
Science of the Total Environment 890 (2023) 163414

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Northern spotted owl nesting habitat under high potential wildfire threats
along the California Coastal Redwood Forest
Logan B. Hysen a,⁎, Samuel A. Cushman c, Frank A. Fogarty a, Erin C. Kelly b, Danial Nayeri a, Ho Yi Wan a
a Department of Wildlife, California State Polytechnic University Humboldt, 1 Harpst Street, Arcata, CA 95521, United States
b Department of Forestry, Fire, and Rangeland Management, California State Polytechnic University, Humboldt, Arcata, CA, USA
c University of Oxford, Department of Biology, Oxford, UK
H I G H L I G H T S G R A P H I C A L A B S T R A C T
⁎ Corresponding author.
E-mail address: lbh22@humboldt.edu (L.B. Hysen).

http://dx.doi.org/10.1016/j.scitotenv.2023.163414
Received 2 January 2023; Received in revised form 5
Available online 21 April 2023
0048-9697/© 2023 The Authors. Published by Elsevi
• Severe wildfire risk is increasing in the
western USA, threatens to impact habitat.

• Managers require spatially-explicit infor-
mation to prioritize wildfire mitigation.

• Northern spotted owl nesting habitat is at
a high risk of high-severity wildfire.

• Identified habitat at risk of severe wildfire
could benefit from management action.
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Large and severe wildfires, exacerbated by climate change and human behavior, are occurring more frequently in
many forests across the western United States. While wildfire is a natural part of most terrestrial ecosystems, rapidly
changing fire regimes have the potential to alter habitat beyond the adaptive capabilities of species. Spatial assess-
ments of wildfire risks to species habitat may allowmanagers to pinpoint locations for management activities. To illus-
trate this, we spatially assessedwildfire risk within habitat that supports the nesting activity of the federally threatened
northern spotted owl (Strix occidentalis caurina) in the California redwood coast ecoregion. To accomplish this, we built
a scale-optimized ensemble nesting habitat suitability model and identified habitat with the highest wildfire hazard
potential. Percent canopy cover at 100-m scale, slope at 400-m scale, and January precipitation at 800-m scale were
the most influential environmental covariates for predicting northern spotted owl nesting habitat. Nearly 60% of
nesting habitat was predicted to be at high or very high (>1986 index value) wildfire risks. We identified three
areas in the Maple Creek Area of Humboldt County, Jackson State Demonstration Forest in Mendocino County, and
Point Reyes National Seashore in Marin County, California with a high concentration of nesting habitat that are at a
very high risk of experiencing high severity wildfires. We recommend these areas be targeted for future research to
understand the impact of wildfire on northern spotted owl as well as management attention.
April 2023; Accepted 6 April 202
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1. Introduction

Wildfire is an integral part of many ecosystems (Agee, 1996; Bond and
Keeley, 2005). In the high latitude regions of the western United States,
wildfires are projected to continue becoming larger, more frequent,
and more severe under climate change (Kasischke and Turetsky, 2006;
3
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Abatzoglou and Williams, 2016; McKenzie and Littell, 2017). In addition,
increased vegetation density and connectivity brought about by a century
of fire suppression further exacerbates the risk of high-severity wildfire
(Miller and Safford, 2012; Parks et al., 2018; Parks and Abatzoglou,
2020). Many ecosystems, such as many temperate high-latitude regions in
the western United States, did not historically evolve with frequent high-
severity wildfire (Kelly et al., 2013). Predicting where wildfire is likely to
impact ecosystems and species is of prime interest to both conservationists
and managers (Bowman and Johnston, 2014).

The diverse ecosystems of California have been at the forefront of wild-
fire management in recent decades because few North American regions
aremore ecologically and economically affected by growing threat of larger
and more severe wildfires (Hagmann et al., 2017; Steel et al., 2018). In
2020 alone, over 4 million acres of land burned in California, impacting
human communities and ecosystems alike (California Department of
Forestry and Fire Protection, 2022). The area burned by fire in California
is projected to increase in the coming years (Littell et al., 2018; Wan
et al., 2019), and a greater proportion of wildfires will likely burn at a
high severity (Parks et al., 2018). The increasing risk of more frequent
high-severity wildfires has the potential to impactmany species' habitat, es-
pecially those that depend on old-growth forests, which is a primary man-
agement concern in the northwestern California region (USDA & USDI,
1994; USFWS, 2011; CALFIRE, 2021a).

The forests of northwestern California are home to some of the largest,
most long-lived trees on the planet (Mooney and Zavaleta, 2016). Coastal
redwoods (Sequoia sempervirens), the world's tallest trees which are found
nowhere else on Earth, along with a variety of other large conifer species,
provide an important source of timber, erosion control, and carbon seques-
tration due to their large amount of accumulated biomass (Cooperrider
et al., 2000; Busing and Fujimori, 2005; Mooney and Zavaleta, 2016).
These forests make up a distinctive part of a biodiversity hotspot known
as the California Floristic Province (Mooney and Zavaleta, 2016; CEPF
2022). The forests provide habitat for a variety of endemic plants and epi-
phytes, which in turn moderate forest microclimates (Mooney and
Zavaleta, 2016). The region also supports multiple at-risk wildlife species,
including the Humboldt marten (Martes caurina humboldtensis), marbled
murrelet (Brachyramphus marmoratus), and northern spotted owl (Strix
occidentalis caurina; Mooney and Zavaleta, 2016). Many of these species
rely on similar habitat characteristics found in northwestern California,
which are now increasingly being transformed by large, severe wildfires.

The federally threatened northern spotted owl (hereafter NSO) relies
heavily on forest habitat and has often been used as a proxy to identify for-
est conditions important to the survival of multiple other species in the re-
gion (USDA&USDI, 1994; USFWS, 2011; Lesmeister et al., 2019). Northern
spotted owls are one of the world's most well-studied birds and have often
been used as an indicator of structurally diverse forest habitat with mature
trees, contiguous canopy cover, and variable tree heights, which they use
for foraging, roosting, and nesting (USFWS, 2011; Sovern et al., 2019;
Franklin et al., 2021). Historically, the primary threat to NSOs was habitat
loss due to logging which resulted in population decline (USFWS, 2011). To
protect NSO habitat, legislation like the Endangered Species Act andmanage-
ment policies like the Northwest Forest Plan mandate that logging activities
be restricted within designated critical habitat (USDA & USDI, 1994;
Lesmeister et al., 2019). Plans like the Northwest Forest Plan place a large
focus on protecting NSO habitat, which is thought, in turn, to provide um-
brella protection for other old growth forest-dependent species (USDA &
USDI, 1994; Lesmeister et al., 2019). Despite reduction in habitat loss from
logging in the past two decades, habitat loss from wildfires has increased
markedly, and is widely regarded as a major current threat driving acceler-
ated habitat loss (Clark et al., 2011; Rockweit et al., 2017; Wan et al., 2019).

The impact of higher-than-usual-severity wildfire on NSO nesting habi-
tat is complex (Ganey et al., 2017). For example, high-severity wildfires,
along with post-fire salvage logging, in southwestern Oregon caused a de-
crease in the amount of suitable NSO habitat (30–41%) below the amount
thought to be required for maximizing NSO survival (Clark et al., 2011).
Further, following a 2008 fire in northwestern California, the apparent
2

post-fire survival of NSOs decreased and recruitment rates increased, sug-
gesting that the wildfire caused a reduction in habitat quality that was un-
able to support NSOs over the long-term (Rockweit et al., 2017). However,
there is also evidence that high-quality interior NSO nesting habitat can act
as fire refugia, mitigating fire severity while nearby edge or non-nesting
habitat burn more severely (Lesmeister et al., 2021).

The literature related to wildfire is also mixed when considering all
three subspecies of spotted owl in North America, and the California spot-
ted owl has the most wildfire related studies among the three subspecies
(Ganey et al., 2017; Wan et al., 2018). Recent empirical studies have
shown strong contrasts in the responses of California spotted owls to wild-
fire, which makes it difficult for managers to prioritize management efforts
(Lee and Bond, 2015; Jones et al., 2016, 2020;Wan et al., 2020). For exam-
ple, in the Sierra Nevada, following the King Fire occupancy of California
spotted owls declined sharply at sites that burned with a greater proportion
of high-severity wildfire (Jones et al., 2016), while occupancy of California
spotted owls changed little following the Rim Fire (Lee and Bond, 2015). In
the King fire, areas that burned with high-severity were larger and more
contiguous than in the Rim fire, suggesting that the spatial pattern of se-
verely burned areas could play a major role in determining how owls re-
spond to wildfire (Ganey et al., 2017).

To assess wildfire risk to that habitat, we must first understand how a
species selects habitat, which often varies across spatial scales and necessi-
tates that we explicitly account for that variation in habitat models (Wiens,
1989; Levin, 1992;McGarigal et al., 2016). There have been no habitat suit-
ability studies to date for NSOs that explicitly incorporate scales of effect,
although there are studies that investigated scales of effect for other subspe-
cies of spotted owl. For example, Mexican spotted owls (S. o. lucida) in
southwestern United States forest habitat also exhibit a strong relationship
with canopy cover and slope at smaller spatial scales while climatic covar-
iates generally exhibited strong relationships at broader spatial scales (Wan
et al., 2017). California spotted owls (S. o. occidentalis) also selected for high
canopy cover at smaller and intermediate scales (Atuo et al., 2019). Similar
research is needed for NSOs to understand the scale depended effects of en-
vironmental variation on habitat selection, which would focus targeted
management efforts at scales that matter most for the species.

Spatial information regarding potential threats to biodiversity and habitat
can facilitate conservation planning (Bowman and Johnston, 2014). As wild-
fires become a larger threat in many northwestern forests, prioritizing areas
for management and conservation efforts can be facilitated by spatial fire
risk assessments. By knowing where populations of a particular species are
likely to experience awildfire,managers can prioritize areas such as corridors
(Khosravi et al., 2022) and habitat (Kaszta et al., 2020;Wan et al., 2020) that
are important to a species' persistence on the landscape. However, to date
there have been no landscape-scale fire risk assessments to identify areas of
concern for NSOs along the redwood coast of California. Such assessments
would be invaluable to managers' efforts to meet the goals of the Northwest
Forest Plan more efficiently (USDA & USDI, 1994; Lesmeister et al., 2019).

In this studywe investigated (1)where suitable nesting habitat exists for
NSOs in northwestern California using a scale-optimization framework and
(2) where severe wildfire is most likely to impact suitable NSO nesting hab-
itat. We hypothesized that NSO nesting habitat along the coastal redwood
forest is more at-risk of experiencing high-severity wildfire than
nonhabitat. To accomplish this, we used scale-optimized habitat suitability
ensemble modeling to identify suitable NSO nesting habitat in the redwood
coast ecoregion of northwestern California. Then, we quantified the overlap
between the predicted suitable nesting habitat and the Wildfire Hazard Po-
tential (WHP)map to identify areas of habitat most at risk of wildfire in the
near future (Dillon and Gilbertson-Day, 2020).

2. Methods

2.1. Study area

The study area consists of the Redwood Coast ecoregion (Level III
Ecoregion 263a, Fig. 1), an area of approximately 16,500 km2 dominated



Fig. 1. NSO nest locations (n = 248) used to build the habitat suitability model within the redwood coast ecoregion (263a).
Sources: Esri, USGS, NOAA.
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by redwoods and tall evergreen trees, interspersed with patches of broad-
leaf woodlands and coastal scrubland (USFS, 2017). A large proportion of
the region consists of relatively young, second- or third-growth forest re-
sulting from historical and present-day logging activities. Much of the re-
gion is also characterized by mild climatic conditions moderated by
proximity to the Pacific Ocean, with northern latitudes generally experienc-
ing more rainfall and slightly cooler temperatures than southern latitudes
(Rupp et al., 2022). Elevation is also highly variable across the region, rang-
ing from 0 m to 1650 m. Private and tribal ownership makes up 82%
(13,413 km2) of the land holding in the region, with the majority of the re-
maining land (18%; 2952 km2) managed by the United States Forest
Service, United States Fish and Wildlife Service, Bureau of Land Manage-
ment, National Parks Service, and other state and local agencies.

2.2. Data collection

We used existing NSO nest data for uniquely identified pairs of owls
from the California Department of Fish and Wildlife Spotted Owl Observa-
tion Database collected between 2015 and 2020 for our modeling (CNDDB
Maps and Data, n.d.). Some owl pairs hadmultiple known nesting locations
due to repeated survey efforts. To avoid pseudoreplication, we filtered the
dataset so that we retained only the most recent nest location for each
owl pair (n = 248).

We split the dataset into evaluation and training subsets prior to model-
ing, which is generally preferred when a completely independent dataset is
3

unavailable for evaluation. We used a spatial blocking approach, imple-
mented with the blockCV package in R (Valavi et al., 2019), to set aside
30% of the data (n= 72 presences) for evaluation and used the remaining
70% (n = 176 presences) for training models. We divided the study area
into 25 equally sized blocks, each approximately 41 km × 41 km in size.
We divided these blocks into five folds, attempting to keep the numbers
of presences and background points roughly equal between folds (n =
24–72). Then, to obtain a dataset for the sole purpose of model evaluation,
we set aside one fold and used the remaining four folds for cross-validation
during model training.

2.3. Background point generation

Random background point generation has been found to produce the
most accurate models in regression-based modeling approaches, whereas
the generation approach has less of an impact on the accuracy of
machine-learning modeling approaches (Barbet-Massin et al., 2012). Fol-
lowing recommendations from VanDerWal et al. (2009), we randomly gen-
erated background locations within a region created by subtracting a
1.3 km buffer around all nest locations from a 30 km buffer surrounding
all nest locations. We used 30 km for the upper limit based on median dis-
persal ability forNSOs, whichwould limit artificial inflation of test statistics
(USFWS, 2011), and 1.3 km for the lower limit based on average home
range size in the region (Weisel, 2015). This created a set of 20,000 back-
ground points we could draw from when training individual models.
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2.4. Environmental covariates

We collected a list of a priori predictor covariates potentially related to
NSO habitat selection based on relevant literature, including composition
(i.e., forest structure, land cover), topographic, and climatic covariates
(USFWS, 2011; Dunk et al., 2019). We chose composition and climatic co-
variates from 2017 to reduce the risk of mischaracterizing the conditions
present at a nest location, which could have resulted from events such as
wildfire or logging. We obtained covariates from the Landscape Ecology,
Modeling, Mapping, and Analysis Gradient Nearest Neighbor (LEMMA,
GNN) project from Oregon State University (Ohmann and Gregory,
2002), Landscape Fire and Resource Management Planning Tools Project
(LANDFIRE, 2017), and the Parameter-elevation Regressions on Indepen-
dent Slopes Model (PRISM) climate group at Oregon State University
(Rupp et al., 2022).We calculated an additional three covariates, curvature,
slope, and insolation, from a digital elevation model obtained from
LANDFIRE using Spatial Analyst Tools in ArcGIS Pro Version 2.5 (Esri Inc,
2020). All covariates were then converted into raster data layers, projected
into the NAD1983/UTM10N projection, and resampled to 30m resolution
if necessary. Table A1 in the Supplementary Material lists all 24 considered
covariates.

2.5. Spatial autocovariate

Since spatial autocorrelation is a potential issue in any spatially explicit
regression model, we checked for spatial autocorrelation using Moran's I
and included a spatial autocovariate in each regression-based model. The
calculation for this spatial autocovariate is given by Eq. (1), where yi is
the response value at j among i's set of ki neighbors; and wij is the weight
given to j's influence over i (Dormann et al., 2007). We used the “spdep”
package (Bivand, 2022) in R (R Core Team, 2022) to perform the calcula-
tion.

yi ¼ ∑ki
j¼1wijy j ð1Þ

2.6. Scale optimization and variable selection

We determined the optimal scale for each covariate through univariate
testing across a range of biologically meaningful scales for each species
(McGarigal et al., 2016). To do this, we conducted focal statistics on each
covariate using a circular moving window of six radius scales: 100 m,
200 m, 400 m, 800 m, 1600 m, and 3200 m. We chose the maximum
scale of 3200 m as it was approximately two times larger than the average
home range size for NSOs in the region. Then, we extracted values from
each scale for every covariate to the nest locations and randomly generated
non-nest locations (i.e., background points). We performed the scale opti-
mization this way because we were interested in the general pattern of
scale-dependent selection (i.e., finer-scale vs broader-scale) rather than
identifying specific scales.

To compare values extracted at nesting locations to background loca-
tions for each scale, we used two-tailed t-tests and selected the optimal
scale as the one with a lower p-value, indicating a greater difference be-
tween nesting locations and background locations (Zeller et al., 2021).
We repeated this for each covariate. To protect against multicollinearity
in ourmodels, we conducted a pairwise Pearson's correlation among covar-
iates at their optimal scales. For any pair of covariates that had a correlation
of |r| > 0.7, we chose to retain the covariate that showed a greater contrast
between the values at nesting points compared to background points
(smaller p-value).

2.7. Training and testing individual models

To identify suitable nesting habitat for NSOs, we built a multi-scale op-
timized habitat suitability model using an ensemble modeling approach
with all covariates at their optimal scale (Mohammadi et al., 2022). The en-
semble model was produced by weight-averaging six modeling approaches
4

by their AUC-ROC using the biomod2 package in R (Thuiller et al., 2021).
These approaches consist of two categories: regression-based and machine
learning approaches. The regression-based approaches used in our model-
ing consisted of generalized linear models (GLM), generalized additive
models (GAM), and multiple adaptive regression splines (MARS). Machine
learning approaches used in our modeling consisted of random forest (RF),
artificial neural networks (ANN), and Maximum Entropy (MaxEnt).

The number of background points used during model training can have
a large impact on the performance of individualmodelingmethods (Barbet-
Massin et al., 2012; Liu et al., 2019). Therefore, we decided to optimize the
number of background points for training each individual model before
ensembling them (Hysen et al., 2022). Briefly, we tested three different
background point subsampling strategies (i.e., 1× presence, 10× pres-
ence, and 10k overall) from the total number of random background points
generated to train each individual model, which we then evaluated against
the evaluation dataset using the AreaUnder the ReceiverOperating Charac-
teristic Curve (AUC-ROC). This produced three models for each modeling
method for a total of 18 models. For each modeling method, we compared
AUC-ROCs between the three background point selections and selected the
model with the highest AUC-ROC, leaving us with one model for each
modeling method for a total of six models.

2.8. Ensemble modeling

We built the ensemble model by weight-averaging the six individual
models, weighting each model by its AUC-ROC using biomod2 (Thuiller
et al., 2021). We evaluated model performance using AUC-ROC and True
Skill Statistic (TSS; Allouche et al., 2006). We chose a threshold for TSS
that maximized the sum of sensitivity and specificity for all the component
models and the ensemble model (Liu et al., 2013; Liu et al., 2016). Because
we used presence-only data to train and evaluate our model, we also chose
to evaluate the ensemble model with the Continuous Boyce Index, which is
an evaluation metric suitable for use with presence-only data (Hirzel et al.,
2006). To calculate the Continuous Boyce Indexwe split the predicted habitat
suitability values into 50 overlapping bins and calculated the ratio of number
of predicted presences in a bin to the number of presences that would be ex-
pected in a bin using the enmSdmX package in R (Smith, 2023). The Contin-
uous Boyce Index returns values from negative one to one. Negative values
indicate that the model predictions are not consistent with the true probabil-
ity of presences, positive values indicate that themodel predictions are consis-
tent with the true probability of presences, and values near zero indicate the
model does not perform any differently from random chance. We also evalu-
ated covariate contribution to both the individual models and the ensemble
model by making predictions where one variable was randomly permuted
and comparing those predictions to predictions made where all variables
were unchanged using Pearson's correlation coefficient, ρ (Thuiller et al.,
2009).We then subtracted ρ fromone. A higher relative value of 1-ρ indicates
that the variable had a larger contribution than other variables to the model
while a lower value indicates that the variable had less contribution to the
model (Thuiller et al., 2009). In addition, we calculated and visually assessed
response curves using the evaluation strip method outlined in Elith et al.
(2005).

The ensemble habitat suitability model produced by this process is
intended to provide a highly predictive but parsimonious scale-optimized
model of nest site selection of NSOs that reduces biases inherent to the in-
dividual modeling methods it combines. We predicted the model spatially
to create a map of baseline habitat suitability across the study area, with
a value of 0 suggesting low habitat suitability and a value of 1 suggesting
high habitat suitability.

2.9. Fire risk assessment and prioritization

We used the Wildfire Hazard Potential (WHP) map from the U.S. Forest
Service's Rocky Mountain Research Station Fire, Fuel, and Smoke Science
(FFS) Program to identify areas of potential wildfire impact risk to NSO
habitat (Wan et al., 2019; Dillon and Gilbertson-Day, 2020). The WHP



Table 2
The AUC-ROC and TSS for each individual model and the ensemble of models.

GLM GAM MARS MaxEnt RF ANN Ensemble

AUC-ROC 0.793 0.786 0.819 0.799 0.855 0.808 0.834
TSS 0.424 0.464 0.470 0.533 0.499 0.405 0.361
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layer expresses the risk that a fire will occur in an area, and the risk that a
given wildfire could exhibit fire behavior (e.g., torching, crowning) that
would be difficult to contain with available suppression resources (Dillon
and Gilbertson-Day, 2020). In addition to identifying areas that could ex-
hibit extreme behavior, the WHP can also provide an indication of areas
in need of fuels treatments (Dillon and Gilbertson-Day, 2020) and possibly
indicate areas where fires exhibiting these behaviors could substantially af-
fect NSO habitat. The WHP is expressed as an index with values ranging
from 0 to 100,000, with higher values indicating greater risk of severe wild-
fire (Dillon and Gilbertson-Day, 2020). We used a discretized version of the
WHP, with classes “very low” (0–61), “low” (62–178), “moderate”
(179–489), “high” (490–1985), and “very high” (1986–100,000; Dillon
and Gilbertson-Day, 2020). Hereafter, we will refer to these index ranges
by their classifications defined above.

We binarized the habitat suitability map into “suitable nesting habitat”
and “nonhabitat” using a threshold selected by maximizing the sum of sen-
sitivity and specificity (Liu et al., 2013, 2016). Then, we quantified the
amount of suitable nesting habitat and nonhabitat under low, very low,
moderate, high, and very high risk of experiencing a difficult-to-contain
wildfire should one occur (Dillon and Gilbertson-Day, 2020). Finally, to
identify the areas of highest-quality nesting habitat at most at risk of
experiencing a severe wildfire, we multiplied the discretized WHP layer
with the ensemble habitat suitability map and standardized the output
into z-scores. In effect, this assigned heavier weights to highly suitable hab-
itat at a high/very high risk, while assigning lower weights to less-suitable
habitat at a low/very low risk. We selected three z-score thresholds (i.e., 2,
2.5, and 3) to explore high-quality nesting habitat at a high risk of
experiencing severe wildfire.

3. Results

Twelve environmental covariates were retained, in addition to the spa-
tial autocovariate (Table 1). The scales of effect for each environmental co-
variate varied; compositional variables, like canopy cover, generally had
finer scales of effect (≤800 m), climatic covariates, like average January
precipitation, had coarser scales of effect (≥800 m), and topographic co-
variates generally had finer scales of effect (≤400 m; Table 1).

3.1. Northern spotted owl habitat

The predictive performances of the six component modeling ap-
proaches and the ensemblemodel were generally considered good or excel-
lent when evaluated using AUC-ROC, with values ranging from 0.786 to
0.855 (Table 2). When evaluated using TSS, the predictive performance
was generally considered moderate, with values ranging from 0.361 to
0.533 (Table 2). Some models showed consistently moderate-high nesting
Table 1
Covariates kept for modeling after checking for correlation, including the scale of
effect, covariate contribution to the ensemblemodel, the class (e.g., composition, to-
pographic, climatic) and the data source for each covariate. Bold values indicate co-
variates that had an importance >0.05. Chosen covariates were originally used in
USFWS (2011) and Dunk et al. (2019).

Covariate Class Scale (m) Importance (1-ρ) Source

Curvature Topographic 400 0.0164 LANDFIRE
Elevation Topographic 100 0.0288 LANDFIRE
Insolation Topographic 400 0.0188 LANDFIRE
Slope Topographic 400 0.0919 LANDFIRE
Canopy Composition 100 0.1141 LEMMA GNN
Northern hardwoods Composition 800 0.0037 LEMMA GNN
Oak woodland Composition 200 0.0151 LEMMA GNN
Pine Composition 800 0.0012 LEMMA GNN
January precipitation Climatic 800 0.0834 PRISM
January temperature Climatic 3200 0.0090 PRISM
July precipitation Climatic 3200 0.0131 PRISM
July temperature Climatic 3200 0.0142 PRISM
Auto covariate – – 0.0523 –
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habitat suitability across the study area (e.g., ANN), while others showed
more of a contrast between low and highly suitable habitat (e.g., MaxEnt;
Fig. 2).

While the ensemble model did not have the highest performance met-
rics (random forest did), we chose to use it for further analysis because of
its ability to correct for biases present in each of the component models
(Araújo and New, 2007). In addition, ensemble models are generally less
sensitive to the background sample used to train component models
(Hysen et al., 2022). We used the ensemble model to spatially predict suit-
able nesting habitat for NSOs in the redwood coast ecoregion (Fig. 3). The
ensemble model had a Continuous Boyce Index value of 0.85, indicating
that themodel predictions were consistent with the true probability of pres-
ences (see also Fig. A2 in Appendix A; Hirzel et al., 2006, Smith, 2023). The
AUC-ROC and TSS of the ensemble model were 0.834 and 0.361, respec-
tively (Table 2). Across the ecoregion, suitable nesting habitat largely fol-
lows valleys and is concentrated in the northern two-thirds of the study
area, with some habitat in the southern region, themajority of which is con-
centrated in Marin County, California.

3.2. Variable importance and responses

Three environmental covariates had a larger contribution to the ensemble
model than other covariates (1-ρ > 0.05): canopy cover, slope, and average
January precipitation (Table 1). Basal area of pine trees (“pine”), basal area
of northern hardwoods (“northern hardwoods”), and mean January temper-
ature (“January temperature”) had low (1-ρ < 0.01) contributions (Table 1).
No single covariate had a 1-ρ value>0.1141 (Table 1). Canopy cover was the
most important environmental covariate for NSO nesting habitat selection
(Table 1) and exhibited a positive relationshipwith nesting habitat suitability
(Fig. 4). Slope was the second most important environmental covariate
(Table 1), and exhibited a positive relationship with nesting habitat suitabil-
ity, leveling off at a slope of approximately 15 degrees (Fig. 4). The thirdmost
important covariate was average January precipitation (Table 1), which
showed a unimodal response to habitat suitability (Fig. 4). The remaining co-
variates had a mixture of positive, negative, and unimodal relationships with
nesting habitat suitability (Fig. 3).

3.3. Fire risk analysis

We identified areas of suitable NSO nesting habitat and non-habitat at
risk of experiencing a wildfire likely to exhibit extreme fire behavior. We
found approximately 86.8 km2 (6.3%) of suitable nesting habitat at a
“very high” risk of fire exhibiting these behaviors, with 708.4 km2

(51.9%) at a “high” risk, 308 km2 (22.5%) at a “moderate” risk,
155.3 km2 (11.4%) at a “low” risk, and 107.9 km2 (7.9%) at a “very low”
risk. For non-habitat, we found approximately 263.1 km2 (7.0%) at a
“very high” risk, with 1017.7 km2 (26.9%) at a “high” risk, 737.1 km2

(19.5%) at a “moderate” risk, 1120.9 km2 (29.7%) at a “low” risk, and
639.1 km2 (16.9%) at a “very low” risk. In summary, non-habitat is pre-
dicted to have a greater total but proportionally fewer areas with a “high”
or “very high” risk than suitable nesting habitat (Fig. 5).

In suitable habitat, areas of high/very high wildfire risk are scattered
across the study area, with the category of high risk mostly spread evenly
(Fig. 5). Zooming inmore closely, we see that most areas of high risk are in-
terspersed with low or very low and moderate risk in the far southern
reaches and just south of Humboldt Bay, although high risk is the predom-
inant category (Fig. 5a, b). In nonhabitat, areas near the coast are generally
at a very low, low, or moderate risk while areas further inland tend to be at
a higher risk (Fig. 5).



Fig. 2. Nesting habitat suitability maps for the redwood coast ecoregion (263a) using individual modeling approaches: (a) RF, (b) ANN, (c) MaxEnt, (d) GLM, (e) GAM, and
(f) MARS.
Sources: Esri, USGS, NOAA.
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We identified an area of 1027.5 km2 of high-quality suitable nesting
habitat at a high risk of experiencing a severe wildfire using a z-score
threshold of σ = +2, 479.9 km2 using σ = +2.5, and 96.2 km2 using
σ=+3. The areas identified using all three thresholds were concentrated
in central Humboldt,Mendocino, and southernMarin County; theywere lo-
cated on a mixture of private and public lands (Fig. 6).

4. Discussion

4.1. Drivers of northern spotted owl habitat use

Our study presents the first scale-optimized habitat suitabilitymodel for
NSOs, expanding current knowledge of habitat use by explicitly incorporat-
ing the scale of effect for each environmental relationship. Our model iden-
tified three environmental covariates (canopy cover, slope, and January
precipitation) that are most important for NSO nesting habitat along the
California redwood coast ecoregion. The relations of these covariates with
habitat suitability as identified in ourmodel are consistentwith previous re-
search on NSO nesting ecology in the region (LaHaye and Gutiérrez, 1999;
Carroll, 2010; Sovern et al., 2019). Canopy cover was the most important
covariate in our model. Northern spotted owls may select nesting habitat
with a greater proportion of canopy cover since unfledged young are in a
6

vulnerable state and parents need to maximize nesting success (Fig. 4).
Areas with greater canopy cover typically have a more temperate microcli-
mate (Jennings et al., 1999; Weathers et al., 2001) while providing protec-
tion against predators and adverseweather (Johnson, 1992). These benefits
could be altered by high-severity wildfire, which could fragment the can-
opy, reducing canopy cover in the years following a wildfire (Karna et al.,
2020).

January precipitation was also an important factor driving NSO nesting
habitat use. Higher amounts of precipitation could decrease hunting effi-
ciency and suppress prey activity, leading NSOs to prefer areas with more
moderate amounts of precipitation during the winter (Franklin et al.,
2000). As the climate changes the wet season in the region is expected to
become shorter, with more rainfall occurring in more intense, frequent
storms (Grantham, 2018). Further, a shorter, more intense wet season
will likely lead to more summer droughts and a longer fire season
(Grantham, 2018), expanding the window for high-severity wildfires to
take place within NSO nesting habitat.

Similar to findings from LaHaye and Gutiérrez (1999), NSOs in the re-
gion also selected for areas with steep slopes. One plausible explanation
for this behavior could be that areas with steeper slopes are less likely to
have been harvested for timber in the past, supporting the presence of
older trees capable of providing nesting structures for NSOs (Forsman and



Fig. 3. Nesting habitat suitability map for the redwood coast ecoregion (263a) using the ensemble model.
Sources: Esri, USGS, NOAA.

Fig. 4. Response curves for the three most important environmental covariates obtained by varying one covariate while holding the remaining covariates constant at their
mean value in the ensemble model.
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Fig. 5. Fire risk within suitable nesting habitat using the Wildfire Hazard Potential Index.
Sources: Esri, USGS, NOAA.
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Giese, 1997; LaHaye and Gutiérrez, 1999). Further, studies in other parts of
the NSO's range have not found a habitat association with slope (Buchanan
et al., 1993; LaHaye and Gutiérrez, 1999). Thus, steep slopes may not nec-
essarily be an ecological requirement for NSO nesting habitat (LaHaye and
Gutiérrez, 1999). This could also be due to physiographic differences be-
tween the different regions where NSOs are found and reinforces the
need to consider nonstationarity when modeling habitat (LaHaye and
Gutiérrez, 1999; Wan et al., 2017; Dunk et al., 2019). While NSOs select
steep slopes for nesting habitat in our study area, wildfire often travels up
steeper slopes more quickly than less steep slopes due to preheating and
more loosely packed burnable material (Butler et al., 2007). As a result, a
preference for steeper slopes could place NSO nesting habitat at a greater
risk of experiencing severe wildfire.

4.2. Variation in the scale of habitat selection across environmental covariates

Our model explicitly incorporates spatial scale and allows us to gain a
more detailed understanding of how NSOs use habitat. We found that can-
opy cover and slope were most important at finer spatial scales (Table 1).
This suggests that NSOs select nesting locations with high canopy cover
and steep slopes near the nesting structure, possibly because these habitat
qualities nearby nests make it more difficult for predators to see or reach
the nests (Sovern et al., 2019). In addition, higher canopy cover contributes
to a more temperate microclimate, which generally occurs at a fine scale
and can result in hospitable conditions for raising young (Weathers et al.,
2001). Moreover, LaHaye and Gutiérrez (1999) showed that NSOs select
8

lower portions of slope probably due to the better productivity and the
availability of large trees and forest structure required for NSO nesting.

January precipitation and other climatic covariates were most impor-
tant at broader spatial scales (Table 1), suggesting that BSO respond to cli-
matic conditions over a wider area compared to structural and topographic
elements of the landscape. Northern spotted owls typically hunt throughout
their home range, not necessarily directly near the nesting structure
(USFWS, 2011). Therefore, higher precipitation throughout the home
range during the wet season could contribute to reduced hunting success
and therefore reduced survival and fecundity (Franklin et al., 2000). How-
ever, the lack of a pattern at finer spatial scales could also be due to a lack of
fine-scale climate data in the region. By including each environmental co-
variate at its scale of effect, we were able to effectively elucidate important
species-habitat relationships, identify areas of suitable NSO nesting habitat,
and then identify where that habitat is most at risk of experiencing a severe
wildfire.

4.3. Habitat at risk of wildfire

Consistent with our hypothesis, more areas of suitable habitat are at a
high or very high risk of severe wildfire than nonhabitat. When compared
to areas of nonhabitat, this suggests that the habitat NSOs rely on for
nesting could be among the most heavily impacted by future wildfire.
This might seem contradictory to recent findings that old-growth NSO hab-
itat acts as fire refugia (Lesmeister et al., 2021), although many NSO nests
in our study were not located in old-growth forests. Old-growth forest is



Fig. 6.Highly suitable habitat at themost risk of experiencing a severewildfire using three z-score thresholds, (a) σ=+2, (b) σ=+2.5, and (c) σ=+3.We identified three
general areas for further attention based on the amount of highly suitable habitat at risk: (d) the Maple Creek area, mostly consisting of private land, (e) the Jackson State
Demonstration Forest area, mostly state-owned land, and (f) Point Reyes National Seashore area, mostly consisting of federally owned and private land.
Sources: Esri, USGS, NOAA.
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relatively rare in our study area, with<5%of old-growth redwood stands in
particular remaining (Mooney and Zavaleta, 2016). Northern spotted owls
are commonly found in younger forests here than in other parts of their
range since redwoods are typically larger and taller than other tree species
and forests in northwestern California are highly productive (Thome et al.,
1999; Mooney and Zavaleta, 2016; Lesmeister et al., 2021). As a result,
younger redwood stands could possibly provide suitable nesting structures
equivalent to old growth stands of other species. This is also true of areas
focused on in Fig. 5a, b, and c that represent a large proportion of suitable
nesting habitat (Fig. 6). Given that there is a consistently high or very high
risk of severe wildfire across a high proportion of suitable nesting habitat,
we suggest that these areas are prime candidates for prioritizing future
study and management attention.

There are several management actions that can be taken to reduce wild-
fire risks in the high priority forests as identified by our models. One action
that has been shown to effectively mitigate wildfire risk is thinning
(Roberts and Harrington, 2008), although this is often more effective in
dry forests that typically burn frequently (Agee and Skinner, 2005). Thin-
ning is also a widely employed technique for removing dead and small-
diameter trees, which generally reduces forest density and removes fuel
that might lead to large and severe wildfires (Mooney and Zavaleta,
2016). Thinning is suggested to improve NSO foraging habitat quality, in-
creasing the density and abundance of prey species (Dodson et al., 2008;
Irwin et al., 2015). As for nesting habitat, thinning has been suggested to
shorten the time required for development of favorable NSO nesting struc-
ture in forest stands (Andrews et al., 2005). However, thinning has also
been suggested to reduce habitat quality for California spotted owls, both
in the short- and long-term (Tempel et al., 2015; Bond et al., 2022). There-
fore, we recommend careful planning and small-scale experimental studies
be conducted when selecting sites for thinning.
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Actions like the installation of fuel breaks, which can slow the spread of
wildfire near important resources such as habitat for at-risk species, can
also be used and provide an alternative to direct impacts on NSO nesting
habitat (Syphard et al., 2011). Prescribed burning, historically used by in-
digenous communities prior to European colonization (Lorimer et al.,
2009), is another approach that is effective at reducing fuel loads in treated
areas (Cowman and Russell, 2021). In dry forests, careful prescribed burn-
ing promotes the dominance of large fire-resistant trees and increases het-
erogeneity in closed-canopy forests, which is suggested to reduce habitat
availability for NSOs in the short term while improving the resiliency of
these forests over the long-term (Stephens et al., 2019). However, highly re-
strictive government regulations, high investment in fire suppression, and
underfunding of prescribed fire have limited its implementation (Marks-
Block and Tripp, 2021). While these approaches are generally effective at
reducing the risk of high severity wildfire, there is limited information on
how species like the NSO respond to treatment; thus, these procedures re-
quire careful implementation and research (Wan et al., 2018).

This study provides crucial information regarding spatial patterns of
suitability and wildfire risk for a threatened species at a pivotal time. The
management of the publicly owned forests within our study area is
governed by various forest plans, which were amended by the Northwest
Forest Plan in 1994 with the express purpose of protecting NSO habitat
while maintaining a sustainable forest products industry (USDA & USDI,
1994; Lesmeister et al., 2019). These plans are currently undergoing revi-
sion as required by the National Forest Management Act (NFMA) of 1976,
which requires that Forest Plans be revised every 10–15 years based on
changing conditions, trends, and new science. The role of fire in northwest-
ern forests is a major consideration in this revision process and will con-
tinue to have a major impact on forest management over the next decade.
The timely information provided in this study will aid in the revision
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process by helping to identify areas of concern for a key species in the forest
plans and ultimately help create more robust, accurate plans that influence
much of the forests and other species associated with these forests in the re-
gion.

The three areas of high fire risk and highly suitable nesting habitat en-
compass large tracts of land that are under amosaic of different ownerships.
The northern-most focal area is the Maple Creek area of Humboldt County,
which is mostly composed of privately held land (e.g., timber companies).
In this area, the NSO nesting habitat most at risk of experiencing severe
wildfire mostly follows the Mad River Valley, an area with steeper slopes
than much of the surrounding terrain. The focal area in the central
part of the study area consists of land within and around the state-
owned Jackson State Demonstration Forest near the coast. Here, the
habitat at risk of experiencing severe wildfire is more dispersed across
the landscape rather than being confined to a single valley. Finally,
the southernmost focal area consists of land within and nearby Point
Reyes National Seashore, which is federally owned. This area has rela-
tively mild climatic conditions as a result of its proximity to San
Francisco Bay, and the areas that are most at risk of experiencing a se-
vere wildfire are set back from the coast.

Future studies in these areas should consider the effect of different man-
agement strategies on wildfire impacts to NSO habitat. Since these areas
have quite different land ownership patterns, it is intractable to implement
one-size-fits-all conservation and management actions (Daley et al., 2004).
For example, the Northwest Forest Plan put into place similar management
requirements across federally owned lands in the Northwestern United
States and was quite successful at restoring habitat for NSOs (USDA &
USDI, 1994). However, this plan did not apply to state-owned lands or
privately-owned lands (USDA & USDI, 1994). Since the NSO is listed by
the Endangered Species Act, the federal government does play a role in
its management on non-federal lands, but private land regulation is limited
and varying. For example, landowners andmanagersmay have different at-
titudes toward wildfire and listed species like the NSO, which could impact
management priorities (Bruskotter et al., 2018; Ghasemi et al., 2020). This
necessitates clear communication and collaboration between the different
management entities and stakeholders to design cross-boundary manage-
ment approaches for wildfire and endangered species management,
allowing all voices to be heard and come to a concrete solution.

4.4. Complicated future for northern spotted owls

As Pacific Northwest summers become hotter and drier as a result of cli-
mate change, wildfires are predicted to increase in extent and severity
(Fried et al., 2004; Westerling et al., 2011; Littell et al., 2018). As a result,
larger and more contiguous areas of a wildfire's footprint could burn at a
high severity (Ganey et al., 2017). However, it is still unclear how many
species, such as the NSO, respond to wildfire or could be at risk of wildfire
across their ranges. In addition, forests recently burned by high-severity
wildfire in northwestern California are thought to be avoided by barred
owls (Strix varia), an invasive generalist species that outcompetes NSOs
where their ranges overlap (Duchac et al., 2021). As a result, barred owls
may be more likely to settle in unburned areas, which are also thought to
be preferred by NSOs (LaHaye and Gutiérrez, 1999; Sovern et al., 2019;
Duchac et al., 2021). More research is needed to understand how barred
owls respond to wildfire and how this could impact NSO populations mov-
ing forward. More research is needed to understand how other species in
the region respond and how management can best address wildfire im-
pacts, especially on species of conservation concern and their habitats.

5. Conclusions

The extent and severity of wildfire activity is increasing across the west-
ern United States, potentially altering the habitats of many species
(Bowman and Johnston, 2014; Littell et al., 2018; Wan et al., 2019; Parks
and Abatzoglou, 2020). Spatially explicit information frommulti-scale hab-
itat selection models has been increasingly used to aid species conservation
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and management and can pinpoint where habitat and its associated fea-
tures are most at risk (Macdonald et al., 2019; Khosravi et al., 2022). We
found that suitable nesting habitat identified for NSOs, which often corre-
sponds with unique forest habitat in northwestern California, was at a
higher risk of experiencing a severefire than nonhabitat.We used this infor-
mation to identify three areas of suitable habitat in northwestern California
most at risk of experiencing a severe wildfire and suggested prioritizing
them for management actions to mitigate the severity of future wildfire.
We stress that wildfire does not always have negative impacts; in fact,
many terrestrial ecosystems are adapted to a historical fire regime (Agee,
1996; Bond and Keeley, 2005). However, rapid increases in fire size, fre-
quency, and severity could alter this balance (Kasischke and Turetsky,
2006; Abatzoglou and Williams, 2016; McKenzie and Littell, 2017; Wan
et al., 2020). Since resources to manage and conserve at-risk species are
often limited, the spatially explicit information we provide can help priori-
tize areas for more effective planning. This could be examined further in fu-
ture studies by optimizing the implementation of wildfire management
strategies across the landscape that also preserve biodiversity, provide hab-
itat for at-risk species, and promote multifunctional landscapes (Law et al.,
2017; Iglesias et al., 2022). In addition, while the spotted owl is often con-
sidered an indicator species for other old-growth forest species, we believe
there is value in considering multiple species in future studies when exam-
ining tradeoffs between different wildfire management approaches and
their impacts to ecosystem services like habitat provisioning or human
well-being (Regos et al., 2018). Lastly, we emphasize the importance of
considering multiple spatial scales when evaluating habitat suitability and
quantifying impacts of disturbances in order to make appropriate manage-
ment decisions for NSOs and other forest-dependent species (Wan et al.,
2020).
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