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Abstract
Background: In an external validation study, model recalibration is suggested once 
there is evidence of poor model calibration but with acceptable discriminatory abili-
ties. We identified four models, namely RISC- Malawi (Respiratory Index of Severity 
in Children) developed in Malawi, and three other predictive models developed in 
Uganda by Lowlaavar et al. (2016). These prognostic models exhibited poor calibration 
performance in the recent external validation study, hence the need for recalibration.
Objective: In this study, we aim to recalibrate these models using regression coeffi-
cients updating strategy and determine how much their performances improve.
Methods: We used data collected by the Clinical Information Network from paediat-
ric wards of 20 public county referral hospitals. Missing data were multiply imputed 
using chained equations. Model updating entailed adjustment of the model's calibra-
tion performance while the discriminatory ability remained unaltered. We used two 
strategies to adjust the model: intercept- only and the logistic recalibration method.
Results: Eligibility criteria for the RISC- Malawi model were met in 50,669 patients, 
split into two sets: a model- recalibrating set (n = 30,343) and a test set (n = 20,326). 
For the Lowlaavar models, 10,782 patients met the eligibility criteria, of whom 6175 
were used to recalibrate the models and 4607 were used to test the performance of 
the adjusted model. The intercept of the recalibrated RISC- Malawi model was 0.12 
(95% CI 0.07, 0.17), while the slope of the same model was 1.08 (95% CI 1.03, 1.13). 
The performance of the recalibrated models on the test set suggested that no model 
met the threshold of a perfectly calibrated model, which includes a calibration slope 
of 1 and a calibration- in- the- large/intercept of 0.
Conclusions: Even after model adjustment, the calibration performances of the 4 
models did not meet the recommended threshold for perfect calibration. This finding 
is suggestive of models over/underestimating the predicted risk of in- hospital mortal-
ity, potentially harmful clinically. Therefore, researchers may consider other alterna-
tives, such as ensemble techniques to combine these models into a meta- model to 
improve out- of- sample predictive performance.
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1  |  BACKGROUND

Prognostic models predict patients' risk of deterioration or poor out-
comes and good models can inform clinical treatment or follow- up 
plans.1 Developing new models without investigating the perfor-
mance of existing models wastes potentially important historical 
data and research efforts.2 External validation of published prog-
nostic models in populations/settings comparable to the model's 
derivation is recommended for establishing model transportability 
and generalisability.3- 5

Most clinical prediction models may not perform well in exter-
nal validation and end up being rejected because of poor predictive 
performance. This is partly because clinical environments continu-
ously evolve in various ways, including shifts in clinical practice, even 
though clinical practice guidelines tend to standardise this.6 Other 
reasons include a change in patient management such as the use of 
aggressive treatment therapies, e.g., use of higher molecules of an-
tibiotics as opposed to the first- line, and the introduction of new 
vaccines, e.g., RTS,S/AS01 which is a world's first malaria vaccine.7 
Such interventions may change the prevalence and clinical presen-
tations of common childhood illnesses, and thus, a clinical prediction 
model developed before these interventions would perform poorly 
when validated in such settings. Variation in case- mix, different time 
points of model development and validation, and dataset drift also 
contribute towards the deterioration of the model performance 
when applied in new samples hence a need for model recalibration 
to contextualise to the local settings.8

Model updating is suggested once there is evidence of poor 
model calibration but acceptable discriminatory abilities in an ex-
ternal validation study.9,10 In the recent external validation study, we 
identified four prognostic models whose calibration estimates sug-
gested an underestimation of in- hospital paediatric mortality risk. 
These models included the Respiratory Index of Severity in Children 
(RISC- Malawi) by Hooli et al. (2016)11 and three other models devel-
oped by Lowlaavar et al. (2016).12

In this study, we aim to recalibrate these models using regression 
coefficients updating strategy and determine how much their per-
formances improve.

2  |  METHODS

2.1  |  Models' calibration metrics

The threshold for a perfectly calibrated score is a model with a cali-
bration slope of 1 and calibration intercept (calibration- in- the large) 

of 0 or an identity line of 45° in the calibration plot indicating lim-
ited chances of over/underestimating the risk of bad outcomes when 
used in clinical practice. Although it is not clear how close these met-
rics should be to the set thresholds for the model to be acceptable, 
there is consensus from the literature that a model has good calibra-
tion if the intercept is close to 0 and the slope is close to 1.13 For 
instance, a model slope of 0.95 was termed “good calibration” by 
Philips et al.,14 and Nakhjavan et al.15 termed a model with a slope of 
0.97 and an intercept of 0.006 “proper calibration”.

2.2  |  Details of the models to be recalibrated

The RISC- Malawi11 model and 3 models by Lowlaavar et al. (2016)12 
were identified in an earlier review3,4 highlighting models predict-
ing in- hospital paediatric mortality. RISC- Malawi is a Respiratory 
Index of Severity in Children (RISC) developed using prospectively 
collected clinical data from a cohort of 14,665 hospitalised children 
aged 2– 59 months with pneumonia in Malawi between 2011 and 
2014. The three models by Lowlaavar et al. (2016)12 utilised a two- 
site prospective observational study in Uganda that enrolled 1307 
children between 6 months and 5 years admitted with a proven or 
suspected infection. A recent external validation study of these 
models suggested that while they had fair discriminatory ability (c- 
statistics ranging from 0.70 to 0.79),16- 18 they were poorly calibrated 
as judged from their calibration slopes and intercepts as shown in 
Figure S1.

The Kenya Medical Research Institute's Scientific and Ethical 
Review Committee approved the Clinical Information Network (CIN) 
project (#3459), whose data are used in the current study of recali-
brating models.

2.3  |  Sources of data

To recalibrate the identified models, we used data collected by 
CIN, which comprises 20 public county referral hospitals in Kenya, 
and had 212,654 patients admitted between January 2014 and 
December 2021. In this network, patient details are systemati-
cally documented by duty clinicians and nurses who provide care 
in the hospitals using a standardised medical record known as the 
Paediatric Admission Record (PAR),19 that has been adopted for use 
by hospitals participating in CIN. Upon discharge or the death of a 
patient, a trained clerk abstracts data from the PAR and other medi-
cal notes into a customised data capture tool designed using a non- 
proprietary Research Electronic Data Capture (REDCap) platform.20

K E Y W O R D S
model recalibration, paediatric mortality, prediction
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    |  315OGERO et al.

2.4  |  Availability of model predictors in the 
recalibration cohort

For the RISC- Malawi model, all predictors were available across all 
20 hospitals contributing to the model's updating dataset except 
for the predictor called unconsciousness. We recoded this predictor 
based on the disability scale of AVPU (Alert, Verbal response, re-
sponse to Pain, Unresponsive) such that a patient was assumed to be 
unconscious if the clinician- rated them as either “P” (only responding 
to pain) or “U” (unresponsive). AVPU is known for the assessment of 
the patient's brain function and is therefore used for the determi-
nation of the level of consciousness.21 For the Lowlaavar models, 
all predictors were available in all hospitals except for the Blantyre 
Coma Score, which was available in only six hospitals for patients ad-
mitted as from September 2019.

The outcome to be predicted by the models was all- 
cause in- hospital paediatric mortality and was documented in each 
patient.

2.5  |  Eligibility criteria for model 
recalibration cohort

To determine appropriate patients to be included in the cohort of 
model recalibration, we applied the same eligibility criteria as were 
used in the original model derivation studies.11,12 In summary, for 
the RISC- Malawi model, we included children aged 2– 59 months 

with an admission diagnosis of pneumonia defined as either cough 
or difficult breathing and any of the danger signs, namely central 
cyanosis, grunting, chest wall indrawing, stridor, inability to drink 
or breastfeed, convulsing, or not being alert based on the disability 
scale of the AVPU scale. For the Lowlaavar models, we included chil-
dren aged 6– 60 months admitted with any confirmed or suspected 
infectious diseases. To achieve these eligibility criteria, we filtered 
out all patients with non- communicable diseases. In each of the two 
model recalibration cohorts, we excluded children admitted for sur-
gery or with burns, trauma, road traffic accidents, poisoning such as 
organophosphate ingestion, and those patients admitted during the 
healthcare workers' strike.

To estimate models' temporal transportability after recalibra-
tion, we split the data meeting the eligibility criteria into a model 
updating set (for recalibrating the model) and test set (for assess-
ing model performance after updating) based on the time of patient 
admission.22 For the RISC- Malawi model, 50,669 patients met the 
eligibility criteria; the updating set included 30,343 patients admit-
ted across all 20 hospitals from January 2014 through December 
2018, while its test dataset included 20,326 patients admitted in 
the same hospitals from January 2019 through December 2021. For 
Lowlaavar models, there were 10,782 patients meeting eligibility cri-
teria. In all, 6175 of these patients admitted from September 2019 
through December 2020 were used to update the models, while 
those admitted to the same hospitals from January 2021 through 
December 2021 (n = 4607) were included in the test set as shown 
in Figure 1.

F I G U R E  1  Populations used to update and test RISC- Malawi model and 3 models by Lowlaavar et al 2016.
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2.6  |  Sample size for model recalibration

Following approaches described by Riley et al.23,24 taking into ac-
count the c- statistics of the original models, the number of pa-
rameters in the original model, and the prevalence of the outcome 
(in- hospital mortality) in the derivation cohort, we computed the 
sample sizes required to recalibrate each of the four models as-
suming an acceptable difference of 0.05 between the apparent and 
adjusted R- squared of the original model. Minimum sample sizes re-
quired for each of the 4 models are provided in the Table S1. For ex-
ample, while sample size calculation approaches required a minimum 
sample size of 1619 for the RISC- Malawi model, our model updat-
ing and test datasets exceeded this. In addition, with mortalities of 
>1000 in RISC- Malawi model datasets and >200 in Lowlaavar model 
datasets, the events- per- variable ratio exceeded the recommended 
ratio of 20.23,25

2.7  |  Assessment of missing data in the model 
recalibration cohort

In model recalibration computations, all prognostic factors are ex-
pected to have data for each patient in a cohort, otherwise records 
with incomplete data are deleted from the analysis resulting in “com-
plete case analysis”, which could lead to a loss of statistical power 
and potentially yield biased estimates.26 Missing data assessment 
suggested that 68.3% and 5.2% of the patients' records for updat-
ing the RISC- Malawi and Lowlaavar models, respectively, risked 
being dropped from the analysis because of the incomplete data in 
the required variables. Refer the Table S2. Owing to the substan-
tial amount of missing data, we undertook multiple imputation by 
chained equations to address the challenge under the assumption of 
data missing at random, where data values are imputed using a set 
of univariate conditional imputation models27 and generate multiple 
“complete” datasets with different plausible values of the missing 
values. As recommended, we included all variables of interest from 
two models in the imputation model and selected other auxiliary 
variables in the database to preserve the relationship among vari-
ables,28,29 giving a total of 53 variables in the imputation model. In 
the model, we specified different imputation options conditional on 
the variable type; for instance, ordered logistic regression option 
was applicable to ordinal categorical variables, the multinomial lo-
gistic regression for nominal multi- level was applicable to categorical 
variables with more than 2 levels, and the binary logistic regression 
for dichotomous categorical variables. Based on the principle that 
the number of imputations must at least be equal to the proportion 
of incomplete data,28 we generated 70 multiply imputed datasets 
since 68% the records were incomplete. Graphical comparisons of 
the kernel density plots of the imputed versus observed values sug-
gested plausible imputed values since the distributions of the val-
ues from the two datasets (imputed and original) appeared identical 
(Figure S2). Model recalibration strategy was then applied to each of 
the 70 imputed datasets and estimates pooled using Rubin's rules.30

2.8  |  Model recalibration strategy

Strategies for model recalibration include adding new predictors or 
updating the model's slope and intercept.10 Since the former strat-
egy is akin to developing a new model which would require another 
external validation, we used the coefficient/intercept updating 
strategy to recalibrate the identified clinical prediction models to 
the local context. The original logistic regression model to be up-
dated follows a standard format as shown in Equation 1 whereby 
the α denotes the model intercept and �1 to �p denotes the vector of 
model coefficients (also called slope) for each prognostic factorX1 to 
Xp (also called covariate).

The right- hand side of the Equation 1 constitutes the linear predictor 
(LPoriginal) of the original model which is a weighted sum of the prog-
nostic factorX1 to Xpin the model, weights being �1 to �p which are 
the regression coefficients. This computation is done for each pa-
tient meeting the eligibility criteria of the two models (RISC- Malawi 
and Lowlaavar) in the updating dataset. The resultant linear predictor 
is used by the recalibration strategies to adjust the model accord-
ingly.10,31 In this work, we explored two strategies namely, updating 
only model intercept (recalibration- in- the- large), and updating of both 
the model intercept and slope (logistic calibration) as described below.

2.8.1  |  Updating model intercept only

This method adjusts only the intercept of the original model such 
that the new intercept is equivalent to the average of the predicted 
in- hospital probabilities in the updated dataset.9 This was achieved 
by fitting a univariable logistic regression model with an outcome 
of in- hospital mortality, and the linear predictor was treated as an 
offset, thereby fixing the constant coefficient of the covariate at 
unity for each observation in the updating dataset. From this model, 
we obtained an intercept that was added to the linear predictor of 
the original model as a correction factor, but the regression coef-
ficients (�1 to �p) of the original model remain unchanged as shown 
in Equation 2.

2.8.2  |  Logistic calibration

This method updated both the model intercept and model slope si-
multaneously for each of the models we were updating. We fit a uni-
variable logistic regression to each of the updating datasets, whereby 
in- hospital mortality was treated as a dependent variable and the 
linear predictor as a covariate. The model yielded two correction 

(1)

log

[

Pr(hospital mortality)

1 − Pr(hospital mortality)

]

= � + �1X1 + �2X2 + ⋯ + �pXp

(2)

log

[

Pr(hospital mortality)

1 − Pr(hospital mortality)

]

=
(

� + �correction factor
)

+ �1X1 + �2X2 + ⋯ + �pXp
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    |  317OGERO et al.

factors that were used to adjust proportionally the original models' 
slope and intercept as shown in Equation 3.31 The advantage of the 
logistic calibration strategy is that the model intercept and slope of 
the original model are adjusted simultaneously, as opposed to the 
calibration- in- the- large strategy, whose usefulness is only limited to 
updating the intercept of the original model based on the observed 
frequency of the outcome.

2.9  |  Assessing performance of the recalibrated 
prognostic models in the test dataset

For each model, we separately applied the two recalibration strat-
egies (intercept only and logistic calibration) as described above. 
Using the recalibrated model in the model- specific test dataset, we 
computed a linear predictor for each patient, which in turn was used 
to compute the patient's predicted risk of mortality via a logistic 
function. Model performance was determined using two metrics, 
namely discriminatory ability, and model calibration. Discriminatory 
ability was determined using the c- statistic (value 0– 1, discriminative 
if >0.7)32,33 while the calibration was measured using the calibration 
slope that summarises agreement between predicted and observed 
risks where values equal to 1 are indicative of accurate predic-
tions while those <1 and >1 suggestive of extreme and moderate 
risk predictions, respectively. Calibration intercept which indicates 
the extent that predictions are systematically too low or too high, 
with predicted risks being under- estimated if >0 or over- estimated 
if <0.34

We also used decision curve analysis to perform a head- to- head 
model comparison. To do this, we applied the eligibility criteria of 
the RISC- Malawi and Lowlaavar models to the CIN population to 
find a common cohort for model comparison. The utility of decision 
curve analytics is to evaluate the clinical impact of implementing 
models in practice.35,36 A model is of clinical utility if the net benefit 
of a model is greater than the scenario of “Treat all” (prioritise all 
patients) and “Treat none” (no patient is prioritised regardless of the 
risk of deterioration).

3  |  RESULTS

3.1  |  Patients' characteristics

The distribution of patient characteristics in the recalibrating and 
test datasets for RISC- Malawi model was similar, although the test 
set had slightly higher mortality 1948 (9.6%) than the updating data-
set 2458 (8.1%). This finding was not unexpected because in the 
cohort for model testing, cases of severe hypoxemia were 24%, 
which was almost twice that of model updating (13.4%), as shown in 
Table 1. However, we noted that cases of severe hypoxemia in the 
RISC- Malawi original study were 12.7% which was comparable with 
that of the model updating dataset. For the Lowlaavar models, there 
were 10,782 patients meeting the eligibility criteria in 6 out of the 20 
hospitals, with an overall in- hospital mortality rate of 5.3%. A sub- 
analysis to understand the distribution of mortality in the cohort 
revealed that mortality was higher (19.4%) among patients classified 
to have abnormal Blantyre Coma Score. In general, no appreciable 
differences were noted in the distributions of model predictors be-
tween updating and test datasets as shown in Table 2.

(3)

log

[

Pr(hospital mortality)

1 − Pr(hospital mortality)

]

=
(

�correction factor
)

+
(

LPoriginal × �correction factor

)

Updating dataset 
(n = 30,343)

Test dataset 
(n = 20,326)

All patients 
(N = 50,669)

Mortality 2458 (8.1%) 1948 (9.6%) 4406 (8.7%)

Child- sex (Female) 13,380 (44.1%) 8804 (43.3%) 22,184 (43.8%)

Age in months Median 
(Min, Max)

13.0 (2.00, 59.0) 13.0 (2.00, 59.0) 13.0 (2.00, 59.0)

Moderate hypoxemiaa 1971 (6.5%) 1904 (9.4%) 3875 (7.6%)

Severe hypoxemiab 4071 (13.4%) 4878 (24.0%) 8949 (17.7%)

Moderately malnourishedc 5245 (17.3%) 3454 (17.0%) 8699 (17.2%)

Severely malnourishedd 1882 (6.2%) 1160 (5.7%) 3042 (6.0%)

Wheezing 3837 (12.6%) 2829 (13.9%) 6666 (13.2%)

Unconsciouse 1774 (5.8%) 1447 (7.1%) 3221 (6.4%)

aDefined as oxygen saturation 90%– 92%.
bDefined as oxygen saturation < 90%.
cDefined as Mid- Upper Arm Circumference (MUAC) of between 11.5 and 13.5 cm.
dDefined as MUAC <11.5 cm.
eDefined as either painful responsive or unresponsive in the disability scale of AVPU (Alert, Verbal, 
Painful responsive, unresponsive).

TA B L E  1  Distribution of clinical 
characteristics of the cohort used to 
recalibrate and test RISC- Malawi model
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318  |    OGERO et al.

3.2  |  Predictive performance of the 
recalibrated models

The RISC- Malawi model slope before recalibration was 1.04 (95% 
CI 1.00, 1.06) indicating regression coefficients were small (close 
to zero) and thus underestimating in- hospital mortality predictions 
in the new patients. On the other hand, the calibration intercept 
was 0.81 (95% CI 0.77, 0.84), indicating that the predicted proba-
bilities are systematically too low. The results of the intercept- only 
method improved model intercept but suggested that recalibra-
tion of the slope was warranted, as provided in Supplementary 
File S1.

From the logistic calibration model of the RISC- Malawi model, 
we obtained correction factors that were used in model adjust-
ment. The adjusted model showed an improvement in the model 
intercept of 0.04 (95% CI −0.003, 0.07) compared with the origi-
nal. However, upon assessing the same model in a test dataset, the 
model intercept deteriorated slightly to 0.13 (95% CI: 0.08– 0.17), 
and the model slope also dropped to 1.08 (95% CI 1.03, 1.13) as 

shown in Figure 2. Compared with the derivation cohort, the dis-
criminative ability of the RISC- Malawi was not any different in the 
updating dataset with a c- statistic of 0.78 (95% CI 0.78, 0.79) but 
was lower in the test set with a c- statistic of 0.75 (95% CI 0.74, 
0.76) as shown in Figure 3.

Calibration of the Lowlaavar models also suggested an improve-
ment in the model intercept and slope (Figure 2). In general, all mod-
els exhibited improvements in calibration performance statistics 
relative to estimates before recalibration. However, none met the 
threshold of a perfectly calibrated model as judged by the slope and 
intercept estimates in the test dataset.

Decision curve analysis was performed using 1120 patients 
who met the eligibility of all models. As shown in Figure 4, the 
curves diverge at the threshold probability of about 9% from the 
scenario of treating all patients. The analysis also shows that the 
RISC- Malawi model's net benefit was slightly greater than all other 
models and the scenarios of “Treat All” as well as the scenario of 
“Treat None” for the predicted probability thresholds between 
20% and 40%.

TA B L E  2  Demographic and clinical characteristics of the cohort used to recalibrate and test Lowlaavar model

Updating (N = 6175) Test (N = 4607) All patients (N = 10,782)

Mortality 327 (5.3%) 243 (5.3%) 570 (5.3%)

Child- sex (Female) 2627 (42.5%) 1881 (40.8%) 4508 (41.8%)

Age in months Median (Min, Max) 24.0 (6.00, 60.0) 24.0 (6.00, 60.0) 24.0 (6.00, 60.0)

HIV diagnosis 52 (0.8%) 23 (0.5%) 75 (0.7%)

Abnormal Blantyre Coma Score 696 (11.3%) 400 (8.7%) 1096 (10.2%)

Weight for Age Z- score Mean (SD) −0.58(1.3) −0.61(1.3) −0.59 (1.33)

Mid- upper Arm Circumference in centimetre (Min, Max) 14.2 (7.0, 21.0) 14.3 (8.6, 21.7) 14.3 (7.00, 21.7)

F I G U R E  2  Calibration performance of the models in various datasets. The left panel shows calibration intercept while that on the right 
shows model slope. The coloured points and the 95% confidence intervals (shown as errors bars) shows the model calibration performances 
in the external validation, updating dataset (for model recalibration), and in the test dataset. The dotted line denotes the references of the 
model intercept (α = 0) and slope(β = 1) for a perfect calibrated model.
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4  |  COMMENT

4.1  |  Principal findings

While the calibration of the models may have improved after recali-
brating, they may not be clinically meaningful in practice as they are 
yet to meet the expected thresholds of a perfectly calibrated model 
(model intercept of 0, and a model slope of 1).

4.2  |  Strengths of the study

We explored avenues for improving the performance of the existing 
prognostic models based on the methodological strategies applied to 
large sample sizes powered enough to recalibrate and test models. In 
addition, the CIN data had both temporal and spatial richness with 
data collected from 20 county referral hospitals from 2014 to 2021.

4.3  |  Limitation of the data

The CIN datasets used to recalibrate and test the RISC- Malawi 
model lacked the “unconsciousness” predictor requiring an auxiliary 
variable AVPU to gauge consciousness levels since it is used to as-
sess patients' brain function.21 We therefore believe that our con-
clusions are still valid even though we used this proxy variable.

4.4  |  Interpretation

Since the objective of this work was not to refit models, the recali-
bration strategies employed here do not change the ranking of the 
patient's predicted risk of in- hospital mortality, and as a result, do 
not affect the models' discriminatory ability. It is possible that a drop 
in AUC in the test dataset could be due to chance. Based on this un-
derstanding, Lowlaavar model 3's low AUC in the test dataset when 

F I G U R E  3  Discriminatory ability of the four models (RISC- Malawi, and the 3 models by Lowlaavar et al) in various datasets. The coloured 
points and the 95% confidence intervals (shown as errors bars) shows the c- statistics of the in the derivation dataset, external validation, 
updating (for model recalibration), and in the test dataset. The dotted line denotes a fair discriminatory ability of the model (c- statistics of ≥0.7)

F I G U R E  4  Decision curve analysis 
for the patients meeting the eligibility 
of all models. The “Treat All” line chart 
assumes all patients are at an increased 
risk of deterioration hence all should be 
prioritised for treatment, whereas the 
“Treat None” line chart assumes that no 
one is at the risk of deterioration hence 
none to be prioritised for treatment. 
The four coloured line charts show the 
net benefit of using models to identify 
patients at risk of deterioration.

 13653016, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ppe.12948 by T

est, W
iley O

nline L
ibrary on [22/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



320  |    OGERO et al.

compared with the derivation set underscores the need to validate 
published prognostic models across plausibly similar contexts to as-
certain if the discriminatory ability is consistent in multiple valida-
tion datasets.

A miscalibrated prognostic model has been termed “clinically 
harmful” because it reduces the net benefit of its applicability in 
identifying risky patients for treatment.37 Therefore we conducted 
decision curve analytics, which suggested that no model yielded a 
substantial net benefit across the threshold probabilities suggestive 
of underestimating the mortality risk.

Suboptimal calibration performances of the updated models can 
be explained by predictor- outcome associations having substantially 
different populations in derivation, updating, and the test dataset.10 
For instance, when compared with the pneumonia case- fatality 
in the derivation dataset of 3.2%, the dataset used to update and 
test the RISC- Malawi model had a higher pneumonia case- fatality 
of 8.1% and 9.6%, respectively, as shown in Figure 1. On the other 
hand, mortality in the dataset used to recalibrate and test Lowlaavar 
models was not any different from the derivation cohort.

While it is more common for researchers to develop new 
prognostic models and sometimes even without regard to meth-
odological rigour,3,4 there is growing interest among researchers 
to recalibrate existing models to align with local context and be 
applied in clinical practice if found to be suitable. However, in the 
literature of prognostic research, what constitutes acceptable dif-
ferences between the expected calibration thresholds and the ob-
served model calibration performances has not been established. 
Further, the number of external validations a prognostic model is 
expected to have been subjected to before model updating is jus-
tified is unknown. In addition, even if a predictive model would be 
subjected to repeated model recalibrations, it is likely that predic-
tion performance will plateau where no further meaningful gain 
will be realised.38 Therefore, researchers might consider ensemble 
machine learning techniques such as stacking of point estimate or 
posterior predictive probabilities to combine the predictive abil-
ities of various competing models to yield a meta- model whose 
predictive performance would certainly be relatively better than 
that of a single model.39

5  |  CONCLUSIONS

Due to sampling variations, any model can perform slightly differ-
ently when applied to new patient samples. It is commonplace for 
researchers to develop new models, but this practise wastes infor-
mation gleaned from previous prognostic modelling efforts and can 
lead to overfitting models lacking generalisability. We demonstrated 
that prognostic models can be updated using simple recalibration 
strategies and observed an improvement despite not meeting the 
expected calibration thresholds. This calls for a computational 
method to combine these models into one meta- model to improve 
out- of- sample predictive performance.
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