collection of experiments, by plotting the total (ionic) frac
tion of hydrogen as function of field, similar to Figure 6. The 
result is shown in Supplementary Material S4. In contrast to 
the H+

2 /H
+ ratio, no clear trend however emerges for any of 

the materials or even sub-sets of experiments, and the scatter 
in the data is high. In particular, even analysis of sub-sets of 
the iron cluster indicates that particular relationships between 
H+

2 or H+ fractions and field were not reproducible in past ex
periments within our research group. Our observations there
fore confirm that the field is not the only relevant factor for the 
total amount of contaminant hydrogen, but we cannot show 
what the exact influence of the field is.

It might be assumed that higher voltages typically corres
pond to later stages of an experiment, which corresponds to 
blunter tips. Blunter tips have a higher surface area that is vis
ible to the detector (a wider field of view), so if the supply of 
contaminant hydrogen per surface area is constant, this could 
explain the increasing amounts of hydrogen with increasing 
voltage. If this was to be confirmed, it might suggest arrival 
of contaminant hydrogen at the tip from the gas phase during 
the experiment is the dominant supply mechanism. More re
search is needed to investigate whether or what role the sample 
surface area plays for hydrogen contamination.

Zr and Ti are known to easily form hydrogen-rich phases 
during sample preparation and APT experimental procedures 
(Ding & Jones, 2011; Chang et al., 2018; Mouton et al., 
2019). This means that the dominant supply route for 
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contaminant hydrogen into these materials may be different 
than for Fe, Ni, Si, and W. It is therefore not particularly sur
prising that the behavior of hydrogen in these materials does 
not follow the trends observed in Fe, Si, Ni, and W. Also, it 
is known that Zr and Ti have a high tendency to evaporate 
in complex hydride ions (e.g., ZrH+, ZrH+

2 , TiH+
2 ) (Chang 

et al., 2019; Mouton et al., 2019; Jones et al., 2021). Our ana
lysis does not address this aspect of contaminant hydrogen.

It is also very important to keep in mind that the postioniza
tion model of Kingham’s that was used to convert CSRs to 
electric field is only approximately accurate and there are 
known materials where it is inaccurate (Schreiber et al., 
2014; Gault et al., 2016). In addition, the CSR across the 
detector-visible part of the specimen surface in APT is usually 
not constant, and our approach which is based on voltage bins 
simply averages across the entire surface (Chang et al., 2019; 
Rigutti et al., 2021). This means that the absolute values of 
the fields in Figure 6 should not be over-interpreted.

Conclusion
From our study, we have shown that collections of data from 
past APT experiments contain valuable and diverse informa
tion that can be used for many current challenges in materials 
science and APT. The main conclusion of our work is that APT 
experiments should be archived, in open file formats so that 
the data is accessible to a wide range of analysis software.

Regarding collections of APT spectra as point clouds, using 
city block distances to measure (dis-) similarity is a suitable 
way of handling collections of spectra. In particular, auto
mated search of spectra by similarity becomes possible, and 
analyses on the neighborhood of spectra in the point cloud al
low conclusions about their chemical composition and other 
characteristics. If further observations, such as the fractions 
of the contaminant H+

2 and H+ over voltage, are extracted 
and compounded with the information about the spectra, 
this enables search for unknown phenomena that only appear 
statistically and that cannot be easily observed in few targeted 
experiments.

Our work in this paper is based on only 848 datasets, and 
we barely consider any data other than the mass–charge spec
tra. Collections with more datasets and consideration of fur
ther data such as range files or desorption maps, or even 
access to fully unprocessed raw detector data, will enable con
siderably more advanced investigations than we show in this 
work. We encourage APT groups—especially those with large 
build-up collections of data from past experiments—to ex
plore ways in which these archives could be used for new 
research.

Availability of Data and Materials
Code for analysis for APT datasets is available at https:// 
github.com/MartinMega/APTmap. Code for UI automation 
of IVAS is available at https://github.com/MartinMega/ 
AutoRec.

The archival APT data used in this study contains confiden
tial material from various projects and cannot be made avail
able. A list of the experiments used for this study along with 
hash values is available at the Oxford Research Archive 
(https://ora.ox.ac.uk/objects/uuid:ed413cc3-1520-42a1-8936- 
eed47ef3ad5f), as well as a set of 14 APT experiments on 
Cameca PSM Silicon samples for a simple test of the code 

(these datasets are only for the purpose of testing and have 
not been used for the research presented in this paper). 
Intermediate results which are produced by the code during 
the analysis of the datasets have been archived to ORA at 
https://ora.ox.ac.uk/objects/uuid:9eecec05-8004-4348-85bf- 
c7d913158f7e; however, these cannot be made available at the 
time due to the confidential material contained in these results.
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To view supplementary material for this article, please visit 
https://doi.org/10.1093/micmic/ozad027.
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