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1 Introduction

We are concerned with global solutions of multidimensional (M-D) Riemann
problems for nonlinear hyperbolic systems of conservation laws, focusing on
their global configurations and structures. In this paper, we present some
recent developments in the rigorous analysis of two-dimensional (2-D) Rie-
mann problems involving transonic shock waves (shocks, for short) through
several prototypes of hyperbolic systems of conservation laws and discuss some
further M-D Riemann problems and related problems for nonlinear partial dif-
ferential equations (PDEs). These Riemann problems can be reformulated as
free boundary problems with transonic shocks as free boundaries for the cor-
responding nonlinear conservation laws of mixed elliptic-hyperbolic type and
related nonlinear PDEs.

The study of Riemann problems has an extensive history, which dates back
to the pioneering work of Riemann [74] in 1860. For the one-dimensional (1-D)
Riemann problem, a theory has been established for the appropriate amplitude
of the Riemann data for general strictly hyperbolic systems (cf. [55, 66]) and for
general Riemann data for the compressible Euler equations (cf. [12, 70, 79, 88]
and the references cited therein). The 1-D Riemann problem has been essential
in the development of the 1-D mathematical theory of hyperbolic conservation
laws and associated shock capturing methods for the construction and com-
putation of global entropy solutions; see [35, 42, 44, 54, 55, 57, 66, 78] and
the references cited therein. More importantly, general global entropy solu-
tions can be locally approximated by the Riemann solutions that are regarded
as fundamental building blocks of the entropy solutions (cf. [35, 42, 55, 79]).
Moreover, the Riemann solutions usually determine the large-time asymptotic
behaviors and global attractors of general entropy solutions of the Cauchy
problem. On the other hand, it is the simplest Cauchy problem (initial value
problem) whose solutions have fine explicit structures.

The M-D Riemann problems are more challenging mathematically, and the
corresponding M-D Riemann solutions are of much richer global configurations
and structures; see [9-12, 34, 35, 43, 44, 56, 76, 92] and the references cited
therein. Thus, the Riemann solutions often serve as standard test models for
analytical and numerical methods for solving nonlinear hyperbolic systems of
conservation laws and related nonlinear PDEs. Theoretical results for first-
order scalar conservation laws are available in [12, 27, 45, 65, 80, 87, 93] and the
references cited therein. During recent decades, some significant developments
for the 2-D Riemann problems for first-order hyperbolic systems and second-
order hyperbolic equations of conservation laws have been made. Zhang-Zheng
[92] first considered the two-dimensional four-quadrant Riemann problem that
each jump between two neighbouring quadrants projects exactly one planar
fundamental wave and predicted that there are a total of 16 genuinely differ-
ent configurations of the Riemann solutions for polytropic gas. Schulz-Rinne
[75] proved that one of them is impossible. In Chang-Chen-Yang [9, 10], it is
first observed that, when two initially parallel slip lines are present, it makes
a difference whether the vorticity waves generated have the same or opposite
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sign, which, along with Lax-Liu [56], leads to the classification with a total
19 genuinely different configurations of the Riemann solutions for the com-
pressible Euler equations for polytropic gas, via characteristic analysis; also
see [52, 58, 76]. On the other hand, experimental and numerical results have
shown that many new configurations may arise from other types of Riemann
problems. In particular, the angles between two discontinuities separated by
sectorial regions in the initial Riemann data and the boundaries in the lat-
eral Riemann data play essential roles in forming the global Riemann solution
configurations, besides the strengths of jumps in the initial Riemann data; see
[3, 5, 34, 36, 38, 39, 44, 68, 81-84, 89|. In this paper, we present four differ-
ent 2-D Riemann problems involving transonic shocks through the prototypes
of nonlinear hyperbolic PDEs and demonstrate how these Riemann problems
can be reformulated and then solved rigorously as free boundary problems
for nonlinear conservation laws of mixed elliptic-hyperbolic type and related
nonlinear PDEs. A special attention has been paid to whether/how different
initial or boundary setups of the Riemann problems affect the global Riemann
solution configurations. These are achieved by developing further the nonlin-
ear method and related ideas/techniques introduced in Chen-Feldman [20-22]
for solving free boundary problems with transonic shocks as free boundaries
for nonlinear conservation laws of mixed elliptic-hyperbolic type and related
nonlinear PDEs; also see [14, 23].

The organization of this paper is as follows: In Section 2, we first show how
the solutions of M-D Riemann problems for hyperbolic conservation laws can
be formulated as the self-similar solutions for nonlinear conservation laws of
mixed elliptic-hyperbolic type and then we introduce the notion of Riemann
solutions in the self-similar coordinates in the distributional sense. In Section
3, we present the first 2-D Riemann problem, Riemann Problem I, involv-
ing two shocks and two vortex sheets for the pressure gradient system and
show how Riemann Problem I can be reformulated/solved as a free boundary
problem with transonic shocks as free boundaries for a second-order nonlin-
ear conservation law of mixed elliptic-hyperbolic type and related nonlinear
PDEs. In Section 4, we present the second 2-D Riemann problem, Riemann
Problem II — the Lighthill problem for shock diffraction by convex cornered
wedges through the nonlinear wave equations, and show how Riemann Prob-
lem II can be solved as another free boundary problem. Even though both the
origin and form of the nonlinear wave equations are different from those of the
pressure gradient system, the same arguments for solving the Riemann prob-
lem apply for the pressure gradient system to obtain similar results without
additional analytical obstacles; the same is true for the Riemann problem in
Section 3 for the nonlinear wave equations. In Section 5, we present the third
2-D Riemann problem, Riemann Problem III — the Prandtl-Meyer problem for
unsteady supersonic flow onto solid wedges through the Euler equations for
potential flow and show how Riemann Problem III can be reformulated/solved
as a free boundary problem for a second-order nonlinear conservation law of
mixed elliptic-hyperbolic type. Then, in Section 6, we present the fourth 2-D
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Riemann problem, Riemann Problem IV — the von Neumann problem for shock
reflection-diffraction by wedges for the Euler equations for potential flow, and
show how Riemann Problem IV can be solved again as a free boundary prob-
lem. We give our concluding remarks in Section 7 and discuss several further
M-D Riemann problems and related problems for nonlinear PDEs.

2 Multidimensional Riemann Problems
and Nonlinear Conservation Laws of
Mixed Elliptic-Hyperbolic Type

In this section, we first show how the solutions of the M-D Riemann problems
for nonlinear hyperbolic conservation laws can be formulated as the self-similar
solutions for nonlinear conservation laws of mixed elliptic-hyperbolic type, and
then introduce the notion of Riemann solutions in the self-similar coordinates
in the distributional sense.

Consider both the M-D first-order quasilinear hyperbolic systems of
conservation laws of the form:

U+ Vx-F=0 fort € Ry =[0,00) and x € R™ (2.1)

with U € R™ and nonlinear mapping F : R — R™ x R™, and the M-D
second-order quasilinear hyperbolic equations of conservation laws of the form:

0:Go(0:D,Vx®) + Vx - G(0,D,Vx®?) =0 for t e Ry and x € R" (2.2)

with ® € R and nonlinear mapping (Go, G) : R**! — R x R™.

A prototype of (2.1) is the full Euler equations in the conservation form
(2.1) with

U := (p,pu,pE)", F:=(pu,pu@u+pl,(pE+pu)’,  (2.3)

2
where p > 0 is the density, u € R™ the velocity, p the pressure, and £ = %Jre

the total energy per unit mass with the internal energy e given by e = —2+—

(v=Dp
for the adiabatic constant v > 1 for polytropic gases.

A prototype of (2.2) can be derived from the Euler equations for potential
flow, which is governed by the conservation law of mass and the Bernoulli law
for the density function p and the velocity potential ® (i.e., u = V4 ®):

1
Op+ Vi (pVx®) =0, P+ §\VX<I>\2 + h(p) = B, (2.4)
where B is the Bernoulli constant and h(p) is given by

-l
h(p) = CA—— for the adiabatic exponent vy > 1. (2.5)
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By (2.4)-(2.5), p can be expressed as
1
p(0;®,Vy®) = h™ (B — 0,0 — 5|vx<1>|2). (2.6)

Then system (2.4) can be rewritten as the second-order nonlinear wave
equation as in (2.2) with

(G07G) = (p(atq);Vx(b)ap(at@avx(b)vxq)> (27)

and p(0;®, Vx®) determined by (2.6).

A standard Riemann problem for (2.1) is a special Cauchy problem:
U‘t:(): U()(X) (28)

so that the initial data function Up(x) is invariant under the self-similar scaling
in x:

Up(ax) = Up(x) for any a > 0,
that is, Up(x) is constant along the ray originating from x = 0; in other words,
U, depends only on the angular directions of the rays originating from x = 0
in R™.

A lateral Riemann problem for (2.1) is a special initial-boundary problem
in a unbounded domain D that contains the origin and is invariant under the
self-similar scaling (i.e., if x € D, then ax € D for any o > 0) so that the
initial data and boundary data are also invariant under the self-similar scaling.

Since system (2.1) is invariant under the time-space self-similar scaling, the
standard/lateral Riemann problems are also invariant under the time-space
self-similar scaling;:

(t,x) = (at, ax) for any a > 0. (2.9)
Thus, we seek self-similar solutions of the Riemann problems:
X
U(t,x) = V(;) (2.10)

Denote § = ¥ as the self-similar variables. Then V'(§) is determined by

D-F(V)—¢-DV =0,

that is,

D-(F(V)-V®&+nV =0, (2.11)
where D = (0¢,,- -+ ,0¢,) is the gradient with respect to the self-similar vari-
ables £ = (&1,--+,&,) € R”, and V ® € = (V;&;)1<i,j<n- Even though system
(2.1) is hyperbolic, system (2.11) generally is of mixed elliptic-hyperbolic type,
even composite-mixed elliptic-hyperbolic type. In particular, for a bounded
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solution V' (&), system (2.11) may be purely hyperbolic in the far field, i.e.,
outside a large ball in the &-coordinates, but generally is of mixed type or
composite-mixed type in a bounded domain containing the origin, & = 0.

For the full Euler system (2.1) with (2.3), the self-similar solutions are
governed by the following system:

div(pv) + np =0,
div(pv ® v) + Dp+ (n+ 1)pv = 0, (2.12)

1 1
div(GoIvP + V) + (Gl + ) =0,
where v =u — £ is the pseudo-velocity with V' = (p, pv, 3p|v|* + pe) .
The weak solutions of system (2.11) can be defined as follows:

Definition 2.1 (Weak Solutions). A function V' € L° (A) in a domain A C

loc

R™ is a weak solution of system (2.11) in A, provided that

/A{(F(V)*V®€)~DC(£)*nVC(€)}d£:0 for any ¢ € Cj(A). (2.13)

It can be shown that any weak solution of system (2.11) in the &-
coordinates in the sense of Definition 2.1 is a weak solution of system (2.1) in
the (t,x)—coordinates. Then any co-dimension-one C''—discontinuity S satisfies
the Rankine-Hugoniot conditions along .S in the £€—coordinates:

(FV)]=[V]®§) v =0,

or equivalently,

[(F(V) -Ve 5) : Vs} =0, (2'14)
where v can be either of the unit normals to S, and [-] denotes the difference
between the traces of the corresponding quantities on the two sides of the
co-dimension-one surface S.

Similarly, the Riemann problems for Eq. (2.2) are invariant under the time-
space self-similar scaling:

O (at, ax)

(t,x,®(t,x)) — (at, ax, ) for any a > 0. (2.15)

Thus, we seek self-similar solutions of the Riemann problem:
X
d(t,x) = tqﬁ(?). (2.16)
Then ¢(&) is determined by

divG(¢ — & D¢, D¢) — - DGo(¢ — & - Do, Do) = 0,
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that is,

div(G(¢—€-D¢, Dg) — Go(¢p—& D¢, Dg)§) +nGo(¢—&- D¢, D) = 0. (2.17)

Again, even though Eq. (2.2) is hyperbolic, Eq. (2.17) generally is of mixed
elliptic-hyperbolic type. In particular, for a gradient bounded solution ¢(£),
Eq. (2.17) may be purely hyperbolic in the far field, i.e., outside a large ball
in the £&—coordinates, but generally is of mixed type in a bounded domain
containing the origin.

For the Euler equations (2.2) for potential flow with (2.6)—(2.7), the self-
similar solutions are governed by the following second-order quasilinear PDE
for the pseudo-velocity ¢ = ¢ — $|€|*:

div(p(|De|?, ©)Dg) + np(|De|*, ¢) =0, (2.18)

where p(|Dg[?,¢) = (Bo — (v = 1)(5/D¢|* +¢)) 7" with By = (y —1)B + 1.
The weak solutions of Eq. (2.17) can be defined as follows:

Definition 2.2. A function ¢ € Wo°(A) in a domain A C R™ is a weak

loc

solution of system (2.17) in A, provided that

/A {(G(¢ — & -D¢, Do) — Go(¢ — & - Do, Dp)§) - D((8)
—nGo(¢ — & -Dp,DP)((€) } d€ =0 (2.19)
for any ¢ € C¢(A).

Similarly, it can shown that any weak solution of Eq. (2.17) in the &-
coordinates in the sense of Definition 2.2 is a weak solution of Eq. (2.2) in the
(t, x)—coordinates. Then any co-dimension-one C''—discontinuity S satisfies the
Rankine-Hugoniot conditions along S in the £&—coordinates:

(0] =0,  [G(¢—& D¢, Do) —Go(¢ —&- D, De)E] - v =0,

or equivalently,

¢l =0,  [(G(¢—& D¢, Do) —Go(¢ — & D¢, Do)§) - v5] =0,

where v is either of the unit normals to S.
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3 Two-Dimensional Riemann Problem I:
Two Shocks and Two Vortex Sheets
for the Pressure Gradient System

In this section, we present the first 2-D Riemann problem, Riemann Prob-
lem I, through the pressure gradient system that is a hyperbolic system of
conservation laws.

The pressure gradient system takes the following form:

Ut + Pay =0,
Ut + pxz = 07 (31)
Ey + (pu)z, + (pv)e, =0,

where E = g + p with u = (u,v). System (3.1) can be written in form (2.2)
with

There are two mechanisms for the fluid motion: the inertia and the pres-
sure differences. Corresponding to a separation of these two mechanisms, the
full Euler equations (2.1) with (2.3) in gas dynamics can be split into two
subsystems of conservation laws: the pressure gradient system and the pres-
sureless Euler system, respectively; also see [1, 29, 62] and the references cited
therein for this and similar flux-splitting ideas which have been widely used in
order to design the so-called flux-splitting schemes and their high-order accu-
rate extensions. Furthermore, system (3.1) can also be deduced from system
(2.1) with (2.3) under the physical regime whereby the velocity is small and
the adiabatic gas constant + is large; see Zheng [94]. An asymptotic derivation
of system (3.1) has also been presented by Hunter as described in [96]. We
refer the reader to [58, 97] for further background on system (3.1).

3.1 2-D Riemann Problem I:
Two Shocks and Two Vortex Sheets

We now consider the following Riemann problem:
Problem 3.1 (2-D Riemann Problem I: Two Shocks and Two Vortex Sheets).
Seek a global solution of system (3.1) with Riemann initial data that consist

of four constant states in four sectorial regions £; with symmetric sectorial
angles (see Fig. 3.1):

(p,u)(0,x) = (pi, u;) for xe€Q;,1=1,2,3,4, (3.3)
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such that the four initial constant states are required to satisfy the following
conditions:

A forward shock Sj, is formed between states (1) and (4),
A backward shock Sty is formed between states (1) and (2),

3.4
A wvortex sheet Jf5 is formed between states (2) and (3), 34

A vortex sheet Js, is formed between states (3) and (4).

Q,

2, o

O,

Fig. 3.1 Riemann Problem I: Riemann initial data (cf. [31, 95])

This Riemann problem initially with the assumption that angle a3 = aso
is close to zero was first analyzed rigorously in Zheng [95], for which the two
shocks bend slightly and the diffracted shock I'ghock does not meet the inner
sonic circle Cs. In the recent work [31], this Riemann problem has been solved
globally for the general case; that is, the angle between the two shocks is not
necessarily close to .

3.2 Reformulation of Riemann Problem I

As discussed earlier, we seek self-similar solutions in the self-similar coordinates
with the form:

(pou)(t,x) = (p,u)(€)  with & = §, t>0.

In the &é&—coordinates, system (3.1) can be rewritten in form (2.11) with (3.2).
The four waves in Riemann Problem I can be obtained by solving four 1-D
Riemann problems in the self-similar coordinates &€, which form the following
configuration as shown in Fig. 3.2:

More precisely, let & = f(£1) be a C'—discontinuity curve of a bounded
discontinuous solution of system (2.11) with (3.2). From the Rankine-Hugoniot
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&

Fig. 3.2 Riemann Problem I: Riemann solution configuration (cf. [31])

relations on & = f(&;):

we find that & = f(&;) can be one of the two nonlinear discontinuities:

df€) _ o0l §1£(€)EV/P(EF+1F(61)1°—P)
g T 9F T TR T £-p ’ (3.5)

(3.6)

where P is the average of the pressure on the two sides of the discontinuity.

A nonlinear discontinuity is called a shock if it satisfies (3.5) and the
entropy condition: pressure p increases across it in the flow direction; that is,
the pressure ahead of the wave-front is larger than that behind the wave-front.
There are two types of shocks S*:

e § = S7 if Dp and the flow direction form a right-hand system;
e S =57 if Dp and the flow direction form a left-hand system.
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A discontinuity is called a vortex sheet if it satisfies (3.6). There are two types
of vortex sheets J* determined by the signs of the vorticity:

Jt:  curlu = +oo.
It can be shown that, for fixed (p1,u;) and ps = ps = p4 satisfying p; > pa,

there exist states u;, 4 = 2, 3,4, depending on angles (a1, as) continuously such
that the conditions in (3.4) for the Riemann initial data hold.

0, (pr. 1, 1)

/
| \
Qs T \ /} 3]
[eD] e “-’1 ‘5\3 \\ o {”l‘t
04 (P2, “1-“:)/ \ (py. g, vy)

T

S
S (pgsugfes)

Fig. 3.3 The Riemann data and the global solution when a1 = 0 (¢f. [31])

There is a critical case when a; = 0. Then the Riemann initial data satisfy
P1 > P2 =P3 =P4, UL = U2 = U3 = Uqg, V1 > Vg = V3 = V4.

The global Riemann solution is a piecewise constant solution with two planar
shocks: Sy, for & < 0 and SL for &1 > 0 on the line: & = —/p, with

W= =0 forpe e

and two vortex sheets J55 and J;, as shown in Fig. 3.3. The two planar shocks
S, and Sj; are both tangential to the circle, |¢| = /P, with the tangent point
on the circle as the end-point. It follows from the expression of J,; given in
(3.6) that p» = p3 on both sides of Jj5. At the point where .J55 intersects
with Sp,, we see that J.; does not affect the shock owing to p» = ps. The
intersection between J;; and Sj; can be handled in the same way.
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We now consider the general case: oy € (0, 5). From system (2.11) with
(3.2), we can derive the following second-order nonlinear equation for p:

2
(Eape +8Pe)” _oe ey 0

3.7
Eq. (3.7) is of mixed hyperbolic-elliptic type, which is hyperbolic when |(£| >)
/P and elliptic when |£| < /p with the transition boundary — the sonic circle
|€] = \/p. Furthermore, in the polar coordinates: (r,0) = (|§|, arctan( %)), Eq.
(3.7) becomes

(p—E1)pere, —261&0per e+ (P—E3 )Deses +

P p 1
Qp = (p=r5)prr - gpoo + pr o ((pr) = 20ppe) =0, (38)

which is hyperbolic when p < 72 and elliptic when p > r2. The sonic circle is
given by r = r(6) = /p(r(0),0).

In the &—coordinates, the four waves come from the far-field (at infinity,
corresponding to ¢t = 0) and keep planar waves before the two shocks meet the
outer sonic circle C; of state (1):

Cr:={&: [§l=p1}

When the two shocks S, and Sj; meet the sonic circle C; at points P3 and P,
respectively, the key issue is whether they bend and meet to form a diffracted
shock, denoted by I'gnock; see Fig. 3.2. Since the whole configuration is sym-
metric with respect to the £s—axis, ['shock must be perpendicular to £, = 0 at
point P> where the two diffracted shocks meet. It is not known a priori whether
the diffracted shock may degenerate partially into a portion of the inner sonic
circle Oy of state (2). Once this case occurs, p = py on the sonic circle, which
satisfies the oblique derivative condition on the diffracted shock automatically.
Observe that the two vortex sheets J;g and J3, and the diffracted shock I'shock
have no influence on each other during the intersection, as pointed out ear-
lier by Zhang-Li-Zhang [91]. Therefore, from now on, we first ignore the two
vortex sheets and focus mainly on the diffracted shock.

On T'ypock, the Rankine-Hugoniot conditions in the polar coordinates must
be satisfied:

r[u] — (cosf + 1 9% sin6)[p] = 0,
r[v] — (sinf — lchg cos6)[p] =0, (3.9)

r[E] — (cosf + £ 9% sin6) [pu] — (sin6 — L% cos ) [pv] = 0.
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Owing to [pu] = p[u] + wlp], with D as the average of the two neighboring
states of p, we eliminate [u] and [v] in the third equation in (3.9) to obtain

dr 2_1"2(7’27@
(@) -5

w) =

The shock diffraction can also be regarded to be generated from point P»
in two directions, which implies that /() > 0 for 6 € [2F,6;] and 7/(§) < 0 for
0 € [0s, 37“]7 where 60; are denoted as the #—coordinates of points P;, 1 = 1, 3,
respectively. Thus, we choose

r2—p 37
dr Ty =t for 6 € [, 04], (3.10)

i r(0),0),r(0)) :=
1 = 9w (0),0).7(0)) /= for6e [0 3]

It follows from (3.5), or (3.9), that [p]> = P ([u]® + [v]?). Then taking the
derivative r/(0)9, + 09 on both sides of this equation along the shock yields
the derivative boundary condition on Iypoex = {(7(6),60) : 05 <0 < 01}:

Bipr + B2pe =0, (3.11)

where 8 = (1, B2) is a function of (p, pa,r(6),r'(6)) with

p=2o)(T5 T - W BTy S )

The obliqueness becomes

= (B ) (1,0) = 27 0)(1 - D)

Note that y vanishes at point P, where 7/(32) = 0 and

p
B=0, m=-Dco
p
owing to p > pa.
Let Tsonic be the larger portion P; P3 of the sonic circle Cy of state (1). On
Tsonic, p satisfies the Dirichlet boundary condition:

p=p1- (3.13)

Let © be the bounded domain enclosed by I'sonic and I'gpock. Then Riemann
Problem I (Problem 3.1) can be reformulated into the following free boundary
problem:
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Problem 3.2 (Free Boundary Problem). Seek a solution (p(r,0),7(0)) such
that p(r,8) and r(0) are determined by Eq. (3.8) in Q and the free bound-
ary conditions (3.10)—(3.12) on Ipock (the derivative boundary condition), in
addition to the Dirichlet boundary condition (3.13) on Tsonic-

3.3 Global Solutions of Riemann Problem I:
Free Boundary Problem, Problem 3.2

To solve Riemann Problem I, it suffices to deal with the free boundary problem,
Problem 3.2, which has been solved as stated in the following theorem.

Theorem 3.1 (Chen-Wang-Zhu [31]). There exists a global solution
(p(r,0),7(0)) of Problem 3.2 in domain Q with the free boundary

Dinock :== {(7"(9),9) : 93 <fg< 91}
such that
peCHH Q) NCQ),  reC*((6s,6:)) NCHL([6s,61]),

where a € (0,1) depends only on the Riemann initial data. Moreover, the global

solution (p(r,8),7(0)) satisfies the following properties:

(i) p > p2 on the free boundary Tshock; that is, Dshock does not meet the sonic
circle Cy of state (2).

(ii) The free boundary Tshock @8 convex in the self-similar coordinates.

(iii) The global solution p(r,0) is C1* up to the sonic boundary Tsonic and
Lipschitz continuous across I'sonie-

(iv) The Lipschitz regularity of the solution across Usonic from the inside of
the subsonic domain is optimal.

There are three main difficulties for the proof of Theorem 3.1:

(i) The diffracted shock Tghock is @ free boundary, which is not known a
priori whether it coincides with the inner sonic circle Cy of state (2).
(ii) On the sonic boundary T'sonic, owing to p; = 72, the ellipticity of Eq.
(3.8) degenerates.
(iii) At point P» where the diffracted shock Tgpocx meets the o—axis: & =0,
the obliqueness of derivative boundary condition fails, since

(B1,B2) - (1,—r'(0)) = 0.

In the proof of Theorem 3.1, we first assume that p > ps+6 holds on I'gpoex
for some ¢ > 0; that is, ['shock cannot coincide with the sonic circle Cy of state
(2), which is eventually proved. For the third difficulty, we may express this
as a one-point Dirichlet condition p(P;) = p by solving

2r(02) = p(r(62),02) + pa.
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More precisely, the existence proof is divided into four steps:

1. Since Eq. (3.8) degenerates on the sonic boundary, the differential
operator ) in Eq. (3.8) is replaced by the regularized operator:

QE = Q“rEAg.

The free boundary Ishock is first fixed, then the equation and the derivative
boundary condition are linearized, and the existence of a solution of the linear
fixed mixed-type boundary problem is established for the regularized equation
in the polar coordinates.

2. Based on the estimates of solutions of the linear fixed boundary problem
obtained in Step 1, the existence of a solution of the nonlinear fixed boundary
problem is proved via the Schauder fixed point theorem.

3. The existence of a solution of the free boundary problem with the oblique
derivative boundary condition for the regularized elliptic equation is estab-
lished by using the Schauder fixed point argument again. It follows that the
free boundary never meets the sonic circle Cy of state ps.

4. Finally, the limiting solution as the elliptic regularization parameter
tends to 0 is proved to be a solution of Problem 3.2.

In Theorem 3.1, a global solution p of the second-order equation (3.7) in §2
is constructed, which is piecewise constant in the supersonic domain. Moreover,
p is proved to be Lipschitz continuous across the degenerate sonic boundary
Csonic from Q to the supersonic domain. To recover velocity u = (u,v), we
consider the first two equations in system (2.11) with (3.2). We can rewrite
these equations in the radial variable r as

ou 1

—=-D
or r P,

and integrate from the boundary of the subsonic domain toward the origin. It is
direct to see that u is at least Lipschitz continuous across I'sonic. Furthermore,
u has the same regularity as p inside 2 except origin » = 0. However, u may
be multi-valued at the origin (i.e., 7 = 0). Therefore, we have

Theorem 3.2 (Chen-Wang-Zhu [31]). Let the Riemann initial data satisfy
(3.4). Then there exists a global solution (p,u)(r,0) with the 2-D shock

Cohock = {(T(e),e) 1 03<6< 91}
such that

(p,u) € C**(Q), peC*R), reC**((03,61))NC"([0s,01]),
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and (p,u) are piecewise constant in the supersonic domain. Moreover, the
global solution (p,u) with shock Tshock satisfies properties (1)—(ii) in Theorem
3.1 and

(a) (p,u) is C* up to the sonic boundary Tsonic and Lipschitz continuous
across Usonic-

(b) The Lipschitz reqularity of both solution (p,u) across Tsonic from the
subsonic domain Q and shock Tshock across points { P, Ps} is optimal.

More details can be found in Chen-Wang-Zhu [31]. Similar results can
be obtained for the nonlinear wave system introduced in Section 4 below by
using the same approach and related techniques/methods. Furthermore, Rie-
mann Problem I for the Euler equations for potential flow has also been solved
recently in [16].

4 Two-Dimensional Riemann Problem II:
The Lighthill Problem for Shock Diffraction
for the Nonlinear Wave System

In this section, we present the second Riemann problem, Riemann problem II
— the Lighthill problem for shock diffraction by 2-D convex cornered wedges in
compressible fluid flow (Lighthill [63, 64]), through the nonlinear wave system;
also see [4, 17, 38, 39].
The nonlinear wave system consists of three conservation laws, which takes
the form:
Pt +mz1 + Ny, = 07
my + pa, =0, (4.1)
Ng + Pgy = 0,
for (t,x) € [0,00) x R?, where p stands for the density, p for the pressure, and
(m, n) for the momenta in the x—coordinates. The pressure-density constitutive
relation is

p(p) = — for v > 1 (4.2)
by scaling without loss of generality. Then the sonic speed ¢ = ¢(p) is

determined by
N
c(p):==Vrp)=p7,

which is a positive, increasing function for all p > 0. System (4.1) can be
written in form (2.1) with

U = (paman)Tv Fl = (m7paO)Ta F2 = (naoap)T' (43)
The 2-D nonlinear wave system (4.1) is derived from the compressible isen-

tropic gas dynamics by neglecting the inertial terms, i.e., the quadratic terms
in the velocity; see Canic-Keyfitz-Kim [7].
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4.1 Riemann Problem II: The Lighthill Problem for
Shock Diffraction by Convex Cornered Wedges

Let Sy be the vertical planar shock in the (¢,x)-coordinates, with the left
constant state Uy = (p1, m1,0) and the right state Uy = (po, 0, 0), satisfying

mi =/ (p(o1) = (o)) (o1 — p0) >0, p1 > pu.
When Sy passes through a convex cornered wedge:
W= {x = (x1,22) : 2 < 0,21 < zactanby},

shock diffraction occurs, where the wedge angle 6, is between —7 and 0; see
Fig. 4.1. Then the shock diffraction problem can be formulated as follows:

Incident shock S Incident shock S

9 T

—

Uy = (pr,my,0) Uy = (p0.0,0) Uy = (p1,my.0) F—> U =(pp.0,0)

xr

Fig. 4.1 Riemann Problem II: The Lighthill problem (cf. [17])

Problem 4.1 (Riemann Problem II: The Lighthill Problem for Shock Diffrac-
tion). Seek a solution of system (4.1)—(4.2) with the initial condition at
t=0:

U‘t:O — (p07070) ?Il {—7T+9W S arCtan(%) S g}7 (44)
(plvmlao) m {1‘1 <O7I’2 >0}a
and the slip boundary condition along the wedge boundary OW:
(mn) - iy low= 0, (4.5)

where vy, is the exterior unit normal to OW (see Fig. 4.1).

4.2 Reformulation of Riemann Problem II

Notice that Problem 4.1 is invariant under the self-similar scaling: (¢,x) —
(at, ax) for a # 0. In the self-similar £&—coordinates, system (4.1)—(4.2) can be
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rewritten in form (2.11) with (4.3). In the polar coordinates (r,8),r = |€|, the
system can be further written as

rp —mecosf — nsinf msinf — ncos6 o+ #m—l— S'ITL,en
8. | rm—plp)cosd |+3 |  p(p)sind = m+ =)
rn — p(p)sinf —p(p) cost n+ 28y (p)
(4.6)
The location of the incident shock Sy for large r > 1 is:
=gt [P) R0 (4.7)
P1— Po

Then Problem 4.1 can be reformulated as a boundary value problem in an
unbounded domain (see Fig. 4.2): Seek a solution of system (2.11) with (4.3),
or equivalently (4.6), with the asymptotic boundary condition when r — co:

(p0,0,0) in {& > €0, & >0 U {71+ 0, < arctan(%) <0},

(p’m’n) - { (pl,mlao) in {El < 5(1)752 > 0}’

(4.8)
and the slip boundary condition along the wedge boundary OW:

(ma TL) *Vy ‘BW: 0. (49)

S

Fig. 4.2 Shock diffraction configuration (cf. [17])

For a smooth solution U = (p,m,n) of system (2.11) with (4.3), we may
eliminate m and n in (4.1) to obtain a second-order nonlinear equation for p:

(¢ =&D)pes —€1&2pe, +E1p) ¢ + (P —E3) pes —Ea6pe, +E2p) ., —2p = 0. (4.10)

Correspondingly, Eq. (4.10) in the polar coordinates (r,0),r = |£|, takes the

form
2 2

((02 — 7’2)p7_)r + %pr + (T—ng)e = 0. (411)
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In the self-similar &-coordinates, as the incident shock Sy passes through
the wedge corner, Sy interacts with the sonic circle Igopic of state (1): r = rq,
and becomes a transonic diffracted shock T'ghock, and the flow in domain €
behind the shock and inside I'ypn;c becomes subsonic.

Consider system (4.6) in the polar coordinates. Then the Rankine-Hugoniot
relations, i.e., the jump conditions, are

plle] = [m]? + [n]?, zzTﬂ%i?m7

with &(p, po) = 1/ 2el=2lee)
dr

95 > 0. Differentiating the first equation above along I'shock and using the
equations obtained above, we have

, where the plus branch has been chosen so that

Bipr + Bapg =0 on Isnoek 1= {(r(0),0) : 0 € [0y, 01]}. (4.12)
where 8 = (1, B2) is a function of (po, p, 7(0), () with
Br=1"(0)(c*(r* — &) = 3¢%(c* —r?)), Pa=3cP(r?—¢c%) — (> —1?).
Then the obliqueness becomes
pi=p-(1,-1r'(0)) = —2r*(c* = &)r'(0) # 0,

where (1, —r'(6)) is the outward normal to Q on Igpock. Note that p becomes
zero when 1'(0) = 0, i.e., r = &(p, po), where

61 = Oa /82 = _62(62 - T2) < Oa

since ¢2(p) > &(p, po) = r? if p > po.
The second condition on I'spock is the shock equation:

dr _ /12 —2(p,p0) _

%= o p0) = g(r,0,p(r,0)), r(61) =71, (4.13)

where (r1,60;) are the polar coordinates of P; = (£9,£9).

At point P, 7'(0y) = 0, (4.12) does not satisfy the oblique derivative
boundary condition. We may alternatively express this as a one-point Dirichlet
condition by solving r(fy) = ¢(p(r(0w),0w), p0). In order to deal with this
equation, we use the notation:

a= ()" (r) when ¢, := é(a,b) = r for fixed b, (4.14)

so that
p(PL) = 5= () (r(64): (4.15)
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The boundary condition on the wedge is the slip boundary condition, i.e.,
(m,n) vy = 0. Differentiating it along the wedge and combining this with the
second and third equations in (4.1), we conclude that p satisfies

Pv, =0 onTo:=00N ({0 =n}U{l=06}). (4.16)
The Dirichlet boundary condition on I'sopjc is:
p=p1 on Tgonic 1= 00 N OB, (0). (4.17)

On the Dirichlet boundary Tsonic, Eq. (4.11) becomes degenerate elliptic from
the inside of €.

With the derivation of the free boundary conditions on I'yhocx and the
fixed boundary conditions on I'sopnie U I'g, Problem 4.1 is further reduced to
the following free boundary problem for Eq. (4.11) in domain Q, with (m,n)
correspondingly determined by (4.6).

Problem 4.2 (Free Boundary Problem). Seek a solution (p(r,0),7(0)) such
that p(r,0) and r(0) are determined by Eq. (4.11) in domain  and the free
boundary conditions (4.12)~(4.15) on Dgpoex = {((0),0) : 0y < 6 < 601},
in addition to the Neumann boundary condition (4.16) on wedge 'y and the
Dirichlet boundary condition (4.17) on the degenerate boundary Tsonic, the
sonic circle of state (1) (cf. Fig. 4.2).

4.3 Global Solutions of Riemann Problem 1I:
Free Boundary Problem, Problem 4.2

To solve Riemann Problem II, it suffices to deal with the free boundary
problem, Problem 4.2, which has been solved as stated in the following
theorem.

Theorem 4.1 (Chen-Deng-Xiang [17]). Let the wedge angle Oy, be between —m
and 0. Then there exists a global solution, a density function p(r,8) in domain
Q, and a free boundary Dok = {(1(6),0) : 6y < 0 < 61}, of Problem 4.2
such that

pECTQNCQ), 1 e O ([0y,61)) N CH (61, 61]).

Moreover, solution (p(r,0),r(0)) satisfies the following properties:
(i) p > po on the free boundary Tshock; that is, Tshock is separated from the
sonic circle Cy of state (0).
(ii) The free boundary Dsnock 1S strictly convex up to point Py, except point
Py, in the self-similar €—coordinates.
(iii) The density function p(r,0) is C1* up to Tsonic and Lipschitz continuous
across sonic-
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(iv) The Lipschitz reqularity of p(r,0) across Usonic and at Py from the inside
s optimal.

Similar to the proof of Theorem 3.1, Theorem 4.1 is established in two steps.
First, the regularized approximate free boundary problem for (4.11) involving
two small parameters € and ¢ is solved. Then the limits: € — 0 and § — 0 are
proved to yield a solution of Problem 4.2, i.e., (4.11)—(4.17), with the optimal
regularity.

In Theorem 4.1, a global solution p of Eq. (4.11) in Q is constructed, by
combining this function with p = p; in state (1) and p = pg in state (0). That
is, the global density function p that is piecewise constant in the supersonic
domain is Lipschitz continuous across the degenerate sonic boundary [sonic
from © to state (1). To recover the momentum vector function (m,n), we can
integrate the second and third equations in (4.6). These can also be written in
the radial variable r,

a(m,n 1
U) _ Lp(p) (4.18)
and integrated from the boundary of the subsonic domain toward the origin.

It has been proved that the limit of Dp does not exist at P; as £ in ) tends
to &9, but |De(p)| has a upper bound. Thus, p(p) is Lipschitz, which implies
that (m,n) is at least Lipschitz across the sonic circle T'yopic. Furthermore,
(m,n) has the same regularity as p inside Q, except for origin r» = 0. However,
(m,n) may be multi-valued at origin » = 0. Therefore, we have

Theorem 4.2 (Chen-Deng-Xiang [17]). Let the wedge angle 0y be between
—m and 0. Then there exists a global solution (p, m,n)(r,0) with the diffracted
shock Tshock = {(r(0),0) : 0 <0 <61} of Problem 4.2 such that

(p,m,n) € C*T(Q), peCQ), reC*([0y,0:))NCH([0y,01]),

and (p,m,n) = (p1,m1,0) in domain {& < &, 7 > ri} and (po,0,0) in
domain {& > &9, & > €YU {r > r(0), 0, < 0 < 0;}. Moreover, solution
(p,m,n)(r,0) with the diffracted shock Tsnock satisfies properties (i)—(ii) in
Theorem 4.1 and

(i) (p,m,n) is CH* up to Tsonic and Lipschitz continuous across Tsonic-
(ii) The Lipschitz reqularity of solution (p,m,n) across Usonic and at Py from

the inside is optimal.
(iii) The momentum vector function (m,n) may be multi-valued at the origin.

In particular, Theorem 4.2 implies the following facts:

(a) The optimal regularity of (p, m,n)(r,0) across I'sonic and at P; from the
inside is C%!, i.e., Lipschitz continuity.
(b) The diffracted shock I'ypock is definitely not degenerate at point P,. This

had been an open question even when the wedge angle is 7 as in [50],
though it is physically plausible.
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(¢) The diffracted shock Iypoex away from point Ps is strictly convex and has
a jump at point P; from a positive value to zero, while the strict convexity
of I'ghock fails at Ps.

More details can be found in Chen-Deng-Xiang [17]. Similar results can
be obtained for the pressure gradient equation introduced in Section 3 above.
In Chen-Feldman-Hu-Wang [24], the loss of regularity of solutions of Problem
4.1 for the potential flow equation (2.4)—(2.5), or (2.2) with (2.6), has been
shown, which implies that the solution configuration for this case is much more
complicated.

5 Two-Dimensional Riemann Problem III:
The Prandtl-Meyer Problem for Unsteady
Supersonic Flow onto Solid Wedges
for the Euler Equations for Potential Flow

Now we present the third Riemann problem, Riemann Problem III, for the
Prandtl-Meyer problem for unsteady supersonic flow onto solid wedges for the
Euler equations for potential flow in form (2.2) with (2.6)—(2.7), or (2.4)—(2.5);
see also [3, 37, 71, 73].

5.1 2-D Riemann Problem III: The Prandtl-Meyer
Problem for Unsteady Supersonic Flow onto
Solid Wedges for Potential Flow

Consider a supersonic flow with the constant density py > 0 and velocity
ug = (1o, 0), up > ¢o := ¢(pp), which impinges toward a symmetric wedge:

W= {(#1,22) : |w2| < z1tanby,z; > 0} (5.1)

at t = 0. If 6, is less than the detachment angle #, then the well-known
shock polar analysis demonstrates that there are two different steady weak
solutions: the steady solution ® of weaker shock strength and the steady solu-
tion of stronger shock strength, both of which satisfy the entropy condition
and the slip boundary condition (see Fig. 5.1); see also [3, 14, 34]. Then the
dynamic stability of the steady transonic solution ® of weaker shock strength
for potential flow can be formulated as the following problem:

Problem 5.1 (Riemann Problem III: The Prandtl-Meyer Problem for
Unsteady Supersonic Flow onto Solid Wedges). Given v > 1, fiz (po,uo)

with ug > co. For a fived 0, € (0,0%), seek a global entropy solution
2

D € Wh(Ry x (R2\ W) of Eq. (2:2) with (2.6)~(2.7) and B = %2 + h(po)

so that ® satisfies the initial condition at t = 0:

(P, ®)|t=0 = (po, uox1) for x e R*\ W, (5.2)
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u2 , /
,’weak shock

strong shock 7

us = uy tan 6% ,
L ) /
<" o up = up tan 6y, 7
- —_— ’
_--u2 =ujtanf v
d /
—_— 7
p Y /
<4 ; U / /
2 /
ol H Q ! e
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Fig. 5.1 The shock polar in the u-plane and uniform steady (weak/strong) shock flows (see
(14])

and the slip boundary condition along the wedge boundary OW :
Vx® - vylow =0, (5.3)

where vy is the exterior unit normal to OW . In particular, we seek a solution
® e WI})’COO(R+ x (R?\ W)) that converges to the steady solution ® of weaker
oblique shock strength corresponding to the fized parameters (po, ug, Y, Ow) with
p=h"YB- %|V<f>|2), when t — 0o, in the following sense: For any R > 0, ®
satisfies

i [[(Vi®(t, ) = V@, p(t, ) = p)l| Lt (Brop\w) = 0 (5.4)

for p(t,x) given by (2.6).

Since the initial data in (5.2) do not satisfy the boundary condition (5.3), a
boundary layer is generated along the wedge boundary starting at ¢ = 0, which
forms the Prandtl-Meyer reflection configurations; see Bae-Chen-Feldman [3]
and the references cited therein.

In order to define the notion of weak solutions of Problem 5.1, it is noted
that the boundary condition can be written as pVx® - v, = 0 on W, which
is the spatial conormal condition for Eq. (2.2) with (2.6)—(2.7). Then we have

Definition 5.1 (Weak Solutions of Problem 5.1: Riemann Problem IIT). A
function ® € W2 (R x (R2\ W) is called a weak solution of Problem 5.1 if

loc

D satisfies the following properties:
(i) B— (0,® + 2[Vx®[?) > h(0+) a.e. in Ry x (R2\ W),
(ii) For p(0:®,Vx®) determined by (2.6),

(p(0:®, | Vx®[*), p(0:®, [Vx®[*)|Vx®]) € (Lioe (R x R2\ W))?,

(iii) For every ¢ € C*(Ry x R?),
/ / (p(atq), |V ®[2)0:C + p(0,D, |V @} )V, ® - vxg) dxdt
0 R2\W

+ / p0¢(0,x) dx = 0.
R2\ W
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Since ¢ does not need to be zero on JA, the integral identity in Definition 5.1
is a weak form of equation (2.2) with (2.6)-(2.7) and the boundary condition
pVx®-vy, = 0on OW. A weak solution is called an entropy solution if it satisfies
the entropy condition that is consistent with the second law of thermodynamics
(cf. [22, 34, 35, 55]). In particular, a piecewise smooth solution is an entropy
solution if the discontinuities are all shocks.

5.2 Reformulation of Riemann Problem III

Notice that Eq. (2.2) with (2.6)—(2.7) is invariant under the self-similar scaling
(2.15), so that it admits self-similar solutions in form (2.16). Then the pseudo-
potential function ¢ = ¢ — %|£ |2 satisfies the following equation:

div(p(IDel?, 9)D) + 2p(IDepl?, ) = 0 (5.5)
for
2 1 2 =1
(DI, 0) = (Bo = (v = (5 D¢l +¢)) 77, (5.6)
where By = (y — 1)B + 1. Eq. (5.5) written in the non-divergence form is

(% — 07 )Perer — 206, PerPeres + (P — ©F, ) eae, +2¢° — Dy =0, (5.7)

where the sonic speed ¢ = ¢(|Dyp|?, ) is determined by

2(Dgl%.¢) = N (IDgl0) = By — (1~ D(5DeP +¢).  (68)

Eq. (5.5) is a nonlinear PDE of mixed elliptic-hyperbolic type. It is elliptic
at & if and only if
Dyl < c(IDgf?,¢)  at &, (5.9)
and is hyperbolic if the opposite inequality holds.
One class of solutions of (5.5) is that of constant states which are the
solutions with constant velocity v € RZ2. Then the pseudo-potential of the
constant state v satisfies Dy = v — £ so that

pl€) = —3 &l +v £+ C, (5.10)

where C'is a constant. For such ¢, the expressions in (5.6) and (5.8) imply that
the density and sonic speed are positive constants p and ¢, i.e., independent of
€. Then, from (5.9)—(5.10), the ellipticity condition for the constant state v is

€ —v| <ec.

Thus, Eq. (5.5) is elliptic inside the sonic circle with center v and radius c,
and hyperbolic outside this circle.
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Moreover, if density p is a constant, then the solution is also a constant
state; that is, the corresponding pseudo-potential ¢ is of form (5.10).

Since the problem involves transonic shocks, we have to consider weak
solutions of Eq. (5.5), which admit shocks. A shock is a curve across which Dy
is discontinuous. If A* and A~ (:= A\ A¥+) are two nonempty open subsets of a
domain A C R2, and S := AT NA is a C'-curve across which Dy has a jump,
then ¢ € Wb NCH(A*US)NC?(A*) is a global weak solution of (5.5) in A if
and only if ¢ is in Wlf)’coo(A) and satisfies Eq. (5.5) and the Rankine-Hugoniot
conditions on S:

<P|A+ms = (P|A*r157 (5~11)
p(IDp|?, ©)Dy - vs|a+ns = p(|D¢|?, ©)De - Vg p-ns- (5.12)

A piecewise smooth solution with the discontinuities is called an entropy
solution of (5.5) if it satisfies the entropy condition: density p increases in
the pseudo-flow direction of Dp|a+ng across the discontinuity. Then such a
discontinuity is called a shock.

As the upstream flow has the constant velocity uy = (ug,0), the
corresponding pseudo-potential ¢ has the expression of

1
0 = —5 €% + oy (513)

directly from (5.10) with the choice of B in Problem 5.1. Since the symmetry
of the domain and the upstream flow in Problem 5.1 with respect to the z;—
axis, Problem 5.1 can then be reformulated as the following boundary value
problem in the domain:

A=RI\{€: & < &tanby, & > 0}

in the self-similar coordinates &, which corresponds to domain {(¢,x) : x €
R2 \ W, t > 0} in the (¢,x)-coordinates, where R = {£& : & > 0}:  Seek
a solution ¢ of Eq. (5.5) in the self-similar domain A with the slip boundary
condition:

DQD . Vw|8A =0 (5.14)

and the asymptotic boundary condition:
o—@o—0 (5.15)

along each ray Ry := {&1 = &acot 0,8 > 0} with 0 € (04, ) as & — 0o in the
sense that

Jim le — wollc(re\B,(0)) = O- (5.16)

Given My > 1, p; and u; are determined via the shock polar as shown
in Fig. 5.1 for steady potential flow. For any wedge angle 6, € (0,65), line
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soni(‘.\

P g

Fig. 5.2 Self-similar solutions for 6, € (0, 6%,) in the self-similar coordinates & (cf. [3])

Fig. 5.3 Self-similar solutions for 8y € [65,,03) in the self-similar coordinates & (cf. [3])

v = utanfy, and the shock polar intersect at a point u; = (ug,v;) with
|ui| > ¢ and u; < ug; while, for any 6, € [6%,69), they intersect at a point

u; with w3 > ugq and |uy| < ¢; where uq is the u—component of the unique
detachment state ug when 6,, = va. The intersection state u; is the velocity
for steady potential flow behind an oblique shock S attached to the wedge
vertex with angle 6,,. The strength of shock Sy is relatively weak compared to
the shock given by the other intersection point on the shock polar, hence Sy
is called a weak oblique shock and the corresponding state u; is a weak state.
Moreover, such a state u; depends smoothly on (ug,68y) and is supersonic
when 6, € (0,65,) and subsonic when 6,, € [65,,69).

Once u; is determined, by (5.11)—(5.13), the pseudo-potential ¢1 below the
weak oblique shock Sy is

@1:_%EF+UT5« (5.17)

We seek a global entropy solution with two types of Prandtl-Meyer reflec-
tion configurations whose occurrence is determined by the wedge angle 6,, for
the two different cases: One contains a straight weak oblique shock Sy attached
to the wedge vertex O and connected to a normal shock S; through a curved
shock I'shock When 60y, < 65, as shown in Fig. 5.2; the other contains a curved
shock T'ghock attached to the wedge vertex and connected to a normal shock
S1 when 63, < 0y, < aglv, as shown in Fig. 5.3, in which the curved shock T'spock
is tangential to the straight weak oblique shock Sy at the wedge vertex. To
achieve these, we need to compute the pseudo-potential function ¢ below Sy.
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By (5.11)—(5.14), the pseudo-potential 2 below the normal shock S; is of
the form:

1
cp2:75\5\2+u2-£+k2 (5.18)

for constant state uy and constant ko; see (5.10). Then it follows from (5.6)
and (5.17)—(5.18) that the corresponding densities p; and ps are constants in
the form:

_ _ -1
=yt 7 5 (uf — [ugl?) for k =1,2. (5.19)
Denote I'yedge := OW N A, and the sonic arcs ' ;. := PPy on Fig. 5.2
and I'2 . := P,P; on Figs. 5.2-5.3. The sonic circle 0B, (uy) of the uniform

state (p intersects line Sy, where ¢; = p1 by (5.8). For the supersonic case
0w € (0,6%,), there are two arcs of this sonic circle between Sy and I'yedge in
A. Note that T’} ;. tends to point O as 6, 65, and is outside of A for the
subsonic case 0y, € [65,,02). Similarly, the somc circle 9B, (uz) of the uniform

W YW

state g intersects line Sy, where ¢y = p2 . There are two arcs of this circle

between S; and the line containing I'wedge. Notice that ¢ > @2 on I‘bomc and

p1 < g on T2 . Then Problem 5.1 can be further reformulated into the

following free boundary problem:

Problem 5.2 (Free Boundary Problem). For 6y, € (0,60%), find a free bound-
ary (curved shock) Tshock and a function ¢ defined in domain Q, as shown in
Figs. 5.2-5.3, such that ¢ satisfies

(i) Eq. (5.5) in Q,

(11) ¥ = %o and pD(p Vg = PODSOO Vs on Fshock;
(iii) ¢ = p and Dp =Dp on T . UT? when Oy, € (0,605,) and on T2 . U

EOHIC bOnlC SOHIC
{O} when 0, € [65,,03) for ¢ := max(¢1, p2),
(iV) D(p Uy =0 on Fwedge,
where vs and vy, are unit normals to Ishock and I'ywedge pointing to the interior

of Q, respectively.

It can be shown that ¢1 > @2 on 'l . . and the opposite inequality holds on
I'Z ... This justifies the requirements in Problem 5.2(iii) above. The conditions
in Problem 5.2(ii)—(iii) are the Rankine-Hugoniot conditions (5.12)—(5.11) on
Cshock and TL . UT2 . or I'2 . U{O}, respectively.

sonic sonic sonic

5.3 Global Solutions of Riemann Problem III:
Free Boundary Problem, Problem 5.2

To solve Riemann Problem III, it suffices to solve the free boundary problem,
Problem 5.2, for all the wedge angles 6, € (0,60). To obtain a global solution
from ¢ that is a solution of Problem 5.2 such that gock is a C'—curve up to
its endpoints and ¢ € C1(Q2), we consider two cases:
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For the supersonic case 6y, € (0, 6%,), we divide domain A into four separate
domains; see Fig. 5.2. Denote by Sgsee the line segment OP; C Sy, and by
S1seg the portion (half-line) of S; with left endpoint P» so that Sises C
A. Let Qg be the unbounded domain below curve Spgeg U I'shock U S1,seg and
above I'yedge (see Fig. 5.2). In Qg, let ©; be the bounded domain enclosed by
So,T'L and yedge. Set Qg 1= Qg \ Q1 U Q. Define a function ¢, in A by

sonic’

®o in A \ QS7
in Qq,
po=g , (5.20)
12 m Fsonic uQu Psonic’
Y2 in QQ.

By Problem 5.2(ii)—(iii), . is continuous in A\ Qg and C! in Q. In particular,
@« is Ct across Tl . UT2 . . Moreover, using Problem 5.2(i)(iii), we obtain
that ¢, is a global entropy solution of Eq. (5.5) in A.

For the subsonic case 6y € [6%,,0%), domain Q; UT! ;. in ¢, reduces to

one point {O}; see Fig. 5.3. The corresponding function ¢, is a global entropy
solution of Eq. (5.5) in A.

Definition 5.2 (Admissible Solutions). Let 6, € (0,0). A function ¢ €
C%1(A) is an admissible solution of Problem 5.2 if o is a solution of Problem
5.2 extended to A by (5.20) and satisfies the following properties:
(i) The structure of solution is of the form:
e If0y € (0,65,), then v has the configuration shown on Fig. 5.2 such
that Tshock 15 C? in its relative interior and

2 S CO7I(A) N Cl(A \ (SO,seg U 1—‘shock U Sl,seg))»
0 € CH)NC*(Q\ (Soseg UStseg)) NC3(R).

o If0, €[05,03), then ¢ has the configuration shown on Fig. 5.3 such

W UwW

that Danock 38 C? in its relative interior and

p € CT(A)NCH AN (Tshoek U S1seg))
p € CHNC*(Q\ ({0} U S156)) N C*(Q).

(i) Eq. (5.5) is strictly elliptic in Q\ Tsonic: |De| < c(|D¢|?, @) in Q\ Teonic-
(iii) 0 < Op.¢ < Ou,po 0N Dshock, where vy is the unit normal to Tspock
pointing to the interior of ).

(iv) The inequalities hold:

max{p1, p2} < ¢ < o in (2. (5.21)
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(v) The monotonicity properties hold:
D(po—¢)-es;, >0, D(po—)-eg, <0 in €, (5.22)

where eg, and eg, are the unit vectors along lines So and S1 pointing to
the positive &1 —direction, respectively.

The monotonicity properties in (5.22) imply that

D(p1 —¢)-e<0 in Q for all e € Cone(—es,,es, ), (5.23)

where Cone(—eg,,es,) = {—aes, +beg, : a,b > 0}. Notice that eg, and
eg, are not parallel if 6y, # 0. Then we have the following theorem:

Theorem 5.1 (Bae-Chen-Feldman [3]). Let v > 1 and ug > c¢o. For any
O € (0,02), there erists a global entropy solution ¢ of Problem 5.2 such that
the following regularity properties are satisfied for some « € (0,1):

(i) If by € (0,65,), the reflected shock Sp seg U shock U St seg 15 C*~smooth,
and (TS Cl’a(ﬁ) nece (ﬁ\ (F;onic U F2

sonic)) .

(ii) If 0 € [65,,09), the reflected shock Tgnock U S1 seg is C1* near O and

W YW

C*% away from O, and ¢ € CH*(Q)NC=(Q\ ({O}UT2 ).

sonic

Moreover, in both cases, @ is CY' across the sonic arcs, and Dgpock 5 C
in its relative interior. Furthermore, v is an admissible solution in the sense of
Definition 5.2, so ¢ satisfies the additional properties listed in Definition 5.2.

To achieve this, for any small § > 0, the required uniform estimates of
admissible solutions with wedge angles 6, € [0, 0 —§] are first obtained. Using
these estimates, the Leray-Schauder degree theory can be applied to obtain the
existence in the class of admissible solutions for each 6y, € [0,604 — §], starting
from the unique normal solution for 6, = 0. Since § > 0 is arbitrary, the
existence of a global entropy solution for any 6., € (0,63) can be established.
More details can be found in Bae-Chen-Feldman [3]; see also Chen-Feldman
[22] and related references cited therein.

Recently, we have also established the convexity of transonic shocks for the
Prandtl-Meyer reflection configurations.

Theorem 5.2 (Chen-Feldman-Xiang [25]). If a solution of the Prandtl-Meyer
problem is admissible in the sense of Definition 5.2, then its domain ) is con-
vex, and the shock curve I'gnock 1S a strictly convex graph. That is, I'spock 1S
uniformly convex on any closed subset of its relative interior. Moreover, for the
solution of Problem 5.2 extended to A by (5.20) (with the appropriate modifica-
tion for the subsonic/sonic case) with pseudo-potential p € CO1(A) satisfying
Definition 5.2(i)~(iv), the shock is strictly convez if and only if Definition 5.2(v)
holds.
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With the convexity of reflected-diffracted transonic shocks, the uniqueness
and stability of global regular shock reflection-diffraction configurations have
also been established in the class of admissible solutions; see Chen-Feldman-
Xiang [26] for the details.

The existence results in Bae-Chen-Feldman [3] indicate that the steady
weak supersonic/transonic shock solutions are the asymptotic limits of the
dynamic self-similar solutions, the Prandtl-Meyer reflection configurations, in
the sense of (5.16) in Problem 5.1 for all 6y, € (0,60%) and all v > 1.

On the other hand, it is shown in Elling [36] and Bae-Chen-Feldman [3]
that, for each v > 1, there is no self-similar strong Prandtl-Meyer reflection
configuration for the unsteady potential flow in the class of admissible solu-
tions. This means that the situation for the dynamic stability of the steady
oblique shocks of stronger strength is more sensitive.

6 Two-Dimensional Riemann Problem IV:
the von Neumann Problem for Shock
Reflection-Diffraction for the Euler
Equations for Potential Flow

In this section, we present some recent developments in the analysis of the
fourth Riemann problem, Riemann Problem IV — the von Neumann problem
for shock reflection-diffraction by wedges for the Euler equations for potential
flow in form (2.4)—(2.5), or (2.2) with (2.6)—(2.7).

6.1 2-D Riemann Problem IV: The von Neumann
Problem for Shock Reflection-Diffraction by Wedges

When a vertical planar shock perpendicular to the flow direction and separat-
ing two uniform states (0) and (1), with constant velocities ug = (0,0) and
u; = (u1,0),u1 > 0, and constant densities py < p1 (state (0) is ahead or to
the right of the shock, and state (1) is behind the shock), hits a symmetric
wedge W in (5.1) head-on at time ¢ = 0, a reflection-diffraction process takes
place when t > 0. Mathematically, the shock reflection-diffraction problem is
a 2-D lateral Riemann problem in domain R?\ W.

Problem 6.1 (Riemann Problem IV — the von Neumann Problem for Shock
Reflection-Diffraction by Wedges). Piecewise constant initial data, consisting
of state (0) on {x1 > 0} \ W and state (1) on {z1 < 0} connected by a shock
at 1 = 0, are prescribed att = 0. Seek a solution of Eq. (2.2) with (2.6)—(2.7)
for t > 0 subject to the initial data and the boundary condition Vx® - vy = 0
on OW.

Similarly to Definition 5.1, we can define the notion of weak solutions
of Problem 6.1, by noting that the boundary condition can be written as
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pVx® - vy, = 0 on OW, which is the spatial conormal condition for Eq. (2.2)
with (2.6)—(2.7).

The mathematical analysis of the shock reflection-diffraction by wedges
was first proposed by John von Neumann in [83-85]. The complexity of
reflection-diffraction configurations was first reported by Ernst Mach [68] in
1878, who observed two patterns of reflection-diffraction configurations: Reg-
ular reflection (two-shock configuration; see Figs. 6.1-6.2) and Mach reflection
(three-shock/one-vortex-sheet configuration). It has been found later that the
reflection-diffraction configurations can be much more complicated than what
Mach originally observed; see also [5, 22, 34, 44, 46, 81] and the references
cited therein.

6.2 Reformation of Riemann Problem IV

Problem 6.1 is invariant under self-similar scaling (2.15), so it also admits self-
similar solutions determined by Eq. (5.5)—(5.6), along with the appropriate
boundary conditions. By the symmetry of the problem with respect to the
&1—axis, we consider only the upper half-plane {{; > 0} and prescribe the
boundary condition: ¢,, = 0 on the symmetry line {£, = 0}. Then Problem
6.1 is reformulated as a boundary value problem in the unbounded domain

A=RI\{¢: |&] < &tanby, & > 0}

in the self-similar coordinates, where R% := R?N{& > 0}. The incident shock
in the &-coordinates is the half-line: Sy = {£ = €7} N A, where

2(ct — c3) p1UL
&= = , 6.1
L= PN G oD -2 ;- (6.1)

which is determined by the Rankine-Hugoniot conditions between states (0)
and (1) on Sp. Then Problem 6.1 for self-similar solutions becomes the bound-
ary value problem: Seek a solution ¢ of Eq. (5.5)—(5.6) in the self-similar
domain A with the slip boundary condition Dy - v|gy = 0 and the asymptotic
boundary condition at infinity:

0 when €] = oo,
1 Jor & <&, &2 >0,

,_ { po for &> €6 > & tanby,
Y= p=

where oo = —1[€|? and o1 = —1[€]? + w1 (& — &7).
Similarly, we can define the notion of weak solutions of the boundary value
problem by observing that the boundary condition can be written as pDy -
v|oa = 0, which is the spatial conormal condition for Eq. (5.5)—(5.6). A weak
solution is called an entropy solution if it satisfies the entropy condition: density
p increases in the pseudo-flow direction of Dy|y+ns across any discontinuity

curve (i.e., shock).
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Fig. 6.1 Supersonic regular shock Fig. 6.2 Subsonic regular shock
reflection-diffraction configuration reflection-diffraction configuration

If a solution has one of the regular shock reflection-diffraction configura-
tions as shown in Figs. 6.1-6.2 (¢f. [22]) and its pseudo-potential ¢ is smooth
in the subdomain €2 between the wedge and the reflected-diffracted shock, then
it should satisfy the slip boundary condition on the wedge and the Rankine-
Hugoniot conditions with state (1) across the flat shock S1 = {¢1 = @2}, which
passes through point Py where the incident shock meets the wedge boundary.
Define the uniform state (2) with pseudo-potential ¢5(&) such that

p2(Po) = ¢(Po), Do (Po) = PH}LIOITIPEQ Dy(P).

Then the constant density ps of state (2) is equal to p(|Dp|?, ¢)(Py) =
(D2 |2, 02)(Py) via (5.6). Tt follows that o satisfies the following three
conditions at FPy:

Doy v =0, @2 =01, p(|Dpal’,02)Dys-vs, =piDe1-vs,  (6.2)

_ D(p1—¢2)
for vs, = mz =51

State (2) can be either supersonic or subsonic at Py, which determines
the supersonic or subsonic type of the configurations. The regular reflection
solution in the supersonic domain is expected to consist of the constant states
separated by straight shocks (¢f. [77, Theorem 4.1]). Then, when state (2) is
supersonic at Py, it can be shown that the constant state (2), extended up to
arc Tsonic := P1 Py of the sonic circle of state (2), as shown in Fig. 6.1, satisfies
Eq. (5.5) in the domain, the Rankine-Hugoniot conditions (5.12)—(5.11) on
the straight shock PyP;, and the slip boundary condition: Dys - v, = 0 on
the wedge PyPy, and is expected to be a part of the configuration. Then the
supersonic regular shock reflection-diffraction configuration on Fig. 6.1 consists
of three uniform states (0), (1), (2), and a non-uniform state in domain Q =
Py P, P3Py, where Eq. (5.5) is elliptic. The elliptic domain {2 is separated from
the hyperbolic domain Py Py Py of state (2) by the sonic arc Tgonic, on which the
ellipticity in © degenerates. The subsonic regular shock reflection-diffraction
configuration as shown in Fig. 6.2 consists of two uniform states (0) and (1),

where vy, is the outward normal to the wedge boundary.
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Fig. 6.3 Normal reflection configuration (cf. [22])

and a non-uniform state in domain Q = Py P, P3, where Eq. (5.5) is elliptic,
and pjo(Fy) = ¢2(Fo) and D(pj0)(Fo) = D2 (F).

For the supersonic case in Fig. 6.1, we also use I'shock, I'wedge, and I'sym
for the curved part of Py P, the wedge boundary P;P,, and the symmetry line
segment P, Ps, respectively. For the subsonic case in Fig. 6.2, I'shock; I'wedges
and Iy, denote Py P, PyPs, and P, P3, respectively. We unify the notations
with the supersonic case by introducing points P; and Py for the subsonic case
as

P1 = Po, P4 = PQ, Fsonic = {Po} (63)

The corresponding solution for 6y, = 7 is called the normal reflection. In
this case, the incident shock normally reflects from the flat wall so that the
reflected shock is also a plane {¢; = &}, where &, < 0; see Fig. 6.3.

As indicated above, a necessary condition for the existence of a regular
reflection solution is the existence of the uniform state (2) with pseudo-
potential o determined by the system of algebraic equations (6.2) for
constants (ug, vz, p2) of state (2) across the flat shock S1 = {p1 = @2} sepa-
rating it from state (1) and satisfying the entropy conditions ps > p;. For any
fixed densities 0 < py < p; of states (0) and (1), it can be shown that there
exist a sonic angle %, and a detachment angle 6¢ satisfying

0<9§V<03V<g

such that the algebraic system (6.2) has two solutions for each 6y, € (%, 7T)

w9
which become equal when 6, = 6. Thus, for each 6,, € (6%, %), there exist
two states (2), weak versus strong, with densities p§e®< < p5"°"¢. The weak

state (2) is supersonic at the reflection point Py(6,,) for 6y, € (65, 5 ), sonic for
fy = 65, and subsonic for 6, € (63,63) for some 65 € (4,65 ]. The strong

state (2) is subsonic at Py(6y) for all 6y, € (63, 2).
To determine which of the two states (2) for 6,, € (0%, %), weak or strong, is

physical for the local theory, it was conjectured that the strong shock reflection-
diffraction configuration would be non-physical; indeed, it is shown in Chen-
Feldman [21, 22] that the weak shock reflection-diffraction configuration tends
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to the unique normal reflection in Fig. 6.3, but the strong one does not, when
0w — 5. The entropy condition and the definition of weak state (2) imply
that 0 < p; < py°®k. With the weak state (2), the following conjectures were

proposed (see von Neumann [83, 84)):

The Sonic Conjecture: There exists a supersonic reqular shock reflection-
diffraction configuration when 6y € (65,%) for 65, > 0%. That is, the
supersonicity of the weak state (2) implies the existence of a supersonic regular
reflection solution, as shown in Fig. 6.1.

The Detachment Conjecture: There ezists a regular shock reflection-
s

diffraction configuration for any wedge angle 0y € (9@,5). That s, the
existence of state (2) implies the existence of a regular reflection solution, as
shown in Figs. 6.1-6.2.

In other words, the von Neumann detachment conjecture above is that the
global regular shock reflection-diffraction configuration is possible whenever
the local regular reflection at the reflection point is possible.

From now on, for the given wedge angle 6, € (6, %), state (2) represents
the unique weak state (2) and s is its pseudo-potential. State (2) is obtained
from the algebraic conditions (6.2) which determines line S; and the sonic
arc I'sonic When state (2) is supersonic at Py, and the slope of T'yhock at Po
when state (2) is subsonic at Py. Thus, the unknowns are both domain
and pseudo-potential ¢ in 2, as shown in Figs. 6.1-6.2. Then, from (5.12)—
(5.11), in order to construct a solution of Problem 6.1 for the supersonic or
subsonic regular shock reflection-diffraction configuration, it suffices to solve

the following problem:

Problem 6.2 (Free Boundary Problem). For 6y, € (6%, %), find a free bound-
ary (curved reflected shock) Tsnock C AN{&1 < &1p, } and a function ¢ defined
in domain £ as shown in Figs. 6.1-6.2 such that

(i) Eq. (5.5) is satisfied in Q and is strictly elliptic for ¢ in Q\ Tsonic,

(ii) ¢ =1 and pDy - vy = p1Dyy - Vs on the free boundary Tshock,
(iii) ¢ = @9 and Dy = Dy on Py Py in the supersonic case as shown in Fig.

6.1 and at Py in the subsonic case as shown in Fig. 6.1,

(iv) Dy - vy =0 on Dyedge, and Dy - Vgypm = 0 on Ty,
where Vs, Vy, and Vsym are the interior unit normals to Q on Ushock, I'wedge;
and Dy, respectively.

The conditions in Problem 6.2(ii) are the Rankine-Hugoniot conditions
(5.12)~(5.11) on I'yhock between ¢|q and 1. Since T'ghock is a free boundary and
Eq. (5.5) is strictly elliptic for ¢ in 2\ Tsonic, then two conditions (the Dirichlet
and oblique derivative conditions) on I'yheck are consistent with one-phase free
boundary problems for nonlinear elliptic PDEs of second order.

A careful asymptotic analysis has been made for serval reflection-diffraction
configurations; see [44, 47-49, 72] and the references cited therein. Large or
small scale numerical simulations have also been performed; cf. [5, 44, 89] and
the references cited therein. However, most of the fundamental issues for the
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shock reflection-diffraction phenomena have not been understood, especially
the global structures and the transition between the different patterns of shock
reflection-diffraction configurations. This is partially because physical/numer-
ical experiments are hampered by many difficulties and have not yielded clear
transition criteria between the different patterns. In particular, some different
patterns occur when the wedge angles are only fractions of a degree apart, a
resolution even by sophisticated experiments and numerical simulations has
been unable to reach (cf. [5, 67]). Therefore, the necessary approach to under-
stand fully the shock reflection-diffraction phenomena, especially the transition
criteria, is via rigorous mathematical analysis.

6.3 Global Solutions of Riemann Problem IV:
Free Boundary Problem, Problem 6.2

If ¢ is a solution of Problem 6.2, define its extension from  to A by

%o for & > &) and & > &; tan by,
=19 1 for & < &9 and above curve Py Py Py, (6.4)
P2 in domain Py P, Py,

where we have used the notational convention (6.3) for the subsonic reflection
case, in which domain Py P; P, is one point and curve Py P, P, is Py P»; see Figs.
6.1-6.2. Also, the extension by (6.4) is well-defined because of the requirement
that Tshock € AN {& < &1p, } in Problem 6.2.

In the supersonic case, the conditions in Problem 6.2(iii) are the Rankine-
Hugoniot conditions on ['sonic between ¢|q and 2. Indeed, since state (2) is
sonic on Tyopic, it follows from (5.12)—(5.11) that no gradient jump occurs on
Tsonic. Then, if ¢ is a solution of Problem 6.2, its extension by (6.4) is a global
entropy solution in the self-similar coordinates.

Since [sonic is not a free boundary, it is not possible in general to prescribe
two conditions given in Problem 6.2(iii) on Isopic for a second-order elliptic
PDE. In the iteration problem, we prescribe the condition: ¢ = @5 on I'sonic,
and then prove that Dy = D¢y on ['sonie by exploiting the elliptic degeneracy
on I—‘sonic-

The key obstacle to establish the existence of regular shock reflection-
diffraction configurations as conjectured by von Neumann [83, 84] is an
additional possibility that, for some wedge angle 62 € (6%, %), shock PyPs
may attach to the wedge vertex P, as observed by experimental results (cf.
[81, Fig. 238]). To describe the conditions of such a possible attachment, we

note that
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Then it follows from the explicit expressions above that, for each pg, there
exists p¢ > po such that

up < e if p1 € (po, p°J; up > ¢ if p1 € (p°,00).

If uy < ¢, we can rule out the solution with a shock attached to the
wedge vertex. This is based on the fact that, if u; < c¢;, then the wedge
vertex P3 = (0,0) lies within the sonic circle B, (u;) of state (1), and I'shock
does not intersect B, (u;), as we show below. If u; > ¢;, there would be a
possibility that the reflected shock could be attached to the wedge vertex, as
the experiments show (e.g., [81, Fig. 238]).

To solve the free boundary problem (Problem 6.2) involving transonic
shocks for all the wedge angles 6,, € (6%, %), we define the following admissible
solutions.

Definition 6.1. Let 0y, € (0%,%). A function p € C*(A) is an admissible
solution of the reqular reflection problem if ¢ is a solution of Problem 6.2

extended to A by (6.4) and satisfies the following properties:
(i) The structure of solution:

e If|Dya(Py)| > ca, then v is of the supersonic regular shock reflection-
diffraction configuration as shown on Fig. 6.1 and satisfies the
conditions that the curved part of reflected-diffracted shock Tgnock 18
C? in its relative interior; curves Ishock, Isonic, Iwedge; and Dsyry do
not have common points except their endpoints; and

Y e Co’l(A) N Cl(A \ (SO U POP1P2)),
(RS Cl(ﬁ) N CS(Q\ (Fsonic U {P27 P3}))

e If IDp2(Py)| < ca, then ¢ is of the subsonic regular shock reflection-
diffraction configuration shown on Fig. 6.2 and satisfies the condi-
tions that the reflected-diffracted shock Tsnocke 35 C2 in its relative
interior; curves shock, 'wedge, 0nd Isymy do not have common points
except their endpoints; and

@ e COYA)NCHA N\ (So U Tahoek)),
p € CHONC*(Q\ (P, P3}).

Moreover, in both the supersonic and subsonic cases, the extended curve
et = Lonoek U{Po UL, o s C in its relative interior, where T
1s the reflection of Tspock with respect to the & —axis.

(i) Egq. (5.5) is strictly elliptic in Q\ Tsonic: |De| < c(|D¢|?, ¢) in Q\ Teonic.
(iil) Op.p1 > Ou.0 > 0 on Dgpock, where v is the normal to Tgpock pointing to
the interior of Q.
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(iv) Inequalities hold:

P2 <P <1 in . (6.5)

(v) The monontonicity properties hold:

652 (4101 _QO) S 07 D(‘)Ol _90) 'esl S 0 ZTL Q fO?” eS1 - |P31131‘ (6 6)

Notice that (6.6) implies that

D(p1 —p)-e<0 inQ for any e € Cone(e,, es,), (6.7)

where Cone(eg,,es,) = {aeg, +bes, : a,b> 0} with eg, = (0,1), and e,
and eg, are not parallel if 6y, # 7. Then we establish the following theorem:

Theorem 6.1 (Chen-Feldman [21, 22]). There are two cases:

(i)

If po and p1 are such that uq < c1, then the supersonic/subsonic regular
reflection solution exists for each wedge angle 0, € (6, 5). That is, for

each 0y € (03, T), there ewists a solution ¢ of Problem 6.2 such that

w2
%[

d(t, x)—tgo( )+ — T

for%eA,t>0

with ) )
plt.x) = () = (= )(@: + 5IVx2?) )

is a global weak solution of Problem 6.1 in the sense of Definition 5.1
satisfying the entropy condition; that is, ®(t,x) is an entropy solution.

If po and py are such that u; > cy, then there exists 02 € [0, Z) so that

wr 9
the regular reflection solution exists for each wedge angle 0y € (0%, 7%),

and the solution is of the self-similar structure described in (i) above.
Moreover, if 02 > 0% then, for the wedge angle 0, = 02, there exists an
attached solution, i.e., ¢ is a solution of Problem 6.2 with P, = Pj.

The type of regular shock reflection-diffraction configurations (supersonic as in

Fig.

(a)

(b)

6.1 or subsonic as in Fig. 6.2) is determined by the type of state (2) at Py:

For the supersonic and sonic reflection case, the reflected-diffracted shock
Py Py is C*%—smooth for some o € (0,1) and its curved part Py Py is C®
away from Py. Solution ¢ is in CH*(Q) N C>®(Q), and is C'! across the
sonic arc which is optimal; that is, ¢ is not C? across the sonic arc.

For the subsonic reflection case (Fig. 6.2), the reflected-diffracted shock
PoPy and solution ¢ in Q is in O near Py and P3 for some a € (0,1),
and C* away from {Py, P3}.

Moreover, the reqular reflection solution tends to the unique normal reflection

(as

in Fig. 6.3) when the wedge angle O, tends to T. In addition, for both

supersonic and subsonic reflection cases,

P2 < < @1 in Q. (6.8)
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Furthermore, ¢ is an admissible solution in the sense of Definition 6.1 below,
so that ¢ satisfies further properties listed in Definition 6.1.

Theorem 6.1 is proved by solving Problem 6.2. The first results on the
existence of global solutions of the free boundary problem (Problem 6.2) were
obtained for the wedge angles sufficiently close to 7 in Chen-Feldman [21].
Later, in Chen-Feldman [22], these results were extended up to the detachment
angle as stated in Theorem 6.1. For this extension, the techniques developed
in [21], notably the estimates near the sonic arc, were the starting point. More
details can be found in Chen-Feldman [22]; also see [21].

Furthermore, in Chen-Feldman-Xiang [25], we established the convexity of

transonic shocks for the regular shock reflection-diffraction configurations.

Theorem 6.2 (Chen-Feldman-Xiang [25]). If a solution of the von Neumann
problem for shock reflection-diffraction is admissible in the sense of Definition
6.1, then its domain ) is convex, and the shock curve Ughock 1S a strictly convex
graph. That is, Ushock 8 uniformly conver on any closed subset of its relative
interior. Moreover, for the solution of Problem 6.2 extended to A by (6.4),
with pseudo-potential p € C%1(A) satisfying Definition 6.1(i)—(iv), the shock
is strictly convex if and only if Definition 6.1(v) holds.

Furthermore, with the convexity of reflected-diffracted transonic shocks,
the uniqueness and stability of global regular shock reflection-diffraction con-
figurations have also been established in the class of admissible solutions; see
Chen-Feldman-Xiang [26] for details.

7 Concluding Remarks

In this paper, we have presented four different 2-D Riemann problems involv-
ing transonic shocks through several prototypes of hyperbolic systems of
conservation laws and have showed how these Riemann problems can be
formulated/solved as free boundary problems with transonic shocks as free
boundaries for the corresponding nonlinear conservation laws of mixed elliptic-
hyperbolic type and related nonlinear PDEs. In Li-Zheng [60, 61], another
2-D Riemann problem including the classical problem of the expansion of a
wedge of gas into a vacuum for the isentropic Euler equations has also been
solved; also see the recent work by Lai-Sheng [53] and the references cited
therein on further related Riemann problems. The other types of 2-D Riemann
problems are still wide open, even for the prototypes of hyperbolic systems of
conservation laws as discussed in this paper.

For the full Euler equations (2.1) with (2.3), the 2-D Riemann problems
involve vortex sheets and entropy waves, in addition to shocks and rarefaction
waves; see [8-11, 22, 43, 52, 56, 58, 76, 97] and the references cited therein.
Almost all of these Riemann problems for the full Euler equations (2.1) with
(2.3) are still unsolved. In addition, all the 3-D or higher-D Riemann problems,
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including M-D wedge problems or M-D conic body problems, are still open; see
[15, 18, 19, 28] and the references cited therein for some recent developments
for M-D steady problems. The nonlinear methods and related techniques/ap-
proaches originally developed in [20-22] as presented above for solving 2-D
Riemann problems involving 2-D transonic shocks should be useful in the anal-
ysis of these longstanding Riemann problems and newly emerging problems
for nonlinear PDEs; also see [14, 22, 23] and the references cited therein. Cer-
tainly, further new ideas, techniques, and methods still need to be developed in
order to solve these mathematically challenging and fundamentally important
problems.
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