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Abstract—Both scalp and intracranial electroencephalograms
(EEGs) are of great importance for diagnosing brain disorders.
However, the scalp EEG (sEEG) is attenuated by the skull and
contaminated with artifacts. At the same time, intracranial EEG
(iEEG) is almost free of artifacts and can capture all brain
activities without any attenuation due to being close to the brain
sources. In this study, the aim is to enhance the performance of
sEEG by mapping the sEEG to the iEEG. To do so, we here
develop a deep neural network using a generative adversarial
network to estimate the sEEG from the iEEG. The proposed
method is applied to sEEG and iEEG recorded simultaneously
from epileptics to detect interictal epileptiform discharges (IEDs).
The proposed method detects IEDs with 76% accuracy outper-
forming the state-of-the-art methods. Furthermore, it is at least
twelve times less complex than the compared methods.

Index Terms—Generative adversarial network, IED detection,
interictal epileptiform discharges, epilepsy mapping scalp to
intracranial EEG.

I. INTRODUCTION

The electroencephalogram (EEG) is a recording modality
that captures the brain electric activity. It can be recorded
from the scalp, cerebral cortex, or deeper brain [1]. The scalp
EEG (sEEG) is non-invasive and easy to record; however, it is
contaminated with noise and unable to capture weak activities
of deep brain sources. On the other hand, the intracranial
EEG (iEEG) channels, inserted through foramen ovale (FO)
holes, hence called FO electrodes, record the brain activities
clearly with a small amount of artifact. However, the problem
with iEEG recordings is that they are recorded using invasive
techniques, which involve hazards for the patients. Therefore,
we aim to recover the iEEG details from the concurrent sEEG
by mapping the sEEG to the iEEG using developing a deep
network based on generative adversarial networks (GANs).

GANs comprise a generator network and a discriminator
network [2]. The generator network generates data from a
latent space or the observed data sample. The discriminator
network discriminates the real data from the generated data.
They have been extensively used for mapping speech-to-image
[3], speech-to-speech [4], and particularly image-to-image [5].
In the EEG signal processing area, GANs are mostly used for
data augmentation [6]–[8] as the collection of a large amount
of EEG data is not only time-consuming but also costly. In [8],

the authors developed a GAN for generating augmented spike
and non-spike EEG signals, then employed a deep network to
classify spikes and non-spikes. Recently, a GAN architecture
was proposed to synthesize the visual stimulus shown during
EEG recording from EEG signals [9]. Unlike previous studies,
we aim to design a GAN to map the scalp to intracranial EEG.
Hence, it is referred to as EEG-to-EEG translation.

We aim to apply our model to the concurrent sEEG and
iEEG signals recorded from patients suffering from epilepsy.
The signals include interictal epileptiform discharges (IEDs),
transient activities occurring between two seizure onsets [10].
In terms of morphology, IEDs appear in spikes, poly spikes,
or sharp waves, followed by slow waves [11]. The IEDs are
generated using deep sources in the brain. Therefore, iEEG
recordings are mainly used to capture the IED signature.
On the other hand, the sEEG fails in capturing most IED
signatures because of being far away from IED sources and
attenuated by the skull. Only 9% [12] to 22% [13] of IEDs
were observed in sEEG recordings in previous studies in
which the sEEG and the iEEG were recorded and analyzed
simultaneously. This means that a large proportion of IEDs
are invisible over the scalp.

In most studies, IEDs are detected either from sEEG [14]
or iEEG [15]. Studies employing their methods to detect
IEDs from only sEEG recordings are limited to detecting only
scalp-visible IEDs. To overcome this limitation, our research
group developed methods to detect both scalp-visible and
scalp-invisible IEDs from the sEEG [16]–[20]. These studies
employed concurrent sEEG and iEEG recordings. The iEEG
was used as the ground truth to annotate IEDs, then the IEDs
were detected from the sEEG.

We have already mapped the time-frequency features of
sEEG to those of iEEG using the developed tensor factoriza-
tion technique [20]. We also developed two methods based on
autoencoder (AE) for mapping sEEG to iEEG [21]. Here, we
aim to develop a deep learning method using a GAN structure
to map sEEG to iEEG.

II. EEG-TO-EEG TRANSLATION

Let X ∈ R64×12 and Y ∈ R64×12 be respectively the sEEG
and iEEG, where 64 and 12 are respectively the number of
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Fig. 1. The generator network architecture.

time samples and channels. The aim is to design a learning
system and apply sEEG X to generate an estimation of iEEG
Ỹ. The network is designed based on GAN.

A. Objective

A GAN consists of a generator network G and a discrimi-
nator network D. The generator G is fed with the sEEG X to
generate an estimation of iEEG, Ỹ = G(X). The discriminator
D takes either the concatenation of the sEEG and the iEEG
Y (referred to as real) or the concatenation of the sEEG and
the estimated iEEG (referred to as fake) as input and predicts
a binary class of real or fake. An adversarial loss is employed
to train the generator and discriminator. Like most studies
[5], [22] including the original GAN [2], the binary cross
entropy is used in a min-max game approach according to
the following loss function:

G
min

D
max LGAN (G,D) =E(X,Y)[log(D(X,Y))]+

EX[log(1−D(X,G(X)))],
(1)

where G minimizes the objective loss function against an
adversarial D maximizing it.

To have a more accurate estimation, we regularize the
GAN objective function with L2 distance (norm), estimated
as follows:

L2 = E(X,Y)[∥Y − G(X)∥2]. (2)

The discriminator network remains unchanged, but the gener-
ator loss is coupled with L2 distance and applied to train the
generator:

LG =
G

min
D

max LGAN (G,D) + λL2 (3)

where λ is the coefficient of L2 loss function.

Fig. 2. The discriminator network architecture.

B. Generator

Our generator network is designed based on a U network
(U-net). The architecture of the generator is shown in Fig. 1. It
is made up of a contracting path (left side) and an expansive
path (right side). The contracting path consists of repeated
convolutional layers with the filter size of 5×1, each followed
by a normalization layer operation across time domain and an
average pooling operation with stride 2×1 for downsampling.
At each downsampling step we double the number of feature
channels.

Every step in the expansive path consists of an upsampling
of the feature map with the size of 2×1 performed bilinearly,
a 1 × 1 convolution, a concatenation with the corresponding
feature map from the contracting path, two 5×1 convolutions,
and a normalization layer operation across time domain. The
output of final expanding layer is fed to a 1× 1 convolutional
layer. Finally, a time distributed dense layer is employed to
map features of each time component to 12 neurons (the same
number as iEEG channels).

Here, we set the number of scalp channels the same as
that of intracranial channels since the sEEG is concatenated
with the iEEG to be fed to the discriminator. We selected scalp
channels from temporal and frontal areas since the IEDs origin
from these brain regions.

C. Discriminator

Our discriminator follows the typical architecture of a
convolutional network, shown in Fig. 2. It consists of 5 × 1
convolutional layers – each of which is followed by a ReLU
activation layer, a dropout layer, and a max pooling layer with
the size of 2 × 1 – and a fully connected dense layer. The
input of the discriminator is the concatenation of sEEG with
either the estimated or real iEEG. The effectiveness of this
concatenation technique has been proven in mapping studies
[4], [5].

III. EXPERIMENT

We applied our proposed GAN to estimate iEEG from sEEG
(mapping sEEG to iEEG). Then, the IEDs were detected from
the estimated iEEG.

711Authorized licensed use limited to: University College London. Downloaded on November 07,2023 at 00:42:49 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. The diagram of the inter-subject classification approach.

A. Dataset

The sEEG and iEEG signals of 18 epileptic subjects were
simultaneously recorded at King’s College Hospital London.
The signals were recorded at a sampling rate of 200 Hz. For
recording the sEEG, 20 standard silver chloride electrodes
were used, placed on the scalp according to the “Maudsley”
electrode placement system. The iEEG were recorded by
using 12 intracranial multicontact FO electrodes consisting
of a couple of 6 electrode bundles. The FO electrodes were
inserted through the patients’ FOs under general anaesthesia,
fluoroscopic control and placed into the ambient cistern.

B. IED Annotation and Preprocessing

The iEEG was used as a ground truth to annotate IEDs. In
other words, an expert neurologist labeled IEDs based on their
morphology and spatial distribution observed in the iEEG. For
mapping and classification, segment of 64 samples (32 samples
before and after the spikes peak) were selected. We selected
non-IED segments from where there was no sign of spikes.
The number of IED and non-IED segments set equal. Different
numbers of IEDs from 50 to 953 were annotated from each
subject.

A bandpass filter with cutoff frequencies of 1 and 70 Hz
as well as a notch filter with notch frequency of 50 Hz were
applied to both sEEG and iEEG signals. In addition, common
average reference was applied to the sEEG for re-referencing.

C. Mapping sEEG to iEEG

The sEEG is fed to the generator to generate an estimation
of iEEG. Then, the concatenation of sEEG with either the real
or estimated iEEG is fed to the discriminator to be classified
respectively as real or fake. Because of the concatenation of
sEEG with iEEG, the number of scalp and FO channels must
be the same. Therefore, twelve out of twenty scalp channels
are selected to be mapped to the iEEG. These 12 channels,
namely Fp1, F3, F7, C3, T3, Fp2, F4, F8, C4, T4, Fz, and

Fig. 4. Samples of (a) IEDs and (b) non-IEDs. The sEEG, estimated iEEG
(obtained using GAN), and actual iEEG are shown. The IEDs start at sample
32.

Cz, are selected from temporal and frontal regions, where the
IEDs originate from.

D. Classification Network and Cross Validation

For detecting IEDs, the EEGNet [23] with minor changes
is employed. The Batch normalization layers in EEGNet are
eliminated in our network. In addition, instead of Average
Pooling, we employ Max Pooling.

The IEDs are detected in two different approaches: intra-
and inter-subject classification approaches. In the intra-subject
classification approach, the data of a subject is divided into
training (70%), validation (10%), and test datasets (20%). In
the inter-subject classification, the leave-one-subject-out cross
validation is used. The data of N subjects are used for training
the networks, and the data of one subject for testing. This
approach is repeated for all 18 subjects. The sEEG of all N
training and the test subjects are mapped to the iEEG using
each of the trained GAN (Gn, n = {1, 2, . . . , N}) to obtain an
estimation of the corresponding iEEG, X Gn−−→ Gn(X). Then,
each of the estimated iEEG Gn(X) is given to the EEGNet to
differentiate IEDs and non-IEDs. Finally, to find the segment
labels in the test data, the output probabilities of N EEGNets
are averaged (average voting classification). Fig. 3 presents the
diagram of the inter-subject classification approach. Here, the
training data includes the data of N subjects whose IEDs are
detected with high accuracy in the intra-subject classification
approach.

IV. RESULTS

We compare our developed methods with three widely ref-
erenced methods [21], [24]. In [24], a model developed based
on least-squares regression (LSR) was employed to model the
iEEG from sEEG recordings. A classifier trained with stepwise
discriminant analysis was employed for classification. In [21],
the authors first mapped the sEEG to iEEG by developing
an asymmetric AE (AAE). They called it asymmetric since
the number of input and output of AE were not the same.
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TABLE I
THE ACC VALUES IN THE INTER- AND INTRA-SUBJECT CLASSIFICATION

APPROACHES. THE AMOUNTS IN PARENTHESIS SHOW THE INTRA-SUBJECT
CLASSIFICATION PERFORMANCE. THE VALUES ARE IN PERCENT (%).

Subject LSR [24] AAE [21] ASAE [21] GAN
S1 65 (72) 85 (80) 87 (78) 67 (78)
S2 86 (81) 92 (82) 94 (88) 83 (95)
S3 65 (69) 72 (72) 69 (82) 74 (90)
S4 58 (62) 58 (71) 59 (77) 66 (81)
S5 55 (55) 64 (64) 65 (75) 67 (73)
S6 61 (59) 70 (60) 71 (63) 68 (68)
S7 59 (64) 54 (62) 67 (72) 64 (67)
S8 55 (66) 55 (62) 57 (68) 63 (72)
S9 63 (65) 61 (74) 62 (68) 61 (71)

S10 66 (70) 71 (65) 74 (77) 75 (91)
S11 63 (64) 65 (67) 65 (68) 61 (62)
S12 73 (79) 75 (84) 77 (84) 79 (84)
S13 62 (71) 62 (72) 64 (71) 63 (74)
S14 59 (62) 66 (71) 67 (65) 63 (69)
S15 50 (46) 50 (53) 50 (52) 55 (59)
S16 51 (55) 67 (77) 68 (72) 75 (77)
S17 54 (62) 59 (54) 62 (71) 66 (78)
S18 66 (64) 61 (53) 67 (75) 65 (72)

Mean 62 (65) 66 (68) 68 (73) 68 (76)

The output of AAE is called pseudo-iEEG. The pseudo-
iEEG was again mapped to the real iEEG by feeding it to
a symmetric AE. The overall method is called asymmetric-
symmetric AE (ASAE). A convolutional neural network was
employed for feature exploitation and classification. These
methods are referred to respectively as AAE and ASAE.
For evaluation, accuracy (ACC), sensitivity (SEN), specificity
(SPC), and complexity of networks were estimated.

Fig. 4 shows a couple of IED and non-IED samples of
sEEG, estimated iEEG, and actual iEEG. As it can be seen,
the estimated iEEG precisely follows the trend of actual iEEG.
This shows that our mapping model maps sEEG to iEEG with
reasonable accuracy.

ACC presents how accurately the IEDs and non-IEDs are
detected. The obtained ACC values are shown in Table I. Our
proposed method outperforms the compared methods in the
intra-subject classification approach by providing 76% accu-
racy. In the inter-subject classification approach, both GAN
and ASAE achieve 68% accuracy which was respectively 2%
and 6% more than accuracy values of AAE and LSR. Though
GAN and ASAE provide the same accuracy value, in the
ASAE structure two sequential mapping networks have been
employed.

SEN shows the ability of a system in correctly detecting
IEDs, while SPC shows the ability of a system in correctly
detecting non-IEDs. The obtained SEN and SPC values are
presented in Table II. ASAE achieves the best SEN of 67%.
Our proposed GAN obtains the best SPC of 70% and detects
IEDs with 65% SEN.

The last row in Table II shows the number of parameters
of each model. Our proposed model is around respectively
twelve and sixteen times less complex than AAE and ASAE.
Having less complex networks is of great importance for
online processing. This shows our proposed GAN is more
effective and applicable than the compared methods.

TABLE II
THE OBTAINED SEN AND SPC VALUES IN THE INTER-SUBJECT

CLASSIFICATION APPROACH AND THE NUMBER OF PARAMETERS OF EACH
NETWORK. THE VALUES ARE IN PERCENT (%).

Criteria LSR [24] AAE [21] ASAE [21] GAN
SEN 61 66 67 65
SPC 59 65 68 70

# of Parameters - 3.12×106 3.90×106 0.25×106

V. CONCLUSION

Epilepsy diagnosis primarily relies on accurate detection
of IEDs from sEEG. Only a small percentage of IEDs can
be viewed from sEEG. Therefore, better highlighting these
IEDs within sEEG is of great importance for seizure di-
agnosis. The proposed method here uses GAN to transfer
a low resolution EEG to a high resolution counterpart to
best highlight these IEDs. Our proposed method provides
superior performance compared to the LSR, AAE, and ASAE
approaches. It achieves the maximum accuracy values of
76% and 68% respectively in the intra- and inter-subject
classification approaches. This is approximately four times the
scalp-visible IEDs. Furthermore, our model is less complex
than the compared methods.
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