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Abstract

Viscous contact problems describe the time evolution of fluid flows in contact

with a surface from which they can detach and reattach. They can be modelled

by coupling the Stokes equations with contact boundary conditions and a free

boundary equation that evolves the geometry of the domain occupied by the

fluid. These problems are of particular importance in glaciology, where they arise

in the study of grounding lines and subglacial cavities. This work investigates

the numerical approximation of viscous contact problems with applications to

these two examples in glaciology.

We commence by formulating the viscous contact problems that model sub-

glacial cavitation and marine ice sheets in Chapter 1. We state the different

variational inequalities that arise in these problems and are equivalent to the

Stokes equations with contact boundary conditions.

We then propose a novel framework for building numerical schemes for these

problems in Chapter 2. This framework considers a family of discrete variational

inequalities and establishes certain conditions that should be satisfied when

approximating the free boundary equations. We then describe the numerical

scheme that is used for the remainder of this work and compare it with different

schemes that fit the framework introduced beforehand.

Chapter 3 is dedicated to the numerical analysis of one of the Stokes variational

inequalities formulated in this work. We give rigorous proofs on the conditions

under which it is well-posed and its finite element approximation converges. By

developing theoretical tools based on existing work in the numerical analysis

of variational inequalities and p-Stokes systems, our analysis deals with three

substantial difficulties arising in this system: the presence of rigid modes in the

space of admissible velocity fields, the nonlinear rheology used in glaciology, and

the friction boundary condition enforced at the base of glaciers.

Chapter 4 presents a numerical investigation of subglacial cavitation and its ap-

plication to glacial sliding under steady and unsteady conditions. We reconstruct

steady friction laws by calculating several steady cavity shapes. These steady



results are validated by comparing them to a linearised analytical method. We

then perturb some of these steady states with oscillating water pressures that

reveal an interplay between the frequency of the perturbations and the resulting

sliding speed and cavity volume. Moreover, we find that if the steady state is

located on the downsloping or rate-weakening part of the friction law, the cavity

evolves towards the upsloping section, indicating that the downsloping part is

unstable.

Finally, we explore steady marine ice sheet configurations in Chapter 5. We

do so by computing steady states to the parallel slab marine ice sheet problem,

which we propose in this chapter. In this problem, a slab of ice of uniform

thickness flows down an inclined bedrock into the ocean. We enforce influx

conditions that allow us to explore a spectrum of flow regimes, ranging from

sliding to shear-dominated flow. We find that the flux-thickness relationship

at the grounding line takes the form of power laws with exponents n + 1 and

n+ 2 in these two limits, respectively, where n is a non-dimensional parameter

in Glen’s law, the power law rheology used commonly used in glaciology. We

derive analytical approximations in these limits which resemble our numerical

findings closely, with visible deviations in some cases. Our numerical results

allow us to understand the shortcomings of these commonly used analytical

methods. Moreover, in the context of the parallel slab problem, we find that

the flux-thickness relationships are strictly monotonically increasing and that

the bedrock plays a prominent role in the sliding dominated regime.
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Chapter 1

Introduction

Viscous contact problems are time-dependent fluid flow problems in which the fluid is in

contact with a solid surface from which it can detach and reattach. Contact problems of this

type arise when modelling glacial ice flow, which is typically treated as a viscous fluid flow

[42, 58, 44, 93]. On a large scale, they are relevant to marine ice sheets with a grounding line

[89, 24, 91] and, on a smaller scale, to the formation of subglacial cavities when the ice slides

over bedrock undulations [31, 87, 36]. These problems share a very similar mathematical

structure and are of great importance for understanding ice sheet dynamics and predicting

future sea level rise [85, 25].

This work is an analytical, computational, and glaciological study of viscous contact

problems. Although several computations of viscous contact problems exist in the literature

[36, 24, 28, 49, 97], these studies have rarely explored the mathematical structure of these

problems. Given the importance that they have in glaciology, we believe that a more

detailed analysis of viscous contact problems could reveal many properties of their rich

mathematical structure and could be beneficial for building improved numerical schemes.

Therefore, one of the main goals of this work is to propose a framework for discretising these

problems based on a rigorous understanding of a Stokes variational inequality that arises

in the mathematical model. In particular, we build a numerical solver for viscous contact

problems based on this framework, and provide an extensive validation via comparisons

with different methods and analytical results.

With this solver we then explore the two paradigmatic examples of viscous contact prob-

lems in glaciology: subglacial cavitation and marine ice sheet dynamics. Our investigation

of these two problems broadly consists in the computation of steady states and, in the

case of subglacial cavitation, their unsteady perturbations. For subglacial cavitation, this

essentially amounts to constructing steady friction laws for glacial sliding with cavitation

and studying the effects of unsteady water pressures. For marine ice sheets, our steady

computations allow us to explore flux-thickness relationships at the grounding line. These
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computations offer novel insights into the physics of these two fundamental problems in

glaciology. Moreover, our steady computations for both problems are backed with analyti-

cal results which not only validate our numerical solver but provide knowledge of the range

of validity of these analytical models.

This chapter, the introduction of the thesis, is mostly concerned with the mathematical

formulation of a viscous contact problem. It also includes an outline of the thesis and some

clarifications on the mathematical notation we use. It contains a detailed explanation of

the equations of flow and the boundary conditions for a general two-dimensional viscous

contact problem. We also specify the form that these equations take when considering the

more particular problems of subglacial cavitation and marine ice sheets.

1.1 Outline of the thesis

This thesis can be seen as structured into two separate bodies: one concerned with the

numerical approximation of viscous contact problems (Chapters 2 and 3) and another with

the computational exploration of the two viscous contact problems arising in glaciology

(Chapters 4 and 5).

In Chapter 2, we propose a class of numerical schemes for solving viscous contact prob-

lems and then, in Section 2.3, we introduce the main numerical scheme used in the sub-

sequent chapters of this thesis. Although the description of the general class of schemes

employs an abstract framework that requires a cumbersome notation, Section 2.3 avoids

these technicalities and is written in a self-contained manner. This facilitates the under-

standing of our numerical scheme for viscous contact problems for a reader who, for example,

might only be interested in the glaciological applications in Chapters 4 and 5.

A fundamental aspect of the mathematical formulation of viscous contact problems is

that the Stokes equations with contact boundary conditions are essentially a variational

inequality when written as a variational statement. Chapter 3 is dedicated to the math-

ematical analysis of this variational inequality and its numerical approximation via finite

element methods. The goal of this chapter is to give a rigorous justification for the finite

element method used in the numerical scheme presented in Section 2.3. In this analysis, we

develop new techniques, based on the finite element analysis of variational inequalities and

of the p-Stokes equations, for dealing with the lack of coercivity of the variational inequality

and with the nonlinearities due to the flow rheology and basal friction.

The first glaciological application is on subglacial cavitation and is found in Chapter 4.

In this chapter, we investigate the formation of subglacial cavities and its effects on glacial

sliding. This investigation involves the computation of steady friction laws and a rigorous
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comparison with a linearised model for subglacial cavitation. Then, motivated by an exten-

sive body of fieldwork, we provide a new study on the effects of unsteady water pressures

on glacial sliding by perturbing several steady cavity states.

Our second glaciological application, in Chapter 5, focuses on marine ice sheets and the

numerical computation of flux-thickness relationships at the grounding line. We propose

a novel test problem for studying an ice sheet’s grounding zone and provide a series of

numerical results that expose a spectrum of steady state regimes, ranging from sliding to

shear-dominated flow. Furthermore, two analytically-derived approximate flux-thickness

laws for sliding and shear-dominated flows are presented that offer an insight into the

dominating force balance underlying steady marine ice sheet configurations.

1.2 Notation

We include a brief description of the mathematical notation used mostly in this chapter

and Chapters 2 and 3. In particular, here we focus on notational aspects related to func-

tion spaces and inequalities. Further notational clarifications on the discrete problem are

postponed to Section 2.1 in Chapter 2.

Given a normed vector space X, the dual of X is denoted by X ′ and the pairing between

elements in the primal and dual spaces by 〈f, x〉X for f ∈ X ′ and x ∈ X. We will work

with the Lebesgue and Sobolev spaces Wm,r(Ω), where m ≥ 0 and r ≥ 1, defined as the

set of functions with weak derivatives up to order m which are r-integrable. When m = 0

we write Lr(Ω). The space of polynomials of degree k over a simplex E (interval, triangle,

tetrahedron) is denoted by Pk(E). The space of functions over a domain Ω that have up to

k continuous derivatives is written as Ck(Ω), and whenever k = 0 (continuous functions on

Ω) we simply write C(Ω). Vector-valued functions and vector-valued function spaces will be

denoted with bold symbols, e.g. u and Wm,r(Ω).

Throughout this work, we repeatedly refer to the normal and tangential components of

vector fields along the boundaries of a domain. Given a domain Ω, the vector n denotes the

unit outwards-pointing vector normal to the boundary of Ω, which we denote by ∂Ω. The

tangential component of a vector field v : Ω → R2 on ∂Ω is given by Tv = v − (v · n)n.

Here, T = I− nn> is the orthogonal projection onto the tangential component.

In Chapter 3, for a domain Ω and two functions f : Ω → R and g : Ω → R, we write

f ∼ g, f . g, and f & g if there exist generic constants c, C > 0 such that cf(x) ≤
g(x) ≤ Cf(x), cf(x) ≤ g(x), and cf(x) ≥ g(x) for all x ∈ Ω, respectively. We assume that

these generic constants do not depend on the mesh size or on the continuous and discrete

solutions of the problem.
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1.3 Modelling ice as a viscous fluid

Ice flow is generally modelled as a viscous fluid which evolves according to the Stokes

equations with a simple non-linear rheology that relates deviatoric stress and strain rate

[93, 33]. In general, for a given flow velocity u, the deviatoric stress τ and strain rate Du

are related by an effective viscosity η:

τ = 2η(|Du|)Du, (1.1)

where Du is the symmetric part of the velocity gradient, that is

Du =
1

2

(
∇u+∇u>

)
, (1.2)

and | · | represents the Frobenius norm of a matrix: for B ∈ Rm×m with components Bij we

have |B|2 =
∑

ij B
2
ij .

Glen’s law [42] is the most common choice of rheological law for ice and it establishes

the following formula for the effective viscosity:

η(|Du|) =
1

2
A−1/n

(
1

2
|Du|2

) 1−n
2n

. (1.3)

Here, the parameter A > 0 is a temperature dependent parameter which we shall consider

constant in this work (that is, we consider the isothermal case). The parameter n is also

constant and is usually set to n = 3; for n = 1 we recover the standard linear Stokes flow.

When analysing the variational inequality that arises in the weak formation of the Stokes

equations, the rheological law (1.3) is written as

η(|Du|) =
1

2
α(r)|Du|r−2, (1.4)

where α(r) = (1/2)(r−2)/2A1−r is constant and r = 1 + 1/n is in (1, 2] for n ≥ 1. Note that

such an expression for η(|Du|) reveals the r-Stokes nature of the problem when considered

as a variational problem in the setting of Sobolev spaces.

At a computational level, numerical problems may arise when implementing Glen’s law

due to the singular behaviour of η(|Du|) around |Du| = 0. One common way of dealing

with this issue is to use a regularised effective viscosity, defined by

ηε(|Du|) =
1

2
α(r)(|Du|2 + ε)

r−2
2 , (1.5)

where ε > 0 is a small parameter. Such a regularisation is not required when r = 2 (that

is, n = 1).
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1.4 Formulation of a viscous contact problem

A viscous contact problem is a time dependent flow problem modelled with the Stokes

equations with contact boundary conditions and free boundary equations. We use the

Stokes equations instead of the Navier-Stokes equations because we only focus on ice, which

flows under very low Reynolds numbers. In this work we consider two-dimensional domains

Ω of fixed horizontal length L whose upper and lower boundaries are curves given by the

functions θ(x, t) and s(x, t) respectively; that is,

Ω(t) =
{

(x, z) ∈ R2 : 0 < x < L, θ(x, t) < z < s(x, t)
}
. (1.6)

The domain Ω is assumed to be in contact with a solid surface, the bedrock, described by

the function b(x). We denote the boundary of Ω by ∂Ω, the lower boundary by Γb, and the

top boundary by Γt. Additionally, we write Γb as the disjoint union of an attached region

Γa and a detached region Γd; these subsets are defined as

Γa(t) = {(x, z) ∈ ∂Ω : z = θ(x, t), b(x) = θ(x, t)} , (1.7a)

Γd(t) = {(x, z) ∈ ∂Ω : z = θ(x, t), b(x) < θ(x, t)} . (1.7b)

At each instant in time, the fluid occupying the domain Ω = Ω(t) flows with a velocity u

and a pressure p which satisfy the Stokes equations:

−∇ · (2η(|Du|)Du) +∇p = f in Ω, (1.8a)

∇ · u = 0 in Ω. (1.8b)

Here, the vector field f is a body force to be specified in each problem. We restrict our

attention to the case where the viscous flow is ice and the effective viscosity η(|Du|) is

given by Glen’s law (1.3). For a given velocity and pressure field, we define the stress tensor

σ = σ(u, p) by

σ = 2η(|Du|)Du− pI, (1.9)

where I is the identity tensor field. We then define the normal and tangential stresses on

∂Ω as

σnn = (σn) · n and σnt = T(σn). (1.10)

A fundamental property of viscous contact problems is that the fluid can detach from

the bedrock at any moment in time. Mathematically, this possibility is realised by enforcing

contact boundary conditions along the attached region Γa:

u · n ≤ 0, σnn ≤ −pw and, (u · n)(σnn + pw) = 0 on Γa. (1.11)
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We write these contact boundary conditions in terms of a water pressure pw because, in

all of the problems considered in this work, we assume a thin later of water, which we

treat as inviscid, exists in between the ice and the bedrock. This water pressure is a non-

negative function which is either assumed to be spatially constant, as in the subglacial cavity

problem, or linearly varying with depth, as in the marine ice sheet case. By introducing pw,

we incorporate the effects of subglacial hydrological systems into our model [30]. We note

that, in all cases considered in this work, pw is known beforehand when solving the viscous

contact problems.

Notice that in (1.11) we are enforcing the ice to either remain attached (i.e. u · n = 0)

whenever the normal stress exerted by the ice on the bedrock is larger than the water

pressure, or to have the possibility of detaching (u · n < 0) if the stress equals the water

pressure.

Given the velocity field u = (u,w), the free boundaries θ(x, t) and s(x, t) evolve from

t = 0 to t = T according to the free boundary equations

∂s

∂t
+ u

∂s

∂x
− w = at on (0, L)× (0, T ), (1.12a)

∂θ

∂t
+ u

∂θ

∂x
− w = ab on (0, L)× (0, T ). (1.12b)

Equations (1.12) are derived from a surface mass balance statement that equates the ice flux

through the free surface with the terms ab and at, known as accumulation functions, see [44,

Section 5.1.2]. The accumulation functions at and ab represent sources of mass along the

boundary regions Γt and Γb of the ice sheet, respectively. A positive accumulation means

that ice is added to the flow by the densification of snow or the freezing of water. On the

other hand, a negative accumulation represents a mass loss due to melting, for example. In

the problems considered in this document, we set at = ab = 0.

Remark 1.1. Along the top and lower boundaries, we have that

u · n =
−1√

1 +
(
∂s
∂x

)2
(
u
∂s

∂x
− w

)
on Γt, (1.13a)

u · n =
1√

1 +
(
∂θ
∂x

)2
(
u
∂θ

∂x
− w

)
on Γb. (1.13b)

These equalities are used in the construction of numerical schemes for viscous contact prob-

lems in Chapter 2 when discretising the free boundary equations (1.12).

Additionally, the functions θ(x, t) and s(x, t) must also comply with the constraints

θ(x, t) ≥ b(x) x ∈ (0, L) and t ∈ [0, T ], (1.14a)

s(x, t) > θ(x, t) x ∈ (0, L) and t ∈ [0, T ]. (1.14b)
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The problems considered in this document have a clear dominating direction of flow which

is from left to right. Since the free boundary equations (1.12) have an advective nature,

we enforce boundary conditions for s and θ at x = 0. Finally, we also note that initial

conditions for θ and s must also be provided to have a well-posed problem.

Remark 1.2. The boundary conditions (1.11) are also called the Signorini boundary condi-

tions and are well-known in the context of elastic contact problems [68, 48], where the vector

field u represents the displacement vector. In fact, as we explain in Chapter 3, the Stokes

and elasticity equations equipped with contact boundary conditions share many similarities.

Therefore, many ideas and results from the numerical analysis of elastic contact problems

can be transferred to the viscous case. One of the main goals of this work is to explore

this connection further, since we believe that it hasn’t been done sufficiently. An impor-

tant remark is that the main difference between the elastic and viscous contact problem is

the need to evolve the domain in time through the free boundary equations (1.12). As we

describe in Chapter 2, the presence of the free boundary equations introduces numerical

difficulties that do not arise in the elastic case.

Additional boundary conditions are required to close the Stokes equations and have a

well-posed system. Different boundary conditions are used for the viscous contact problems

that arise in subglacial cavitation and in marine ice sheets. Once the required boundary

conditions are prescribed, we can then introduce the weak formulations of the Stokes equa-

tions for each of the problems considered. Since not all readers may be familiar with the

weak formulation of a partial differential equation, in Section 1.5 below we explain what

a weak formulation is and why it is important. Then, we introduce the problems of sub-

glacial cavitation in Section 1.6 and of marine ice sheets in Section 1.7, together with the

corresponding sets of boundary conditions and weak formulations.

1.5 The weak formulation of the Stokes equations as a vari-
ational inequality

A weak formulation of a partial differential equation (PDE) is an integral statement of the

equation written in terms of weak derivatives. A weak formulation expresses the action of

a functional on test functions belonging to a given space; in this sense, it is a variational

statement (we study the variations of a functional along different directions specified by the

test functions), and thus weak formulations naturally arise in the calculus of variations [62].

In the engineering literature, the term virtual work is used to refer to these variations [84].

The function spaces in which solutions and test functions exist are generally Sobolev spaces;
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an introduction to the theory of Sobolev spaces, weak derivatives, and their application to

PDEs can be found in [27].

It is desirable to work with weak formulations of PDEs for analytical and computational

reasons. From an analytical point of view, the weak formulation of the Stokes equations

reveals its equivalence to a minimisation problem whose well-posedness can be investigated

with techniques from the calculus of variations. This is carried out in Section 3.1.4, where

we prove a theorem for one of the Stokes problems considered in this document which

specifies under what conditions a unique solution exists. On the other hand, from a com-

putational point of view, the design and implementation of a finite element method for

the Stokes equations is based on its weak formulation. Moreover, in the particular case

where the Stokes equations are complemented with the contact boundary conditions (1.11),

its weak formulation is given by a variational inequality. As explained in Section 3.3, the

finite element method is arguably the most natural way to solve a variational inequality

numerically.

In this work, three weak formulations of the Stokes equations as variational inequalities

are introduced: Variational inequalities A and B arise when modelling subglacial cavities

and Variational inequality C in the context of marine ice sheets. The sense in which these

variational inequalities are equivalent to the strong form of the Stokes equations (1.8) is

made precise in Section 3.1. In particular, Variational inequality C, which is taken as a

representative example in Chapter 3, is derived in Lemma 3.1 from the Stokes equations in

the setting of a marine ice sheet.

The first step in defining a weak formulation is choosing suitable function spaces in

which to seek the unknowns. Given a domain Ω, we seek the velocity in the subspace

V ⊂W 1,r(Ω) (1.15)

and the pressure in the space

Q = Lr
′
(Ω). (1.16)

The definition of the subspace V depends on the velocity boundary conditions, which are

specific to the different problems considered below; therefore, we postpone its precise defi-

nition to the next two sections. The scalar r′ = (1 − r−1)−1 is the Hölder conjugate of r.

As mentioned in the previous paragraph, the weak formulation of the Stokes equations with

contact conditions can be written as a variational inequality, and it is expressed in terms of

a convex subset of V which we denote by K and is defined by

K = {v ∈ V : v · n ≤ 0 on Γa} . (1.17)
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The variational inequalities A-C below are expressed in terms of operators defined on

function spaces. The operators A : V → V ′ and B : Q → V ′ are common to all three and

are defined by

〈Au,v〉V =

∫
Ω
α|Du|r−2 (Du : Dv) dx, (1.18a)

〈Bq,v〉V =

∫
Ω

(∇ · v) q dx. (1.18b)

These operators incorporate the action of the r-Laplacian and divergence operators in the

weak form of the Stokes equations (1.8) and are widely used throughout this document.

Remark 1.3. It is important to note that the spaces V and Q, the set K, and the operators

A and B introduced above depend on a domain Ω. In the problems considered here, the

domains occupied by the ice on which we solve the variational inequalities evolve over time,

and therefore the definitions of these mathematical objects also depend on time. However,

for the reader’s sake, we do not indicate this dependence in the notation.

When solving the variational inequality numerically, instead of working with A : V →
V ′, it is preferable to use an operator defined in terms of the regularised viscosity (1.6) to

avoid issues around points where the strain rate of the velocity is zero or close to zero. We

therefore introduce the operator Aε : V → V ′, defined by

〈Aεu,v〉V =

∫
Ω
α
(
|Du|2 + ε

) r−2
2 (Du : Dv) dx, (1.19)

where ε > 0. We note that this regularisation is only necessary when r ∈ (1, 2). In the

linear problem the effective viscosity is constant and this singularity disappears.

1.6 Subglacial cavitation

Subglacial cavitation is a phenomenon that occurs at the base of a glacier or an ice sheet

and consists of the detachment of the ice sheet from the bed along the lee side of an obstacle

due to high basal water pressures [70, 31, 87]. It is considered a fundamental mechanism in

glacial sliding over hard beds. In Chapter 4, which is fully dedicated to subglacial cavitation

and glacial sliding, one can find an in-depth account of the relationship between subglacial

cavitation and glacial sliding, together with a literature review in Section 4.1.

Subglacial cavities form at the ice-bedrock interface, over length scales corresponding to

the size of the bedrock obstacles. These length scales are generally several orders of magni-

tude smaller than those of the glacier. For this reason, and following [36], the computational

domain Ω in which we model the formation of cavities is a thin layer of ice of finite height

located under a larger mass of ice, see Figure 1.1. We assume the bedrock, and therefore
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Ω

Γt

pi

pw

utτb

Γd

Γa

Figure 1.1: The periodic domain Ω on which we model the evolution of a subglacial cavity.
The top boundary Γt represents a fictional boundary between the domain and the remaining
mass of ice above it. The lower boundary is the union of Γa and Γd, the attached and
detached regions, respectively. The subset Γd, in red, represents the cavity roof created
by the detachment of ice from the bedrock. The domain Ω is assumed to be periodic, but
for computational purposes we consider the bounded subset of R2 enclosed by the dashed
vertical lines.

also Ω, to be periodic in the horizontal direction. The upper boundary Γt represents a

fictional boundary separating Ω from the ice above and therefore remains unchanged in

time, i.e. s(x, t) = H, where H is the height of the domain. Although we can consider beds

of arbitrary shape, in this document, when studying subglacial cavitation, we restrict our

attention to sinusoidal beds of amplitude rb given by

b(x) = rb

(
cos
(

2π
x

L

)
− 1
)
. (1.20)

Along the cavitated region Γd of the lower boundary, the ice is in contact with water at

a pressure pw on which it slides freely, so we prescribe

σnn = −pw and σnt = 0 on Γd. (1.21)

For the subglacial cavity problem, we assume this water pressure to be uniform along the

length of the bedrock because gravity is unimportant on the spatial scales under consider-

ation. For this reason, we also set the body force f = 0 in the subglacial cavity problem.

The effect of gravity is captured by the normal boundary condition on the top boundary

Γt; here, we enforce

σnn = −pi on Γt, (1.22)

where pi is the overburden ice pressure due to the weight of the ice lying above the domain.
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On the attached region Γa, the contact boundary conditions (1.11) hold, and since we

assume the ice to be lubricated by a thin layer of water connected to the subglacial drainage

system, we allow the ice to slide freely and therefore set σnt = 0, which in fact holds on the

whole lower boundary Γb = Γa ∪ Γd due to (1.21). Finally, we close the system with either

the Dirichlet boundary condition

u = ut on Γt, (1.23)

or the Neumann boundary condition

σnt = τb (1, 0)> on Γt, (1.24)

where τb is the basal shear stress and ut is a horizontal velocity related to the basal sliding

speed ub in a manner specified in Chapter 4 (“basal” in this context refers to the larger-scale

ice flow problem, which views the whole domain Ω as being at the base of the ice sheet).

These two different horizontal boundary conditions on Γt allow us to consider two different

ways of thinking about modelling a subglacial cavity. On the one hand, the portion of ice

above the cavity may be kinematically connected to the remainder of the ice sheet, and

therefore slides at a given speed determined by the surrounding ice. Mathematically, this is

modelled by enforcing the Dirichlet boundary condition (1.23), and the corresponding basal

shear stress can be calculated via the integral

τb = − 1

L

∫
Γb

(σnn + pw) ds, (1.25)

as in [87, 36]. On the other hand, the basal shear stress must balance the horizontal force

in the ice above (this results from an overall force balance on the domain Ω). So we could

instead prescribe the basal stress τb as a boundary condition, and compute the sliding speed.

In this scenario, we enforce (1.24) and compute the basal sliding speed by averaging the

horizontal velocity along the lower boundary, that is,

ub =
1

L

∫
Γb

uds, (1.26)

as in [36]. Enforcing the Dirichlet or the Neumann boundary conditions lead to different

variational inequalities, which we present below.

Variational inequality A. When we enforce the Dirichlet boundary condition (1.23) in

the subglacial cavity problem over a given domain Ω, the Stokes equations are equivalent

to a variational inequality written in terms of the space

V =
{
v ∈W 1,r(Ω) : Tv = 0 on Γt, v is periodic in the x direction

}
. (1.27)
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In order to enforce (1.23), we need to introduce a divergence-free velocity field û ∈W 1,r(Ω)

which is periodic in the x direction and satisfies Tû = ut (1, 0)> on Γt and û ·n = 0 on Γa.

Then, the variational inequality can be written as: find (u∗, p) ∈ K ×Q such that

〈A(u∗ + û)−Bp− f,v − u∗〉V + 〈Bq,u∗〉V ≥ 0 ∀(v, q) ∈ K ×Q, (1.28)

where the forcing term f ∈ V ′ is given by

〈f,v〉V = −
∫

Γt

pi(v · n) ds−
∫

Γb

pw(v · n) ds. (1.29)

The solution to the Stokes equations with Dirichlet boundary conditions (1.23) is then given

by (u, p), where u = u∗ + û.

Variational inequality B. The Stokes equations with Neumann boundary conditions

(1.24) on a domain Ω are formulated in terms of the space

V =
{
v ∈W 1,r(Ω) : v is periodic in the x direction

}
, (1.30)

and the forcing term f ∈ V ′ is given by

〈f,v〉V =

∫
Γt

τb(v · (0, 1)>) ds−
∫

Γt

pi(v · n) ds−
∫

Γb

pw(v · n) ds. (1.31)

The Stokes equations are then equivalent to the variational inequality given by: find (u, p) ∈
K ×Q such that

〈Au−Bp− f,v − u〉V + 〈Bq,u〉V ≥ 0 ∀(v, q) ∈ K ×Q. (1.32)

In Chapter 4, we solve a viscous contact problem defined in terms of Variational inequal-

ity A when constructing steady friction laws for glacial sliding with cavitation. In this case,

for a fixed horizontal speed ut and a set of effective pressures pi− pw, we find steady cavity

shapes by evolving the viscous contact problem in time, and then we compute the basal

shear stress τb with (1.25). When investigating the effects of oscillating water pressures on

glacier sliding, we solve a viscous contact problem with Variational inequality B. Therefore,

we set the basal shear stress τb as a Neumann boundary condition and compute the sliding

speed ub with (1.26).

1.7 Marine ice sheets

A marine ice sheet is an ice sheet that slides from the continent into the ocean, where it goes

afloat, creating a floating ice shelf. The point where the ice detaches from the bedrock is

known as the grounding line. Much of the Antarctic ice sheet’s margin is a floating ice shelf

12



Ω
Γt

Γi

Γc

Γa

Γd

Figure 1.2: The domain Ω on which we model the evolution of a marine ice sheet. The
boundary Γi to the left represents a fictional boundary between the grounded portion of the
sheet and the remaining ice upstream. The boundary Γc to the right is the calving front
from which ice flows out into the sea. The boundaries Γt, Γd and Γa are the ice-atmosphere,
ice-ocean and ice-bedrock interfaces, respectively. The grey dotted line marks the sea level.

[9] and the study of possible marine ice sheet instabilities has led to a considerable body

of research on grounding line dynamics [105, 89, 88, 91]. In order to study the dynamics

of the grounding line, we consider a domain Ω which contains the transition region from

grounded to floating ice, as depicted in Figure 1.2. Given a Cartesian coordinate system

with coordinates (x, z), we set the sea level at a (possibly time dependent) height z = zsl(t).

We assume the water is in hydrostatic equilibrium and therefore at a pressure pw which

depends on the vertical coordinate z via the expression

pw(z) = ρwgmax {0, zsl − z}, (1.33)

where ρw is the density of the water and g is the acceleration due to gravity. The body

forces acting on the ice are due to gravity. As a result, when solving the Stokes equations

(1.8), the vector field f represents the effect of Earth’s gravitational field:

f = −ρg
(

0
1

)
. (1.34)

Throughout this document, whenever applicable, we set the ice and water densities to

ρ = 917 kg/m3 and ρw = 1000 kg/m3, respectively, and the gravitational acceleration to

g = 9.81 m/s2.

The top boundary Γt represents the interface between the ice and the atmosphere; we
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neglect the stresses exerted by the atmosphere on the ice sheet and set

σn = 0 on Γt. (1.35)

On the attached region Γa we enforce the contact boundary conditions (1.11), with pw given

by (1.33), and a sliding condition, the friction law, which relates the tangential stress σnt

with the tangential velocity Tu. We remark that this friction law is essentially what we

calculate with the subglacial cavity problem, described above in Section 1.6. As we show

in Chapter 4, we can build a friction law by finding steady cavity shapes and establishing a

relationship between τb (the tangential basal stress) and ub (the tangential basal velocity).

For the marine ice sheet problem, we assume this function takes the form of a power law

for simplicity, as originally proposed by Weertman [104], and we enforce the condition

σnt = −C|Tu|r−2Tu on Γa, (1.36)

where C > 0 is a sliding coefficient. This coefficient generally depends on the water pressure

in the subglacial hydrology system and on the small-scale roughness of the bedrock [32, 73];

however, for the work on marine ice sheets, we simply assume it to be constant (Chapter 4

contains an in depth investigation of glacial sliding, with a historical overview on research

into glacial sliding in Section 4.1).

The ice sheet is floating on the detached region Γd and we neglect any tangential stresses

caused by ice-ocean interactions. Therefore, we prescribe

σn = −pwn on Γd. (1.37)

The left boundary at x = 0, which we denote by Γi, represents a fictional boundary

between Ω and the remainder of the ice sheet, located upstream of the grounding line. On

Γi, we enforce influx conditions for the normal velocity u ·n and the tangential stress σnt:

u · n = ui and σnt = σnt,i

(
0
1

)
on Γi, (1.38)

where ui and σnt,i are functions to be specified. The right boundary Γc at x = L represents

a calving front, which we assume to be in contact with the water, and we set

σn = −pwn on Γc. (1.39)

Finally, we need to enforce boundary conditions for θ and s at x = 0. In all problems of

interest, detachment should not occur at x = 0 and we therefore enforce θ(0, t) = b(0).

Different conditions can be considered for the upper surface s. For example, a standard

setup found in computational glaciology is that of a marine ice sheet sliding from an ice
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divide (that is, a symmetry axis) at x = 0 and into the ocean, where it goes afloat and ends

at a calving front [88, 24, 79]. In this case, we set ui = 0 and σnt,i = 0 on Γi, and enforce

∂s

∂x
= 0 at x = 0. (1.40)

This setup with homogeneous boundary conditions on Γi is considered in Chapter 3, where

we analyse the finite element approximation of the resulting variational inequality for marine

ice sheets. In Chapter 5, we introduce a different setup for the marine ice sheet problem in

which we consider an ice sheet on a tilted bedrock that slides into the ocean such that, far

upstream of the grounding line, its geometry is that of a parallel slab of constant thickness.

The functions ui and σnt,i are defined accordingly (see Chapter 5), and a constant thickness

boundary condition is prescribed for the upper surface s.

Variational inequality C. The Stokes equations in the marine ice sheet problem presented

above can be formulated as a variational inequality in terms of the space

V =
{
v ∈W 1,r(Ω) : v · n = 0 on Γi

}
. (1.41)

If ui 6= 0 on Γi, we need a divergence-free velocity field û ∈ W 1,r(Ω) such that û · n = ui

on Γi and û · n = 0 on Γa. The nonlinear sliding boundary condition (1.36) is introduced

via the nonlinear operator G : V → V ′ defined by

〈Gu,v〉V =

∫
Γa

C|Tu|r−2 (Tu ·Tv) ds. (1.42)

Then, the weak formulation of the instantaneous Stokes problem is given by: find (u∗, p) ∈
K ×Q such that

〈A(u∗ + û) +G(u∗ + û)−Bp− f,v − u∗〉V + 〈Bq,u∗〉V ≥ 0 ∀(v, q) ∈ K ×Q, (1.43)

where the forcing term f ∈ V ′ is given by

〈f,v〉V =

∫
Ω
f · v dx−

∫
Γb∪Γc

pw(v · n) ds+

∫
Γi

σnt,i

(
v · (0, 1)>

)
ds. (1.44)

As in Variational inequality A, the solution to the Stokes problem is given by (u, p) with

u = u∗ + û.

Remark 1.4. If r ∈ (1, 2), the operator G : V → V ′ given by (1.42) has a singularity at

Tu = 0. Therefore, at a numerical level, a regularised form of this operator is required, as

in (1.19) with the operator A. We introduce

〈Gεu,v〉V =

∫
Γa

C
(
|Tu|2 + ε

) r−2
2 (Tu ·Tv) ds (1.45)

for a regularisation parameter ε > 0.
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1.8 Concluding remarks

In this chapter, we have introduced a general formulation for a two-dimensional viscous

contact problem. In this formulation, the fluid occupies a domain Ω, enclosed between

two surfaces that evolve in time. The velocity and pressure of the fluid are determined by

the Stokes equations at each instant in time, and the surfaces evolve according to two free

boundary equations. Under the fluid we assume a solid surface to exist (the bedrock, in

the case where the fluid is ice). The Stokes equations are equipped with contact boundary

conditions along the region of the lower boundary that is in touch with this solid surface.

These contact boundary conditions allow the fluid to detach from the bedrock and render

the weak formulation of the Stokes equations into a variational inequality.

After presenting the general formulation of a viscous contact problem we will work with,

we describe two viscous contact problems that arise in glaciology. The first problem is that

of subglacial cavitation, which occurs along the ice-bedrock interface of an ice sheet and is

fundamental for understanding glacial sliding. The second problem, of a much larger scale,

is that of a marine ice sheet, which flows from the continent into the ocean, where it goes

afloat at the grounding line. For these two problems, we specify the variational inequalities

that arise when formulating the Stokes equations. We introduce these two problems early

on because we will return to them for the remainder of the thesis, either as numerical tests

to investigate the performance of numerical schemes, or as applications with a glaciological

interest.
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Chapter 2

Numerical methods for viscous
contact problems

A viscous contact problem is a viscous flow problem with contact conditions that allow the

fluid to detach from a solid surface. In Chapter 1 we presented a mathematical model for

these problems built in terms of the Stokes equations with contact boundary conditions and

free boundary equations. This chapter concentrates on the design of numerical methods for

this coupled problem. More specifically, we propose a class of numerical methods for solving

this system which decouples these two sets of equations in time, resulting in explicit time-

stepping schemes for the discrete free boundary equations. In these methods, the contact

boundary conditions are enforced by rewriting the Stokes system as a discrete variational

inequality. Moreover, we identify certain properties of the discrete system which establish

an interdependence between the discrete Stokes and free boundary equations that turns out

to be fundamental when constructing accurate and robust schemes. Finally, we propose a

concrete numerical scheme which belongs to this general class with which we simulate the

glaciological applications in Chapters 4 and 5. Our choice of scheme is justified by a series

of numerical results included at the end of this chapter that compare it to other methods.

Practically all numerical computations of viscous contact problems which solve the full

Stokes equations have been carried out with the solver in Elmer/Ice [38]. These include

computations of subglacial cavity problems [36, 50, 49] and of marine ice sheets [24, 28].

These works, which have pioneered the numerical resolution of viscous contact problems,

do not appear to recognize the variational structure of the Stokes equations with contact

boundary conditions. Additionally, some of these results appear to be under-resolved, see

for example Figures 2 and 3 in [36]. These points have been one of the main motivations

for developing the novel framework presented here, which attempts to exploit the structure

of the Stokes variational inequality. To the knowledge of the author, the only numerical
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results for viscous contact solvers that have not been computed with Elmer/Ice are those

of [97], in which a penalty method for solving the Stokes variational inequality is proposed.

After introducing the notation required for describing our numerical setup in Section 2.1,

we present the general class of numerical schemes in Section 2.2 that decouple the Stokes and

free boundary equations in time. Then, in Section 2.3, we present the main numerical scheme

that we work with in the remaining chapters of this document. In Section 2.3, we write a

self-contained description of the main numerical scheme that avoids the abstract framework

and notation from Section 2.2, for the convenience of readers who might be unfamiliar

with a functional analytic approach to partial differential equations and the finite element

method. In Section 2.4, we conclude this chapter with a comparison of numerical schemes

that fall within the general class presented in Section 2.2. These comparisons demonstrate

the importance of discretising the Stokes and free boundary equations in the interdependent

way which we describe in Section 2.2.2 and justify the use of the main numerical scheme

from Section 2.3 throughout the document.

2.1 Notation for the discrete problem and assumptions

In viscous contact problems, we consider a time dependent free boundary equation coupled

to a variational inequality posed on an evolving domain. Its discretisation requires a parti-

tion of a given time interval [0, T ] into NT subintervals. In this work, we consider uniform

partitions with subintervals of duration ∆t = T/NT , resulting in a finite number of time

steps tk = k∆t for k = 0, 1, ..., NT . For simplicity, we assume that the domain Ωk at a time

step tk is polygonal. We denote the upper and lower boundaries by θkh and skh, such that

Ωk =
{

(x, y) ∈ R2 : 0 < x < L, θkh(x) < y < skh(x)
}
. (2.1)

The spatial discretisation of the Stokes equations is built in terms of a triangulation T kh
of Ωk (a definition of a triangulation of a domain can be found in [11, Definition 3.3.11]).

Since the domain is evolving from one time step to the next, a new mesh must be generated

at each time step. We do this by deforming the mesh with an algorithm that we describe

in the next section. With this algorithm, the mesh connectivity remains unchanged and we

only displace the vertices in the vertical direction. We note that under large deformations,

remeshing is necessary in order to avoid an excessive deterioration of the mesh; however, in

the problems considered in this document, such issues have not arisen.

As a result of the invariance in mesh connectivity, the numbers of vertices M θ + 1 and

M s + 1 along the lower and upper boundaries, respectively, remain unchanged. Moreover,

since we only displace the mesh vertices in the vertical direction, the x coordinates of these

points are also constant in time. We denote these points by (xθi , θ
k
i ) for i = 0, 1, ...,M θ and
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(xθi−1, θi−1)

(xsj−1, sj−1)

(xθi , θi)

(xsj , sj)

ei

ni

(xθi+1, θi+1)

(xsj+1, sj+1)

ei+1

ni+1

Figure 2.1: Notation and ordering for the nodes, edges, and the normal unit vectors along
the top and lower boundaries of the domain.

(xsi , s
k
i ) for i = 0, 1, ...,M s, ordered from left to right as in Figure 2.1. Since we assume

the domain Ωk to be polygonal, the functions θkh and skh belong to the following spaces of

continuous piecewise linear functions:

U θh =
{
χh ∈ C([0, L]) : χh|[xθi ,xθi+1] ∈ P1([xθi , x

θ
i+1]) for i = 0, 1, ...,M θ − 1

}
, (2.2a)

U sh =
{
χh ∈ C([0, L]) : χh|[xsi ,xsi+1] ∈ P1([xsi , x

s
i+1]) for i = 0, 1, ...,M s − 1

}
. (2.2b)

For simplicity, we also assume that the bedrock b is a continuous piecewise linear function

in U θh .

At each time step tk, the top and lower boundaries are denoted by Γkt and Γkb , respec-

tively. At the discrete level, the attached and detached regions of the lower boundaries,

denoted by Γka and Γkd respectively, are determined by a contact criterion which is specific

to the numerical scheme and therefore will not coincide with the definitions given in (1.7)

in general. We denote the set of vertices and edges of a mesh Th by V(Th) and E(Th),

respectively. We assume that every edge e ∈ E(T kh ) along the lower boundary Γkb is either

contained in Γka or in Γkd; we write E(T kh ,Γka) for the edges in Γka and E(T kh ,Γkd) for those in

Γkd. We denote the edge on Γkb that connects the point (xθi , θ
k
i ) with (xθi+1, θ

k
i+1) by ei for

i = 0, 1, ...,M θ − 1.

The superscript used in the notation above to indicate the time step is removed whenever

references to a particular time step are not necessary for the definition of a mathematical

object such as a space or an operator. For example, in Section 2.2.1, we introduce the

discrete variational inequality for an arbitrary domain Ω and triangulation Th. Although in

practice these will coincide with a domain Ωk and triangulation T kh at time tk, the definition

of the discrete variational inequality does not require this information.
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Table 2.1: Discrete normal trace operators used in this section. For each operator, we
indicate the subregion of the boundary ∂Ω onto which a vector field is mapped and the
system in which this operator is used.

Symbol Region Use

γh Γb Discrete variational inequality (2.8)
γah Γa Discrete variational inequality (2.8)
ζsh Γt Discrete upper free boundary equation (2.12b)
ζθh Γb Discrete lower free boundary equation(2.12a)

Figure 2.2: Example of an application of the mesh deformation algorithm (2.3). The initial
configuration, shown on the left, corresponds with a uniform rectangular mesh. We then
deform it by perturbing the nodes of the upper and lower surfaces with the sinusoidal and
parabolic functions which we plot with a dashed line. The deformed mesh that results from
the application of the algorithm is then plotted to the right.

2.2 A general class of numerical schemes for viscous contact
problems

In this section we present a class of schemes for solving viscous contact problems numerically.

The general form that these schemes take is summarised in Algorithm 1. We restrict our

attention to schemes that decouple the Stokes and free boundary equations in time. The

Stokes equations are solved with the finite element method and the free boundary equations

with an explicit finite difference scheme. Below, we introduce the discrete systems, which

are built in terms of the finite element pair Vh ×Qh for the velocity and pressure solutions

and the operators γh, ζθh and ζsh, which represent discrete analogues of the normal trace

operator. The discrete trace operators used throughout this section are listed in Table 2.1

for the convenience of the reader. These spaces and operators are defined for a given domain

Ω with a triangulation Th. However, this dependence is not specified in the notation in order

to keep it simple and readable.

The final ingredients of the numerical scheme are a contact criterion C and a mesh

deformation algorithm D. The contact criterion C takes as input a lower boundary θh and

bedrock b in U θh , together with a contact tolerance tol > 0, and returns the attached region

Γa ⊂ Γb of the lower boundary. Finally, for a domain Ωk defined in terms of θkh and skh at
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Algorithm 1: A general algorithm for viscous contact problems

Set the bedrock function b ;
Set an initial domain Ω0 with upper and lower surfaces (s0

h, θ
0
h) ;

Triangulate the domain with T 0
h ;

Set contact tolerance tol > 0;
for k = 0, 1, 2, . . . do

Set Γka and Γkd according to the contact criterion C;

Compute a velocity solution ukh ∈ Vh to the discrete variational inequality (2.8)
posed on Ωk with attached region Γka;

Compute θk+1
h and sk+1

h with the discrete free boundary equation (2.12) ;

If θk+1
i − b(xi) < tol, set θk+1

i = b(xi);

If θk+1
i ≥ sk+1

i , raise error;

Compute T k+1
h with the mesh deformation algorithm D;

a time step tk, a triangulation of this domain T kh is generated according to an operator D.

In this document, the operator D we use builds T kh by performing a linear displacement in

the vertical direction of the vertices of an initial mesh T 0
h , which triangulates the domain

Ω0 with surfaces θ0
h and s0

h. In particular, given the points (x0, y0) ∈ V(T 0
h ), we compute

the point (xk, yk) ∈ R2 with

xk = x0, (2.3a)

yk = θkh(xk) +
skh(xk)− θkh(xk)

s0
h(xk)− θ0

h(xk)

(
y0 − θ0

h(xk)
)
. (2.3b)

The mesh T kh is then constructed by preserving the topology of T 0
h and defining V(T kh )

in terms of the points {(xk, yk)} computed with the equations above. To illustrate the

mesh deformation algorithm, we present an example in Figure 2.2. Here, we take a uniform

rectangular mesh as the initial mesh and we deform it by perturbing the upper and lower

surfaces with a sinusoidal and parabolic functions, respectively. We can observe that the

mesh topology remains unchanged, as do the horizontal coordinates of the mesh nodes.

2.2.1 The discrete variational inequality

The weak formulation of the Stokes equations with contact boundary conditions (1.11) is

equivalent to a variational inequality, as explained in Section 1.4. The variational inequal-

ities A-C introduced in Chapter 1 are three particular instances that arise in the viscous

contact problems we consider. The solver for these variational inequalities is built in terms

of a finite element pair Vh × Qh in which the discrete velocity and pressure are sought.

Additionally, we introduce a discrete counterpart of the normal trace operator that maps a

velocity field vh to its discrete normal component along the lower boundary Γb of a domain
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Ω. We denote this discrete normal trace operator by γh : Vh → Σh, where Σh ⊂ L2(Γb) is

the range of γh and is a space of discrete functions defined along Γb. The pair Vh×Qh and

the operator γh are therefore the components from which we build a discrete variational

inequality.

The finite element space Vh × Qh for the velocity and pressure must be chosen such

that the pair is “inf-sup” stable with respect to the divergence operator, as specified in

Chapter 3. Several stable pairs with different properties are known to exist, see [10, 61]. In

this work, we take Vh×Qh to be the so-called Taylor-Hood pair, which was first introduced

in [99]. In this case, the velocity space is set equal to continuous piecewise quadratic vector

fields and the pressure space to continuous piecewise linear scalar fields:

Vh = {vh ∈ V : vh|c ∈ P2(c) ∀c ∈ Th} , (2.4a)

Qh = {qh ∈ Q : qh|c ∈ P1(c) ∀c ∈ Th} . (2.4b)

The space V in the definition of Vh above is a subset of W 1,r(Ω) to be specified for each

viscous contact problem. We choose this pair because it does not require an excessive

amount of degrees of freedom per cell to guarantee stability, the velocity space is conforming

in the sense that it is a subset of W 1,r(Ω), and it is easily implementable in Firedrake [83].

It should be noted that this pair is not exactly divergence-free; that is, at the discrete level

we do not enforce ∇ · uh = 0 in Ω when solving the discrete Stokes variational inequality,

but a weak version of this statement implicit in the variational inequality. This can have

negative consequences for the accuracy of the scheme [61].

Remark 2.1. A different finite element pair is considered Section 3.3 that is also stable,

conforming, and easily implementable. It is known as the P2P0 pair because the velocity is

a continuous piecewise quadratic function and the pressure is piecewise constant. Section 3.3

focuses on that scheme because having a piecewise constant pressure simplifies the analysis

of the finite element approximation of solutions to the discrete Stokes variational inequality.

The next step in the discretisation of the variational inequality is the definition of a

convex subset Kh of Vh in which the discrete velocity field is contained. This is carried out

by choosing the discrete normal trace operator γh : Vh → Σh. Different choices of γh lead

to different numerical schemes with very different properties, as shown in Section 2.4. On

the attached region Γa, we define the space Σa
h on Γa by restricting functions in Σh to Γa;

that is,

Σa
h = {ξh|Γa : ξh ∈ Σh} . (2.5)
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We then introduce the discrete normal trace operator onto Γa, defined by

γah : Vh → Σa
h, vh 7→ (γhvh)|Γa , (2.6)

and the discrete convex subset Kh ⊂ Vh given by

Kh = {vh ∈ Vh : γahvh ≤ 0} . (2.7)

This definition of the discrete convex set Kh indicates that a choice of discrete trace operator

γh essentially equates to a choice of discrete non-penetration condition. At the continuous

level, the non-penetration condition is given by u · n ≤ 0 on Γa and is one of the contact

conditions in (1.11). However, at the discrete level, it is not necessary to enforce this same

condition, although this can also be done, as in Scheme 5 below.

With the above definitions, we can now introduce the discrete variational inequality. The

specification of this variational equality requires a choice of viscous contact problem. Since

the subglacial cavity problem with Variational inequality B is taken as a reference problem

in Section 2.4 below, we present the discrete counterpart to this variational inequality: find

(uh, ph) ∈ Kh ×Qh such that

〈Aεuh −Bph − f,vh − uh〉V + 〈Bqh,uh〉V ≥ 0 ∀(vh, qh) ∈ Kh ×Qh, (2.8)

where the operator Aε : V → V ′ is defined in (1.19) and ε > 0 is the regularisation parameter

that should be introduced whenever r 6= 2.

From a computational point of view, the variational inequality (2.8) can be solved by

transforming it into a variational equality with a nonsmooth residual. One can then apply

the semi-smooth Newton method to solve the resulting nonlinear system. In this chapter, we

consider two methods for writing the variational inequality as an equality; a more complete

overview can be found in [48, 100].

One approach consists in approximating solutions to the discrete variational inequality

(2.8) with a penalty method by solving the following nonlinear variational equation: find

(uδh, p
δ
h) ∈ Vh ×Qh such that

〈Auδh −Bpδh +
1

δ
Πuδh − f,vh〉V + 〈Bqh,uh〉V = 0 ∀(vh, qh) ∈ Vh ×Qh, (2.9)

where the penalty operator Π : Vh → V ′h is given by

〈Πuh,vh〉V =

∫
Γa

(γhuh + |γhuh|) γhvh ds, (2.10)

and δ > 0 is the penalty parameter. As δ → 0, we can expect (uδh, p
δ
h)→ (uh, ph) in V ×Q,

where (uh, ph) ∈ Kh ×Qh is the solution to the discrete variational inequality (2.8).
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A second way of solving the discrete variational inequality is by rewriting it as a mixed

problem with a Lagrange multiplier which represents the effective normal stresses σnn + pw

on Γa. The mixed formulation requires a cone Λh ⊂ (Σa
h)′, which contains our choice of

negative elements in the dual of Σa
h. The problem then takes the following form: find

(uh, ph, λh) ∈ Vh ×Qh × Λh such that

〈Auh −Bph − f,vh〉V − 〈λh, γanvh〉Σah = 0 ∀vh ∈ Vh, (2.11a)

〈Bqh,uh〉V = 0 ∀qh ∈ Qh, (2.11b)

〈µh − λh, γanuh〉Σah ≥ 0 ∀µh ∈ Λh. (2.11c)

In the next chapter, in Section 3.2, we consider a class of numerical methods for solving

the discrete variational inequality where Λh consists of the point-wise negative functions in

Σa
h and the duality pairing in Σa

h is given by the L2(Γa) inner product.

We still need to rewrite (2.11c) as an equality, and this partly depends on the form

that Λh and the duality pairing 〈·, ·〉Σah take. In general this involves rewriting (2.11c) as a

nonlinear equation, as explained in [54]. In Section 3.3.2, we describe how this can be done

when Σh is given by piecewise constant functions.

2.2.2 The discrete free boundary equation

The numerical solution of the free boundary equations (1.12) is carried out with a class

of explicit finite difference schemes built in terms of two additional normal trace operators

ζθh : Vh → U θh and ζsh : Vh → U sh for the lower and upper surfaces of the ice sheet, see (2.2)

for the definition of the spaces U θh and U sh. Normal trace operators are used because the free

boundary equations (1.12) can be written in terms of the normal velocity at the continuous

level, as explained in Remark 1.1.

Given a velocity field uh ∈ Vh, the lower and upper surfaces (θkh, s
k
h) ∈ U θh × U sh at time

tk, and a time step ∆t > 0, the discrete free boundary equations for (θk+1
h , sk+1

h ) ∈ U θh ×U sh
are given by

θk+1
i = θki −∆t

√√√√1 +

(
θki − θki−1

xθi − xθi−1

)2(
ζθhuh

)
i

for i = 1, 2, ...,M θ, (2.12a)

sk+1
i = ski + ∆t

√√√√1 +

(
ski − ski−1

xsi − xsi−1

)2(
ζshuh

)
i

for i = 1, 2, ...,M s. (2.12b)

In the equations above, the subscript i refers to the values of functions in U θh or U sh at

the nodes xθi or xsi . The derivative inside the square root is approximated by a backward
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difference approximation to keep the general scheme (2.12) coherent with the upwinding

schemes presented in Sections 2.3 and 2.4 below.

It is important to note that the free boundary equations (1.12) are advection equations.

In the viscous contact problems considered in this work, there is always a dominating

direction of flow from left to right. As a result, its discrete counterparts are susceptible to

instabilities characteristic of advection equations, as described in standard textbooks [69].

This should be taken into account when designing the normal trace operators ζθh and ζsh. In

the schemes we present below, we achieve this stabilisation by taking values of the normal

velocity upstream of a node. As a result, the discrete free boundary equations considered

are essentially upwinding methods for advection equations [69, Section 10.4]. In Scheme 3

below, we demonstrate that this stabilisation is necessary by showing how a numerical result

deteriorates without it. In [37], this stabilisation is achieved by adding an additional term

to the discrete free boundary equations that acts as a stabiliser.

It must also be taken into account that, since the free boundary equations are solved in

conjunction with the discrete Stokes variational inequality, the trace operators γh and ζθh

should be designed in a coherent manner to avoid the detachment of the lower boundary from

the bedrock due to numerical errors. This coherence is referred to as a contact consistency

condition between γh and ζθh and can be defined more precisely as follows: consider a

situation at a given time step tk in which the ice is attached to the bedrock at two adjacent

edges {ei, ei+1} ⊂ E(T kh ,Γka); that is, θkh = b on ei ∪ ei+1. Moreover, assume that at that

instant in time, once the discrete Stokes variational inequality is solved on Ωk, the normal

trace of the resulting velocity field ukh is zero along these edges; i.e. we have that γhu
k
h = 0

on ei ∪ ei+1. Then, we say that the operators γh and ζθh are contact-consistent if

γhu
k
h = 0 ei ∪ ei+1 =⇒ ζθhu

k
h = 0 on xθi . (2.13)

In other words, if γhuh is zero in the neighborhood of an attached vertex, we have that

ζθhu
k
h is zero on that vertex, since (xθi , θ

k
i ) is the vertex in between ei and ei+1.

The numerical schemes presented below in Section 2.4 give examples of different ways

in which this condition can be satisfied. Moreover, in that section we demonstrate the

importance of contact consistency with numerical examples which expose the inaccuracy of

Scheme 4, a non contact-consistent scheme.

2.3 A numerical scheme for solving viscous contact problems

The numerical scheme for viscous contact problems used throughout this document is pre-

sented here. In order to make this section self-contained, we first describe the scheme with
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a simple notation that avoids the technicalities introduced in Section 2.2 for the generalised

framework.

Since this scheme falls into the class of methods for solving viscous contact problems

introduced in Section 2.2, Algorithm 1 is a sketch of the main elements of the numerical

scheme. Of the steps to be carried out at each time step tk, the first three (involving

the contact criterion, the discrete variational inequality, and the discrete free boundary

equation) need to be specified in detail.

• The contact criterion. This criterion establishes what subset of the lower surface of

the domain Ωk is attached to the bedrock and which is detached. Given a bedrock b,

a cavity roof θkh, and a tolerance tol > 0, we define the attached and detached regions

Γka and Γkd as follows: for each edge ei, where i = 0, 1, ...,M θ − 1,

ei is contained in Γka if and only if θki − b(xi) < tol. (2.14)

That is, an edge is considered to be attached to the bedrock if and only if the node

immediately downstream is close enough to the bed, in accordance with the upwinding

scheme we present below for the discrete free boundary equation. The ordering of the

edges ei and nodes (xi, θ
k
i ) follows the convention shown in Figure 2.1.

• Discrete variational inequality. For concreteness, we focus on Variational inequal-

ity B here, although the extension to Variational inequalities A and C is straightfor-

ward. Given a subset Γka of the boundary attached to the bedrock and a triangulation

T kh of Ωk, in terms of which we define the velocity-pressure finite element pair Vh×Qh,

we define the discrete convex subset Kh ⊂ Vh by

Kh =

{
vh ∈ Vh :

∫
e
vh · nds ≤ 0 ∀e ∈ E(T kh ,Γka)

}
. (2.15)

We then solve the following variational inequality: find (ukh, p
k
h) ∈ Kh ×Qh such that

〈Aεukh −Bpkh − f,vh − ukh〉V + 〈Bqh,ukh〉V ≥ 0 ∀(vh, qh) ∈ Kh ×Qh, (2.16)

where ε > 0 is a regularisation parameter to be set whenever n > 1 in Glen’s law

(1.3). We solve this variational inequality with the Lagrange multiplier method, as

explained in Chapter 3.

• Discrete free boundary equation. Once we have the velocity field ukh, we solve

the discrete free boundary equation

θk+1
i = θki −∆t

√√√√1 +

(
θki − θki−1

xθi − xθi−1

)2 [
1

|ei|

∫
ei

ukh · nds

]
for i = 1, 2, ...,M θ. (2.17)
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Therefore, the surface at the node on xθi is evolved with the average value of unh ·n along

the edge located immediately upstream, see Figure 2.1. This results in an upwinding

scheme that is clearly contact-consistent in the sense of (2.13). If necessary, the

discrete free boundary equation for the upper surface sk+1
h is solved in the same way.

Remark 2.2. Given the definitions in (1.7), perhaps a more natural contact criterion would

mark an edge ei along the lower boundary as attached if and only if the edge was approxi-

mately on the bedrock b. In other words, for ei ∈ E(Th,Γb), we would write ei ∈ E(Th,Γa)
if and only if θi − b(xi) < tol and θi+1 − b(xi+1) < tol. However, we discarded this choice

of contact criterion because, when computing steady states for the subglacial cavities in

Chapter 4 with it, we found that the numerical approximation would not reach a steady

state. Instead, it would settle into a periodic mode in which a node along the upstream-

facing side of the obstacle was detaching itself from the bedrock and then reattaching itself

to it. This situation does not occur with (2.14) for the subglacial cavitation problem.

Remark 2.3. In terms of the abstract notation used in Section 2.2 for the general algorithm,

in this scheme the normal trace operator γh maps vector fields vh ∈ Vh onto piecewise

constant functions on Γb, that is,

γhvh|e =
1

|e|

∫
e
v · nds ∀e ∈ E(Th,Γb). (2.18)

Hence, we set Σh equal to the space of piecewise constant functions on Γb,

Σh =
{
µh ∈ L2(Γb) : µh|e ∈ P0(e) ∀e ∈ E(Th,Γb)

}
. (2.19)

The normal trace operator ζθh along the lower boundary is defined by setting

(ζθhvh)i = γhvh|ei , (2.20)

i.e. the velocity at each node on xθi is taken from the edge located immediately upstream,

see Figure 2.1. The trace operator ζsh on the upper surface is defined in the same way: the

normal velocity at each node on xsi is taken as the edge-wise averaged normal velocity along

the edge immediately upstream.

As a result of the free boundary equations (1.12), the total flux of mass through the free

surfaces is regulated by the time derivative of those free surfaces; for example, for the lower

boundary Γb we find that ∫ L

0

∂θ

∂t
dx =

∫
Γb

u · nds. (2.21)
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An important consideration is whether an equality analogous to (2.21) holds at the discrete

level. By (2.17), we find that

∫
Γb

ukh · nds =
Mθ∑
i=1

∫
ei

ukh · nds =
1

∆t

Mθ∑
i=1

(
θk+1
i − θki

)(
xθi − xθi−1

)
. (2.22)

On the other hand, since θk+1
h − θkh ∈ U θh is a piecewise linear function, we can compute its

integral from x = 0 to x = L. For concreteness, we will assume the domain is periodic in

the horizontal direction, as in the subglacial cavity problem, and therefore θk0 = θk
Mθ . As a

result, we find that

∫ L

0

θk+1
h − θkh

∆t
dx =

1

2∆t

Mθ∑
i=1

[
θk+1
i + θk+1

i−1 −
(
θki + θki−1

)](
xθi − xθi−1

)

=
1

2∆t

[Mθ−1∑
i=1

(
θk+1
i − θki

)(
∆xθi + ∆xθi+1

)
+
(
θk+1
Mθ − θkMθ

)(
∆xθ1 + ∆xθMθ

)]
,

(2.23)

where we have introduced the grid spacing ∆xθi = xθi −xθi−1. If the grid spacing is constant

and ∆xθi = ∆x for all i = 1, ...,M θ, we find that∫ L

0

θk+1
h − θkh

∆t
dx =

∫
Γb

ukh · nds, (2.24)

indicating that mass is not added or removed when the discrete free boundaries are evolved.

However, mass is artificially lost whenever a free boundary node penetrates into the

bedrock (since the discrete contact boundary conditions hold up to machine precision, this

can only happen whenever the lower free boundary reattaches to the bedrock). This occurs

because, as indicated in Algorithm 1, nodes that penetrate into the bedrock are moved

upwards and set to the surface of the bedrock. For sufficiently small time steps, we expect

this loss to be negligible.

2.4 Examples of other schemes and numerical results

We conclude this chapter with a series of numerical results computed with seven different

schemes that fall within the class of methods presented in Section 2.2. With these results we

wish to convince the reader of the utility of the abstract framework introduced in Section

2.2 and of the accuracy and robustness of the particular scheme presented in Section 2.3.

Moreover, these tests will allow us to justify the importance of the two notions of contact

consistency and stabilisation introduced in Section 2.2.1 when discussing the discretisation

of the free boundary equation.
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Two numerical tests, which we present below, are performed for each of the schemes.

These tests are representative of the kind of computations which are carried out in the

following chapters of this document when finding steady configurations.

Numerical test 1 (Subglacial cavity problem). The first test simulates the formation of

a subglacial cavity and therefore corresponds with the configuration presented in Section

1.6. Following the setup presented in Chapter 4, we work with non-dimensional variables.

This effectively corresponds to setting the length and height of the domain to L = 1 and

height H = 1, and the fluidity factor in Glen’s law to A = 0.5. The bed is given by a

sinusoidal function of amplitude rb = 0.08. We build a uniform triangular mesh over a

square with 16 elements along the horizontal direction and 3 along the vertical, with each

of the resulting grid squares crossed by a diagonal from bottom right to top left. Then,

we deform the square into the initial configuration with the mesh deformation algorithm

D. For the boundary conditions, we prescribe the shear stress τb = 0.4 and the effective

pressure pi − pw = 1 on the top boundary (note that the problem only depends on the

effective pressure, not on the individual values for the overburden and water pressures, see

Section 4.2.2). We then evolve the cavity over 100 time steps of duration ∆t = 0.01 from

an initial state in which the cavity is fully attached state (θ0(x) = b(x) for all x ∈ [0, L]).

We consider a Newtonian flow here and set n = 1 in Glen’s law.

Numerical test 2 (Marine ice sheet problem). For the second numerical test, we solve

the marine ice sheet problem presented in Section 1.7. More concretely, we follow the setup

presented in Chapter 5, where a uniform thickness slab of ice flows down an inclined bedrock

and into the sea, where it goes afloat. We consider an initial geometry given by a uniform

thickness marine ice sheet whose shelf floats according to Archimedes’ principle. We set the

bedrock angle to 1◦ and the length of the domain to 40 km, such that the bed height to the

far left of the domain is 200 m. As in the previous test, we set n = 1 and A = 10−13 Pa−1 s−1.

The friction coefficient is C = 1011 Pa m−1 s−1. The thickness of the incoming slab of ice

is H = 200 m. We triangulate the domain by building a uniform triangular mesh over a

rectangle of length L and height H with 400 elements along the horizontal direction and 4

along the vertical, which we then deform into the initial configuration with the algorithm

D. Just as before, the triangulation is built by crossing each grid square with a diagonal

traversing it from bottom right to top left. We set the time steps to 106 s and we evolve the

ice over 500 steps.

We now describe the seven numerical schemes used to compute these tests. In order to

facilitate the distinction of the different schemes, we denote these by chaining abbreviations

of the method used to solve the discrete variational inequality numerically and the forms of
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the discrete trace operators γh and ζθh. For example, the scheme presented in Section 2.3 is

referred to by “LMAvgUp” because we solve the variational inequality with the Lagrange

multiplier method, the operator γh takes the average edge-wise value of uh · n and the

operator ζθh effectively introduces upwinding into the discrete free boundary equation. When

describing a scheme, we only give the definition of the discrete trace operator ζθh on the

lower boundary, omitting that of ζsh to shorten the characterisation of the schemes; where

necessary, the operator ζsh is defined analogously to ζθh. We note that the tolerance used in

the contact criterion is set to tol = 10−9 in all but schemes 4 and 5.

Scheme 1 (LMAvgUp). This is the main scheme used in this document for solving viscous

contact problems, which we present in Section 2.3 above in more detail. The discrete normal

trace operator γh returns the edge-wise average value of vh · n, that is,

γhvh|e =
1

|e|

∫
e
v · nds ∀e ∈ E(Th,Γb), (2.25)

and therefore Σh is given by the set of piecewise constant functions on Γb. The normal trace

operator ζθh at each node is given by the edge-wise averaged normal velocity along the edge

immediately upstream. For the lower boundary,

(ζθhvh)i = γhvh|ei . (2.26)

As a result, the scheme for the free boundary equation is stabilised and is contact-consistent.

The discrete variational inequality is solved with a Lagrange multiplier method.

The next three schemes are small variations of the main scheme, Scheme 1. We present

these schemes to give an understanding of the effects of penalisation of the discrete vari-

ational inequality and stabilisation and contact consistency of the discrete free boundary

equation.

Scheme 2 (PenAvgUp). As explained in Section 2.2.1, the discrete variational inequality

can be rewritten as a variational equality either by introducing a penalisation term or

a Lagrange multiplier. In contrast to Scheme 1, which uses a Lagrange multiplier, in

this scheme we solve the variational inequality with a penalisation term. Therefore, the

variational inequality takes the form of equation (2.9), and a penalty parameter δ > 0 must

be chosen. For Numerical test 1, we set δ = 10−6, and for 2 we have δ = 10−14.

Scheme 3 (LMAvgAvg). In order to illustrate the importance of upwinding, this numerical

scheme is identical to Scheme 1 with the only difference that the normal trace operator ζθh at

each node takes the average value of the velocities on adjacent edges, as opposed to taking
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the velocity from the edge immediately upstream. For the lower boundary, at each node

(xθi , θi), the operator ζθh takes the value

(ζθhvh)i =
1

2

(
γhvh|ei + γhvh|ei+1

)
. (2.27)

As a result, the discrete free boundary equation does not contain any upwinding.

Scheme 4 (LMAvgMP). We now build a scheme that is not contact-consistent in the sense

of (2.13). To do this, we take Scheme 1 and only modify the normal trace operator ζθh. For

a vector field vh ∈ Vh and for a node (xθi , θi) along Γb, instead of taking the edge-wise

average values of v ·n along ei ∈ E(Th,Γb), we now take the values of v ·n at the midpoint

xmi ∈ R2 of ei; that is,

(ζθhvh)i = (vh · n)(xmi ). (2.28)

Note that this scheme is not contact-consistent because
∫
ei∪ei+1

v ·nds = 0 does not imply

that (vh · n)(xmi ) = 0. However, the scheme does implement a form of upwinding because

for each node we take the values of the normal velocity at the midpoint located immediately

upstream. A consequence of this lack of contact consistency is that, due to numerical errors,

the whole of the lower boundary quickly detaches from the bedrock. In order to avoid total

detachment and the subsequent breakdown of the computations, we have to increase the

contact criterion tolerance tol. For Numerical test 1, we set tol = 10−3, and tol = 10−1

for 2.

We conclude the list of schemes with an example of a scheme which contains what

is arguably the most natural choice for formulating the discrete variational inequality

(Scheme 5), together with two variations on a scheme with a more exotic choice of dis-

crete normal trace operator γh.

Scheme 5 (PenPWMP). A natural way of solving the discrete variational inequality (2.8)

is by defining Kh = K ∩ Vh. In this case, we have that

γh : vh 7→ (vh · n)|Γb (2.29)

and

Σh = {(vh · n)|Γb : vh ∈ Vh} . (2.30)

Therefore, the discrete normal trace operator coincides with the standard normal trace

operator vh 7→ vh · n that assigns a vector field with its the normal component along

the boundary. This corresponds with the approach taken in [97]. The discrete variational
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inequality can be approximately solved with the penalty method, as explained in Section

2.3. In this case, for a penalty parameter δ > 0, we solve the nonlinear variational equation

(2.9) with the penalty operator Π : Vh → V ′h given by (2.10), with γh defined by (2.29). The

free boundary equation is discretised in a stable and contact-consistent way as follows: let

xmi ∈ R2 denote the midpoint along the edge ei ∈ E(Th,Γb) and, as in Scheme 4, define the

trace operator ζθh by

(ζθhvh)i = (vh · n)(xmi ). (2.31)

In this way, the velocity at each node (xθi , θ
k
h) is taken from the midpoint immediately

upstream. For a given tolerance tol > 0, we use the contact criterion (2.14). As indicated

below, when solving Numerical test 1 (the subglacial cavity problem), we find that the

normal velocity ζθh is not as accurate as expected. A consequence of this is that, unless the

tolerance for the contact criterion is increased, total detachment will occur within a few time

steps and the computation will collapse. For this reason, and only when solving Numerical

test 1, we set tol = 10−3. The penalty parameter δ is set to δ = 10−6 for Numerical test 1

and δ = 10−14 for Numerical test 2.

Scheme 6 (PenUpUp). In the previous numerical schemes, stabilisation of the free bound-

ary equations is achieved by taking the values of the normal velocity located upstream of a

node. We can also build a stable scheme by working from the standard upwinding scheme

for the free boundary equation (1.12b), given by

θk+1
i = θki −∆t

(
ui
θki − θki−1

xθi − xθi−1

− wi

)
for i = 1, 2, ...,M θ, (2.32)

where we use the notation uh(xθi , θ
k
i ) = (ui, wi). In terms of the framework presented in

Section 2.2, a contact-consistent scheme can be built by setting Σh equal to the set of

piecewise constant functions on Γb as in (2.19). Then, if we set

γhuh|ei =
1√√√√1 +

(
θki − θki−1

xθi − xθi−1

)2

(
ui
θki − θki−1

xθi − xθi−1

− wi

)
(2.33)

and

(ζθhuh)i = γhuh|ei (2.34)

for i = 1, 2, ...,M θ, we see that we obtain a contact-consistent algorithm and we recover

(2.32). The discrete variational inequality can be solved with the penalty method by for-

mulating (2.9) with the penalty operator given by (2.10), with γh defined as in (2.33). We
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complete the numerical scheme by using the contact criterion from Section 2.3, given by

(2.14). We solve the Numerical test 1 with δ = 10−6 and 2 with δ = 10−14.

Scheme 7 (PenUpUp2). The numerical results below suggest that while Scheme 6 performs

excellently on the subglacial cavity problem (Numerical test 1), it is unable to solve the

marine ice sheet problem (Numerical test 2). Interestingly, a small modification to Scheme 6

improves the method substantially for computing the evolution of the marine ice sheet, but

deteriorates its effectiveness for the subglacial cavity problem. This modification is exclusive

to the definition of γh, and leaves the form of ζθh introduced in Scheme 6 untouched. What

we do is enrich the space Σh with respect to Scheme 6, setting

Σh = {µh ∈ C(Γb) : µh|e ∈ P2(e) ∀e ∈ E(Th,Γb)} , (2.35)

and, for the nodes (xi, θi) and the midpoints xmi of the edge ei,

(γhvh)(xi, θi) =
1√√√√1 +

(
θki − θki−1

xθi − xθi−1

)2

(
ui
θki − θki−1

xθi − xθi−1

− wi

)
(2.36a)

(γhvh)(xmi ) = (vh · n)(xmi ). (2.36b)

In short, this scheme corresponds with Scheme 6 with the difference that instead of only

penalising the terms (2.36a) of γhvh, we also penalise the midpoint terms (2.36b). Regarding

the penalisation parameter δ, we set δ = 10−6 for Numerical test 1 and δ = 10−16 for 2.

Figures 2.3 and 2.4 illustrate the numerical computations for Numerical tests 1 and 2,

respectively, performed with Schemes 1 to 7. For each test case and scheme, we present

the ice geometry (in blue) and the discrete normal trace operator ζθhuh (in red) at three

instants in time. Of all the computations presented in Figures 2.3 and 2.4, those obtained

with Scheme 1 (LMAvgUp) can be assumed to be “correct”. In Chapters 4 and 5, we offer

several comparisons with analytical models that allow us to validate our computations with

Scheme 1. In fact, Schemes 1 and 2, its equivalent counterpart with the penalty method,

are the only schemes capable of solving both numerical tests accurately. For this reason,

we use it throughout the rest of this document to compute the viscous contact problems we

consider.

Scheme 5 (PenPWMP), which is arguably the most straightforward way of solving the

viscous contact problem, is unable to solve the subglacial cavity problem (Figure 2.3), but

performs excellently on the marine ice sheet problem (Figure 2.4). As already mentioned,

a very similar scheme to Scheme 5, based on the discrete variational inequality formulated

with γhuh = uh · n and solved with the penalty method, is used in [97] to simulate the
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Figure 2.3: Numerical results for the subglacial cavitation problem (Numerical test 1)
computed with Schemes 1 to 7. For this test case, we initially set the ice to be fully
attached to the bedrock and we compute its detachment and the formation of a subglacial
cavity. In these plots, we show the lower ice surface in blue and the discrete normal trace
operator ζθhuh in red at three time steps for each scheme.
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Figure 2.4: Numerical results for the marine ice sheet problem (Numerical test 2) computed
with Schemes 1 to 7. Starting from an initial condition where the ice has a constant
thickness, in this numerical test we let the ice sheet advance towards a steady state. As
a result, the ice shelf thins and the grounding line retreats. In these panels, we show the
upper and lower ice surfaces in blue and the discrete normal trace operator ζθhuh at the base
in red at three time steps for each scheme, with T = 5 × 108 s being the total simulation
time.
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response of a marine ice sheet to tidal cycles. Interestingly, when solving the subglacial

cavity problem with this scheme, the discrete normal velocity uh ·n along the cavity roof is

inaccurate. This can already be seen in Figure 2.3 at t = 0, where only four nodes of ζθhuh

for Scheme 5 are visibly zero, as opposed to the seven or eight nodes one sees for the other

schemes.

Schemes 6 (PenUpUp) and 7 (PenUpUp2) are two other examples of schemes that

perform well with one of the numerical tests, but not with the other. As we see in Figure 2.3,

the computations with Scheme 6 for the subglacial cavity problem are very similar to those

of Scheme 1. However, Scheme 6 fails to solve the marine ice sheet problem; Figure 2.4

shows that it is unable to enforce the contact conditions effectively. The results in Figure 2.4

for scheme 6 indicate that, due to the lack of enforcement of the non-penetration condition

ζθhuh ≤ 0 on Γa, the ice velocity along the upper surface ζshuh is directed towards the bed due

to the conservation of mass, leading to an almost complete disappearance of the grounded

ice component. For the marine ice sheet problem, this issue disappears with Scheme 7, which

is a slight variation of Scheme 6 where the normal velocity γhuh contains more degrees of

freedom. However, Scheme 7 is not capable of achieving the accuracy we find with Scheme

6 for the subglacial cavity problem. We remark that adding more degrees of freedom to

γhuh translates into penalising more degrees of freedom associated to uh · n. This point,

together with the previous one on Scheme 5 (PenPWMP), can be taken as an indication

that weaker penalisations (in the sense of including fewer degrees of freedom associated to

uh ·n) work better for the subglacial cavity problem, while stronger penalisations are more

effective for the marine ice sheet problem.

The numerical results with Schemes 3 (LMAvgAvg) and 4 (LMAvgMP) demonstrate

the importance of contact consistency between γh and ζθh, as defined in Section 2.2.2, and of

stabilising the free boundary equations. It is clear from Figures 2.3 and 2.4 that a centred

finite difference scheme for the free boundary equation, as effectively implemented in Scheme

3 and as opposed to a backwards finite difference scheme that introduces upwinding, leads

to highly deteriorated solutions. The same can be said of an non contact-consistent scheme

such as Scheme 4, especially for the marine ice sheet computations in Figure 2.4, where

detachment of the ice sheet along the grounded area eventually occurs. For the subglacial

cavity computations in Figure 2.3, the lack of contact consistency leads to less dramatic

results, although one can observe differences with respect to Scheme 1 when comparing the

values of ζθhuh at t = 1. We remind the reader that the computations with Scheme 4 required

an increase in the tolerance of the contact criterion with respect to Scheme 1 to avoid a

total detachment of the ice from the bedrock. This indicates that another consequence
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of dismissing the notion of contact consistency is a loss in robustness with respect to the

tolerance of the contact criterion.

Schemes 1 (LMAvgUp) and 2 (PenAvgUp) yield almost identical results. As explained in

Section 2.2.1, in the limit where δ → 0, the solutions computed with a penalty term and with

a Lagrange multiplier coincide. It remains to investigate whether the performance of other

schemes built in terms of the penalty method, such as Schemes 5 and 6, perform differently

when the discrete Stokes variational inequality is solved with a Lagrange multiplier.

2.5 Discussion

In the preceding sections of this chapter, we consider the numerical approximation of solu-

tions to viscous contact problems in the two-dimensional configuration set out in Chapter 1.

We present a general framework for solving viscous contact problems in Section 2.2 which

decouples the Stokes problem from the free boundary equations. In Section 2.2.1, the

Stokes problem is then reformulated as a discrete variational inequality that enforces a

discrete version of the contact boundary conditions. When discretising the free boundary

equation in Section 2.2.2, we identify two properties of the scheme (contact consistency of

the normal trace operator and stabilisation) that turn out to be very important for the

robustness and accuracy of numerical calculations. Satisfying these two properties poses

numerical challenges for solving viscous contact problems that set them apart from their

elastic counterparts.

With this general framework, we propose a numerical scheme in Section 2.3 that is used

throughout this document for solving viscous contact problems in a glaciological context.

We also propose six other schemes in Section 2.4 and compare them by computing two

numerical tests. These computations reveal the importance of the two properties of contact

consistency and stability of the discretisation mentioned in the previous paragraph. They

also justify our choice of main numerical scheme by comparing it to other candidates.

Two obvious extensions of this work that should be investigated in the future are the

construction of implicit schemes that couple the Stokes and free boundary problems and the

approximation of solutions to three dimensional viscous contact problems. Implicit methods

would probably remain stable under much higher time steps ∆t, reducing the computational

time for many tests. It would also pave the way for the computation of steady states by

solving the steady system directly with a nonlinear solver, such as a semi-smooth Newton

method [54], instead of advancing an initial state until a steady state is reached as we do in

Chapters 4 and 5. This has the potential of achieving dramatic reductions in computational

times, since advancing towards a steady state often involves the computation of oscillating

regimes that only dampen slowly, as we show in Section 4.3.1. Regarding three-dimensional
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viscous contact problems, we note that our stabilisation of the free boundary equations relies

heavily on the domain being two-dimensional. Therefore, an extension to three dimensions

would require an exploration of analogous stabilisations in the three dimensional case. We

note that three dimensional viscous contact problems have been performed in Elmer/Ice

[50, 49], so this implementation could be a starting point for future research.

Given the importance of Elmer/Ice in viscous contact problems, an appropriate under-

standing of this solver is an outstanding task left for future work. We note that a clear

understanding of how this solver enforces contact conditions is not clear from the references.

It would be of great interest to see how Elmer/Ice’s solver for viscous contact problems fits

into the general framework of Section 2.2 and how it compares to our solver from Section 2.3.

A final point that could be addressed in future work is the implementation of Lagrange

multiplier methods for schemes such as Schemes 5 to 7. The main difficulty here is that

either the space of Lagrange multipliers or the duality pairing in Σa
h become non-trivial.

For example, in Scheme 5, the space of Lagrange multipliers belongs to a space of piecewise

quadratic polynomials whose continuity from element to element depends on whether two

adjacent edges are co-linear or not. This creates difficulties when using Firedrake for the

implementation which should be considered carefully. Although they do not perform ex-

ceptionally well in the tests carried out above, it remains to investigate whether enforcing

the contact conditions with a Lagrange multiplier improves their performance. Perhaps the

issues we find when, for example, computing Numerical test 1 with Scheme 5 or Numeri-

cal test 2 with Scheme 6, no longer arise when the variational inequalities are solved with

Lagrange multipliers.
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Chapter 3

Analysis and approximation of the
Stokes variational inequality

The variational inequalities presented in Chapter 1 are amenable to a mathematical analysis

that establishes rigorous statements on the existence, uniqueness, and stability of solutions

and their finite element approximation. This chapter is dedicated to that analysis, and we

focus on Variational inequality C from Chapter 1 for the sake of concreteness and simplicity,

although most of the results we present here are extendable to Variational inequalities A and

B. With these analyses, we partially give a rigorous foundation to the numerical methods

from Chapter 2. Much of the content of this chapter has been published in [20].

The first part of this chapter, Section 3.1, is concerned with the continuous formulation of

the variational inequality. We start by determining the sense in which different formulations

of Variational inequality C are equivalent, including its formulation as a system of partial

differential equations with contact conditions (the strong formulation), as a minimisation

problem, and as a mixed problem with a Lagrange multiplier. This section concludes

with a proof on the conditions under which the variational inequality is well-posed. An

important property of the variational inequalities considered in this document is that, under

certain conditions, rigid body modes are present in the space of admissible velocities. As a

consequence, a property of differential operators called coercivity, which essentially states

that the operators grow rapidly towards the extremes of a space (see [27, Section 8.2]), is lost.

Thus, the variational inequalities become semicoercive. For this reason, a modification of a

classical result in the analysis of variational inequalities from [29] is required for establishing

the existence and uniqueness of solutions.

The second part of the chapter, constituted by Sections 3.2 and 3.3, is a theoretical

investigation of the approximation of solutions to the variational inequality when posed as

a mixed problem with a Lagrange multiplier. Section 3.2 considers an abstract discretisa-

tion in terms of a class of finite-dimensional subspaces. These discretisations fit into the
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framework presented in the previous chapter, in Section 2.2.1, for the discrete variational

inequality, although they are less general, as explained in Remark 3.3. Then, in Section 3.3,

we use the abstract framework from Section 3.2 to establish the convergence of a concrete

finite element approximation. Ideally, this concrete finite element scheme would have coin-

cided with the main numerical scheme for the variational inequality from Section 2.3, which

uses Taylor-Hood elements for the velocity-pressure pair. However, as explained in Re-

mark 3.7, certain complications arise when analysing this scheme which need to be studied

carefully in future work. Alternatively, we consider a scheme based on the P2P0 elements

for the velocity and pressure.

The theoretical tools used in this chapter are drawn from many different sources. The

Stokes variational inequalities we consider in this document are superficially similar to the

elastic contact problem with Signorini or unilateral boundary conditions, whose analysis

and discretisation is studied in [68, 48]. However, the variational inequality we study in this

chapter includes three substantial difficulties that must be addressed carefully: the presence

of rigid body modes in the space of admissible velocities, the nonlinear rheological law used

to model ice as a viscous fluid, and the nonlinearity of the friction boundary condition (1.36).

Two analytical studies in glaciology [90, 17] carry out a similar analysis to the one we

present in Section 3.1. One major difference is that the variational inequalities encountered

in these references arise due to Coulomb friction boundary conditions, as opposed to contact

boundary conditions. A consequence of this is that our minimisation problem is posed over

a convex set that is not a vector space in general. Therefore, a different approach based on

a proof from [29] must be taken to establish the existence and uniqueness of minimisers in

the presence of rigid modes, which we present in Section 3.1.4.

For the analysis of the discretised problem, we appeal to the literature on the finite

element approximation of elastic contact problems [13, 48, 23], in particular when these are

written as mixed problems with Lagrange multipliers [14, 18, 52, 8]. However, due to the

three difficulties stated in the previous paragraph, we require additional techniques from

other numerical studies. The nonlinearities introduced via the rheological power law and

the friction law can be handled with tools developed for analysing the finite element ap-

proximation of p-Laplacian and p-Stokes problems [5, 6, 22, 7, 55], as seen in Section 3.2.2.

Rigid modes in the space of admissible velocities render the variational inequality semico-

ercive. Although the finite element approximation of semicoercive variational inequalities

has been studied in the past [47, 96, 2], existing analyses use purely indirect arguments

which give very limited information on how different meshes and finite elements affect the

discretisation. Here, we present a novel constructive approach based on the use of a spe-

cially designed projection operator onto the subspace of rigid modes that satisfies a Korn
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type inequality, see (3.21). Error estimates are then obtained in Lemma 3.5 for the rigid

component of the velocity error by exploiting the fact that the dimension of the subspace

of rigid modes is at most one for Variational inequality C.

3.1 Analysis of the variational inequality

This section contains an analysis of Variational inequality C, presented in Chapter 1. In this

analysis, we first give rigorous statements which clarify the sense in which this variational

inequality is equivalent to the Stokes equations with contact boundary conditions (the

strong formulation). Moreover, we also show that it can be rewritten in terms of a Lagrange

multiplier (the mixed formulation) and as a minimisation problem. The mixed formulation

is used further on in this chapter to build a numerical scheme for solving the variational

inequality. On the other hand, reformulating the variational inequality as a minimisation

problem allows us to use techniques from the calculus of variations to establish under what

conditions we have a unique solution.

3.1.1 Strong formulation of the Stokes problem

The marine ice sheet problem under consideration in this chapter consists of a symmetric

ice dome resting on the continent and sliding into the ocean. This is the most common

configuration considered when studying marine ice sheets [89, 88, 24] and is generally used

as a benchmark test case [79]. We exploit the symmetry of the problem and only solve the

flow equations on the domain Ω ⊂ R2 which represents one half of the ice sheet, as seen in

Figure 1.2. We assume Ω to be connected and polygonal. The latter assumption is made to

simplify the analysis of the discrete problem considered in Section 3.3, but we expect the

essential results presented here to extend to domains with smooth enough boundaries.

As in Figure 1.2, the boundary of Ω is the closure of the disjoint union of the open sets

Γi, Γa, Γd, Γc, and Γt. The set Γi is the ice divide of the ice sheet, which is essentially its

symmetry axis. As such, it is a vertical surface on which we enforce the symmetry conditions

(1.38) with ui = 0 and σnt,i = 0. The sets Γa and Γi are the attached and detached regions

of the lower boundary, respectively. We assume each set to be the union of a finite number

of subsets, each open and connected with positive measure. On Γa we enforce the contact

conditions (1.11) and the nonlinear friction law (1.36). The regions Γt and Γc represent

the top surface of the ice sheet and its calving front, respectively. As such, they are both

assumed to be connected and of positive measure.
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The regions Γi, Γt, and Γc have stress boundary conditions, see (1.35), (1.37), and (1.39).

From an analytical point of view, it is helpful to define the surface

Γs = Γd ∪ Γt ∪ Γc (3.1)

and enforce the general condition σn = psn for some scalar field ps defined on Γs. Then,

the system of equations we analyse and discretise is given by

−∇ ·
(
α|Du|r−2Du

)
+∇p = f in Ω, (3.2a)

∇ · u = 0 in Ω, (3.2b)

σn = psn on Γs, (3.2c)

σnt = 0 on Γi, (3.2d)

u · n = 0 on Γi, (3.2e)

σnt = −C|Tu|r−2Tu on Γa, (3.2f)

u · n ≤ 0, σnn ≤ −pw and (u · n)(σnn + pw) = 0 on Γa. (3.2g)

Here, α is the non-negative constant defined in Section 1.3 and r ∈ (1, 2]. The system

(3.2) can be interpreted as the strong form of the Variational inequality C. In this case, the

differential operators in (3.2a) and (3.2b) can be defined in terms of classical derivatives.

3.1.2 The weak formulation as a variational inequality

As explained in Section 1.5, the system of equations given by (3.2) can be written in terms of

weak derivatives as a variational statement. This results in Variational inequality C, which

we write down once more in this section with a slightly different notation. The spaces V

and Q are given by

V =
{
v ∈W 1,r(Ω) : v · n = 0 on Γi

}
and Q = Lr

′
(Ω),

as in Chapter 1. The convex set K, which we already defined in Section 1.5, can be rewritten

in terms of the operator γn : V → Lr(Γa), the normal trace operator onto Γa. This operator

is built by extending to V the operator v 7→ v · n on Γa, defined on smooth functions. We

note that γn is the continuous analogue of the discrete operator γah introduced in Chapter 2.

Then, we may write

K = {v ∈ V : γnv ≤ 0 a.e. on Γa} .

The weak formulation of (3.2) can then be stated as the following variational inequality:

find (u, p) ∈ K ×Q such that

〈Au+Gu−Bp− f,v − u〉V + 〈Bq,u〉V ≥ 0 ∀(v, q) ∈ K ×Q. (3.3)
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Here, for the reader’s convenience, we recall the definition of the operators A : V → V ′ and

G : V → V ′ from (1.18a) and (1.42) :

〈Au,v〉V =

∫
Ω
α|Du|r−2 (Du : Dv) dx, (3.4a)

〈Gu,v〉V =

∫
Γa

C|Tu|r−2 (Tu ·Tv) ds, (3.4b)

for all (u,v) ∈ V × V . We also recall the definition of B, which represents the negative of

the weak gradient, from (1.18b):

〈Bq,v〉V =

∫
Ω
q (∇ · v) dx (3.5)

for (v, q) ∈ V × Q. Finally, the dual element f ∈ V ′ encodes the action of the body and

boundary forces acting on the system:

〈f,v〉V =

∫
Ω
f · v dx+

∫
Γs

ps (v · n) ds−
∫

Γa

pw (v · n) ds (3.6)

for any v ∈ V . In order for (3.6) to make sense, we require f ∈ Lr′(Ω), ps ∈ Lr
′
(Γs) and

pw ∈ Lr
′
(Γa).

The sense in which the variational inequality (3.3) and the partial differential equation

(3.2) are equivalent is made specific in Lemma 3.1 below.

Lemma 3.1. If (u, p) ∈ C2(Ω) × C1(Ω), then the strong formulation given by equations

(3.2) holds if and only if the variational inequality (3.3) is satisfied.

Proof. Let (u, p) ∈ C2(Ω)×C1(Ω) solve (3.2). It is clear that if (3.2b) holds, then 〈Bq,u〉V =

0 for all q ∈ Q. Let v ∈ K and multiply (3.2a) by v−u and integrate over Ω. The equality

−
∫

Ω

[
∇ ·
(
α|Du|r−2Du

)
−∇p

]
· (v − u) dx =

〈Au−Bp,v − u〉V −
∫
∂Ω
σ(v − u) · nds

(3.7)

follows from the divergence theorem. We also have that∫
∂Ω
σ(v − u) · nds =

∫
∂Ω

(σnn(v − u) · n+ σnt · (v − u)) ds.

Moreover, as a result of the contact conditions (3.2g),∫
Γa

σnn(v − u) · nds ≥ −
∫

Γa

pw (v − u) · nds,

from which the variational inequality (3.3) follows.

The converse statement is deduced by means of the integration by parts formula (3.7)

and the use of the fundamental lemma of calculus of variations with suitable test functions.

The examples in [43, 48] contain similar derivations.
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The variational inequality (3.3) can also be understood as a minimisation problem.

This property is fundamental for proving that the Stokes variational inequality is well-

posed because it allows us to use tools from the calculus of variations. Given the convex

set of divergence-free functions K̊, defined as

K̊ = {v ∈ K : ∇ · v = 0 a.e. on Ω} ,

the variational inequality (3.3) is equivalent to the minimisation of the functional

J (v) =
1

r

∫
Ω
α|Dv|r dx+

1

r

∫
Γa

C|Tv|r ds− 〈f,v〉V (3.8)

over K̊. Lemmas 9 and 12 of [17] show that J is convex and Gâteaux differentiable, with

derivative

〈DJ (u),v〉V = 〈Au+Gu− f,v〉V . (3.9)

The equivalence between the minimisation of J and (3.3) hinges on the so-called inf-sup

condition of the operator B over the space Va, which is the kernel of γn:

Va = {v ∈ V : γnv = 0 on Γa} . (3.10)

This inf-sup condition of B is

sup
v∈Va

〈Bq,v〉V
‖v‖V

& ‖q‖Q ∀q ∈ Q, (3.11)

and it essentially states that the operator B restricted to Va is injective and has a bounded

inverse from its range. This property allows us to recover a unique pressure once we have

a velocity that minimises J . Condition (3.11) is proved in [64, Lemma 3.2.7].

Lemma 3.2. Given a solution (u, p) ∈ K×Q of the variational inequality (3.3), the velocity

field is then divergence free, i.e. u ∈ K̊, and is a minimiser of the functional J : K̊ → R
defined in (3.8). Conversely, if u ∈ K̊ minimises J : K̊ → R, then there is a unique p ∈ Q
such that (u, p) ∈ K ×Q solves (3.3).

Proof. For the first part of the lemma, for a test function v ∈ K̊, the variational inequality

(3.3) can be written as

〈Au+Gu− f,v − u〉V ≥ 0 ∀v ∈ K̊. (3.12)

We can then use the convexity and differentiability of J to show that J (u) ≤ J (v) for all

v ∈ K̊. Indeed, by the definition of Gâteaux differentiability, we have that

〈DJ (u),v − u〉V = lim
t→0

J (u+ t(v − u))− J (u)

t
. (3.13)
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Moreover, by the convexity of J ,

J (u+ t(v − u))− J (u) ≤ t(J (v)− J (u)) ∀t > 0. (3.14)

Then, J (v)− J (u) ≥ 0 can be deduced from (3.12), (3.13), and (3.14).

Conversely, if we assume u ∈ K̊ to minimise J over K̊, then u solves (3.12). Now, using

[3, Lemma 3.3], we can decompose v ∈ K into the sum v = v0 + w of a divergence-free

velocity field v0 ∈ K̊ and the field w ∈ Va. Then, the variational inequality (3.3) will hold

if there is a p ∈ Q such that

〈Au+Gu− f,w〉V = 〈Bp,w〉V ∀w ∈ Va. (3.15)

By (3.11), there is a p ∈ Q for which (3.15) holds and it is unique.

3.1.3 The mixed formulation with a Lagrange multiplier

The numerical scheme we use to compute solutions to viscous contact problems is based

on a formulation of the variational inequality with a Lagrange multiplier that enforces the

contact boundary condition. This formulation, which we call mixed in the sense of mixed

methods from the finite element literature, see [10], is the continuous counterpart to (2.11).

In order to define the space where we seek the Lagrange multiplier, we denote the range

of γn by Σ, that is,

Σ = Ran γn.

We remark that Σ is the continuous counterpart to Σa
h introduced in Chapter 2. We

equip this space with the W 1−1/r,r(Γa) norm. We assume the geometry of Ω and Γa to be

sufficiently regular for this space to be a Banach space, see [68, Section 5], [48, Chapter

III], and [1, Chapter 7] for discussions on normal traces and trace spaces. The Lagrange

multiplier is sought in the convex cone of multipliers

Λ =
{
µ ∈ Σ′ : 〈µ, ζ〉Σ ≥ 0 ∀ζ ∈ Σ s.t. ζ ≤ 0 a.e. on Γa

}
.

The mixed formulation of (3.3) is: find (u, p, λ) ∈ V ×Q× Λ such that

〈Au+Gu−Bp− f,v〉V − 〈λ, γnv〉Σ = 0 ∀v ∈ V, (3.16a)

〈Bq,u〉V = 0 ∀q ∈ Q, (3.16b)

〈µ− λ, γnu〉Σ ≥ 0 ∀µ ∈ Λ. (3.16c)
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The Lagrange multiplier λ essentially coincides with σnn + pw on Γa. Indeed, if the

solution to (3.16) is sufficiently smooth for integration by parts to hold, we arrive at λ =

σnn + pw on Γa. Moreover, the conditions λ ∈ Λ and (3.16c) are equivalent to

〈µ, γnu〉Σ ≥ 0 ∀µ ∈ Λ, λ ∈ Λ, and 〈λ, γnu〉Σ = 0, (3.17)

which is a weak representation of the contact boundary conditions (3.2g).

Once again, the proof of the equivalence between (3.3) and (3.16) requires an inf-sup

condition on γn in order to recover a unique Lagrange multiplier for a pair (u, p) which

solve the variational inequality (3.3). This condition takes the following form:

sup
v∈V

〈µ, γnv〉Σ
‖v‖V

& ‖µ‖Σ′ ∀µ ∈ Σ′. (3.18)

The inf-sup condition (3.18) is a direct consequence of the inverse mapping theorem, since

γn is surjective onto the Banach space Σ.

Lemma 3.3. If (u, p) ∈ K × Q solves the variational inequality (3.3), then there is a

unique λ ∈ Λ such that (u, p, λ) is a solution of the mixed problem (3.16). Conversely, if

(u, p, λ) ∈ V ×Q× Λ solves (3.16), then (u, p) is a solution of (3.3).

Proof. Equation (3.16a) can be rewritten as

γ′nλ = Au+Gu−Bp− f in V ′. (3.19)

Here, γ′n : Σ′ → V ′ refers to the dual operator of γn, defined by

〈γ′nµ,v〉V = 〈µ, γnv〉Σ ∀(µ,v) ∈ Σ′ × V. (3.20)

Since γn : V → Σ has a closed range, we have that Ran γ′n = (Ker γn)◦, where

(Ker γn)◦ =
{
µ ∈ Σ′ : 〈µ, φ〉Σ = 0 ∀φ ∈ Ker γn

}
.

Therefore, if (u, p) ∈ K × Q is a solution to (3.3), then there is unique λ ∈ Σ′ if Au +

Gu − Bp − f ∈ (Ker γn)◦. For a w ∈ Ker γn, we clearly have that u +w ∈ K. Using the

variational inequality (3.3), we can write

〈Au+Gu−Bp− f,w〉V = 0,

which means that Au + Gu − Bp − f ∈ (Ker γn)◦. Next, we must show that λ ∈ Λ and

that (3.16c) holds. By setting v = 0 and v = 2u in (3.3) we see that 〈λ, γnu〉Σ = 0. Since

γnu ≤ 0 in Σ, it follows that (3.16c) must hold. Finally, λ ∈ Λ follows from (3.3), (3.19),

and the fact that v + u ∈ K for any v ∈ K.

For the second part of the lemma, if (u, p, λ) ∈ V ×Q×Λ solves (3.16), then ∇ ·u = 0

a.e. in Ω, 〈λ, γnv〉Σ ≥ 0 for all v ∈ K, and 〈λ, γnu〉Σ = 0. This implies that 〈µ, γnu〉Σ ≥ 0

for all µ ∈ Λ, hence u ∈ K̊. The variational inequality then follows directly from (3.16) by

testing with (v − u, q), where (v, q) ∈ K ×Q.
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3.1.4 Existence, uniqueness and stability of solutions

Lemmas 3.2 and 3.3 allow us to establish results concerning existence and uniqueness of

solutions for the variational inequality (3.3) and its mixed formulation (3.16) by studying

the functional J on K̊. The existence of minimisers to J depends on whether the set

RV =

{
vR ∈ V :

∫
Ω
|DvR|r dx+

∫
Γa

|TvR|r ds = 0

}
is equal to or larger than the trivial set {0}. As shown in [68, Lemma 6.1], the kernel of D

coincides with the set of rigid modes in Ω, defined by

R =

{
vR ∈H1(Ω) : vR(x, y) =

(
a
b

)
+ ω

(
−y
x

)
, (a, b, ω) ∈ R3

}
.

Hence, RV is the set of rigid modes vR ∈ R satisfying TvR = 0 on Γa and vR · n = 0 on

Γi. For this reason, the dimension of RV can be at most 1 whenever Γa is a flat surface

perpendicular to Γi. In this case, RV is given by purely vertical translations.

Remark 3.1. Although a flat bedrock may appear to be unrealistic, these are considered

in many theoretical studies of marine ice sheets [89, 79, 97]. One-dimensional subspaces

of rigid modes in V also arise in marine ice sheets which can slide freely (C = 0). More

importantly, the theoretical framework we introduce here for dealing with the case when

dimRV = 1 can be applied to the study of existence and uniqueness of solutions for Varia-

tional inequalities A and B in Section 1.6, arising when modelling subglacial cavitation, as

explained in Remark 3.2 below.

We define the projection operator P : V → RV by

P(v) =


∫

Γa
v · nds∫

Γa
eR · nds

eR if dimRV = 1,

0 if dimRV = 0,

where eR ∈ RV is a basis function that spans RV when dimRV = 1. We choose this

projection operator because it satisfies P(K) ⊂ K. The operator Q = I − P then maps

elements in V onto a closed subspace whose intersection with RV is {0}. As a result, we

have the following variation of Korn’s inequality:

Lemma 3.4. The inequality

‖Qv‖V . ‖Dv‖Lr(Ω) + ‖Tv‖Lr(Γa) (3.21)

holds uniformly for all v ∈ V .
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Proof. Following the proof of [17, Lemma 3], we first notice that (3.21) follows from∫
Ω
|v|r dx .

∫
Ω
|Dv|r dx+

∫
Γa

|Tv|r ds ∀v ∈ RanQ (3.22)

due to the generalised Korn inequality [17, Lemma 2]. Since RanQ ∩RV = {0}, the proof

of (3.21) is completed by assuming (3.22) to be false and mimicking the steps in the proof

of [17, Lemma 3].

Whenever RV 6= {0}, the system (3.16) is semicoercive in the sense that the operator

A + G has a nontrivial kernel. In Theorem 3.1 below, we show that a consequence of

semicoercivity is that (3.16) will have a solution only when the following compatibility

condition holds:

〈f,vR〉V < 0 ∀vR ∈ (RV ∩K) \ {0}. (3.23)

Condition (3.23) allows us to establish the well-posedness of (3.16) and error estimates,

because the restriction of the map vR 7→ 〈f,vR〉V to the boundary of the unit ball in

K ∩RV is a continuous map defined over a compact set. Therefore, whenever (3.23) holds,

we have the inequality

δ ‖vR‖V ≤ −〈f,vR〉V ∀vR ∈ RV ∩K, (3.24)

where

δ = min
vR∈RV ∩K,
‖vR‖V =1

−〈f,vR〉V .

Inequality (3.24) is used to prove that the solutions to the continuous and discrete problems

are bounded from above in Theorems 3.1 and 3.2 below, respectively. It is also used in the

proof of Lemma 3.5 to obtain error estimates for the rigid component of the velocity error.

The importance of the compatibility condition (3.23) is well-known in the study of

semicoercive variational inequalities, see [56, 96, 68] in the context of general variational

inequalities and [90, 17] in a glaciological setting. The compatibility condition has the

geometrical interpretation that the applied force f should have an obtuse angle with the

directions of escape of the body given by RV ∩K, which in this case correspond with vertical

upward movements whenever Γa is flat.

Theorem 3.1. If RV = {0}, then a solution to (3.16) exists and is unique. If RV 6= {0},
then there is a unique solution to (3.16) provided the compatibility condition (3.23) holds.

Conversely, if RV 6= {0} and a solution exists, we have that

〈f,vR〉V ≤ 0 ∀vR ∈ RV ∩K. (3.25)
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Moreover, a solution (u, p, λ) ∈ V ×Q× Λ of (3.16) is bounded from above, i.e.

‖u‖V + ‖p‖Q + ‖λ‖Σ′ . 1, (3.26)

if (3.23) holds when RV 6= {0}.

Proof. All of the statements of this theorem but (3.26) follow from Theorem A.1 in Ap-

pendix A. With Lemma 3.4, we have that all of the assumptions stated in Appendix A

hold for our case. Based on our definition of RV above, it is straightforward to see that

R∗V = 0, and therefore if inequality (3.23) holds, so does (A.5). As a result, a minimiser

to J exists, and therefore a solution to the mixed problem (3.16). As stated in Theorem

A.1, if u minimises J , any other solution will be of the form u + vR, with vR ∈ RV and

〈f,vR〉V = 0. However, if (3.23) holds, it is clear that 〈f,vR〉V = 0 implies vR = 0 because

dimRV ≤ 1.

To prove (3.26), we first note that (3.16a) and (3.21) lead to

‖Qu‖rV . 〈Au+Gu,u〉V = 〈f,u〉V . (3.27)

If RV = {0}, we have that ‖u‖r−1
V . ‖f‖V ′ . If RV 6= {0} and (3.23) holds, then 〈f,Pu〉V ≤ 0

and we find that ‖Qu‖r−1
V . ‖f‖V ′ . By using the inf-sup conditions (3.11) and (3.18) and

Hölder’s inequality, we can establish the bound

‖λ‖Σ′ + ‖p‖Q . ‖Qu‖r−1
V + ‖f‖V ′ . (3.28)

The above inequality and (3.27) allow us to bound the norms of λ and p from above:

‖λ‖Σ′ + ‖p‖Q . ‖f‖V ′ . (3.29)

We then use (3.24) to show that

‖Pu‖V . −〈f,Pu〉V = 〈λ, γn(Qu)〉Σ . ‖f‖r
′
V ′ . (3.30)

We finally establish the bound (3.26) by putting together (3.27), (3.29), and (3.30), and

noting that ‖u‖V ≤ ‖Pu‖V + ‖Qu‖V .

Remark 3.2. Although a rigorous proof for the existence and uniqueness of solutions to

Variational inequalities A and B would require a careful investigation on the equivalence of

formulations and a derivation of a Korn-type inequality as in Lemma 3.4, we can nevertheless

explore the validity of the conditions of Theorem A.1 by examining the space of rigid modes

for these variational inequalities. For Variational inequality A, the space of rigid modes in

V is given by vertical motions, i.e.

RV,A =

{
vR =

(
0
a

)
: a ∈ R

}
. (3.31)
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Horizontal motions are not contained in V due to the Dirichlet boundary condition (1.23).

As a result, dimRV,A = 1 and, as in Theorem 3.1, we have a unique solution if and only if

〈f,vR〉V < 0 for all vR ∈ (RV,A ∩K) \ {0}, which implies that pi − pw > 0 is a necessary

and sufficient condition for the existence and uniqueness of solutions.

The situation is more complicated for Variational inequality B, because in this case

horizontal motions are contained in V and we have that

RV,B =

{
vR =

(
a
b

)
: (a, b) ∈ R2

}
. (3.32)

By noting that n is proportional to (∂θ/∂x,−1)> along the lower boundary, we can see how

the well-posedness of Variational inequality B depends on the geometry of the attached

region Γa. If Γa is flat and ∂θ/∂x = 0 on it, then R∗V,B contains the horizontal vector

fields and conditions (A.5) cannot be verified unless τb = 0; as a result, the problem has no

solution if we enforce τb > 0. For the more realistic case when Γa is not flat, one has that

R∗V,B = {0}. In this case, a careful investigation on when conditions (A.5) hold depends

strongly on the geometry of Γa. For all cases, we still need pi−pw > 0 to hold, since vertical

modes are present in RV,B.

3.2 Abstract discretisation of the variational inequality

In this section we propose an abstract discretisation of the mixed system (3.16) built in

terms of a collection of finite dimensional spaces satisfying certain key properties. We can

then introduce a discrete system analogous to (3.16) and investigate the conditions under

which we have a unique solution. Then, we prove Lemmas 3.5, 3.6, and 3.7, which establish

upper bounds for the errors of the discrete solutions.

3.2.1 The discrete mixed formulation

For each parameter h > 0, let Vh ⊂ V , Qh ⊂ Q, and Σa
h ⊂ L2(Γa) be finite dimensional

subspaces. We also assume that RV ⊂ Vh to avoid the need of introducing discrete com-

patibility conditions. We define the discrete convex sets

Λh = {µh ∈ Σa
h : µh ≤ 0 on Γa} ,

and

Kh = {vh ∈ Vh : 〈µh, γnvh〉Σ ≥ 0 ∀µh ∈ Λh} .

An immediate consequence of the definitions of Λh and Kh is that Λh ⊂ Λ but Kh 6⊂ K

unless γn(Vh) ⊂ Σa
h. By the assumption RV ⊂ Vh and the fact that RV is given by purely

vertical translations whenever RV 6= {0}, we have that K ∩RV = Kh ∩RV .
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Remark 3.3. In Section 2.2 of the previous chapter, we introduced a general discretisation

of the Stokes variational inequality based on the discrete normal trace operator γah and the

discrete space Σa
h. In this section, we also consider a general discrete space Σa

h in which the

Lagrange multiplier is sought; however, instead of working with the operator γah, we hold

on to the continuous normal trace operator γn and work with its projection onto Σa
h, as

is clear from the definition of Kh above. Hence, one could also write that the associated

operator γah, in the notation of Section 2.2, is given by the projection

〈µh, γahvh〉Σ = 〈µh, γnvh〉Σ

for all µh ∈ Σa
h and all vh ∈ Vh. In this sense, the abstract discretisation considered

in this section is less general than the one presented in Section 2.2; however, the class of

discretisations considered here makes the analysis simple while maintaining a relatively high

level of generality.

The discrete analogue of the variational inequality (3.3) is: find (uh, ph) ∈ Kh×Qh such

that

〈Auh +Guh −Bph − f,vh − uh〉V + 〈Bqh,uh〉V ≥ 0 ∀(vh, qh) ∈ Kh ×Qh. (3.33)

This discrete variational inequality can be written as a mixed problem by introducing a

Lagrange multiplier. This results in the discrete mixed formulation that is the counterpart

of (3.16): find (uh, ph, λh) ∈ Vh ×Qh × Λh such that

〈Auh +Guh −Bph − f,vh〉V − 〈λh, γnvh〉Σ = 0 ∀vh ∈ Vh, (3.34a)

〈Bqh,uh〉V = 0 ∀qh ∈ Qh, (3.34b)

〈µh − λh, γnuh〉Σ ≥ 0 ∀µh ∈ Λh. (3.34c)

An advantage of using a mixed formulation at the discrete level is that we explicitly

enforce a discrete version of the contact conditions (3.2g). Just as in (3.17), it is possible

to show that the conditions λh ∈ Λh and (3.34c) are equivalent to

〈µh, γnuh〉Σ ≥ 0 ∀µh ∈ Λh, λh ∈ Λh, and 〈λh, γnuh〉Σ = 0. (3.35)

In order to state a minimisation problem equivalent to (3.34), we must introduce the

subspace of Vh of discretely divergence-free functions and the discrete convex set K̊h:

V̊h = {vh ∈ Vh : 〈Bqh,vh〉V = 0 ∀qh ∈ Qh} and K̊h = V̊h ∩Kh.
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Then, the discrete mixed problem (3.34) is equivalent to the minimisation over K̊h of the

functional J : V → R defined in (3.8), provided that two discrete inf-sup conditions hold.

For Va,h = Vh ∩ Va, these discrete conditions can be stated as

sup
vh∈Va,h

〈Bqh,vh〉V
‖vh‖V

& ‖qh‖Q ∀qh ∈ Qh, (3.36)

sup
vh∈Vh

〈µh, γnvh〉Σ
‖vh‖V

& ‖µh‖Σ ∀µh ∈ Σa
h. (3.37)

When the conditions (3.36) and (3.37) hold, then (3.33), (3.34), and the minimisation of

J over K̊ are equivalent problems. The proofs for such equivalences require the same

arguments as the proofs presented in Section 3.1. If J admits a unique minimiser over K̊h,

the discrete inf-sup conditions guarantee a unique solution for (3.34) and set constraints on

the choice of spaces Vh, Qh, and Σa
h used when approximating solutions of (3.16). As in the

continuous case, the well-posedness of (3.34) requires the compatibility condition (3.23) to

hold. The theorem below can be proved in the same way as Theorem 3.1.

Theorem 3.2. Assume that the discrete inf-sup conditions (3.36) and (3.37) hold. If

RV = {0}, then a solution to (3.34) exists and is unique. If RV 6= {0}, then there is a unique

solution to (3.34) if the compatibility condition (3.23) holds. Conversely, if RV 6= {0} and a

solution exists, (3.25) must hold. The solution of (3.16) is bounded from above independently

of h, provided (3.23) holds when RV 6= {0}.

3.2.2 Upper bounds for the velocity error

An important tool presented in [7, 55] for establishing error estimates for non-Newtonian

flows is the use of the function F. Here, for ease of notation, we denote by F an operator

that acts on both R2×2 and R2 by

F(A) = |A|
r−2

2 A for A ∈ R2×2 or A ∈ R2. (3.38)

This operator is closely related to the operators A and G. Let the operator E : V × V → R
be given by

E(u,v) = ‖F(Du)− F(Dv)‖2L2(Ω) + ‖F(Tu)− F(Tv)‖2L2(Γa) .

We then have that

E(u,v) ∼ 〈Au−Av,u− v〉V + 〈Gu−Gv,u− v〉V (3.39)

for all u,v ∈ V . The following variation of Young’s inequality,

〈Au−Av,u−w〉V + 〈Gu−Gv,u−w〉V ≤ εE(u,v) + cεE(u,w), (3.40)
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is valid for any u,v,w ∈ V and ε > 0, with the constant cε > 0 depending on ε. Addition-

ally, the inequalities

‖Dv −Dw‖2Lr(Ω) . ‖F(Dv)− F(Dw)‖2L2(Ω) ‖|Dv|+ |Dw|‖
2−r
Lr(Ω) , (3.41)

‖Tv −Tw‖2Lr(Γa) . ‖F(Tv)− F(Tw)‖2L2(Γa) ‖|Tv|+ |Tw|‖
2−r
Lr(Γa) , (3.42)

hold for any v,w ∈W 1,r(Ω). A proof for inequalities (3.39) and (3.41) can be found in [55,

Lemmas 2.3, 2.4], and [7, Lemma 2.7] for (3.40), for the case without friction. The presence

of the operator G requires a version of [55, Lemmas 2.3, 2.4] and [7, Lemma 2.7] stated in

terms of vectors in Rd. Since these results are based on algebraic inequalities for matrices,

the extension to vectors in Rd can be proved by considering diagonal matrices.

By applying the triangle inequality, (3.21), and (3.41)-(3.42), the velocity error can be

decomposed into two components as

‖u− uh‖V . ‖P(u− uh)‖V + E(u,uh). (3.43)

For the first term on the right of (3.43), which represents the rigid component of the error,

we present the following result:

Lemma 3.5. Assume that RV 6= {0} and that the compatibility condition (3.23) holds. Let

(u, p, λ) ∈ V ×Q × Λ be the solution to (3.16) and (uh, ph, λh) ∈ Vh ×Qh × Λh to (3.34).

Then,

‖P(u− uh)‖V . E(u,uh) + ‖λ− µh‖Σ′ ∀µh ∈ Λh. (3.44)

Proof. Under the assumption that RV 6= {0}, we either have that P(u− uh) ∈ RV ∩K or

−P(u− uh) ∈ RV ∩K. If P(u− uh) ∈ RV ∩K, then inequality (3.24) and the continuous

mixed system (3.16) allow us to write

‖P(u− uh)‖V . −〈f,P(u− uh)〉V = 〈λ, γn(P(u− uh))〉Σ,

where the equality follows from 〈Au + Gu − Bp,P(u − uh)〉V = 0. Then, by noting that

P(u−uh) = −Q(u−uh) +u−uh and 〈λ, γnu〉Σ = 0, using inequalities (3.21) and (3.41)-

(3.42), and using the uniform in h boundedness of solutions to (3.34) (see Theorem 3.2),

we arrive at

‖P(u− uh)‖V . E(u,uh)− 〈λ, γnuh〉Σ. (3.45)

On the other hand, if −P(u−uh) ∈ RV ∩K, then, by appealing to (3.23) and the discrete

mixed system (3.34),

‖P(u− uh)‖V . 〈f,P(u− uh)〉V = −〈λh, γn(P(u− uh))〉Σ.
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Following the same steps as before, we deduce that

‖P(u− uh)‖V . E(u,uh)− 〈λh, γnu〉Σ ≤ E(u,uh), (3.46)

where the final inequality follows from the fact that λh ≤ 0 on Γa by the definition of Λh.

As a result of (3.45) and (3.46), we have that

‖P(u− uh)‖V . E(u,uh) + max {0,−〈λ, γnuh〉Σ}

in all cases. Finally, given a µh ∈ Λh, we have

−〈λ, γnuh〉Σ ≤ 〈µh − λ, γnuh〉 . ‖λ− µh‖Σ′

because 〈µh, γnuh〉Σ ≥ 0.

Remark 3.4. As mentioned at the start of this chapter, previous analyses of finite element

approximations of semicoercive variational inequalities either only consider the error in

a seminorm [56] or use indirect arguments to prove the convergence of the approximate

solution in the complete norm [103, 47, 96, 2, 16]. In these cases, arguments by contradiction

involving a sequence of triangulations are used. In Lemma 3.5, on the other hand, we provide

a fully constructive proof for bounding the rigid component of the velocity error from above.

This result is a key ingredient in obtaining the error estimates for the finite element scheme

presented in the next section. The proof of Lemma 3.5 relies on dimRV ≤ 1, which holds

for almost all Stokes variational inequalities considered in glaciology [24, 79, 28, 97, 19],

except for Variational inequality B under certain conditions.

The second term on the right of (3.43) can be bounded from above by using the prop-

erties of the operator E.

Lemma 3.6. Let the triples (u, p, λ) ∈ V × Q × Λ and (uh, ph, λh) ∈ Vh × Qh × Λh be

solutions to (3.16) and (3.34), respectively. Then

E(u,uh) . E(u,vh) + ‖p− qh‖2Q + 〈λ− λh, γn(vh − uh)〉Σ (3.47)

holds for all (vh, qh) ∈ V̊h ×Qh.

Proof. From (3.16a) and (3.34a), we see that, for any (vh, qh) ∈ V̊h ×Qh, we have

〈Au−Auh,u− uh〉V + 〈Gu−Guh,u− uh〉V =

〈Au−Auh,u− vh〉V + 〈Gu−Guh,u− vh〉V

+〈B(p− qh),vh − uh〉V + 〈λ− λh, γn(vh − uh)〉Σ
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Using (3.39) and (3.40)

E(u,uh) . ε1E(u,uh) + cε1E(v,vh)

+ 〈B(p− qh),vh − uh〉V + 〈λ− λh, γn(vh − uh)〉Σ

for an arbitrary ε1 > 0. Additionally, by using Young’s inequality,

〈B(p− qh),vh − uh〉V . cε2 ‖p− qh‖
2
Q + ε2 ‖D(uh − vh)‖2Lr(Ω)

for any ε2 > 0. Then, via (3.41), and by setting ε1 and ε2 sufficiently small, inequality

(3.47) is established.

Remark 3.5. If the pair Vh × Qh is divergence free in the sense that 〈Bqh,wh〉V = 0 for

all qh ∈ Qh implies that ∇ · wh = 0, then the term ‖p− qh‖2Q in inequality (3.47) can be

removed.

3.2.3 Upper bounds for the pressure and Lagrange multiplier errors

We finalise the analysis of the abstract discretisation by bounding the errors for the pressure

and the Lagrange multiplier from above.

Lemma 3.7. Assume that the discrete inf-sup conditions (3.36) and (3.37) hold. Let

(u, p, λ) ∈ V ×Q× Λ be the solution of (3.16) and (uh, ph, λh) ∈ Vh ×Qh × Λh of (3.34).

Then

‖p− ph‖Q . E(u,uh)1/r′ + ‖p− qh‖Q , (3.48)

‖λ− λh‖Σ′ . E(u,uh)1/r′ + ‖p− qh‖Q + ‖λ− µh‖Σ′ , (3.49)

for all qh ∈ Qh and µh ∈ Σa
h.

Proof. Since Qh and Σa
h are subsets of Q and Σ respectively, we can obtain the following

equality from (3.16a) and (3.34a):

〈Au−Auh,vh〉V + 〈Gu−Guh,vh〉V =

〈B(p− ph),vh〉V + 〈λ− λh, γnvh〉Σ ∀vh ∈ Vh.
(3.50)

The inf-sup condition (3.36) for the pressure space holds over the space Va,h ⊂ Vh of vector

fields with a normal component vanishing on Γa. For vh ∈ Va,h, from equation (3.50) we

derive

〈B(ph − qh),vh〉V = 〈Au−Auh,vh〉V + 〈Gu−Guh,vh〉V + 〈B(p− qh),vh〉V .

From the inf-sup condition (3.36) it follows that

‖ph − qh‖Q . sup
vh∈Va,h

(
〈Au−Auh,vh〉V + 〈Gu−Guh,vh〉V

‖vh‖V

)
+ ‖p− qh‖Q . (3.51)
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By Hölder’s inequality and [55, Lemma 2.4], we have that

sup
vh∈Va,h

(
〈Au−Auh,vh〉V

‖vh‖V

)
. ‖F(Du)− F(Duh)‖2/r

′

L2(Ω)
. (3.52)

For the friction term, following the argument used in [55, Lemma 2.4], we can show that∥∥|Tu|r−2Tu− |Tuh|r−2Tuh
∥∥
L2(Γa)

. ‖F(Tu)− F(Tuh)‖2/r
′

L2(Γa)

and therefore

sup
vh∈Vh

(
〈Gu−Guh,vh〉V

‖vh‖V

)
. ‖F(Tu)− F(Tuh)‖2/r

′

L2(Γa)
.

Finally, (3.48) follows by applying the triangle inequality to ‖p− ph‖Q and using (3.51) and

(3.52). The bound (3.49) follows in the same way.

Lemmas 3.5, 3.6, and 3.7 give discretisation error estimates in terms of best approxima-

tion results. To derive a convergence result, we require bounds on these best approximations.

We discuss this in the context of a finite element discretisation in the next section.

3.3 Analysis of a finite element scheme with P2P0 elements

We conclude this chapter with an application of the results from Section 3.2 for the anal-

ysis of a concrete finite element discretisation of the mixed problem (3.16). We built the

discrete system in terms of a non-degenerate sequence of triangulations of the domain

(non-degenerate in the sense of [11, Definition 4.4.13]). We use the notation introduced

in Section 1.2: for an h > 0, the triangulation of Ω is denoted by Th and its set of edges

by E(Th), with E(Th,Γs) and E(Th,Γa) denoting the edges contained in Γs and Γa, respec-

tively. Here, h > 0 denotes the maximum cell diameter in Th, and we assume that every

edge e ∈ E(Th) in ∂Ω is either in Γs, Γa or Γi. Associated to each Th are the finite element

spaces Vh, Qh, and Σa
h, defined by

Vh = {vh ∈ C(Ω) : vh|c ∈ P2(c) ∀c ∈ Th, vh · n = 0 on Γi} , (3.53a)

Qh =
{
qh ∈ L2(Ω) : qh|c ∈ P0(c) ∀c ∈ Th

}
, (3.53b)

Σa
h =

{
µh ∈ L2(Γa) : µh|e ∈ P0(e) ∀e ∈ E(Th,Γa)

}
. (3.53c)

This discretisation of the variational inequality uses the P2P0 element for the velocity-

pressure pair. As a result, it no longer falls within the class of methods from Section 2.2

because the pressure space Qh consists of piecewise constant functions, as opposed to the

piecewise linear continuous functions used in the Taylor-Hood pair. As we explain in Re-

mark 3.7 below, using a piecewise constant pressure simplifies the analysis greatly, and its

extension to piecewise linear continuous functions remains an open question.
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3.3.1 Convergence of the finite element approximation

In this section, we use the abstract framework presented in Section 3.2 to prove the conver-

gence of a finite element approximation computed with the spaces (3.53) as the size of the

mesh tends to zero. The proofs we present make use of the technical constructions relegated

to Appendix B.

The first step in establishing the convergence of this discretisation is to investigate

whether the discrete mixed problem (3.34) is well-posed for this choice of Vh × Qh × Σa
h,

subject to the compatibility condition (3.23). Specifically, we must verify the discrete inf-

sup conditions (3.36) and (3.37). The pair Vh × Qh is well-known to satisfy (3.36), see

[10, Proposition 8.4.3] for the case of r = 2; the general case r ∈ [1,∞] follows from the

same arguments by using the interpolation operator πV discussed in Appendix B.2. A

proof for (3.37) is presented below using a similar argument to the one presented in [18,

Proposition 3.3].

Lemma 3.8. The finite element pair Vh and Σa
h defined in (3.53) is inf-sup stable in the

sense of (3.37).

Proof. Let µh ∈ Σa
h. By the Hahn-Banach theorem, there is a ψ ∈ Σ such that 〈µh, ψ〉Σ =

‖µh‖Σ′ and ‖ψ‖Σ = 1. The extension operator Φ : Σ→ Vh from Appendix B.3 is bounded

uniformly with respect to h and satisfies

〈µh, γn(Φψ)〉Σ = 〈µh, ψ〉Σ ∀µh ∈ Σa
h,

for all ψ ∈ Σ. Then

‖µh‖Σ′ =
〈µh, ψ〉Σ
‖ψ‖Σ

.
〈µh, γn(Φψ)〉Σ
‖Φψ‖V

≤ sup
vh∈Vh

〈µh, γnvh〉Σ
‖vh‖V

and the result follows.

We end this section with a discussion on the approximability of the mixed system (3.16).

We show that the approximate solutions (uh, ph, λh) converge to the exact solutions of

(3.16) as h → 0 under a regularity condition, and we establish a rate of convergence for

these approximations.

Theorem 3.3. Assume that the compatibility condition (3.23) holds whenever RV 6= {0}.
Let the triple (u, p, λ) ∈ V ×Q×Λ be the solution to (3.16) and (uh, ph, λh) ∈ Vh×Qh×Λh

to (3.34). Additionally, assume that (u, p, λ) ∈ W 2,r(Ω) ×W 1,r′(Ω) ×W 1−1/r′,r′(Γa) and

F(Du) ∈W 1,2(Ω) and F(Tu) ∈W 1,2(Γa). Then

‖u− uh‖V . h, (3.54a)

‖p− ph‖Q + ‖λ− λh‖Σ′ . h2/r′ + h. (3.54b)
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Proof. We proceed by first finding a suitable upper bound for the term involving the La-

grange multiplier in (3.47). Since 〈λh, γnuh〉Σ = 0 and 〈µh, γnvh〉Σ ≥ 0 for all (vh, µh) ∈
Kh × Λh, one can show that

〈λ− λh, γn(vh − uh)〉Σ ≤ 〈λ− µh, γn(vh − u)〉Σ

+ 〈λ− µh, γn(u− uh)〉Σ + 〈µh, γnvh〉Σ
(3.55)

for all (vh, µh) ∈ Kh × Λh. By applying Young’s inequality in (3.55) and using inequalities

(3.43), (3.44), and (3.47), we arrive at

‖u− uh‖V . E(u,vh)1/2 + ‖p− qh‖Q + ‖λ− µh‖Σ′ + 〈µh, γnvh〉Σ (3.56)

for all (vh, qh, µh) ∈ K̊h ×Qh × Λh.

Let πV : V → Vh be the interpolation operator introduced in Appendix B.2. Addition-

ally, let πQ : Q → Qh and πΣ : L2(Γa) → Σa
h be standard interpolation operators onto the

space of piecewise constant functions. We refer to [26] and the results in Appendix B.1 for

proofs of optimal interpolation error estimates in the Q and Σ′ norms. From the properties

of these interpolation operators it follows that πV u ∈ K̊h and πΣλ ∈ Λh. Additionally, we

have that
∫
e u · nds =

∫
e(πV u) · nds for all e ∈ E(Th), so

〈πΣλ, γnπV u〉Σ = 〈λ, πΣ(γnu)〉Σ = 〈λ, πΣ(γnu)− γnu〉Σ.

Since 〈πΣλ, πΣ(γnu)− γnu〉Σ = 0, we have that

〈πΣλ, γnπV u〉Σ = 〈λ− πΣλ, πΣ(γnu)− γnu〉Σ. (3.57)

Therefore, by setting vh = πV u, qh = πQp, and µh = πΣλ in (3.56) and using (3.57), we

can show that

‖u− uh‖V . E(u, πV u)1/2 + ‖p− πQp‖Q + ‖λ− πΣλ‖Σ′ + ‖γnu− πΣ(γnu)‖Σ . (3.58)

We then establish (3.54a) with the approximation properties of the interpolation operators

presented in the Appendices B.1 and B.2 for πΣ and πV respectively, and [26] for πQ. The

estimate (3.54b) then follows from Lemma 3.7.

Remark 3.6. The velocity and pressure error estimates coincide with those obtained in [7,

Theorem 2.14] and in [55, Theorem 3.1] for the r-Stokes system without contact or friction

boundary conditions. This indicates that these boundary conditions and the Lagrange

multiplier do not reduce the order of convergence. This may be due to the use of piecewise

constant elements for Σa
h. In [18], a proof with non-optimal convergence rates is presented

for the case when continuous piecewise quadratic polynomials are used for the Lagrange

multiplier.
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Remark 3.7. A convergence result analogous to Theorem 3.3 for the velocity-pressure pair

given by Taylor-Hood elements would require a different approach because the projection

operator πV : V → Vh does not guarantee the preservation of the discrete divergence, stated

in Appendix B.2 in (B.5), when Qh is the set of continuous piecewise linear functions.

Therefore, πV uh no longer belongs to K̊h and we cannot follow the steps taken in the proof

of Theorem 3.3.

3.3.2 Discrete algebraic formulation

We now present an algebraic counterpart of (3.34) using the finite element spaces specified

in (3.53) in terms of matrices and vectors. Let Vh = span {vi}Nvi=1, Qh = span {qj}
Nq
j=1, and

Σa
h = span {µk}

Nµ
k=1, where Nv = dimVh, Nq = dimQh, and Nµ = dim Σa

h. For the functions

(uh, ph, λh) ∈ Vh ×Qh × Σa
h, we write u, p and λ for the vectors containing the respective

degrees of freedom (DoFs) in RNv , RNq and RNµ . In order to write an algebraic counterpart

of (3.34c), we need to introduce the discrete normal trace operator

γn : RNv → RNµ

that returns the average normal components of a vector vh ∈ Vh along the edges on Γa.

That is, for each i ∈ {1, 2, ..., Nµ}

(γnv)i =
1

|ei|

∫
ei

vh · nds,

where ei ∈ E(Th,Γa) is the unique edge along Γa associated to the degree of freedom in Σa
h

with index i. Then, the algebraic counterpart of (3.34) can be written in terms of matrices

and vectors as

Aε(u) + Gε(u)−Bp−Dλ = f , (3.59a)

B>u = 0, (3.59b)

λ+ C(λ,u) = 0. (3.59c)

Here, we have introduced the matrices B ∈ RNv×Nq and D ∈ RNv×Nµ , the vector f ∈ RNv ,
and the nonlinear operators Aε : RNv → RNv , Gε : RNv → RNv , and C : RNµ×RNv → RNµ .

The matrices are given by the elements Bij = 〈Bqj ,vi〉V and Dij = 〈µj , γnvi〉Σ and the

vector by fi = 〈f,vi〉V . The nonlinear operators are defined as

[Aε(u)]i =

∫
Ω
α
(
ε+ |Duh|2

) r−2
2 (Duh : Dvi) dx, (3.60)

[Gε(u)]i =

∫
Ω
C
(
ε+ |Tuh|2

) r−2
2 (Tuh ·Tvi) dx, (3.61)

C(λ,u) = max {0,−λ+ c(γnu)}. (3.62)
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Here, ε > 0 is the regularisation term in (1.19) and (1.45). In (3.62), the max operation is

understood to be carried out componentwise on each of the elements in the vector −λ +

c(γnu) ∈ RNµ . The non-negative constant c > 0 is a numerical parameter that can help us

avoid numerical issues whenever the magnitudes of the terms in λ differ from those in γnu

by several orders of magnitude. The value of c can be chosen arbitrarily in the sense that,

in the ideal case where no rounding errors are present, it does not affect the outcome of C.

The use of the operator C in (3.62) is a common way of expressing contact conditions. A

particular advantage is that the nonlinear system (3.59) can be solved with a semi-smooth

Newton method that enjoys superlinear convergence in a neighbourhood of the solution [54].

Equation (3.59c) is equivalent to (3.34c) whenever Σa
h is defined as in (3.53c). By solving

(3.59c) we enforce

γnu ≤ 0, λ ≤ 0, and (γnu) · λ = 0, (3.63)

exactly, which is the algebraic equivalent of the discrete contact conditions (3.35).

3.3.3 A numerical test

We present numerical results computed for a Stokes variational inequality with a manufac-

tured solution on the domain Ω = (0, 1)2 to have an empirical demonstration of the validity

of the convergence rates estimated in Theorem 3.3. The manufactured solution considered

here is taken from [7] and is given by

û(x) = |x|αp−1(x2,−x1)>, p̂(x) = |x|γ , (3.64)

where the parameters αp and γ are chosen such that u ∈W 2,r(Ω), p ∈W 1,r′(Ω), F(Du) ∈
W 1,2(Ω) and F(Tu) ∈W 1,2(Γa) hold. This is ensured whenever αp > 1 and γ > −1 + 2

r ,

so we set αp = 1.01 and γ = −1 + 2
r + 0.01 in order to be critically close to the regularity

assumed in Theorem 3.3.

Contact boundary conditions are enforced on the lower boundary {y = 0}. Given the

velocity and pressure fields defined in (3.64), we have that

(û · n)(x1) = −xαp1 , λ̂(x1) = −xγ1 ,

on {y = 0}. In order to define the contact boundary conditions in such a way that both the

kinematic and dynamic conditions are active, we define the “obstacles”

χ(x1) =

{
(û · n)(x1) if x1 ≤ 0.5

−2−αp if x1 > 0.5
, ρ(x1) =

{
0 if x1 ≤ 0.5

λ̂(x1) if x1 > 0.5
.

60



Then, for this numerical test we solve the Stokes system (3.2a)-(3.2b) together with the

boundary conditions

u · n ≤ χ, λ ≤ ρ, and (u · n− χ)(λ− ρ) = 0 on {y = 0}, (3.65a)

u · n = û · n on {x = 0}, (3.65b)

σnn = σ̂nn on ∂Ω \ ({y = 0} ∪ {x = 0}), (3.65c)

σnt = σ̂nt on ∂Ω, (3.65d)

where σ̂ = σ(û, p̂). Boundary conditions are set for the normal velocity along {x = 0} in

(3.65b) to mimic the boundary conditions enforced at Γi and make dimRV = 1. In this

case, RV is a one-dimensional vector space containing vertical motions. Therefore,

RV ∩K = {(0, θ) : θ ≤ minχ} ,

and, since f = Aεû+Gεû−Bp̂− γ′nλ̂, we have that

〈f,vR〉V = θ

∫ 1

0
xγ dx < 0

for all vR = (0, θ) with θ < 0 (note that minχ < 0). This proves that the compatibility

condition (3.23) holds and the system is well-posed. Although the functional setting of this

numerical test differs slightly from the setting studied in this chapter, the numerical test

contains the fundamental elements of the setting analysed.

We compute solutions to the r-Stokes system on Ω = (0, 1)2 with boundary conditions

(3.65) on a sequence of uniformly refined meshes using the finite element spaces in (3.53).

The regularisation parameter in (3.60) is set to ε = 10−4. In Glen’s law (1.3) we fix A = 0.5

and for the friction boundary condition we set C = 1. We consider the values n = 1, 2, 3,

and 4, which correspond with r = 2, 1.5, 1.33, and 1.25. The resulting orders of convergence

for the velocity are shown in Tables 3.1 and 3.2, and for the pressure and Lagrange multiplier

in Table 3.3. For the Lagrange multiplier error, we use the discrete norm

‖µh‖Σ′,h = h1/r′ ‖µh‖Lr′ (Γa) ,

which should yield the same order of convergence as the one that would be obtained with

the Σ′ norm by a standard inverse inequality.

Table 3.1 indicates that the orders of convergence for the velocity in the seminorm

‖D(·)‖Lr(Ω) and in the V -norm coincide. This demonstrates that the presence of rigid

modes in the velocity space does not affect the accuracy of the velocity computation in

the V -norm. The computed orders of convergence for the velocity in the V -norm coincide

with those estimated in (3.54a). In Table 3.2 we see that the orders of convergence for
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Table 3.1: Calculated orders of convergence for the velocity computed with a manufactured
solution together with estimated orders according to Theorem 3.3.

‖D(u)−D(uh)‖Lr(Ω) ‖u− uh‖V
h\r 2.00 1.50 1.33 1.25 2.00 1.50 1.33 1.25

3.54× 10−1 - - - - - - - -
1.77× 10−1 0.96 1.05 1.08 1.11 0.97 1.10 1.14 1.18
8.84× 10−2 0.97 1.03 1.05 1.07 0.98 1.06 1.09 1.12
4.42× 10−2 0.97 1.02 1.04 1.06 0.98 1.04 1.06 1.08
2.21× 10−2 0.97 1.02 1.03 1.04 0.98 1.03 1.04 1.06
1.10× 10−2 0.97 1.01 1.02 1.03 0.98 1.02 1.03 1.04

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.2: Calculated orders of convergence for the velocity in the Lr(Ω)-norm computed
with a manufactured solution.

‖u− uh‖Lr(Ω)

h\r 2.00 1.50 1.33 1.25

3.54× 10−1 - - - -
1.77× 10−1 1.97 2.07 1.99 1.85
8.84× 10−2 1.95 1.95 1.87 1.72
4.42× 10−2 1.96 1.96 1.86 1.71
2.21× 10−2 1.96 1.97 1.87 1.72
1.10× 10−2 1.96 1.98 1.87 1.74

Table 3.3: Calculated orders of convergence for the pressure and the Lagrange multiplier
computed with a manufactured solution together with estimated orders according to The-
orem 3.3.

‖p− ph‖Q ‖λ− λh‖Σ′,h
h\r 2.00 1.50 1.33 1.25 2.00 1.50 1.33 1.25

3.54× 10−1 - - - - - - - -
1.77× 10−1 0.88 0.93 0.96 0.98 1.00 1.00 1.00 0.98
8.84× 10−2 0.90 0.94 0.97 0.98 1.00 1.00 0.98 0.93
4.42× 10−2 0.91 0.95 0.97 0.95 1.01 1.00 0.96 0.87
2.21× 10−2 0.92 0.95 0.97 0.90 1.01 1.00 0.93 0.80
1.10× 10−2 0.93 0.96 0.96 0.84 1.01 1.00 0.88 0.73

2/r′ 1.00 0.67 0.5 0.4 1.00 0.67 0.5 0.4
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the velocity in the Lr(Ω)-norm appear to increase by one when compared to the orders

computed with the V -norm. On the other hand, the orders of convergence obtained for

the pressure appear to be independent of r. A closely related problem (without contact

boundary conditions) is solved in the work of Belenki et al. [7]. In the work of Belenki et al.,

the problem is formulated as an r-Stokes problem with Dirichlet boundary conditions and

the MINI element is used for the velocity and pressure. Interestingly, their numerical results

deliver the predicted orders of convergence for the pressure error. Hence, the apparent

suboptimality of (3.54b) for the pressure could be due to the finite elements used here or

to the presence of contact boundary conditions and a Lagrange multiplier. Regarding the

Lagrange multiplier, the estimated orders of convergence are exceeded, but a dependence

on r is observed.

3.4 Discussion

This chapter provides a theoretical analysis of Variational inequality C and its discretisation

with the finite element method. We focus on this variational inequality for the sake of

concreteness and simplicity, and indicate in Remark 3.2 how some of the analytical results

would extend to Variational inequalities A and B. We prove in Theorem 3.1 the well-

posedness of Variational inequality C whenever the subspace of rigid modes in the velocity

space is of dimension at most one under the condition that a compatibility condition holds.

In Section 2.2.1, we present a family of finite element discretisations of this variational

inequality, closely related to those considered in Section 2.2.1. We then prove an analogous

well-posedness result for the discrete system in Theorem 3.2 and, using techniques from

[7, 55], establish upper bounds for the approximation errors. Then, in Section 3.3, we

choose a concrete finite element approximation based on the P2P0 elements for the velocity-

pressure pair. The analysis is completed by showing that this approximation converges to

the continuous solution under some regularity requirements in Theorem 3.3. We conclude

the section by presenting the discrete algebraic set of nonlinear equations that this finite

element scheme results in and showing some numerical results that validate our convergence

estimates.

This study intends to establish a theoretical justification for the discrete variational

inequality we consider in the main numerical scheme for viscous contact problems used in

this work and introduced in Section 2.3. An obvious issue is that, although our discrete

variational inequality in its mixed form belongs to the class of approximations from Sec-

tion 3.2, it does not coincide with the discrete problem in Section 3.3. Therefore, future

work should establish a complete analysis as in Section 3.3 for a discretisation that uses

the Taylor-Hood pair for the velocity and pressure as in Section 2.3. As we explain in
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Remark 3.7, the analysis with the Taylor-Hood pair is complicated because, to the best

of our knowledge, no projection operator πV : V → Vh that satisfies πV (K̊) ⊂ K̊h has

been proposed in the literature. Therefore, the construction of such an operator should be

considered to complete the analysis.

A major assumption of this paper is that the domain is two-dimensional. An extension of

the analysis presented here to three dimensions would require a careful consideration of the

rigid modes present in the velocity space, since the space of rigid modes in three dimensions

is larger than in two dimensions. In most problems of interest, three dimensional marine

ice sheets are considered to be enclosed within two lateral walls, see for example [28]. In

this case, if the lateral walls and the bedrock are flat, the space of rigid modes in V is once

again reduced to vertical movements and is therefore one-dimensional. As a consequence,

much of the analysis from this paper would still be valid in three dimensions. However, the

extension operator presented in Appendix B.3, used to prove Lemma 3.8, relies heavily on

the fact that the domain is two-dimensional. Therefore, the choice of finite elements used

to solve the variational inequality would have to be chosen and studied carefully.
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Chapter 4

Subglacial cavitation and glacial
sliding

Subglacial cavitation is the first of the two viscous contact problems described in Chapter 1.

It occurs along a thin boundary layer in between the ice and the bedrock and involves the

detachment of ice in the lee side of obstacles due to high water pressures. Subglacial cavities

are important for large-scale glacial dynamics because they play an important role in how

ice sheets slide over a bedrock. This chapter contains a numerical exploration on subglacial

cavitation and its effect on glacial sliding using the numerical tools developed in Chapter

2. The content in Sections 4.3 and 4.4 has been published in [19].

We start this chapter with a literature review on glacial sliding, with an emphasis

on sliding with cavitation. This content makes clear in what way subglacial cavitation

is a fundamental mechanism in glacial sliding. Then, in Section 4.2, we formulate our

mathematical model for subglacial cavitation and explore some basic properties of this

system. This section includes much of the content from Section 1.6, but we reformulate

the system in a non-dimensional manner in this chapter. In Section 4.3, we compute the

steady friction law for ice flowing over a sinusoidal bed for linear and nonlinear rheologies,

expanding on the results in [36]. Furthermore, in this section we compare our results with

those obtained from the linearised theory to validate the algorithm. Finally, in Section 4.4,

we explore the effects of unsteady water pressures on glacial sliding by calculating the basal

sliding velocities and cavity shapes under oscillating water pressures.

4.1 Past research on glacial sliding with cavitation

When modelling the large scale evolution of an ice sheet or a glacier over a bedrock, the

Stokes equations must be solved together with an adequate set of boundary conditions, as

we explain in Chapter 1. At the ice-bedrock interface, a nonlinear relationship known as a

friction law is usually used that relates the basal shear stress τb to the basal sliding speed ub.
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Field measurements provide evidence that basal sliding can account for a large proportion of

a glacier’s motion [66]. In addition, sliding is a fundamental mechanism in determining the

stability of marine ice sheets [101, 15]. Consequently, the accuracy of any computation of

ice motion largely depends on the accuracy of the friction law used and on its capability to

capture the fundamental mechanisms that regulate basal sliding. The difficulty in observing

such phenomena has prompted a large amount of theoretical, computational, and empirical

research.

Historically, a first attempt at constructing a realistic friction law over hard beds was

carried out by Weertman [104], who considered relegation and viscous deformation along ob-

stacles in the bed as the major contributions to sliding. Relegation refers to the phenomenon

of ice melting at high pressure in the upstream faces of obstacles and the subsequent trans-

portation downstream and re-freezing. The resulting friction law is a power law of the

form

τb = Cumb , C,m > 0. (4.1)

A friction law of this form allows for an unbounded increase in basal stress with the sliding

velocity. We remark that this is the friction law we use when modelling marine ice sheets

in this work, with m = 1/n, see Section 1.7 and Chapter 5.

A decade after Weertman’s proposal, Lliboutry identified subglacial cavitation, where

the ice sheet detaches from the bedrock in the lee of an obstacle, as a fundamental mech-

anism involved in sliding [70]. When cavitation occurs, Lliboutry predicted that the basal

stress would decrease with the sliding velocity. Under cavitation, the water pressure of

subglacial water pw and the overburden ice pressure pi become important; in particular,

Lliboutry’s friction law took the effective pressure N = pi − pw into account.

A theory for sliding in the presence of cavitation was developed by Fowler [31], using

ideas from Nye [77] and Kamb [65]. This theory presents a solution to a simplified local

boundary layer problem of ice flowing over a periodic bed. By allowing the formation of one

cavity per period, a complex Hilbert problem is formulated which allows the determination

of the basal shear stress. Below, in Section 4.3, we include calculations carried out with

this method to validate our numerical results; moreover, Appendix C provides a short

description of this analytical method.

Such a theory was revised and extended by Schoof [87], whose method allows for an

arbitrary number of cavities to occur over a bedrock with a more general shape. Schoof

confirmed the existence of a maximum for the basal stress τb when ice slides over smooth

obstacles of small amplitude. This bound on the basal stress depends on the slope of the

obstacle and on the effective pressure N ; it was predicted by Iken [59] and Schoof calls it
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τb/N

ub/N
n

Weertman regime

Coulomb regime

Weertman’s law

Schoof’s law

Figure 4.1: The friction laws proposed by Weertman [104] and by Schoof [87], see equations
(4.1) and (4.3) respectively. The two different regimes (Weertman and Coulomb) in Schoof’s
law are indicated.

Iken’s bound. In Lemma 4.2, we include a proof of this bound which essentially follows

Schoof’s approach in [87]. Both Fowler and Schoof built their theories on the assumption

of a linear rheology.

In reality, the bedrock of a glacier is unknown and we can expect it to contain obstacles

of multiple sizes and amplitudes. Therefore, it is unclear how a realistic friction law can

be constructed based on the theories of Fowler and Schoof. In particular, a major source

of uncertainty is whether Iken’s bound holds for arbitrary beds. According to Fowler [32],

such a maximum should not be reached in reality because larger obstacles will always exist

that are capable of providing drag. This reasoning is used to justify an unbounded increase

in basal stress with velocity, suggesting that the friction law takes the form of a Weertman

style law which incorporates the effects of N :

τb = Cumb N
n, C,m > 0, (4.2)

where n is the parameter in Glen’s law, see (1.3). However, according to Schoof, Iken’s

bound is dependent on the slope of obstacles, not on their size. Hence, a law of type (4.2)

would only be valid if the larger obstacles also have increasingly pronounced slopes. In [87],

Schoof proposes

τb
N

= C

(
ub

ub +NnΛ0

)1/n

, C,Λ0 > 0 (4.3)

as a friction law. A law as in (4.3) is essentially a regularised Coulomb law. This point

motivates the idea of two existing sliding regimes: a Weertman regime for high values of N

and a Coulomb regime for lower N [101, 73], see Figure 4.1. Coulomb style laws have also

been shown to be appropriate for sliding over soft deformable beds composed of sediments,
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see [102]. This implies that a friction law as in (4.3) would unify the treatment of hard and

soft beds.

Introducing the effective pressure as an additional variable in the friction law inherently

leads to a coupling between glacial dynamics and the subglacial hydrology system. In

fact, under certain circumstances, the hydrology system is treated as a spatially distributed

network of connected subglacial cavities [51, 94, 30, 40]. A relationship between subglacial

hydrology and glacial dynamics has also been suggested by field measurements on mountain

glaciers and the Greenland ice sheet, where a clear correlation between water pressure and

surface velocity has been observed [60, 98, 4, 57]. These studies are the main motivation

behind our investigation of unsteady glacial sliding in Section 4.4.

Regarding empirical results on glacial sliding, one can consider two different approaches

to verifying glacial friction laws. The first approach consists in carrying out small scale

experiments that reproduce the boundary layer problem in the ice-bedrock interface. In

this manner, Zoet and Iverson have confirmed many aspects of Schoof and Iken’s results

in sinusoidal [107] and stepped beds [108]. The second approach measures the ability of

a friction law to enable large-scale models to fit large scale measurements of surface ice

speed. For example, in [63], different friction laws are used to predict the evolution of Pine

Island Glacier. According to the authors, a regularised Coulomb law yields the most precise

results.

The theories considered above use many simplifying assumptions in order to obtain

models that can be solved analytically or with simple numerical solvers. One must assume

that the problem is stationary, the bedrock is smooth with small obstacles, the rheology is

given by a linear law, and the effective pressure is constant. This leaves many unanswered

questions; for example, the effect that periodic variations in time in the subglacial hydrology

can have on the friction law have not been studied, even though there is evidence of diurnal

changes in the water pressure in the base of glaciars [60]. Problems such as this one could

be approached with numerical methods. As mentioned in the Chapter 1, very few numerical

tests involving the full Stokes equations with cavitation have been carried out. The existing

results essentially amount to those in [36, 50, 49]. The numerical results in this chapter

are therefore a further contribution to the numerical investigation of glacial sliding with

cavitation.

4.2 Non-dimensional formulation of the problem

We now proceed to write down the equations for the subglacial cavity problem. These are

presented in Chapter 1, and they consist of the Stokes equations (1.8) formulated on the

time-dependent periodic domain Ω(t), which is defined in terms of a cavity roof θ, together
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with the contact boundary conditions (1.11). The domain Ω represents a thin boundary

layer in between the ice and the bedrock, see Figure 1.1. The lower boundary Γb is the

cavity roof and the upper boundary Γt is a fictitious boundary, required for computational

purposes, between the boundary layer and the remainder of the ice sheet.

We repeat the set of equations for modelling the formation of subglacial cavities here

for the reader’s convenience, although in a non-dimensional form. Given a length scale [x]

and a velocity scale [u], we define the additional scales

[σ] =

(
[u]

2A[x]

)1/n

and [t] =
[x]

[u]
, (4.4)

which represent the characteristic scales for stress and time. The length scale is set equal to

the length of the cavity, [x] = L. In this chapter, when computing steady cavity states, we

enforce a horizontal velocity boundary condition u = ut at the top boundary Γt; therefore,

we take this to be the characteristic velocity, such that [u] = ut. For the unsteady compu-

tations in Section 4.4, where we do not prescribe this boundary condition, this scaling is

inherited from the steady state which we perturb.

From this point until the end of the chapter, all variables considered are non-dimensional.

To avoid an excessively tedious notation, we refer to these non-dimensional variables with

the same notation as their dimensional counterparts. For a non-dimensional time T > 0, the

solution of our problem is given by a velocity u : Ω×[0, T ]→ R2, a pressure p : Ω×[0, T ]→ R
and a cavity roof θ : [0, 1]× [0, T ]→ R. Here, the domain Ω depends on time and is defined

in terms of θ as

Ω(t) =
{

(x, z) ∈ R2 : 0 < x < 1, and θ(x, t) < z < 1
}
. (4.5)

We denote the lower boundary of Ω(t) by Γb(t) and we introduce Γa(t) and Γd(t), the subsets

of Γb where the cavity roof θ(x, t) is attached or detached from the bedrock b, that is,

Γa(t) =
{

(x, z) ∈ R2 : 0 < x < 1, z = θ(x, t) and b = θ(x, t)
}
, (4.6a)

Γd(t) =
{

(x, z) ∈ R2 : 0 < x < 1, z = θ(x, t) and b < θ(x, t)
}
. (4.6b)

As explained in Section 1.6, in this work we only consider sinusoidal beds of nondimen-

sional amplitude rb given by

b(x) = rb (cos (2πx)− 1) for x ∈ [0, 1].

At each time step t ∈ [0, T ] and for a given domain Ω = Ω(t), the velocity and pres-

sure are the solutions of the Stokes equations equipped with the following set of boundary
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conditions:

−∇ ·
(
α|Du|

1−n
n Du

)
+∇p = 0 in Ω, (4.7a)

∇ · u = 0 in Ω. (4.7b)

σnn = −pi on Γt, (4.7c)

σnt = 0 on Γb, (4.7d)

σnn = −pw on Γd, (4.7e)

u · n ≤ 0, σnn ≤ −pw and (u · n)(σnn + pw) = 0 on Γa. (4.7f)

Since the domain Ω is assumed to be periodic in the horizontal direction, we apply periodic

boundary conditions at x = 0 and x = 1. In (4.7), the term α = 2(1+n)/(2n) arises due to our

choice of scaling. In (4.7a), we neglect gravity, whose effect we encode in the overburden ice

pressure pi in (4.7c); we assume pi > 0 to be spatially uniform along the upper boundary.

We also assume the water pressure pw ≥ 0 to be spatially uniform along the length of

the bedrock because gravity is unimportant on the spatial scales under consideration. The

contact boundary conditions are given by (4.7e), and these realise the possibility of ice

detaching from the bedrock. The system of equations (4.7) requires one final boundary

condition in the tangential direction along Γt. In this section, we consider either the Dirichlet

boundary condition

u = 1 on Γt, (4.8)

or the Neumann boundary condition

σnt = τb (1, 0)> on Γt, (4.9)

where τb is the basal shear stress. These boundary conditions lead to a different variational

inequality which the Stokes system is equivalent to, see Variational inequalities A and B in

Section 1.6.

Finally, by writing the components of the velocity field as u = (u,w), we close the

system with the free boundary equation

∂θ

∂t
+ u

∂θ

∂x
− w = 0 on [0, 1]× [0, T ] (4.10)

together with the inequalities

b ≤ θ and θ < 1 on [0, 1]× [0, T ], (4.11)

and an initial condition

θ(x, 0) = θ0(x) x ∈ [0, L]. (4.12)
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From the non-dimensional system formulated above, it is easily deduced that a station-

ary solution given by the triple (u, p, θ) depends only on the rheological parameter n, the

amplitude of the bedrock rb, the overburden pi and the water pressure pw. However, as

we mention below in Section 4.2.2, the pair (u, θ) in fact only depends on n, rb, and the

effective pressure pi − pw. If we enforce (4.9) instead of (4.8), one could point out that τb

is then another parameter; however, we can remove this dependence by choosing a velocity

scale in terms of τb.

4.2.1 Computation of the basal shear stress and the sliding speed

As made clear in the literature review in Section 4.1, subglacial cavitation is considered a

fundamental mechanism in glacial sliding, which is concerned with the relationship between

basal shear stress τb and sliding speed ub. In the context of the subglacial configuration we

presented above, we define these two values by

τb = −
∫

Γb

(σnn + pw)nx ds and ub =

∫
Γb

uds, (4.13)

where nx is the horizontal components of the outwards-pointing normal vector n = (nx, ny).

The basal shear stress can also be written in terms of the Lagrange multiplier λ, which we

introduce in Sections 2.2.1 and 3.1.3, as

τb = −
∫

Γb

λnx ds, (4.14)

since we have λ = σnn+pw at the continuous level. The numerical algorithm we use to carry

out the computations in this chapter also solves for the Lagrange multiplier λ, as specified

in Section 2.3. Therefore, in our numerical computations, we compute τb with (4.14).

The formula for ub presented in (4.13) might seem strange if the subglacial cavity domain

is interpreted as a boundary layer between an ice sheet and the bedrock. This would suggest

we take the sliding speed to be the average value of the horizontal velocity along the top

boundary Γt. However, our computations indicate that, if the height of the domain H

is sufficiently large, we can expect the shear stress to approach a constant value and the

horizontal velocity u to vary with zn as z approaches H. That is, we observe that u/zn is

equal to a positive constant far away from the lower boundary. Therefore, the horizontal

velocity along the top boundary depends strongly on the height of the domain. For this

reason, and following [36], we use (4.13) to calculate ub. In this case, we find that ub is

independent of H for sufficiently large values of H. In particular, throughout this paper we

set H = 1, which is equal to the non-dimensional length of the cavity. In agreement with

[36], we find this value of H to be sufficiently large.
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4.2.2 Some properties of the solution

We now present some important properties of the solution (u, p, θ) to the subglacial cavity

system that can be deduced from the model. We first introduce a new variable, the effective

pressure N , which we define as

N = pi − pw. (4.15)

Since pw is assumed to be spatially uniform, the velocity solution u to the Stokes equations

(4.7) depends only on the effective pressure N , rather than on the separate values we choose

for pi and pw. We can see this by substituting the pressure p in (4.7) by p−pw. An important

consequence of this is that the cavity geometry θ, the basal shear stress τb, and the sliding

velocity ub depend only on N . For this reason, our study of glacial sliding included in the

next sections only considers the effective pressure N , with no reference to the values of pi

and pw.

The results we present below rely on an integral statement of force balance. If we

integrate (4.7a) and apply the divergence theorem, we find that∫
Γt

(σnnn+ σnt) ds = −
∫

Γb

(σnnn+ σnt) ds. (4.16)

Now, by noting that

n = (0, 1)> on Γt and n =
1√

1 +
(
∂θ
∂x

)2
(
∂θ

∂x
,−1

)>
on Γb, (4.17)

and applying boundary conditions (4.7c) and (4.7d), we may deduce that∫
Γt

(
σnt · (1, 0)>

)
ds = −

∫ 1

0
σnn|Γb

∂θ

∂x
dx, (4.18a)

pi = −
∫ 1

0
σnn|Γb dx. (4.18b)

Lemma 4.1. If a solution to the Stokes problem (4.7) exists, then the effective pressure

must be non-negative, such that N ≥ 0.

Proof. We can see that pi− pw ≥ 0 by taking (4.18b) and using inequality σnn ≤ −pw from

the contact boundary conditions (4.7f).

The necessity of the condition N ≥ 0 for solutions to exist can also be seen to follow

from Theorem A.1. Moreover, it can also be deduced from Variational inequalities A and B

by testing with vertical rigid modes. It is also interesting to note that the condition N > 0

is sufficient for the existence of solutions, as we explain in Remark 3.2.
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Lemma 4.2. The basal shear stress τb can be written as

τb =

∫
Γt

(
σnt · (1, 0)>

)
ds. (4.19)

Moreover, it satisfies the following bound,

τb ≤ N sup
x∈[0,1]

∣∣∣∣∂θ∂x
∣∣∣∣. (4.20)

Inequality (4.20) is normally referred to as Iken’s bound.

Proof. Equation (4.19) follows from (4.18a), by writing∫
Γt

(
σnt · (1, 0)>

)
ds = τb + pw

∫ 1

0

∂θ

∂x
dx (4.21)

and noting that the second term to the right is zero due to the periodicity of θ. To prove

inequality (4.20), we first note that −σnn − pw ≥ 0 by the contact conditions (4.7f), and

therefore we find that

τb ≤ sup
x∈[0,1]

∣∣∣∣∂θ∂x
∣∣∣∣ ∫ 1

0
(−σnn|Γb − pw) dx. (4.22)

By (4.18b), we know that −
∫ 1

0 σnn|Γb dx = pi, and with this equality we can complete the

proof.

The alternative expression for the basal shear stress (4.19) justifies the use of τb as a

boundary condition in (4.9). Iken’s bound (4.20) was first proposed in [59] and indicates

that, whenever subglacial cavitation is accounted for, one can expect a friction law to have

an upper bound. A similar proof to ours can also be found in [87].

4.3 Steady sliding with cavitation

The sliding of a glacier over its bedrock has been widely studied since Weertman’s seminal

work in 1957 [104]. In general, these studies attempt to build a function known as the

friction law that captures the steady relationship between the basal sliding speed ub, the

basal shear stress τb, and other variables such as the effective pressure N . This friction

law can then be used to prescribe a boundary condition at the ice-bedrock interface in

large-scale glacier models which do not resolve the smaller-scale shape of that interface.

In this section, we compute steady solutions to the subglacial cavity system presented in

Section 4.2 with the Dirichlet boundary condition (4.8). These computations are carried out

with the numerical solver for viscous contact problems introduced in Section 2.3. We first

present detailed results for a single steady state in Section 4.3.1 to evaluate the accuracy
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Table 4.1: Information about the different meshes and the time step used to compute the
steady cavity states together with calculations of the basal shear stress τb, the basal sliding
speed ub, and the detachment and reattachment points of the cavity.

ne mesh cells ∆t τb ub reattachment detachment

16 96 0.04 0.014546 0.98678 0.7500 1.0000

32 192 0.02 0.015734 0.98565 0.7188 1.0000

64 768 0.01 0.015477 0.98596 0.7188 1.0000

128 3072 0.005 0.015712 0.98574 0.7109 1.0000

256 12800 0.0025 0.015740 0.98571 0.7109 0.9961

of the solver and the effect of mesh refinement. Then, in Section 4.3.2 we compute friction

laws for different values of the parameter n in Glen’s law (1.3). Throughout this section,

we compare our numerical results with those obtained with the semi-analytical method

proposed in [31, 87] and summarised in Appendix C.

4.3.1 Steady subglacial cavities

We find solutions to the steady state of the subglacial cavity system with the Dirichlet

boundary condition (4.8) by evolving the cavity from an initial state until the L2([0, 1])

norm of the discrete derivative in time of θ, given by

Dtθ
k
h =

√√√√∫ 1

0

[
θk+1
h − θkh

∆t

]2

dx, (4.23)

is below a prescribed threshold of 10−4. In this section, we find steady cavities for a

Newtonian flow (n = 1 in Glen’s law (1.3)) over a bed of small amplitude rb = 0.01. We set

the non-dimensional effective pressure to N = 0.3. The choice of a linear rheology and a

bedrock of small amplitude allows us to compare our results with the analytical solution of

the linearised cavitation problem considered in [31, 87]. A brief description of this method

is included in Appendix C.

We use five different meshes with ne cells uniformly distributed along the lower boundary.

In Table 4.1 we present the non-dimensional basal shear stress τb and sliding speed ub along

the cavities for the five computations. These values suggest that, as we refine the mesh, our

computations of the basal shear stress, sliding speed, and cavity endpoints converge.

In Figure 4.2 we present the steady cavity shape and normal stresses σnn along the

attached region Γa for the different meshes. We can see from these figures that the cavity

shape is accurately computed even with the coarsest mesh. Additionally, we also present

the stress distribution obtained from the linearised theory, which is uniquely determined for
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Figure 4.2: (top) Steady cavity shapes and (bottom) normal stresses along the attached
region computed with different mesh sizes. In black, the stress distribution obtained from
the linearised theory. Here, the amplitude of the obstacle is set to rb = 0.01, the rheological
parameter to n = 1, the scaled effective pressure to N = 0.3, and ne represents the number
of elements along the lower boundary.

an effective pressure N and a sliding speed ub. The result from the linearised theory plotted

in Figure 4.2 is computed with the value of ub calculated with the most refined mesh.

The plot for the normal stress distribution demonstrates that the contact conditions

(4.7f) are satisfied exactly at the discrete level for all of the meshes, because σnn + pw ≤ 0.

This plot also exhibits the singularity of the normal stresses at the reattachment point, which

also appears in the linearised solution. This singularity complicates the approximation of

the normal stresses along the attached region and can lead to very inaccurate computations

of the friction law in largely cavitated states. However, Figure 4.2 also indicates that, with

increasing mesh refinement, the solver appears to converge towards the linearised solution.

We remark that it may appear confusing that there are non-zero values of σnn + pw left

of the position of the reattachment node given in Table 4.1 (this is particularly visible for

the coarsest mesh with ne = 16). However, this is due to the contact criterion, which treats

the edge immediately upstream of the first reattached node as part of Γa, see Section 2.3

in Chapter 2. Moreover, at the discrete level, the Lagrange multiplier λ, which we use to

calculate τb, is piecewise constant on each edge along the lower boundary. In Figure 4.2,

these values, the degrees of freedom of λ, are plotted at the midpoints of each edge.

As the cavities evolve towards a steady state, waves of decreasing amplitude travel along

the roof of the cavity. As a result, convergence towards the steady state becomes rather

slow. This can be seen in Figure 4.3, where we have plotted the variation in time of the
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Figure 4.3: Variation in time of (top) Dtθh, the L2(Ω)-norm of the discrete time derivative
of θh, and (bottom) the cavity volume Vol for the evolution of the cavity towards a steady
state. Here, the amplitude of the obstacle is set to rb = 0.01, the rheological parameter to
n = 1, the scaled effective pressure to N = 0.3, and ne represents the number of elements
along the lower boundary.

norm of the discrete time derivative of θ, which sets our criterion for when a steady state

is reached, and the cavity volume. We note that for the most refined computation, with

ne = 256 elements along the lower boundary, we set ∆t = 0.0025, implying that over

1000 time steps are required to converge to the steady state. This figure also reveals a

clear convergence of the transient, time-dependent solution of the numerical computations,

suggesting that these oscillations are not of a numerical nature.

4.3.2 Computation of the linear and nonlinear steady friction law

We next perform similar calculations to those of Section 4.3.1 but for varying effective

pressure N , power-law exponent n, and bed amplitude rb. This allows us to map out a

steady friction law for ice sliding over a hard bed with cavitation as in [36]. Our non-

dimensional formulation from Section 4.2 reveals that τb depends only on N , rb, and n;

therefore, we can expect that

τb = τb(ub, N, rb, n). (4.24)

On the other hand, dimensional analyses of the steady problem show that the scaled basal

shear stress τb/N depends only on the ratio ub/N
n, and not independently on ub or N [31]

(the same will not be true of the unsteady problem in Section 4.4). Several previous studies
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Figure 4.4: (left) Computed friction law for steady glacial sliding with cavitation. (right)
Cavity endpoints. The parameter n in Glen’s law (1.3) is set to n = 1 (green), 3 (blue), and
5 (red); for each n, we compute the friction law for beds of amplitude rb = 0.01 (circles,
light), 0.04 (squares), and 0.08 (triangles, dark). For these computations, we use a mesh
with 192 cells along the lower boundary. The parameter α0(n) is computed from the slope
of the curve near the origin for the lowest rb.

have suggested what form the friction law should take, both with and without cavitation

[65, 34, 31, 45, 87, 36]. The law proposed in [45] for the uncavitated case can be written as(
τb
rbN

)n
= α0(n)

rub
Nn

, (4.25)

where α0(n) is a function depending on n. The function α0(n) is related to the parameter

c0 (which also depends on n) considered in [45] via

α0(n) =
(2π)n+2

2c0
. (4.26)

For a Newtonian flow, the complex analysis method presented in [31, 87] yields an exact

solution to the linearised problem. In particular, for high effective pressures, no cavitation

occurs and a linear friction law as in (4.25) with c0 = 1 is found. For (nondimensional)

effective pressures lower than a critical value 8π2rbub, cavitation occurs and the friction law

becomes non-linear, varying with N as well as ub.

We compute the friction law over a sinusoidal bed of different amplitudes rb and for

n = 1, 3, and 5, and we plot the results in Figure 4.4 using the scaling suggested by
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(4.25). The mesh has 192 cells along the lower boundary and 7296 cells in total. The

location of the cavity endpoints is also plotted in Figure 4.4, along with the solution to the

linearised problem calculated with the method from [31, 87]. For each n, the parameter

α0(n) is computed by calculating the slope of the curve near the origin (where there is no

cavitation) for the lowest value of rb. The corresponding values of the parameter c0 can

then be calculated from (4.26); these values can be found in Table 4.2 together with those

obtained in [45] and [36]. We see that the results obtained in these works are broadly similar

to ours and that the value c0 = 1 obtained in the linearised theory is approached in all cases

when n = 1.

The computed friction laws with cavitation in Figure 4.4 are multivalued for τb/(rN) as

expected [31, 87]. This aspect of the law justifies the use of the Dirichlet boundary condition

u = 1 on Γt instead of the alternative Neumann boundary condition, given by (4.9). We

find that if we use the Neumann boundary condition σnt = τb(1, 0)> and initiate the cavity

from a fully attached state, the solver always evolves to the steady state associated to the

upsloping region of the curve (see also Section 4.4).

For fixed values of rb and n, the friction laws in Figure 4.4 present an initial segment

near the origin where τb/N increases linearly with u
1/n
b /N . In this linear segment little or

no cavitation has occurred, and along it we find that the validity of the friction law (4.25)

decreases with increasing values of rb and n. For example, when n = 5, one can observe

that the linear segment of the friction law for rb = 0.08 clearly does not collapse onto the

corresponding linear segment for rb = 0.01 (we would expect them to be indistinguishable

along this linear segment if (4.25) was valid for all values of n and rb). As soon as the cavity

size increases and this linear behaviour is lost, the aspect of these curves largely differ for

different values of n. In fact, Figure 4.4 suggests that a limit curve exists for each value of

n as rb → 0.

In Figure 4.4, we use a different scaling to the one used in [36]. In [36], the computed

maximum value reached by τb/N is included in the scaling for the friction law. In this way,

the maximum value reached by the scaled friction law equals 1 by design. However, we

preferred the scaling based on (4.25) because it contains fewer terms that are unknown a

priori. It is also worth mentioning that, for different values of n, the curves in Figure 4.4

do not collapse into a single curve when plotted with the scaling from [36].

For the linear case with n = 1, the numerical results computed with the finite element

solver highly resemble those obtained with the linearised solution. For rb = 0.08 a slight

difference with the linearised solution can be seen near the peak of the friction law. This

difference is probably a consequence of nonlinear effects that are accentuated with increasing

amplitudes of bedrock roughness.
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Table 4.2: Value of the parameter c0 associated to the friction laws. This parameter is
computed with the slope of these curves near the origin.

rb = 0.01 [45] [36]

n = 1 1.0006 0.9936 0.9771

n = 3 0.3433 0.3294 0.2769

n = 5 0.1252 0.1153 -

4.4 Unsteady sliding with cavitation

In the previous section, the sliding law was constructed by computing steady cavity states.

However, field measurements from alpine glaciers and from the Greenland Ice Sheet have

found short term variations in the water pressure, on timescales down to hours [59, 60, 98,

4, 57]. In these studies, variations of water pressure have been correlated with variations

in surface speeds, vertical strain, and uplift. Subglacial cavitation has been considered a

possible mechanism causing these correlations [60, 72, 98]. These observations motivate

an investigation of glacier sliding under unsteady conditions. In this section, we therefore

compute the evolution in time of subglacial cavities under oscillating water pressures and

calculate the corresponding unsteady basal sliding speed and shear stresses. The study

published by Iken of the transient stages between steady cavity shapes [59] is the only

numerical investigation of unsteady cavitation solving the Stokes problem known to the

author.

We initialise the computations from a steady state corresponding to a point in the sliding

law determined by an effective pressure N0, a basal sliding speed ub,0, and a basal shear

stress τb,0. Instead of prescribing the Dirichlet boundary condition u = 1 on Γt, we enforce

the Neumann boundary condition σnt = τb,0(1, 0)> on Γt. We consider it more physically

realistic to have the basal shear stress fixed rather than the sliding speed because we can

expect the basal stresses to balance the gravitational driving stresses, which are essentially

fixed on these timescales. In practice, if water pressure variations are spatially localised,

the driving stress can be transferred to neighbouring regions of the bed, but it is not easy to

account for this within the current boundary-layer treatment of the problem. We set n = 3

in Glen’s law to model the nonlinear rheology of ice. The numerical scheme from Section 2.3

is used with a mesh with 192 elements along the lower boundary over a sinusoidal bed of

amplitude rb = 0.08.

The effects of unsteady water pressures differ depending on the initial steady state from

which we evolve the cavity. To illustrate this, we first evolve two different points along

the upsloping component of the steady sliding law by oscillating the effective pressure with
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Figure 4.5: Unsteady cavitation for imposed oscillating effective pressures N and fixed basal
shear stress τb around the states with (ub,0, N0) = (1, 2.2281) (left) and (1, 1.8843) (right).
(top) Evolution of the cavity volume V (right axis) and basal sliding speed ub (left axis,
also for N). (middle) One period of each solution is superimposed on the steady sliding
law, as indicated by the coloured dots. (bottom) Cavity shapes at different time instants
with coloured lines; the dotted lines represent the steady cavity shapes for (ub,0, N0).

an amplitude of 0.1N0 and a fixed non-dimensional frequency of 0.4. As a reference, note

that one non-dimensional time unit is approximately the time taken for ice at the top of

the domain to traverse one wavelength of the bed. The results are plotted in Figure 4.5.

These results indicate that, with increasing cavitation, the amplitude of the sliding speed

increases. For the case of small cavitation (top-left panel of Figure 4.5), the sliding speed is

slightly out of phase with the effective pressure. However, this phase difference disappears

with larger cavitation, as observed in the top-right panel of Figure 4.5 and also in Figures 4.6

and 4.7 below. This implies that the maximum sliding speed is most often reached when the

effective pressure is lowest. Field measurements have also found maximum surface speeds

to take place at moments of maximum water pressures [60, 98]. On the other hand, the

phase difference between the sliding speeds and the cavity volume appears to change in

each numerical test: in the top-left panel of Figure 4.5, one can observe that the maximum

sliding speed is reached when the cavity is still growing, while in the top-right panel of
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Figure 4.6: Unsteady cavitation around the state with (ub,0, N0) = (1, 1.8843) for imposed
oscillating effective pressures N , with non-dimensional frequencies of 0.4 (left) and 2 (right),
and fixed basal shear stress τb . (top) Evolution of the cavity volume V (right axis) and
basal sliding speed ub (left axis, also for N). (middle) Sliding speed is plotted against
effective pressure in coloured dots, together with the steady solution in black. (bottom)
Cavity shapes at different time instants with coloured lines; the dotted lines represent the
steady cavity shapes for (ub,0, N0).

Figure 4.5 it is reached at the time of maximum cavitation. There are slight oscillations in

the computed sliding speed when the cavity volume is at its largest. These are numerical

artefacts due to the stress singularity at the reattachment point of the cavity having an

increasing effect on the overall solution of the problem as the cavity volume grows. In these

situations, a small displacement of the reattachment point has a large effect on the stress

distribution along the bed and therefore also on the computed sliding speed.

As mentioned above, the non-dimensional time it takes a fluid particle to traverse the

domain is of order t ≈ 1. Therefore, the scaled frequency f = 0.4 can be considered a

relatively slow frequency that allows the cavity to approximately follow the steady shapes

associated to the effective pressure at each instant in time as calculated in Section 4.3. In

Figure 4.6, we compare results obtained with frequencies f = 0.4 and f = 2 to examine the

effect of faster oscillations in the water pressure. With a higher frequency, the magnitude of

the change of cavity volume is significantly lower. In contrast, the amplitude of the sliding
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speed increases slightly with a higher frequency. The phase difference between the velocity

and the cavity volume also changes when the frequency is increased. For a high frequency,

the maximum velocity is no longer attained when the cavity reaches its largest extent, but

before, when the cavity is still growing. More specifically, the top-right panel of Figure 4.6

indicates that the maximum of the sliding speed and of the rate of change of the cavity

volume occur simultaneously.

We can therefore expect a phase difference between the sliding speed and the cavity

volume to arise for large frequencies. For very low frequencies, at each time instant t,

the cavity shape is approximately that of the corresponding steady state for the values of

N(t), ub(t), and τb(t). Therefore, since ub increases with the cavity volume under steady

conditions, this phase difference will disappear. When comparing the top-left and right

panels of Figure 4.5, we see that this phase difference is larger when the cavity is smallest.

Following [98], in Figure 4.6 we also plot the sliding speed against the effective pressure

throughout one cycle. For the lower frequency f = 0.4, a clear loop arises in which the

sliding speed is greater during cavity growth. For the higher frequency f = 2, the loop nearly

collapses into a single line. These plots can be compared with those obtained from field

measurements in [98, Figure 5]; a qualitative similarity between both is that higher speeds

are reached when N decreases. Additionally, similar plots are presented in [4, Extended

Data Figure 4]. These plots also show the extent to which unsteady sliding can differ from

its steady counterpart.

The downsloping section of the friction curve produces a so-called rate-weakening sliding

regime in which, for a supposed fixed effective pressure, an increase in the sliding speed is

accompanied by a decrease in the basal drag. Rate-weakening sliding has been observed

in a laboratory setting for ice sliding over a sinusoidal bed [107], although several authors

have questioned whether such a sliding regime can arise for more realistic bed geometries

[32, 87, 49]. An implication of rate-weakening sliding is that the sliding law becomes double-

valued, as seen in Figure 4.4. This invalidates the commonly used shallow ice approximation

of the Stokes equations which requires the friction law to be invertible [93].

In Figure 4.7 we perturb a steady state along the downsloping section of the curve with

an oscillating effective pressure of nondimensional frequency f = 0.4 with the amplitude set

to 0.1N0 (left panels) and 0.01N0 (right panels). As shown in the middle-left and right panels

of Figure 4.7, we observe that, for perturbations with both large and small amplitudes, the

cavity quickly evolves towards the steady state along the upsloping section for a similar value

τb,0/N0. In fact, we find that this phenomenon continues to occur for different frequencies

in the oscillations of the effective pressure and different steady states along the downsloping

section of the sliding law. This finding could offer an additional reason to not use a sliding
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Figure 4.7: Unsteady cavitation around the state with (ub,0, N0) = (1, 1.0937) for imposed
oscillating effective pressures N , with amplitudes of 0.1N0 (left) and 0.01N0 (right), and
fixed basal shear stress τb . (top) Evolution of the cavity volume V (right axis) and basal
sliding speed ub (left axis, also for N). (middle) One period of each solution is superimposed
on the steady sliding law, as indicated by the coloured dots. (bottom) Cavity shapes at
different time instants with coloured lines; the dotted lines represent the steady cavity
shapes for (ub,0, N0).

law with a rate-weakening regime: since such a regime is unstable in the sense described

above, we could expect it to be unachievable under natural conditions.

4.5 Discussion

After a review of the literature dedicated to glacial sliding with cavitation, we formulate the

subglacial cavitation problem in a similar manner to [36], following our general formulation

of viscous contact problems introduced in Chapter 1. We then derive some properties of

the system, such as Iken’s bound and the dependence of sliding parameters on the effective

pressure N = pi − pw, rather than the individual values of pi and pw. In Section 4.3

we compute steady cavity configurations with the numerical method for viscous contact

problems presented in Section 2.3. Here, we validate our computations by comparing our

method with the linearised approach in [31, 87] and we reconstruct steady sliding laws for
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different values of the rheological exponent n, as in [36]. Finally, in Section 4.4, we explore

the temporal evolution of cavities under unsteady effective pressures and its effect on glacial

sliding. One of the features of unsteady sliding studied in this work is the phase difference

between the sliding speed, the cavity volume, and the effective pressures. Our results show

that, with increasing frequencies, the phase difference between the sliding speed and cavity

volume increases. They also seem to indicate that the maximum sliding speed occurs at

the point of minimum effective pressure, at least for sufficiently cavitated states. Similar

phase differences have been found in data obtained from field measurements [60, 98, 4].

Although our results could offer an explanation in terms of an idealised model, it should be

noted that changes in measurements of surface elevation of an ice sheet can be the result of

many cavities in different states. Another interesting finding is that, when we fix the value

of τb as a Neumann boundary condition, the downsloping section of the sliding law, also

known as the rate-weakening regime, is unstable under finite perturbations. That is, if we

perturb a steady state along the downsloping section, the cavity quickly evolves towards

the corresponding point with a similar value of τb/N along the upsloping part.

We remark that we have compared our numerical method and its application to sub-

glacial cavitation with that of [36]. When computing the points along the steady sliding

law in Figure 4.4 with our method, the number of time steps required to converge to a

steady state can become very large (of order 1000) in the highly cavitated stages along the

downsloping region of the curve. This is due to very small scale oscillations that travel

across the cavity but have a significant effect on the calculated values of τb due to the stress

singularity at the reattachment point, as explained in Section 4.3.1. Contrastingly, when

using the method from [36], these oscillations seem to dampen and the method can converge

in about 100 iterations for highly cavitated states. We speculate that this is due to the use

of a numerical stabilisation in Elmer when solving the advection equation, see (11) in [37].

Despite this difference in computational times, we find that the basal stress computations

carried out with our method appear to be more accurate due to the exact enforcement of

discrete contact conditions (see Figure 4.2 and compare with [36, Figure 1]).

We expect that the long computational times required to find steady cavity states can be

drastically reduced by directly solving for the steady solution. That is, instead of advancing

towards a steady state from a given initial condition, we could formulate and implement

a method that applies a nonlinear solver (ideally the semi-smooth Newton method) to a

system that couples the Stokes equations with the free boundary equations. Such a method

is also proposed at the end of Chapter 2 for building implicit solvers for viscous contact

problems. Accuracy could also be improved substantially without a disproportionate in-

crease in computational cost by using adaptive refinement around the contact points. The
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main obstacles to developing both a steady state solver and an adaptive refinement scheme

are the computational implementation in Firedrake.
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Chapter 5

Marine ice sheets

Marine ice sheets are ice sheets which slide from the continent into the ocean, where they go

afloat at the so-called grounding line, the interface where ice, bedrock, and ocean meet. This

configuration is found in much of the West Antarctic ice sheet, where a large portion of its

bedrock lies beneath sea level [75], and in some of Greenland’s glaciers, such as Petermann

Glacier [53]. Marine ice sheets contribute to sea level rise by discharging grounded ice into

the ocean. The rate of discharge is determined by the dynamics of the grounding line,

and much research has been undertaken to understand the possibility of a marine ice sheet

instability that could trigger an acceleration in the rate of discharge [89, 88, 24, 46, 28].

This chapter investigates steady marine ice sheet configurations. We do this by com-

puting numerical solutions to a model problem, the parallel slab marine ice sheet problem

presented in Section 5.2. It consists of a slab of ice of uniform thickness flowing down an

inclined bedrock into the ocean, where it detaches from the bedrock at the grounding line.

The main focus of this chapter is the relationship between the ice flux and the thickness at

the grounding line, which is crucial for constructing simple but accurate models of marine

ice sheets and understanding their dynamics.

The original contribution of this chapter lies in the computation of steady flux-thickness

relationships at the grounding line by solving the viscous contact problem based on the

Stokes equations. To do so, we use our solver for viscous contact problems presented

in Chapter 2. We first explore the form taken by this relationship under different flow

regimes. In Section 5.3, we present a first set of results which suggest that, in the limits

of pure sliding and pure shearing, this relationship tends towards power laws of exponents

n + 1 and n + 2, respectively. Then, in Section 5.4, we explore each of these limits more

rigorously and analytically derive approximations to these laws by means of simple models

as in [89, 67, 86, 80]. These comparisons allow us to rigorously establish the range of validity

of these models.
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5.1 Existing studies on grounding line dynamics

The possibility of an eventual disintegration of the West Antarctic ice sheet has motivated

many studies on the dynamics of grounding lines in the past decades. Of this extensive

literature, here we focus on a small subset which has attempted to understand the mecha-

nisms regulating the ice flux q and thickness h at the grounding line. In particular, unless

the contrary is stated, all the studies we cite in this review concentrate on two-dimensional

(i.e. one horizontal dimension) marine ice sheets. In this setting, the grounding line is a

point, which we denote by xg.

Almost five decades ago, Weertman [105] studied the transition region between grounded

and floating ice using rough estimates of the viscous stresses and flow velocity of the ice, and

established that stable grounding line positions may exist whenever the bed slopes upwards

towards the floating ice shelf from the centre of the ice sheet. Underlying this stability

analysis was the hypothesis that the ice flux at the grounding line must be a single-valued

function of the ice thickness. With this study, Weertman pointed out the importance of

this transition region in marine ice sheet dynamics.

Weertman’s use of ad-hoc arguments made the extent to which his conclusions were

valid unclear. Three decades later, a first rigorous attempt to understand the junction

from grounded to floating ice was provided by Wilchinsky and Chugonov [106]. Here, the

authors focused on a stationary Stokes flow with no slip boundary conditions along the base

of the grounded region. By arguing that shear stresses should be of the same order as the

extensional stresses at the junction, they found a flux-thickness relationship of the form

q =
2

βn0
A (ρgδ)n hn+2 at x = xg, (5.1)

where the non-negative parameters n and A are those found in Glen’s law, see Section 1.3,

ρ and g are the ice density and the gravitational acceleration, respectively, and δ is given

by

δ = 1− ρ

ρw
, (5.2)

with ρw denoting the density of the ocean water. The constant β0 is to be computed by

solving the Stokes flow along the junction numerically. For the case where n = 1, they find

that β0 = 3/2. The main limitation of this work is that the contact boundary conditions

that determine where the ice detaches from the bedrock are not acknowledged. Instead,

when solving the junction problem, the authors set the first and second derivatives of the

ice thickness at the grounding line to zero.
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A breakthrough in our understanding of grounding line dynamics was made when Schoof

[89] used matched asymptotic expansions to show that, under certain (different) assump-

tions, the flux-thickness relationship takes the form of the power law

q =

(
A(ρg)n+1(1− ρ/ρw)n

4nC

)1/(m+1)

h(m+n+3)/(m+1) at x = xg. (5.3)

Here, C > 0 is the sliding coefficient and m > 0 is an exponent appearing in the friction law,

which we set to m = 1/n, see the friction boundary condition (5.15) below. Unlike (5.1),

Schoof’s power law does not contain any constants that must be calculated with numerical

methods. Moreover, (5.3) is argued to be valid under unsteady conditions, and this point

is exploited by Schoof in [88, 92] to prove that steady marine ice sheet configurations must

have their grounding lines on downwards sloping bedrocks. In particular, Schoof identified

a flux-thickness relationship as the missing condition required to close a depth-integrated

approximation for a marine ice sheet. In this sense, (5.3) acts like a Stefan condition for a

free boundary problem where xg is an additional unknown.

Equation (5.3) was derived from the shallow stream approximation of the Stokes equa-

tions, which is valid for thin flows whose velocity field hardly varies along the vertical

direction (that is, a so-called plug flow). Two additional assumptions required for (5.3) to

hold are that the extensional stresses be negligible on most of the grounded flow and that

the ice be thin at the grounding line. Further investigations have explored the flux-thickness

relationship under different flow regimes. For example, Nowicki and Wingham [76] stud-

ied the transition problem by solving the Stokes equations on a flat bedrock with a fixed

grounding line. They claimed that a single valued flux-thickness relationship may not hold

when no sliding occurs (as opposed to (5.3), which is strictly monotonically increasing). A

remarkable aspect of this study is that it solved the Stokes equations instead of a depth-

integrated model. However, unlike our study in this chapter, contact boundary conditions

were not enforced. Instead, the authors find steady states ignoring the contact inequalities,

and then investigate whether these contact conditions hold or not.

Sergienko and Wingham [95] challenged Schoof’s assumptions and derived an implicit

flux-thickness relationship for a plug flow regime where the extensional stresses are no longer

negligible. One of the main reasons for considering this flow regime is that, according to

the authors, the large ice surface gradients near the grounding line required for Schoof’s

law (5.3) to be valid are not observed in many West Antarctic ice streams. The implicit

relationship derived by Sergienko and Wingham includes a more prominent role for the

bedrock. As a result, the authors find that for certain bedrock profiles, marine ice sheets

can be stable on upwards sloping bedrocks, contrary to the claims Weertman and Schoof

had made previously.
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Viscous grounding lines have also been studied experimentally. In [86], Robison, Hup-

pert, and Worster proposed a depth-integrated approximation of a marine ice sheet under

the assumptions of a linear rheology and no-slip boundary conditions along the grounded

region. For unsteady regimes, a Stefan-like condition was derived analytically which in-

volved time derivatives; however, under the assumption of a steady flow, this condition

took the form of a simple power law which relates the flux to the cube of the thickness (as

in (5.1) when n = 1). Experimental results indicated a slight discrepancy with this power

law. The authors suggested this discrepancy could be due to a rise in the water line, caused

by the introduction of the viscous fluid acting as the ice sheet, and to the viscous shear

stress exerted by the sidewalls of the tank. In order to avoid sidewall effects, Pegler and

Worster [80] derived a similar model for a three-dimensional axisymmetric flow, radially

flowing from a point source. A similar Stefan condition to the one derived in [86], but in-

cluding three-dimensional effects, was derived and used by Katz and Worster [67] to study

the stability of grounding lines.

An understanding of the transition region around the grounding line is thus fundamental

for making any predictions about the behaviour of marine ice sheets. In particular, as

we have seen, grounding line dynamics are commonly parametrised with a flux-thickness

relationship. With a grounding line parametrisation and depth-integrated approximations

of the Stokes equations, one can build simplified models for marine ice sheets. Since solving

a Stokes problem over long timescales and large spatial scales is currently impractical, these

simplified models are used for simulating the evolution of Earth’s ice sheets. Schoof’s law

(5.3), for example, has been used in large-scale numerical solvers which investigate the

dynamics of the Antarctic continent [81, 82], although comparisons with other models for

three-dimensional problems have suggested that using Schoof’s law as a parametrisation of

the grounding line position is not valid for short transients [78].

Although a numerical verification of the marine ice sheet instability was simulated with

Elmer/Ice [24, 28], to date there exist no detailed studies on the transition region around

the grounding line which solve the complete Stokes viscous contact problem. The main con-

tribution of this chapter is a rigorous investigation of the steady flux-thickness relationship

at the grounding line in the context of the parallel slab marine ice sheet problem. We con-

sider a wide range of flow configurations with different amounts of slip, ranging from pure

sliding to pure shear flow, and include comparisons to analytically derived flux-thickness

relationships. With this study, we seek to disclose the structure of the steady flux-thickness

relationship for the parallel slab problem. This will allow us to explore many aspects of

these relationships, such as the range of validity of methods commonly used to approximate
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them, the effects of the bedrock profile on them, and whether they are single-valued or not

under different conditions.

5.2 The parallel slab marine ice sheet problem

For our model setup, we suppose a slab of uniform thickness ice flows down an inclined

bedrock which slopes downwards into the sea, where the ice goes afloat at the grounding

line, see Figure 5.1. In this section, we present two different models for the parallel slab

marine ice sheet problem: the Stokes equations and the shallow stream/shelf approximation

(SSA). We focus solely on two-dimensional marine ice sheets, where the grounding line xg

is a point. For simplicity, we will assume that the ice detaches from the bedrock at a single

point, without considering cases where the ice reattaches at a further point x > xg.

In this problem, the inflow boundary conditions we enforce are based on the parallel

slab solution to the Stokes equations or the SSA, depending on the model we are solving.

Then, if the portion of ice located above sea level is sufficiently long, we can expect the ice to

transition smoothly from a slab of constant thickness to a floating ice shelf. These boundary

conditions are presented below for the Stokes equations and the SSA. We choose this setup

for our model problem because it facilitates numerical computations of the transition region

around the grounding line, since we have a well-defined boundary condition for the ice

surfaces s and θ at the left-hand side of the domain. In this way, we can discretise the free

boundary equations with an upwinding scheme, as explained in Section 2.3. Moreover, with

the parallel slab inflow boundary conditions we can fix the incoming flux of ice and, in the

case of the Stokes equations, control the ratio of incoming flux due to sliding and shearing.

This allows us to model the dynamics of a marine ice sheet around the grounding line under

different flow regimes. In this setup, since we assume that no ice is gained or lost through

the upper and lower surfaces, the flux through any vertical line is the same as the influx

whenever the ice sheet is in a steady state. In particular, the flux at the grounding line is

equal to the influx.

For the remainder of this chapter, we fix a Cartesian coordinate system (x, z) with origin

at the point where the sea level intersects the bedrock. We denote the angle at which the

bedrock slopes by β and write

b(x) = −x tanβ (5.4)

for the bedrock deviation, relative to the sea level. The domains under consideration are

of length L and occupy a region which extends horizontally from a point −x0 < 0 to a

calving front at L−x0. Towards x = −x0, the flow approaches that of a parallel slab whose

thickness is set equal to H.

90



H

ûs
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Figure 5.1: The parallel slab marine ice sheet problem. Far upstream of the grounding line,
the grounded ice sheet approaches a parallel slab of ice of thickness H on an inclined slope
of angle β. The dotted line represents the sea level.

5.2.1 Modelling the marine ice sheet problem with the Stokes equations

The marine ice sheet problem proposed in this section is a viscous contact problem and can

therefore be modelled with the Stokes equations, as in Chapter 1. Following the notation

introduced in Section 1.7, the ice sheet occupies the domain Ω(t), enclosed between an

upper surface s(x, t) and a lower surface θ(x, t):

Ω(t) =
{

(x, z) ∈ R2 : −x0 < x < L− x0, and θ(x, t) < z < s(x, t)
}
. (5.5)

The flow in Ω(t) is described according to the Stokes equations with a nonlinear rheology:

−∇ ·
(
α|Du|

1−n
n Du

)
+∇p = f in Ω, (5.6a)

∇ · u = 0 in Ω. (5.6b)

Here α = 2(n−1)/(2n)A−1/n is factor which we take to be constant and f = (0,−ρg) is the

gravitational force density. On the top domain Γt, defined by

Γt(t) =
{

(x, z) ∈ R2 : −x0 < x < L− x0, and z = s(x, t)
}
, (5.7)

the ice is in contact with the atmosphere and we set

σn = 0 on Γt. (5.8)

On the detached region,

Γd(t) =
{

(x, z) ∈ R2 : −x0 < x < L− x0, z = θ(x, t), and b < θ(x, t)
}
, (5.9)

and at the calving front,

Γc(t) =
{

(x, z) ∈ R2 : x = L− x0 and θ(x, t) ≤ z ≤ s(x, t)
}
, (5.10)
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the ice is in contact with the water and therefore we enforce

σn = −pwn on Γd ∪ Γc. (5.11)

Since we assume the water to be in hydrostatic equilibrium, we write

pw(z) = ρwgmax {0,−z}. (5.12)

The attached region Γa is the region along the lower boundary where the ice is contact with

the bedrock, that is,

Γa(t) =
{

(x, z) ∈ R2 : −x0 < x < L− x0, z = θ(x, t), and b = θ(x, t)
}
. (5.13)

As explained in Section 1.4, on Γa we allow the ice to detach from the bedrock by enforcing

the following contact boundary conditions:

u · n ≤ 0, σnn ≤ −pw and (u · n)(σnn + pw) = 0 on Γa. (5.14)

In the tangential direction, we enforce a Weertman-style friction law [104]:

σnt = −C|Tu|1/n−1Tu on Γa. (5.15)

On the left boundary of the domain, which we assume to remain unchanged with time and

we define as

Γi =
{

(−x0, z) ∈ R2 : b(−x0) ≤ z ≤ s(−x0, t)
}
, (5.16)

we enforce inflow boundary conditions given by the parallel slab solution. This solution is

best described in a frame of reference aligned with the bed. Therefore, we introduce an

additional coordinate system (x̂, ẑ) with origin at the point (−x0, b(−x0)), rotated such that

x̂ aligns with the bed. We denote by Ĥ the thickness of the ice sheet in the ẑ direction (so

that Ĥ = H cosβ). Then, in this frame, the velocity field of the slab solution is given by

û = (ûs, 0), where

ûs(ẑ) =
(
ρgĤ sinβ

)n [ 1

Cn
+

2AĤ
n+ 1

(
1−

(
1− ẑ

Ĥ

)n+1
)]

, (5.17)

and the pressure field by

ps(ẑ) = ρg cos(β)(Ĥ − ẑ), (5.18)

see the derivation in [44, Section 7.2]. Therefore, in our standard coordinate system (x, z),

we enforce

u = ûs cosβ on Γi (5.19)
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and

σnt = −ρg(Ĥ − ẑ) cos (β) sin (β)
(
cos2 β − sin2 β

)( 0
1

)
on Γi. (5.20)

The total incoming flux into the domain Ω is then given by

qs =
(
ρgĤ sinβ

)n( Ĥ

Cn
+

2AĤ2

n+ 2

)
. (5.21)

One can observe that the parallel slab flow is the sum of a sliding and a shearing contribution,

given by (ρg sinβ/C)nĤn+1 and 2A/(n+2)(ρg sinβ)nĤn+2, respectively. The ratio between

shearing and sliding is then controlled by the nondimensional parameter

∆s = CnAH. (5.22)

Whenever ∆s → 0, the flow around x = −x0 will approach that of a plug flow, where the

velocity field does not change through the depth of the ice sheet. On the other hand, when

∆s →∞, the ice will flow due to shearing at x = −x0, with no sliding along the bedrock.

Finally, we complete the model with the evolution equations for the upper and lower

surfaces of the ice sheet. The surfaces θ(x, t) and s(x, t) evolve from t = 0 to t = T according

to the free boundary equations

∂s

∂t
+ u

∂s

∂x
− w = 0 on (−x0, L− x0)× (0, T ], (5.23a)

∂θ

∂t
+ u

∂θ

∂x
− w = 0 on (−x0, L− x0)× (0, T ], (5.23b)

together with the boundary conditions

θ(−x0, t) = b(−x0) and s(−x0, t) = b(−x0) +H for 0 < t ≤ T , (5.24)

and initial conditions for s and θ at t = 0. As explained in Section 1.4, we do not add any

source terms to (5.23) because in the problems under consideration here we assume all of

the ice flux to be delivered into the domain through the left hand inflow boundary Γi.

5.2.2 The shallow stream/shelf approximation (SSA)

Marine ice sheets are commonly modelled with a depth-integrated approximation of the

Stokes equations. This approximation is often referred to as the shallow stream approxi-

mation when the ice is grounded and as the shallow shelf approximation when it is floating.

In either case, throughout this chapter we will refer to it as the SSA.

The SSA is based on three fundamental assumptions: first, that the ice sheet is shallow

and smooth, such that the unit vectors normal to its surface are approximately vertical;

93



second, that the vertical component of the Cauchy stress tensor is in hydrostatic balance;

and third, that the ice flows like a plug flow with no vertical variations in its velocity field.

Early derivations of the the SSA can be found in [74] for ice shelves and in [71] for ice

streams. A more recent exposition is contained in [44, Chapter 6].

In this chapter, we will write the components of the Cauchy stress tensor σ and its

deviatoric component τ as

σ =

[
σxx σxz
σxz σzz

]
and τ =

[
τxx τxz
τxz τzz

]
. (5.25)

The vertical component of the momentum balance equation (5.6a) can be written as

∂σxz
∂x

+
∂σzz
∂z

= ρg. (5.26)

As explained in [44, Section 5.2], the shear stress σxz is generally small compared to the

vertical stress σzz. If we neglect the shear term in (5.26), we deduce that the vertical stress

is in hydrostatic balance; that is,

σzz = −ρg(s− z) (5.27)

after integrating and using the fact that σzz = 0 at z = s due to the boundary condition

(5.8). As a consequence, the momentum balance equation in the horizontal direction takes

the following form:

2
∂τxx
∂x

+
∂τxz
∂z

= ρg
∂s

∂x
. (5.28)

We now proceed to reduce the problem to one dimension by integrating along the depth of

the ice sheet. To this end, we introduce the ice thickness variable

h(x, t) = s(x, t)− θ(x, t) (5.29)

and the depth-integrated extensional stress and velocity

τxx =
1

h

∫ s

θ
τxx dz and u =

1

h

∫ s

θ
u dz. (5.30)

Then, by integrating (5.28) from z = θ to z = s and applying Lebniz’s rule of integration,

we arrive at the following equality:

2
∂

∂x
(hτxx)−

[
τxz − 2

∂θ

∂x
τxx

]
z=θ

= ρgh
∂s

∂x
. (5.31)

The boundary term in (5.31) is handled differently depending on whether the ice sheet is

grounded or floating. Below, we consider both cases and derive the corresponding SSA

equations. Finally, we show how these two derivations can be used to formulate a free

boundary problem for the complete marine ice sheet problem.
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Grounded ice

For grounded ice, located in the interval (−x0, xg), we enforce the friction law (5.15) along

the base z = θ. At this point, we must assume that variations in the bedrock slope are

small. This allows us to rewrite (5.15) as

2
∂θ

∂x
τxx − τxz = −C|u|1/n−1u on Γa. (5.32)

As a result, for grounded ice, the momentum balance equation for the SSA is

2
∂

∂x
(hτxx)− C|u|1/n−1u = ρgh

∂s

∂x
on (−x0, xg). (5.33)

Finally, by appealing to our assumption of a plug flow, we find that

2A−1/n ∂

∂x

(
h

∣∣∣∣∂u∂x
∣∣∣∣1/n−1 ∂u

∂x

)
− C|u|1/n−1u = ρgh

∂s

∂x
on (−x0, xg). (5.34)

Floating ice

In the interval (xg, L−x0), where ice is floating, we enforce the boundary condition (5.11) at

the base of the shelf. By neglecting the shear stress and applying the hydrostatic expression

for the vertical stress term (5.27), we deduce the flotation condition,

−ρh = ρwθ, (5.35)

which corresponds with Archimedes’ principle. Then, by taking the horizontal component

of (5.11) and, once again, using (5.27), we see that

(2τxx − ρgh)
∂θ

∂x
− τxz = ρwgθ

∂θ

∂x
. (5.36)

As a result of the flotation condition (5.35), we find that 2τxx − τxz = 0 at z = θ and that

s = δh. Hence, we may write

2
∂

∂x
(hτxx) = ρgδh

∂h

∂x
on (xg, L− x0). (5.37)

for the SSA on a floating ice shelf. At the calving front, (5.11) implies that

2hτxx =
1

2
ρgδh2 at x = L− x0. (5.38)

Therefore, by integrating (5.37) from a point xg < x < L − x0 to the calving front, and

using (5.38), we find that the depth-integrated stress τxx along the shelf can be expressed

as

τxx =
1

4
ρgδh on (xg, L− x0). (5.39)
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The SSA formulation of the parallel slab marine ice sheet problem

The SSA formulation of the parallel slab marine ice sheet problem is written in terms of

three unknowns: the depth-averaged velocity u, the ice thickness h, and the grounding line

position xg. The momentum equation for the SSA, which we have derived above in (5.34)

for grounded ice and in (5.39) for floating ice, must be complemented with the thickness

equation, which is a reformulation of conservation of mass in terms of the ice thickness. A

derivation can be found in [44, Section 5.1.3]. By vertically integrating (5.6b) along the

depth of the ice sheet and using the free boundary equations (5.23), we obtain

∂h

∂t
+

∂

∂x
(hu) = 0 on (−x0, L− x0). (5.40)

We note that, unlike the momentum equations (5.34) and (5.39), no simplifying assumptions

on the ice flow are required for the derivation of (5.40).

Finally, in order to close the SSA formulation of the parallel slab problem, we need a

boundary condition at x = −x0. Towards x = −x0, we want the flow of ice to approach the

parallel slab solution with thickness H, as in Figure 5.1. When assuming the SSA to hold,

the parallel slab differs from (5.17) because we assume the ice to behave like a plug flow.

We can obtain the parallel slab velocity for the SSA by setting the derivatives for u and h

to zero in (5.34); this yields

us,SSA =

(
ρgH tanβ

C

)n
. (5.41)

because ∂b/∂x = − tanβ. In this case, the incoming flux for the SSA is given by

qs,SSA =

(
ρg tanβ

C

)n
Hn+1. (5.42)

Several combinations of boundary conditions for h and u are available. For example,

one can set the velocity to (5.41) and the thickness to H as Dirichlet boundary conditions.

From a numerical point of view, we obtained the most accurate solutions by setting a

Neumann condition of zero extensional stresses together with a Dirichlet condition for the

ice thickness:

2A−
1
nh

∣∣∣∣∂u∂x
∣∣∣∣ 1
n
−1 ∂u

∂x
= 0 and h = H at x = −x0. (5.43)

When we impose (5.43), the difference between u(−x0) and us,SSA is an indicator for how

close our solution is to that of a slab flow at x = −x0.

When solving the SSA of a two-dimensional marine ice sheet (which results in a one-

dimensional problem), the ice shelf does not need to be considered. As explained in [89],

thanks to the possibility of integrating the SSA momentum equation along the ice shelf, it

is sufficient to solve (5.34) and (5.40) along (−x0, xg), together with boundary conditions

(5.43) at x = −x0 and (5.35) and (5.39) at x = xg.
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5.3 Steady grounding line configurations

We compute steady grounding line positions on a bedrock of angle β = 1◦ for different com-

binations of material parameters. We examine the resulting flux-thickness relationships in

Section 5.3.2 and compare some of these results with depth-integrated models for grounded

and floating ice in Section 5.3.3. These computations reveal a structure in the flux-thickness

relationships at the grounding line that motivate the investigations of Section 5.4. The two

models for a marine ice sheet presented in the previous section, based on the Stokes equa-

tions and the SSA, are used to compute these steady configurations. Although this chapter

focuses primarily on understanding the transition region resulting from the Stokes equa-

tions, we also include the SSA of the parallel slab marine ice sheet in order to understand

its accuracy and how it compares with Schoof’s law (5.3).

5.3.1 Computational considerations

For the Stokes equations, we advance the marine ice sheet in time from an initial position

that is either given by the SSA, whenever the flow is dominated by sliding, or by a constant

thickness slab of ice that goes afloat as soon as the flotation condition (5.35) holds. We

solve the viscous contact problem using the solver presented in Section 2.3 with a mesh

constructed with Gmsh [39] which is refined around the initial position of the grounding

line to a mesh size of around H/10. Whenever the final position of the grounding line

differs greatly from its initial position, we remesh and continue the computations in order

to have a high degree of mesh refinement near the grounding line’s final position. In general,

the meshes we consider have around 104 cells. Ideally, we would prefer finer cells around

the grounding line, but this requires smaller time steps for the scheme to be stable. The

combination of longer computational times to solve the nonlinear Stokes system together

with more steps in time to reach a steady state makes finer computations infeasible.

As in the subglacial cavity problem, see Section 4.3.1, we consider a steady state has been

reached when the discrete derivative in time of the free surfaces is below a given tolerance

which we set to 10−2. In this chapter, we work with the following non-dimensional discrete

derivative:

Dk
t =

1

qs∆t

Mθ∑
i=1

(
xθi − xθi−1

) ∣∣∣θki − θki−1

∣∣∣+
Ms∑
j=1

(
xsj − xsj−1

) ∣∣∣skj − skj−1

∣∣∣
 . (5.44)

In (5.44), the notation for the mesh nodes (xθi , θ
k
i ) and (xsj , s

k
j ) follows that of Section 2.1.

We choose this discrete derivative because, for the parallel slab marine ice sheet problem,

it guarantees that the difference between the incoming flux qs and the flux through any

vertical face Γ that traverses the ice sheet is bounded from above by Dk
t . Indeed, if at
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t = tk we denote by ΩΓ the portion of the domain Ωk enclosed between Γi and Γ, then by

the divergence theorem we find that

qs −
∫

Γ
ukh · nds =

∫
ΩΓ∩Γkb

ukh · nds+

∫
ΩΓ∩Γkt

ukh · nds.

Now, since we advance the free boundary by using the average-wise values of ukh · n along

the mesh edges, see (2.17), we have that∣∣∣∣∣
∫

ΩΓ∪Γkb

ukh · nds+

∫
ΩΓ∪Γkt

ukh · nds

∣∣∣∣∣ ≤
1

∆t

Mθ∑
i=1

(
xθi − xθi−1

) ∣∣∣θki − θki+1

∣∣∣+
Ms∑
j=1

(
xsj − xsj−1

) ∣∣∣skj − skj+1

∣∣∣
 (5.45)

As a result, ∣∣∣∣qs − ∫
Γ
ukh · nds

∣∣∣∣ ≤ qsDk
t .

For the parallel slab marine ice sheet problem, L and x0 should be large enough for the

solution around the grounding line to lose its dependence on the length of the grounded

ice sheet and shelf. For most of the computations, we find that x0 = 2H/ tanβ and L =

x0+2H/ tanβ works well except for very rigid and fast sliding ice sheets, as in the left panels

of Figure 5.7, where we set x0 = 5H/ tanβ to guarantee that a constant ice thickness is

maintained around x = −x0. Regarding the time step, we set ∆t = 0.01tc, where tc is a

characteristic time given by tc = H2/qs. With this time step, we generally need around 104

steps to reach a steady state.

As explained in Section 5.2.2, in the case of the SSA of the parallel slab marine ice

sheet, we only need to solve the grounded ice sheet. This is because the effect of the ice

shelf comes in only as a Neumann boundary condition which enforces (5.39). Since xg is also

an unknown, we effectively have a free boundary problem. Following [88, Appendix A], we

solve it numerically by rewriting it in terms of the spatial coordinate x̂ = x/xg. As a result,

the grounding line position xg emerges explicitly as a new unknown. We implement a finite

element solver in Firedrake [83] and seek the depth-averaged velocity u and the ice thickness

h in a space of continuous piecewise-linear functions. When seeking steady marine ice sheet

configurations with the SSA, we are able to solve the steady problem directly with Newton’s

method instead of advancing the ice sheet in time from an initial condition. This accelerates

the computation of steady states significantly. We work with non-uniform meshes on the

unit interval, such that the mesh nodes become increasingly refined towards the rightmost

node x̂ = 1.
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5.3.2 The steady flux-thickness relationship at the grounding line

In Figure 5.2, we plot the ice flux q against the ice thickness at the grounding line h for

different steady grounding line positions. For each panel, we fix the material parameters n,

A, and C and compute steady configurations for different values of the initial slab thickness

H with both the Stokes equations and the SSA. For the top panels in Figure 5.2, we

consider a linear rheology and set n = 1 in Glen’s law (1.3). On the other hand, for the

lower panels, we set n = 3 as is commonly done in glaciology. The material parameters A
and C are set such that the steady solutions to the Stokes equations plotted in the leftmost

panels are in a sliding-dominated regime (∆s < 1), while in the rightmost panels we have a

shear-dominated regime (∆s > 1), where we recall that ∆s = CnAH.

Since the SSA assumes a plug flow regime, a large value for ∆s has a different implication.

Numerically, we find that an increase in ∆s is followed by a thinning of the ice thickness

at the grounding line, together with an increase in the magnitude of the surface gradient

|∂s/∂x| immediately upstream. We provide numerical evidence for this in the upper panels

of Figure 5.3, where we plot the SSA solutions around the steady grounding lines. As we

explain further below, a consequence of this is that, as ∆s increases, the SSA approaches

the flow regime considered in [89] for deriving the flux-thickness law (5.3). The top panels

of Figure 5.3 also include the Stokes solution; we see that, in this case, an increase in ∆s is

also accompanied by an increased surface gradient upstream of the grounding line.

In the sliding-dominated regime (the leftmost panels in Figure 5.2), we find that the

SSA yields a very accurate approximation of the Stokes equations. This is natural, because

whenever ∆s is much smaller than one, the influx velocity profile ûs for the Stokes equations

and, as a result, the flow along the whole ice sheet, closely resembles a plug flow. This is

also apparent from the top left panel of Figure 5.3. In this case, we have that n = 1,

A = 10−15 Pa−1 s−1, and C = 1010 Pa m−1 s; this results in a factor ∆s ≈ 5 × 10−3, such

that the Stokes solution is very close to a plug flow. The grounding line locations differ

by about 1 km, an approximation which we consider accurate given that the characteristic

lengths involved in this problem are at least of the order of H/ tanβ ≈ 34 km.

In Figure 5.2, we have also included a least-squares power law fit to the flux-thickness

relationships obtained from the Stokes equations and the SSA. Additionally, we display the

power law exponent for each of these functions to see how this exponent varies with ∆s.

What Figure 5.2 suggests is that, as ∆s increases, the slope of the flux-thickness relationship

resulting from the Stokes equations increases from n + 1 to n + 2; this is confirmed in

Section 5.4 below, where we present flux-thickness relationships in the limits ∆s → 0 and

∆s →∞. We remark that this is in accordance with the prediction made by Chugonov and

Wilchinsky [106], who proposed a power law with an exponent of n+2 for the flux-thickness
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Figure 5.2: The ice flux q plotted against the ice thickness at the grounding line h for
different steady grounding line positions. In all cases, the bedrock is inclined with an angle
β = 1◦. For each panel, the material parameters n, A (Pa−ns−1), and C (Pa m−nsn) are
fixed and steady states are computed for different initial slab thicknesses H with the Stokes
equations and the SSA. We include least-squares power law fits for these curves together
with the exponent of these laws. We also plot Schoof’s law, equation (5.3), as a reference.

relationship at the grounding line for a marine ice sheet with no slip boundary conditions

along its grounded region. No slip boundary conditions effectively correspond with the limit

∆s →∞.

For the SSA solutions, we find that the flux-thickness function coincides with Schoof’s

law (5.3) as ∆s increases. In this case, the slope of the flux-thickness function computed

with the SSA approaches n+1+n/(n+1), which is what one obtains in (5.3) when m = 1/n

(this is 2.5 for n = 1 and 4.75 when n = 3). This approach to (5.3) is expected since, as ∆s

increases, the ice thickness at the grounding line for the SSA decreases, as shown in Figure

5.3. Moreover, due to the parallel slab setup, the divergence of the extensional stresses

is eventually zero when the ice is sufficiently upstream of the grounding line, and remains
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Figure 5.3: Computations of steady marine ice sheets with H = 577 m, n = 1, and
β = 1◦ with SSA and Stokes. The parameter ∆s increases from left to right: we
have A = 10−15 Pa−1 s−1 and C = 1010 Pa m−1 s (left), A = 10−13 Pa−1 s−1 and
C = 1010 Pa m−1 s (middle), and A = 10−13 Pa−1 s−1 and C = 1011 Pa m−1 s (right). In
the upper panels we present the geometry around the grounding line, including a compari-
son with the Stokes solution. In the lower panels, we show the three terms in the momentum
equation for the SSA along the grounded region. Here, “ext.” refers to the divergence of
the extensional stresses (first term from the left in (5.34)), “basal” to the basal stress term
(second term in (5.34)), and “grav.” to the gravitational forces (third term in (5.34)).

small for the remainder of the sheet. This becomes apparent by looking at the lower panels

of Figure 5.3, where we plot the components of the SSA momentum balance equation (5.34)

along the grounded region.

5.3.3 A comparison with depth-integrated models for grounded and float-
ing ice

We now examine in more detail two of the steady states computed with the Stokes equations

with n = 1 and H = 577 m. These two states correspond with points in the top left and right

panels of Figure 5.2 and are therefore in a sliding and a shear-dominated regime, respectively.

We compare the ice sheet geometry and its velocity field with two depth-integrated models,

one for the grounded ice and another for the floating ice. The reasons for this comparison

are twofold. On the one hand, the accuracy of these models are an additional validation of

our Stokes solver for viscous contact problems, since we expect a good agreement. On the

other hand, they motivate our investigation in the next section, where we explore analytical

derivations of flux-thickness functions. As we explain below, once we have a flux-thickness

relationship, we can then calculate the grounding line position and apply these two very
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simple depth-integrated models to reconstruct the marine ice sheet.

For the grounded ice on (−x0, xg), we consider the shallow ice approximation (SIA)

[35]. The SIA can be derived by assuming, on the one hand, that the extensional stress τxx

is negligible against the pressure p and the shear stress τxz, and, on the other hand, that

the ice sheet geometry is shallow and the outwards-pointing normal vectors are therefore

vertical. Under these conditions, we find the pressure to be in hydrostatic equilibrium,

p = ρg(s− z), (5.46)

and the shear stress to balance gravitational forces in the horizontal momentum balance,

such that

τxz = −ρg(s− z)∂s
∂z
. (5.47)

By integrating once more, we find the following expression for the horizontal velocity

u = − (ρgh)n
∣∣∣∣ ∂s∂x

∣∣∣∣n−1 ∂s

∂x

(
1

Cn
+

2Ah
n+ 1

(
1−

(
s− z
h

)n+1
))

. (5.48)

Thus, the ice flux q is given by

q = − (ρgh)n
∣∣∣∣ ∂s∂x

∣∣∣∣n−1 ∂s

∂x

(
h

Cn
+

2Ah2

n+ 2

)
. (5.49)

For the parallel slab marine ice sheet in a steady state, the flux is constant throughout

its horizontal extent and equal to qs. Therefore, by rearranging (5.49) and noting that

s = h+ b, we find the SIA of the steady slab problem, which corresponds with the following

ordinary differential equation in h:

∂h

∂x
= − db

dx
− 1

ρgh

[
qs

h/Cn + (2Ah2)/ (n+ 1)

]1/n

on (−x0, xg). (5.50)

The flotation criterion (5.35) for the ice thickness can then be used as a boundary condi-

tion at x = xg. Once we calculate the ice thickness, we find the horizontal velocity with

(5.48) and then integrated the conservation of mass equation (5.6b) to obtain the vertical

component of the velocity field.

Two-dimensional ice shelves are generally modelled with the SSA, as in (5.39) [74]. For

the steady slab problem, where qs = hu is constant, we may find an analytical solution to

(5.39). To do so, we integrate from the grounding line, where the flotation condition (5.35)

applies once more. This yields the following expression for the ice velocity:

u =

[(
qs

h(xg)

)n+1

+ (n+ 1)A
(
qsρgδ

4

)n
(x− xg)

]1/(n+1)

on (xg, L− x0), (5.51)
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Figure 5.4: (top) Steady marine ice sheet computed with the Stokes equations for a
sliding-dominated flow with material parameters n = 1, A = 10−15 Pa−1 s−1, and C =
1010 Pa m−1 s. The bedrock is inclined with an angle β = 1◦. In red, the SIA for the
grounded sheet, in green the SSA for the floating shelf. (bottom) Close-up around the
grounding line including velocity field of the Stokes solution and of the SIA (red) and SSA
(green). Both the SIA and SSA profiles for the geometry and the velocity are calculated
using the grounding line location xg from the Stokes solutions.

from which we may calculate the ice geometry with qs = hu and (5.35).

In Figures 5.4 and 5.5, we present the ice sheet geometry and its velocity field around

the grounding line for the two steady states we focus on. For the marine ice sheet in

Figure 5.4, we set A = 10−15 Pa−1 s−1 and C = 1010 Pa m−1 s, and therefore we have that

∆s ≈ 5 × 10−3. Hence, in this case, the flow regime is dominated by sliding. On the

other hand, the computations for Figure 5.5 are carried out with A = 10−13 Pa−1 s−1 and

C = 1012 Pa m−1 s. In this case, we have that ∆s ≈ 50, so that shear dominates the ice

flow. The prevalence of these flow regimes is visible when observing the lower panels of

Figures 5.4 and 5.5: in Figure 5.4, the velocity shows no visible vertical variations, whilst in

Figure 5.5 no sliding appears to occur at the base of the grounded ice sheet. As occurs with

the SSA, see Figure 5.3, we observe a much larger surface slope upstream of the grounding

line for the higher value of ∆s, which in the case of the Stokes equations corresponds with

a shear-dominated flow.

The ice sheet geometries and the velocity profiles calculated with the SIA over the
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Figure 5.5: (top) Steady marine ice sheet computed with the Stokes equations for a
shear-dominated flow with material parameters n = 1, A = 10−13 Pa−1 s−1, and C =
1012 Pa m−1 s. The bedrock is inclined with an angle β = 1◦. In red, the SIA for the
grounded sheet, in green the SSA for the floating shelf. (bottom) Close-up around the
grounding line including velocity field of the Stokes solution and of the SIA (red) and SSA
(green). Both the SIA and SSA profiles for the geometry and the velocity are calculated
using the grounding line location xg from the Stokes solutions.

grounded region and with the SSA at the ice shelf accurately approximate the Stokes so-

lution over most of the ice sheet. In both cases, we find that the flotation criterion (5.35),

which sets the ice thickness at the grounding line for the SIA and the SSA, is extremely

precise in approximating the ice thickness at xg resulting from the Stokes equations. When

sliding dominates, we have that h(xg) + b(xg)ρw/ρi ≈ 8 m, and in the case of a shear-

dominated flow, h(xg) + b(xg)ρw/ρi ≈ −1 m.

For the sliding-dominated case, in Figure 5.4, the differences between the Stokes solution

and its approximations are hardly visible, in both the ice geometry and the velocity field.

However, for the shear-dominated flow in Figure 5.5, we find that the ice shelf geometry

is not well approximated immediately downstream of the grounding line, as revealed in

the lower panel. In this case, we see that the flow is driven mostly by shearing up to the

grounding line, although it quickly evolves into a plug flow. This transition into a plug flow,

which does not need to occur in the sliding-dominated case, is seen in the lower panel of

Figure 5.5.
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The comparisons in the top panels of Figures 5.4 and 5.5 indicate that we can expect a

very accurate reconstruction of the ice sheet using very simple models, provided we know

the grounding line position xg. We remark that the SSA system for the complete marine

ice sheet, presented in Section 5.2.2, is capable only of approximating the Stokes solutions

in a sliding-dominated regime, as seen in Figures 5.2 and 5.3. However, what Figures 5.4

and 5.5 reveal is that the overall accuracy of this joint SIA-SSA approximation remains

high for all flow regimes, as long as we have an accurate approximation of the grounding

line position.

The comparisons in Figures 5.4 and 5.5 also indicate that, with our parallel slab problem,

we are essentially modelling the transition between a grounded SIA flow and a floating SSA

flow. In this sense, our problem closely resembles the one considered by Nowicki and

Wingham [76] and mentioned in Section 5.1, with the important difference that we enforce

the contact boundary conditions.

5.4 Parametrising the steady grounding line position

The computations presented in Section 5.3 reveal, on the one hand, that the steady flux-

thickness relationships at the grounding line for the parallel slab problem appear to have a

very specific structure: in the limits of sliding and shear-dominated flows, this relationship

tends towards power laws of exponents n+ 1 and n+ 2, respectively, see Figure 5.2. On the

other hand, the grounded and floating regions of a steady marine ice sheet, computed with

the Stokes equations, are approximated excellently by the SIA and the SSA, respectively,

as seen in Figures 5.4 and 5.5.

These two findings motivate an investigation of the flux-thickness relationship at the

grounding line. If we are able to understand this relationship and construct a good approx-

imation of it, we then have an accurate and simple model for steady marine ice sheets, since

a flux-thickness function, in conjunction with the flotation condition (5.35), allows us to find

the grounding line position. For this reason, an approximation of the flux-thickness function

at the grounding line essentially amounts to a parametrisation of the steady grounding line

position. We remark that, for unsteady problems, parametrisations of the grounding line

usually require additional equations which are no longer algebraic relationships between

flux and thickness, see for example [86].

In this section we explore two approximations of the steady flux-thickness relationship

at the grounding line, one valid in the sliding-dominated limit (∆s → 0) and the other

in the limit of pure shear (∆s → ∞). Following existing approaches in the literature

[89, 86, 80, 95], we construct grounding line parametrisations by equating an approximation

of the depth-averaged extensional stress upstream of the grounding line with its downstream
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counterpart. We recall that the extensional stress τxx is determined with the power-law

rheology (i.e. Glen’s law in glaciology),

τxx = A−1/n

(
1

2
|Du|2

) 1−n
2n ∂u

∂x
, (5.52)

as explained in Section 1.3.

5.4.1 The sliding-dominated case

For a steady marine ice sheet whose flow is mostly driven by sliding, we may assume that

velocity variations in the horizontal directions are larger than those along the vertical, such

that

1

2
|Du|2 ≈

∣∣∣∣∂u∂x
∣∣∣∣2 . (5.53)

As a result, we may approximate τxx as

τxx ≈
(

1

A
∂u

∂x

)1/n

, (5.54)

where we set ∂u/∂x > 0, as expected near the grounding line for the slab problem. Now,

by assuming that vertical variations in ∂u/∂x are negligible, we have that

τxx ≈
(

1

A
∂u

∂x

)1/n

. (5.55)

We can rewrite (5.55) in terms of the ice thickness by noting that q = uh, and therefore

∂u

∂x
= − q

h2

∂h

∂x
. (5.56)

For the grounded flow, the SIA provides an accurate approximation of the ice sheet solution.

In the limit of pure sliding, equation (5.49) becomes

q = −
(ρg
C

)n ∣∣∣∣ ∂s∂x
∣∣∣∣n−1 ∂s

∂x
hn+1. (5.57)

We then obtain an approximation of τxx upstream of the grounding line by substituting

(5.56) and (5.57) into (5.55), and using the fact that h = s+ b. This leads to the following

approximation for the depth-averaged extensional stress τxx upstream of xg:

τSIA
xx =

(
q

Ah2

(
Cq1/n

ρgh(n+1)/n
+
db

dx

))1/n

on (−x0, xg). (5.58)

Downstream of the grounding line, we use the SSA to approximate the flow along the ice

shelf. In this case, (5.39) implies that

τSSA
xx =

1

4
δρgh on (−xg, L− x0). (5.59)
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Now, equating (5.58) with (5.59) leads to the following implicit flux-thickness relationship

at the grounding line after reordering the terms:(
C

ρgh(n+1)/n

)
q
n+1
n +

db

dx
q = A

(
δρg

4

)n
hn+2 at x = xg. (5.60)

Whenever the surface gradient ∂s/∂x is approximately equal to the thickness gradient

∂h/∂x, we can neglect the bedrock slope in (5.58) and we recover Schoof’s law (5.3) for the

case where m = 1/n. For our bedrock, we have that db/dx = − tanβ. By defining

q∗ = hn+1

(
ρg tanβ

C

)n
and h∗ =

tanβ

A

(
4 tanβ

δC

)n
, (5.61)

we may introduce the non-dimensional variables

q̂ =
q

q∗
and ĥ =

h

h∗
(5.62)

into (5.60) and obtain the following equation:

q̂
n+1
n − q̂ = ĥ. (5.63)

By examining (5.63), we can show that (5.60) implicitly defines a monotonically increasing

function q = q(h) for all h > 0.

Lemma 5.1. Let db/dx = − tanβ < 0, as in the parallel slab problem. Then, there exists

a well defined function q = q(h) for all h > 0 such that (5.60) holds for each pair (h, q),

with the additional property that q(h) > 0 for all h > 0. Moreover, this function q = q(h)

is strictly monotonically increasing for all h > 0.

Proof. Equation (5.63) defines a function q̂ 7→ ĥ from (1,∞) to (0,∞) which is strictly

monotonically increasing. Therefore, we can define the function q̂ = F (ĥ) for all ĥ > 0,

which is also strictly monotonically increasing. As a result, the relationship q = q(h) is

given by

q = hn+1

(
ρg tanβ

C

)n
F (h/h∗), (5.64)

and the statement of the lemma follows.

In order to test the accuracy of (5.60), we first plot the non-dimensional values (q̂, ĥ)

for several sliding dominated regimes with ∆s < 1 and compare these with (5.63) in Figure

5.6. These results indicate, on the one hand, that with the non-dimensionalisation (5.62)

the different points (q̂, ĥ) collapse onto a single curve for different values of n. On the other

hand, Figure 5.6 also indicates that (5.63) is not fully capable of predicting the results
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Figure 5.6: Non-dimensional ice flux q̂ and ice thickness ĥ at the grounding line for different
steady grounding line configurations. In all cases, the bedrock is inclined with an angle
β = 1◦. For each panel, the material parameters n, A (Pa−ns−1), and C (Pa m−nsn) are
fixed and steady states are computed for different initial slab thicknesses H with the Stokes
equations. We compare the results with (5.63).

computed with the Stokes equations. We see that, overall, the slope of these curves is

captured accurately and that it performs better for n = 1 than for n = 3.

We can obtain further insight into the accuracy of (5.60) by comparing the dimensional

values of (h, q) at the grounding line with (5.60). We plot the resulting flux-thickness

relationships in Figure 5.7, together with (5.60). We also plot Schoof’s law (5.3) as a

reference. The top panels in Figure 5.7 correspond with calculations with a linear rheology

n = 1, while the lower panels are computed for a nonlinear rheology n = 3. These panels

are ordered such that ∆s increases from left to right. From Figure 5.7, we deduce that

(5.60) provides an excellent approximation of the flux-thickness relationship when n = 1.

On the other hand, for n = 3, the accuracy of this approximation appears to deteriorate.

Moreover, as expected, the flux-thickness relationship (5.60) approaches Schoof’s law as

∆s increases. However, for the flow regimes we consider here, Schoof’s law is not a good

approximation of the Stokes solution, indicating that the shape of the bedrock is in fact

important in most cases. More specifically, from the derivation of (5.60), we see that this

is the case because in general the surface slope ∂s/∂x is of the same order as the bedrock

slope ∂b/∂x. As already indicated in Section 5.1, we note that this situation is observed in

many West Antarctic ice streams. Below, we look closely into three steady configurations

and explore the validity of the assumptions made above in the derivation of (5.60).

We first examine a steady state corresponding to a point in the upper right panel of Fig-

ure 5.7; that is, a steady grounding line configuration for a linear rheology in a moderately
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Figure 5.7: The ice flux q plotted against the ice thickness at the grounding line h for
different steady grounding line positions. In all cases, the bedrock is inclined with an
angle β = 1◦. For each panel, the material parameters n, A (Pa−ns−1), and C (Pa m−nsn)
are fixed and steady states are computed for different initial slab thicknesses H with the
Stokes equations. We include least-squares power law fits for these curves together with the
exponent of these laws. We also plot the implicit flux-thickness relationship (5.60).

fast sliding regime with ∆s ≈ 0.5. In Figure 5.8, we plot the depth-averaged extensional

stresses τxx in the lower panel resulting from the Stokes equations in the vicinity of the

grounding line. For this computation, we set the initial slab thickness to H = 577 m and the

material parameters to n = 1, A = 10−13 Pa−1 s−1, and C = 1010 Pa m−1 s. Additionally,

we plot expression (5.55), which results from the assumption that the velocity field is close

to a plug flow, and the approximations for τxx resulting from the SIA and SSA and given by

(5.58) and (5.59), respectively. From Figure 5.8 we can see that these approximations are

accurate along most of the ice sheet, although they do not capture certain variations very

close to the grounding line. Importantly, even though τSIA
xx and τSSA

xx do not approximate

τxx too well at the grounding line, we do see that τSIA
xx ≈ τSSA

xx there. This might explain
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Figure 5.8: Steady marine ice sheet geometry (top) and depth-averaged extensional stresses
τxx (bottom) computed with the Stokes equations with H = 577 m and n = 1, A =
10−13 Pa−1 s−1, and C = 1010 Pa m−1 s (as in the top right panel of Figure 5.2). In the
lower panel, we also present three approximations of τxx based on (5.55), the SIA, and the
SSA. We compute these approximations of τxx by inserting the functions u and h computed
from the Stokes equations into (5.55), (5.58), and (5.59), respectively.

the relative success of (5.60) in approximating the Stokes solutions in the top right panel

of Figure 5.7.

For a very fast sliding ice sheet with n = 1, as in the top left panel of Figure 5.7, the

situation is very different to the moderately fast sliding one from Figure 5.8. The middle

panel of Figure 5.9 presents the depth-averaged extensional stress τxx and its approxima-

tions, as before. In this case, where we have set H = 577 m and n = 1, A = 10−16 Pa−1 s−1,

and C = 910 Pa m−1 s, the approximation τSIA
xx is an order of magnitude larger than τxx for

x < xg. However, (5.55) provides an excellent approximation of τxx along the grounded

region. Therefore, in order to understand what goes wrong here, we plot the surface slope

∂s/∂x, together with its approximation by SIA, computed from (5.57), and the bedrock

slope ∂b/∂x in the lower panel of Figure 5.9. We see that the surface slope is well approxi-

mated by the SIA. The issue is that, since the ice hardly thins in this regime, the derivative

of the thickness provided by the SIA, which is given by[
∂h

∂x

]SIA

= − C
ρg

( q

hn+2

)1/n
− db

dx
, (5.65)

is not an accurate approximation of ∂h/∂x, as we can deduce from Figure 5.9. We can see

this by noting that the difference between the first and second terms in the right hand side

of (5.65), which in the lower panel of Figure 5.9 is the difference between the yellow and

green curves, is much larger than ∂h/∂x, which is given by the difference between the blue

and green curves. Now, since we derive (5.58) by introducing (5.65) into (5.60), this causes

the inaccuracy of τSIA
xx .
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Figure 5.9: Steady marine ice sheet geometry (top), depth-averaged extensional stresses
τxx (middle), and surface slope ∂s/∂x (bottom) computed with the Stokes equations with
H = 577 m and n = 1, A = 10−16 Pa−1 s−1, and C = 109 Pa m−1 s (as in the top left
panel of Figure 5.2). In the middle and lower panels we present approximations of τxx and
∂s/∂x based on the SIA (5.57) (middle and lower) and on (5.55) and the SSA (middle).
We compute these approximations of τxx by inserting the functions u and h computed from
the Stokes equations into (5.55), (5.58), and (5.59), respectively.

Interestingly, although τSIA
xx fails to approximate τxx, and it is nowhere near τSSA

xx at

x = xg, our estimate (5.60) anyway approximates the flux-thickness relationship excellently

in the top-left panel of Figure 5.7. This occurs because, for very low values of ∆s, the

right-hand side of (5.60) becomes approximately zero when compared to the left-hand side.

Note that, in the parallel slab problem, whenever the marine ice sheet is in a steady state,

the ice flux through any cross section of the ice sheet is given by (5.21). If the flow is

dominated by sliding, we may write q ≈ (ρg tanβ/C)nHn+1. Then,if we multiply (5.60) by

(C/(ρg))n(H tanβ)−(n+1), which is approximately equal to 1/(q tan beta), we find that

(C/(ρg))n(H tanβ)−(n+1)

[(
C

ρgh(n+1)/n

)
q
n+1
n +

db

dx
q −A

(
δρg

4

)n
hn+2

]
≈
(
H

h

)n+1
n

− 1−∆s

(
h

H

)n+1

.

(5.66)

Since the ice thickness hardly changes in this regime, we have that h ≈ H, and the last

term to the right in (5.66) can be neglected, because ∆s ≈ 5× 10−5 in this case. The fact

that we can neglect this term in (5.60) means that, in this regime of very fast sliding, we

can simplify (5.60) to

C

ρg

( q

hn+1

)1/n
= − db

dx
. (5.67)
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Figure 5.10: Steady marine ice sheet geometry (top) and depth-averaged extensional stresses
τxx (bottom) computed with the Stokes equations with H = 577 m and n = 3, A =
10−26 Pa−3s−1, and C = 5 × 106 Pa m−3s3 (as in the lower left panel of Figure 5.2). In
the lower panel, we also present three approximations of the τxx based on (5.55), the SIA,
and the SSA. We compute these approximations of τxx by inserting the functions u and h
computed from the Stokes equations into (5.55), (5.58), and (5.59), respectively.

We see from the lower panel of Figure 5.9 that this is indeed the case up to a small error.

Equation (5.67) establishes the flux-thickness power law with exponent n + 1 that our

numerical results suggested.

For all of the steady cases computed with a nonlinear rheology, we find that τSIA
xx ap-

proximates τxx relatively well. This is unlike the case when n = 1, where τSIA
xx fails to

approximate τxx for very small values of ∆s. In order to illustrate this, we plot the depth-

averaged extensional stresses τxx and its approximations in Figure 5.10. This steady state

corresponds to a point in the lower left panel of Figure 5.7, with a parameter ∆s ≈ 7×10−4.

Unlike the linear case with similar values of ∆s, as in Figure 5.9, we find that our SIA ap-

proximation of the extensional stresses is much better. However, in this case we have a

relatively large discrepancy between τSIA
xx and τSSA

xx at the grounding line. This discrepancy

is found in all of the computations with n = 3 found in the lower panels of Figure 5.7 and

is therefore the reason for the slight deviation between the Stokes solutions and (5.60).

5.4.2 The shear-dominated case

We now investigate the flux-thickness relationship at the grounding line for a steady flow

driven purely by shear deformation along its grounded region. To do so, we first derive

a simple flux-thickness function for a linear rheology with n = 1. As we explain below,

when n > 1 it is unclear whether a simple algebraic relationship between the ice flux and

thickness at the grounding line can be derived. However, in this section we also compute

steady grounding line configurations for the nonlinear rheology to give numerical evidence

that this relationship takes the form of a power law.
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In this derivation, we assume no-slip boundary conditions are enforced for the velocity

field along the attached region Γa. No-slip boundary conditions hold in the limit where

C → ∞; therefore, this flow regime corresponds to the limit ∆s → ∞. For n = 1, the

depth-averaged extensional stress is given by

τxx = A−1 1

h

∫ s

θ

∂u

∂x
dz. (5.68)

It is desirable to rewrite (5.68) in terms of the horizontal velocity on the ice sheet’s upper

surface u|z=s and the gradient of the upper surface ∂s/∂x. This will allow us to introduce

the flux q into the expression by introducing the SIA approximation. To do so, we use

Leibniz’s integration rule to write

1

h

∂

∂x

(∫ s

θ
udz

)
=
u|z=s
h

∂s

∂x
+

1

h

∫ s

θ

∂u

∂x
dz. (5.69)

Since we are assuming the ice sheet to be in a steady state, the left-hand side of (5.69) is

zero. As a result, we may write that

1

h

∫ s

θ

∂u

∂x
dz = −u|z=s

h

∂s

∂x
. (5.70)

We now make two additional assumptions in order to find a simple expression for the

extensional stresses upstream of the grounding line. As before, we assume the velocity field

is closely approximated by the SIA. For pure shear and a linear rheology, the velocity and

flux expressions for the SIA, given by (5.49) and (5.48), respectively, yield the following

equality:

u|z=s ≈
3

2

q

h
. (5.71)

On the other hand, we may assume that the surface gradient is approximately equal to the

thickness gradient. As we saw in Section 5.3, this is a reasonable assumption for shear-

driven flows, where we observe that the ice surface has a large slope immediately upstream

of the grounding line. Under this assumption, and using (5.49), we have that

∂s

∂x
≈ ∂h

∂x
≈ − 3q

2A
1

ρgh3
. (5.72)

By inserting (5.71) and (5.72) into (5.70), we find the SIA approximation for the extensional

stresses along the grounded region of the ice sheet:

τSIA
xx =

9

4

q2

A2ρgh5
on (−x0, xg). (5.73)
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Figure 5.11: The ice flux q plotted against the ice thickness at the grounding line h for
different steady grounding line positions. For each panel, the material parameters n and
A (Pa−ns−1) are fixed and steady states are computed for different initial slab thicknesses
H and bedrock slopes β with the Stokes equations with no-slip boundary conditions along
Γa. We include least-squares power law fits for these curves together with the exponent of
these laws. We also plot the power law (5.74), for the left panel, where n = 1.

For the floating shelf, we use the SSA as in Section 5.4.1 and use expression (5.59) for τSSA
xx .

Then by setting it equal to τSIA
xx at the grounding line, we derive the following flux-thickness

power law:

q =
2

3

√
δ

4
Aρgh3. (5.74)

Expression (5.74) was derived previously in [86]; similarly, the power law (5.1) with exponent

n + 2 and prefactor to be determined numerically, was proposed in [106] for a flow regime

with no-slip conditions. For a nonlinear rheology, additional terms are contained inside the

integral in (5.68), and one can no longer find a simple expression as in (5.69) by means of

Leibniz’s integration rule. We note that, unlike the implicit function (5.60) we find for the

sliding-dominated case, there is no dependence on the bedrock shape in (5.74). Below we

explore whether this is true for solutions to the Stokes equations with n = 1 and 3.

The results in Section 5.3.2, and also (5.74) when n = 1, suggest that the flux-thickness

relationship at the grounding line takes the form of a power law with exponent n + 2 in

the limit of pure shear, as ∆s → ∞. We provide a numerical confirmation in Figure 5.11,

which presents the flux-thickness relationship computed from the steady Stokes system

with no slip boundary conditions for n = 1 (left panel) and n = 3 (right panel). Moreover,

we consider three different bedrock angles β in order to test the dependence of the flux-

thickness relationship on the bedrock’s shape. As expected, the numerical solutions for
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n = 1 show almost no variations with a change in β. The explanation for this, deduced

from our derivation of (5.74), is that the dependence on the bedrock is lost whenever |∂b/∂x|
is much smaller than |∂s/∂x| immediately upstream of the grounding line, which we see

happens whenever ∆s is large (compare Figure 5.5 with Figure 5.4).

For the nonlinear rheology, our numerically-computed flux-thickness relationships are

clearly affected by the bedrock slope. A numerical issue arose in these computations that

made it impossible to achieve the unsteady tolerance Dk
t ≤ 0.01. As we approached a

steady state, we found that a regime was reached in which the grounding line oscillated

between two or three adjacent nodes from one time step to another. For this reason, the

discrete time derivative stalled around a value of 0.1. It remains to investigate whether the

mismatch between the flux-thickness relationships for n = 3 is a consequence of numerical

errors or whether the effects of the bedrock slope are no longer negligible when n = 3.

For the linear rheology, we also compare (5.74) against the flux-thickness relationships

resulting from the Stokes equations in the left panel of Figure 5.11. We find that, although

(5.74) perfectly captures the rate of change of q with h, a visible difference can be observed.

Our Stokes solutions indicate that, by multiplying the right hand side (5.74) with a pref-

actor of about 0.65, the resulting power law coincides neatly with the Stokes flux-thickness

relationships. In order to understand why this difference might exist, we take one of these

steady points and explore the validity of the assumptions underlying the derivation (5.74).

Figure 5.12 contains a detailed examination of a steady Stokes solution around the

vicinity of the grounding line. This steady state is computed with a linear rheology and

corresponds with a point in the left panel of Figure 5.11. In the middle panel of Figure 5.12,

we can see that τSIA
xx , given by expression (5.73), approximates τxx with a high precision

over the grounded region. Two thicknesses downstream of the grounding line, we find that

τxx becomes almost indistinguishable from τSSA
xx . However, there is a transition region in

the ice shelf where τxx departs from its SSA counterpart. This region causes the mismatch

between (5.74) and the steady Stokes solutions. As we also saw in Figure 5.5 of Section

5.3.3, the evolution from pure shear to a plug flow in the ice shelf occurs here. We remark

that the expression for τSSA
xx , given by (5.59), is derived by assuming the flotation condition

(5.35) and the hydrostatic balance (5.27) for the vertical Cauchy stress component. We test

these assumptions in the lower panel of Figure 5.12 and find that the flotation condition

holds quite closely, but the normal basal stresses visibly depart in this transition region.

Therefore, from the lower panel of Figure 5.12 we deduce that an accurate model of the

flow along this thin region downstream of the grounding line must dismiss the assumption

that the vertical stress is in hydrostatic balance.
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Figure 5.12: Steady marine ice sheet computed with the Stokes equations with H = 577 m
and n = 1, A = 10−13 Pa−3s−1 and β = 1◦ (as in the left panel of Figure 5.11). (top) Marine
ice sheet geometry. (middle) Depth-averaged extensional stresses τxx and approximations
with SIA and SSA (using h computed with Stokes). (bottom) Basal normal stresses, to-
gether with its hydrostatic approximation, and the ice thickness, also with its hydrostatic
approximation.

5.5 Discussion

This chapter contains a numerical exploration of steady flux-thickness relationships at the

grounding line for the parallel slab marine ice sheet problem, which we summarised in

Section 5.2. The setup of this problem allows us to consider a spectrum of flow regimes, from

sliding to shear-dominated flow. Using our solver for viscous contact problems presented

in Section 2.3, which solves the Stokes equations with contact boundary conditions, we

compute steady grounding line configurations for different flow regimes. The resulting

flux-thickness relationships suggest the existence of power laws for pure sliding and pure

shear flow. Motivated by this finding, we derive approximations to these flux-thickness

relationships in these two flow regimes using two depth-integrated models for marine ice

sheets, the SIA and the SSA. In particular, at the grounding line, we find that

q ≈
(ρg
C

tan (β)
)n
hn+1 as ∆s → 0, (5.75)

and

q ≈ κ2

3

√
δ

4
Aρgh3 for n = 1 and as ∆s →∞, (5.76)
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where κ ≈ 0.65 is a prefactor we find numerically. Moreover, Schoof’s law (5.3) appears to

hold with some accuracy when ∆s ∼ 1; that is,

q =

(
A(ρg)n+1(1− ρ/ρw)n

4nC

)n/(n+1)

hn+1+n/(n+1) for ∆s ∼ 1. (5.77)

Our analytically derived flux-thickness relationships generally exhibit a good, but not

perfect, agreement with our Stokes computations. These analytical expressions are found

by equating approximations of the extensional stress upstream and downstream of the

grounding line, as in [89, 67, 86, 80]. In most cases, we find that these approximations of

the stresses do well up to a few ice thicknesses away from the grounding line; however, at the

grounding line itself, these approximations can differ, giving rise to the discrepancy we see

between the Stokes and the analytically derived flux-thickness relationships. Nevertheless, it

is important to note that the analytically derived relationships capture the essential qualities

we observe in the Stokes solutions, such as the power laws arising in the limit cases of pure

sliding and pure shear, and, when the flow is dominated by sliding, the increasing influence

of the bedrock slope as ∆s (the ratio of shear to sliding in the incoming ice flux) decreases.

Given the scarcity of marine ice sheet computations that solve the full viscous contact

problem with the Stokes equations, our results can offer insight into some of the previous

findings in the literature, which we summarised in Section 5.1. Regarding Schoof’s law (5.3),

whose use is widespread, it is interesting to note that most of the steady states we compute

in this section depart from this law, see Figures 5.2 and 5.7. In Section 5.4.1, we show that

this mismatch is due to the fact that the surface gradient near the grounding line is of the

same order as the bedrock gradient. Sergienko and Wingham [95] also explored a situation

where these two gradients are of the same order, but in their case they considered flow

regimes with very low basal stresses. This is very much unlike our setup, where the parallel

slab upstream of the grounding line requires the basal stresses to balance the gravitational

forces. However, it is interesting to note that in both cases we arrive at a configuration

found in nature, since, as explained in [95], many Antarctic ice streams do not exhibit

surface slopes much larger than the bedrock’s.

Although the work by Nowicki and Wingham [76] also solved the Stokes equations, in

this case contact conditions were not enforced. The authors sought steady states for a flow

transitioning from a grounded SIA solution into a floating SSA flow through a fixed ground-

ing line. Then, they checked whether these steady states satisfied the contact conditions

or not, although the basal stresses were not inspected close to the grounding line due to

the presence of singularities. They claimed that, under certain cases, the flux-thickness

relationship arising from Stokes solutions may not be multi-valued, such as in the case

of no-sliding. Our results demonstrate the contrary, since both our numerical results and
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our analytically derived flux-thickness laws are strictly increasing functions and therefore

single-valued.

Another insightful result we obtain that should be compared with previous work is the

slight mismatch between the analytically derived power law (5.74) and the Stokes solutions

for a pure shear flow when n = 1. This case was studied in [86] with an experimental

setup that is very similar to our slab problem. Moreover, in [86], the authors also derive

(5.74). When comparing their experimental results against (5.74), the mismatch they also

find is attributed to experimental conditions that differ from the idealised setup, such as

the shear stress exerted by the sidewalls of the tank. However, thanks to our numerical

results we can see that the assumptions underlying the derivation of (5.74) are not fully

satisfied in the limit of pure shear. In particular, as we show in Section 5.4.2, there is a

considerable discrepancy between τxx and its approximation τSSA
xx immediately downstream

of the grounding line.

One outstanding issue that should be investigated in the future is the dependence of the

flux-thickness relationship on the bedrock slope when n = 3 and no-slip boundary conditions

are enforced. In this case, we had issues converging to a steady state and therefore a

different numerical approach for computing steady marine ice sheets should be explored.

One possibility would be to implement a solver that, instead of finding a steady state by

evolving the system in time, directly solves for the ice surfaces and the Stokes solutions

with a nonlinear solver like the semi-smooth Newton method [54]. We expect this approach

to also reduce computational times since, at the moment, we usually need to advance in

the order of 104 time steps before a steady state is reached.

All of our conclusions are deduced in the context of the parallel slab marine ice sheet

problem. Therefore, it is natural to ask how our findings extend to different configurations.

A proper answer to this question requires a numerical investigation of marine ice sheet

problems different to the parallel slab problem, and this is left as future work. However,

we can speculate that, in the cases where the bedrock shape becomes unimportant, such

as in the limit of pure shear or, in the case of a sliding-dominated flow, for values of ∆s of

unit order, we can expect similar flux-thickness relationships to arise. Another important

point to consider in future work is the extension of these results to unsteady problems. It

would therefore be interesting to explore how flux-thickness relationships deviate from their

steady counterparts under unsteady conditions and investigate the analytical derivation of

laws under these conditions. We recall that an unsteady flux-thickness law is required for

studying marine ice sheet instabilities, since these are fundamentally unsteady problems.
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Chapter 6

Conclusions and further work

This thesis is an investigation into the numerical resolution of viscous contact problems with

a focus on applications arising in glaciology. Two problems of fundamental importance in

glaciology can be interpreted as viscous contact problems: that of subglacial cavitation and

of a marine ice sheet. Below, we gather the conclusions and ideas for future work presented

at the end of Chapters 2 to 5. For a more detailed presentation of these points, we refer

the reader to Sections 2.5, 3.4, 4.5, and 5.5.

Construction and analysis of numerical schemes for viscous contact problems

Chapters 2 and 3 are concerned with the construction and analysis of numerical schemes

for solving two-dimensional viscous contact problems. As we explain in Chapter 1, viscous

contact problems can be formulated in terms of the Stokes equations with contact boundary

conditions, coupled with two free boundary equations that evolve the fluid domain in time.

Very few numerical methods have been proposed for solving these problems, and in most

cases the rich mathematical structures underlying these models have been left unexplored.

In particular, the Stokes equations with contact boundary conditions can be reformulated

as a variational inequality. By noting this property of the Stokes problem, in Chapters 2

and 3 we draw inspiration from the vast literature in computational mathematics focused

on variational inequalities (with a particular emphasis on the literature dedicated to elastic

contact problems, which can also be reformulated as a variational inequality similar to our

Stokes problem).

In Chapter 2, we propose a class of numerical methods for solving viscous contact

problems. These methods solve the free boundary equations with an explicit Euler scheme.

As a result, the Stokes and free boundary equations are decoupled. At the discrete level,

the Stokes variational inequality and the free boundary equations are formulated in terms of

abstract normal trace operators, to be chosen when designing a concrete numerical scheme.

These trace operators are discrete versions of the operation that maps a vector field to
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its normal component along the boundary. We propose two properties that these discrete

normal trace operators should satisfy to achieve robust schemes: (1) the operators used for

the variational inequality and the free boundary equations should be chosen in a “contact

consistent” way to avoid introducing excessive numerical errors into the evolution of the

domain, and (2) the discrete free boundary equations should be stabilised due to their

advective nature.

We introduce several schemes that fit into this framework, and evaluate their perfor-

mance by solving two numerical tests. With these tests, we also show the importance of

the two properties mentioned above; whenever one of these two properties does not hold, a

substantial loss in accuracy can be observed. One of these schemes works particularly well,

and we select it to be the main numerical scheme of this thesis with which we carry out the

glaciological investigations of the subsequent chapters. This scheme enforces an edge-wise

averaged version of the contact boundary conditions with a Lagrange multiplier.

An in-depth analysis of the Stokes variational inequality is provided in Chapter 3. We

first give rigorous statements on the conditions under which this variational inequality is

well-posed. Then, with the goal of justifying the use of the main scheme of the thesis, we

analyse the convergence of solutions to the discrete variational inequality which enforces the

contact boundary conditions in an edge-wise averaged manner with a Lagrange multiplier.

Two substantial differences arise in this analysis that make it different from its counterparts

in elastic contact problems: the nonlinear rheology used in glaciology and the nonlinear

friction boundary condition that we enforce for the marine ice sheet problem. An additional

difficulty is the presence of rigid body modes in the space of admissible velocities, which

render the problem semicoercive. The main contribution of this chapter is the development

of analytical tools for dealing with these difficulties. Moreover, our analysis shows that, if

the variational inequality is well-posed at the continuous level, we can expect its discrete

solution to converge to its continuous counterpart as the mesh is refined.

Several questions are left open in Chapters 2 and 3. Both the design of numerical

schemes for the viscous contact problem in Chapter 2 and the analysis of the finite element

approximation of the variational inequality in Chapter 3 exploit the two-dimensionality of

the problems under consideration. Since three-dimensional problems are very important in

glaciology, the extension to three dimensions should be considered carefully in the future.

Another question that should be addressed eventually is the construction of implicit schemes

that couple the Stokes and free boundary equations. In particular, implicit solvers would

pave the way for solving steady viscous contact problems directly with a nonlinear solver,

instead of advancing towards the steady solution in time, as we do in Chapters 4 and 5.

Finally, a limitation of the finite element analysis of Chapter 3 is that, in order to avoid
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certain technical difficulties, we assume the pressure to be approximated with piecewise

constant functions, instead of continuous piecewise linear functions, which we use in practice.

Therefore, an analysis that dismisses this assumption should be explored.

Glaciological applications of viscous contact problems

This thesis then turns to the two viscous contact problems previously mentioned. The first

problem, which is studied in Chapter 4, is that of subglacial cavitation, which takes place

in the ice-bedrock interface and is a fundamental mechanism in glacier sliding. Water-filled

subglacial cavities form along the downstream side of obstacles when the ice detaches from

the bedrock due to high water pressures. In Chapter 5, we study marine ice sheets, which

flow from the continent into the ocean, detaching from the bedrock and going afloat at the

so-called grounding line. This configuration is found in much of the West Antarctic ice

sheet and a vast amount of research has studied the response of these systems to changing

climatic conditions.

Our numerical investigation of subglacial cavitation in Chapter 4 formulates the viscous

contact problem as a boundary layer between ice and bedrock, as in [36]. For simplicity, we

restrict our attention to sinusoidal beds. We first compute steady friction laws as in [36]

for different bed amplitudes and parameters n in Glen’s law. Then, motivated by a body of

research that finds correlations between variations in basal water pressure and surface speeds

and uplift, we study glacier sliding under unsteady water pressures. We find that a phase

difference emerges between the sliding speed and the cavity volume that increases as the

frequency of the water pressure variations also increase. Our results also indicate that, for

sufficiently cavitated states, the maximum sliding speed occurs at the instant in time when

the minimum water pressure is reached, in line with field measurements from [60, 98, 4]. We

also find that, when we enforce the basal shear stress as a Neumann boundary condition,

the steady states along the rate-weakening section of the friction law are unstable. When

these steady states are perturbed, the cavity quickly evolves towards the rate-strengthening

region.

Chapter 5 explores steady grounding line configurations for the parallel slab marine ice

sheet problem. In this problem, which we introduce in Chapter 5, a constant thickness

slab of ice flows down an inclined bedrock into the ocean. We enforce influx conditions

based on the parallel slab solution of the Stokes equations. One advantage of this setup

is that we can set the amount of incoming ice flux due to shear and sliding, and in this

way we can study a spectrum of flow regimes that range from sliding to shear-dominated

flows. We then reconstruct steady ice flux-thickness relationships at the grounding line.

This relationship is fundamental for understanding marine ice sheet instabilities and is used
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for closing simplified models based on thin film approximations of the grounded and floating

regions of the ice sheet. Our main contribution in this chapter is an investigation of what

we believe are the first computations of these flux-thickness relationships with the Stokes

equations with contact boundary conditions. Our results show that these relationships

clearly tend towards power laws in the limits of pure sliding and pure shear. Then, we

derive analytical approximations of these flux-thickness relationships in these two limits.

Our approximations show a close match to the Stokes solutions, with visible differences

in some cases. Our numerical computations and our analytically-derived approximations

indicate that the bed slope becomes important in very fast sliding regimes. As the ratio

of incoming flux due to sliding and shearing approaches one, the influence of the bed slope

decreases and the flux-thickness relationship approaches the power law proposed by Schoof

in [89]. Finally, we find a complete independence with the bed slope in the shear-dominated

regime for a linear rheology with n = 1.

We compute steady states for the viscous contact problems in Chapters 4 and 5 by

advancing the model in time from a given initial state. A limitation of this approach is that

it is very time consuming. On the one hand, we are forced to use small time steps due to

explicit Euler scheme with which we solve the free boundary equations. On the other hand,

under certain circumstances, these computations are prolonged or at times even incapable

of converging to steady states due to the emergence of oscillating regimes. For example, for

the subglacial cavity problem, waves of decreasing amplitude travel along the cavity roof

when converging towards a steady state. In the case of the marine ice sheet problem, in

some very specific cases, the system does not converge towards a steady state because the

grounding line oscillates from one time step to another between two adjacent nodes. This

happens for shear-dominated flows with a nonlinear rheology. A possible remedy for these

computational challenges is to avoid advancing the system in time but directly solve the

complete steady viscous contact problem with a nonlinear Newton-type solver.

Chapter 5 leaves several open questions regarding the validity of our conclusions be-

yond the steady parallel slab problem that should be addressed in future work. One should

examine the steady flux-thickness laws that emerge for different marine ice sheet configu-

rations and bedrock profiles. We speculate that, for those cases where the dependence on

the bedrock slope is lost in the parallel slab problem, we can expect this independence to

persist under different bedrock shapes. It would also be of interest to compute and examine

flux-thickness relationships under unsteady conditions, and see how they compare to their

steady counterparts.

122



Appendix A

Existence and uniqueness of
solutions to an abstract
semicoercive variational inequality

Our objective here is to define an abstract minimisation problem analogous to Variational

inequalities A-C. We keep the notation consistent with that of Chapter 3, and introduce an

operator Φ which generalises operators A and A+G found in Variational inequalities A-C.

Consider a closed subspace V ⊂ W 1,r(Ω), with 1 < r < ∞ and Ω a bounded domain

in R2, equipped with the W 1,r(Ω) norm. We also define a closed convex cone K̊ ⊂ V such

that 0 ∈ K̊. Then, the abstract minimisation problem which we study in this appendix

consists in finding an element u ∈ K̊ which minimises

J (v) = 〈1
r

Φv − f,v〉V (A.1)

over K̊. Here, f ∈ V ′ and Φ : V → V ′ is an operator which we assume has the following

properties: due to Φ, the functional J : V → R is convex and Gâteaux differentiable, with

a derivative DJ : V → V ′, evaluated at u ∈ V in the direction of v ∈ V , given by

〈DJ (u), v〉V = 〈Φu− f, v〉V . (A.2)

As a result, it follows that u ∈ K̊ minimises J over K̊ if and only if

〈Φu− f,v − u〉V ≥ 0 ∀v ∈ K̊. (A.3)

Moreover, we also assume that 〈Φu,u〉V ≥ 0 for all u ∈ V . By [27, Theorem 1, Section 8.2]

it follows that J is weakly lower semicontinuous in V . A further assumption is that

RV = {vR ∈ V : 〈ΦvR,vR〉V = 0}
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is a finite dimensional subspace for which we also have that Φ(v+vR) = Φv and 〈Φv,vR〉V =

0 for all (v,vR) ∈ V ×RV . We also define the subspace

R∗V =
{
vR ∈ RV ∩ K̊ : −vR ∈ RV ∩ K̊

}
,

and we consider the decomposition

RV = R∗V ⊕ (R∗V )⊥.

Let P : V → RV be a continuous projection onto RV and Q = I − P. We assume the

following abstract Korn inequality to hold:

‖Qv‖rV . 〈Φv,v〉V ∀v ∈ V. (A.4)

Finally, we denote by P∗ : V → R∗V and P⊥ : V → R⊥V two continuous projections onto R∗V
and (R∗V )⊥, respectively, for which we have P = P∗ + P⊥. We also define Q∗ = I − P∗ and

Q⊥ = I− P⊥.

Below, we include a theorem on the conditions under which the functional J has a

minimiser in K̊, and when this minimiser is unique. This proof is a straightforward extension

from a setup in Hilbert spaces to one in reflexive Banach spaces of [29, Theorem 1.II].

Theorem A.1. If the following inequalities hold,

〈f,vR〉V ≤ 0 ∀vR ∈ K̊ ∩RV , (A.5a)

〈f,vR〉V < 0 ∀vR ∈ (K̊ ∩RV ) \R∗V , (A.5b)

then J has a minimser in K̊. For any minimiser u ∈ K̊, we have that u + vR also

minimises J for all vR ∈ RV such that u + vR ∈ K̊ and 〈f,vR〉V = 0. Conversely, if J
has a minimiser in K̊, then it holds that

〈f,vR〉V ≤ 0 ∀vR ∈ K̊ ∩RV . (A.6)

Proof. For the first part of the proof, we begin by assuming inequalities (A.5) and noting

that a consequence of these is that

R∗V =
(
K̊ ∩RV

)
∩Ker f. (A.7)

It is also possible to show that Q∗(K) = RanQ∗ ∩ K̊ and therefore Q∗(K) is closed. We

now take a minimising sequence (un) ⊂ K̊ of J . Suppose (Q∗un) ⊂ K̊ had a bounded

subsequence; if this were the case, we could extract a further subsequence, also denoted

(Q∗un), such that (Q∗un) ⇀ u for some u ∈ V . Moreover, we would have that u ∈ K̊
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because Q∗(K) = RanQ∗ ∩ K̊ and RanQ∗ ∩ K̊ is closed and convex, hence weakly closed,

see for example [12, Theorem 3.7]. In fact, we could show that u ∈ K̊ is a minimiser, since

lim
n→∞

J (un) = lim
n→∞

J (Q∗un) ≥ J (Q∗un) = J (un).

Here, we have just used (A.7) for the first and last equalities, and the weakly lower semi-

continuity of 〈Φv,v〉V to establish the upper bound.

Therefore, it remains to show that (Q∗un) has a bounded subsequence. We proceed by

contradiction: Assume that ‖Q∗un‖V →∞ as n→∞. By (A.4), we have that

‖Qun‖rV . J (un) + 〈f,un〉V . (A.8)

We introduce the sequence wn = un/ ‖Q∗un‖V in K̊. By (A.8),

‖Qwn‖rV . J (un)/ ‖Q∗un‖rV + ‖f‖V ∗ / ‖Q
∗un‖r−1

V , (A.9)

so we clearly have that ‖Qwn‖V → 0. Note that ‖Q∗wn‖V = 1 and, by assumption,

P = P∗ + P⊥, which implies P⊥ = Q∗ −Q; hence,∥∥∥P⊥wn

∥∥∥
V
≤ ‖Q∗wn‖V + ‖Qwn‖V , (A.10)

implying that (P⊥wn) is a bounded sequence from which we may extract a subsequence,

which we also denote by (Q∗wn), such that P⊥wn → ρ ∈ (R∗V )⊥ as n→∞ and ‖ρ‖V = 1.

However, since P⊥ = Q∗ −Q, and ‖Qw‖V → 0 as n→∞, we have that

Q∗wn → ρ ∈ (K̊ ∩RV ) \R∗V as n→∞. (A.11)

By our initial assumption, that inequality (A.5b) holds, we then have that

〈f,ρ〉V < 0. (A.12)

We reach a contradiction when we write (A.9) as

‖un‖r−1
V ‖Qwn‖rV .

1

‖un‖V
(J (un)− J (0)) + 〈f,Q∗wn〉V .

and observe that the lim sup of the left-hand side is strictly positive, while the lim inf of the

right-hand side is strictly negative due to inequality (A.12).

For the second part of the theorem, if u ∈ K̊ minimises J and if vR ∈ RV satisfies both

u+ vR ∈ K̊ and 〈f,vR〉V = 0, then we clearly have that

J (u) = J (u+ vR)

and therefore u+ vR is also a minimiser of J in K̊.
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Finally, the last part of the theorem is a simple consequence of the equivalence between

the minimisation of J over K̊ and variational inequality (A.3). We assume that u ∈ K̊

solves (A.3). Since K̊ is a cone, we have that both 0 and 2u are in K̊, so we may test both

of them in (A.3) and show that

〈Φu− f,u〉V = 0.

Then, by testing with v = vR, we obtain (A.6).
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Appendix B

Some technical results on finite
element spaces

This appendix contains technical results that are required for establishing the convergence

of the finite element approximations in Section 3.3.1. First, we consider the canonical

projection πΣ : L2(Γa) → Σa
h onto piecewise constant functions and prove approximation

properties in terms of fractional order Sobolev space norms and their dual. We require these

properties to prove the convergence of the approximate Lagrange multiplier in Σ′. Then,

we build an interpolation operator πV : V → Vh for the velocity using a construction from

[41] and examine some of its properties. Finally, we present an extension operator Φ from

Σ into Vh that allows us to show that the pair Vh × Σa
h is stable in the sense of (3.37).

B.1 Approximation properties in a fractional order Sobolev
space and its dual

Several technicalities arise from the need to handle the dual space of the fractional Sobolev

space W 1−1/r,r(Γa) and its finite element approximation Σa
h. The norm of the fractional

Sobolev space W s,m(Γa) with s ∈ (0, 1) and m ∈ [1,∞] can be defined by

‖φ‖mW s,m(Γa) = ‖φ‖mLm(Γa) + [φ]mW s,m(Γa), (B.1)

where

[φ]mW s,m(Γa) =

∫
Γa

∫
Γa

|φ(x)− φ(y)|m

|x− y|1+sm
dxdy,

see [21]. In order to prove certain approximation properties on Σa
h we need to introduce

some theoretical results. We start by defining the following pair of spaces

Lm0 (e) =

{
φ ∈ Lm(e) :

∫
e
φ dx = 0

}
, W s,m

0 (e) = W s,m(e) ∩ Lr0(e)
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for an edge e ∈ E(Th,Γa). We can use the fractional normed Poincaré inequality proved in

[26, Lemma 7.1] to show that

‖φ‖Lm(e) ≤ |e|
s[φ]W s,m(e) ∀φ ∈W s,m

0 (e). (B.2)

Inequality (B.2) can be extended to negative norms by writing the Lm(e) norm for any

φ ∈ Lm(Γa) as

‖φ‖Lm(e) = sup
ψ∈Lm′ (e)

∫
e φψ ds

‖ψ‖Lm′ (e)
,

which is a consequence of the Riesz representation theorem. Then, we deduce that, if

φ ∈ Lm0 (e), we have

‖φ‖(W s,m(e))′ = sup
ψ∈W s,m

0 (e)

∫
e φψ ds

‖ψ‖W s,m(e)

≤ |e|s sup
ψ∈Lm′ (e)

∫
e φψ ds

‖ψ‖Lm′ (e)
= |e|s ‖φ‖Lm′ (e) .

(B.3)

For the finite element space Σa
h defined in (3.53c), let πΣ : Lm(Γa) → Σa

h be the stan-

dard interpolation operator onto piecewise constant polynomials which takes the average of

functions over each e ∈ E(Th,Γa). Then, from inequality (B.2) we can prove error estimates

in fractional norms. Moreover, since φ − πΣφ ∈ Lm0 (e) for all edges e in Γa for sufficiently

smooth φ, then (B.3) leads to

‖φ− πΣφ‖(W s,m(Γa))′ . h2s ‖φ‖W s,m′ (Γa) , (B.4)

where h = max {|e| : e ∈ E(Th,Γa)}.

B.2 An interpolation operator for the velocity

Here, we compile a variety of results from different sources and prove an additional one

regarding an interpolation operator for the velocity that preserves the discrete divergence

and maps elements of K into Kh. We denote by πV the interpolation operator introduced

in [41, Section 3.1] that is defined as follows for each component of a vector-valued function:

for a non-degenerate simplex c ∈ Th with edges {ei}3i=1 and vertices {ai}3i=1, we define the

nodal basis functions φx with x ∈ {ei}3i=1 ∪ {ai}3i=1 by

φai(aj) = δij ,

∫
ej

φai ds = 0,

∫
ej

φei ds = δij , φei(aj) = 0,

for all i, j ∈ {1, 2, 3}. For each vertex ai we choose a an edge eai ∈ {ei}3i=1 such that

ai ∈ eai . We then define the dual basis functions {ψai}3i=1 by∫
eai

ψaiφx ds = δaix, ψai ∈ P2(eai),
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where x denotes the edge eai or its two end-points. Then, (the scalar version of) the

operator πV can be defined as

(πV u)(x) =
3∑
i=1

([∫
eai

uψai ds

]
φai(x) +

[∫
ei

uds

]
φei(x)

)
.

When considering the definition of πV in terms of a triangulation Th of Ω, for vertices

a ∈ ∂Ω, we set the associated edge ea to also be contained in ∂Ω. Then, we have that

πV (V ) ⊂ Vh and we can prove (B.9).

If the spaces Vh, Qh and Σa
h are defined as in (3.53), a straightforward consequence of

the definition of πV is that

〈Bqh,v〉V = 〈Bqh, πV v〉V ∀(v, qh) ∈ V ×Qh, (B.5)

〈µh, γnv〉Σ = 〈µh, γnπV v〉Σ ∀(v, µh) ∈ V × Σa
h. (B.6)

Additionally, the interpolation operator πV has two key approximation properties. First,

the optimal approximation property

‖v − πV v‖W s,m(Ω) . hk ‖v‖W s+k,m(Ω) (B.7)

holds for all m ≥ 0 and s, k ∈ N such that 0 ≤ s ≤ 3 and 0 ≤ k ≤ 3− s. Finally, given the

operator F defined in (3.38), the additional approximation property holds:

‖F(Dv)− F(DπV v)‖L2(Ω) . h ‖∇F(Dv)‖L2(Ω) . (B.8)

Property (B.7) is shown to hold in [41]. On the other hand, (B.8) follows from [7, Theo-

rem 3.4] by applying Poincaré’s inequality once points (a) and (b) from Assumption 2.9 in

that reference are shown to hold. These two points result from (B.5) and (B.7).

Finally, we may also prove that

‖F(Tv)− F(TπV v)‖L2(Γa) . h
∑

e∈E(Th,∂Ω)

e∩Γb 6=∅

‖∇F(Tv)‖L2(e) (B.9)

by imitating the proof for [7, Theorem 3.4] and applying Poincaré’s inequality. Most of the

steps in this proof draw from algebraic relations for the function F and the N-functions

considered therein that continue to be valid in our context. Additionally, we need the

following Orlicz-continuity result analogous to that of [7, Theorem 3.2]: for an N-function

ψ with ∆2(ψ) <∞ and an edge e ∈ E(Th,Γa),∫
e
ψ(|TπV v|) ds .

∑
e′∈E(Th,∂Ω)

e∩e′ 6=∅

∫
e′
ψ(|Tv|) ds.
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We may show the above inequality to hold by following the proof of [22, Theorem 4.5] and

using the local L1-estimate for e ∈ E(Th,Γa):∫
e
|TπV v|ds .

∑
e′∈E(Th,∂Ω)

e∩e′ 6=∅

∫
e′
|Tv|ds.

To prove this inequality, we turn to the definition of πV and use the bounds

‖ψa‖L∞(ea) . |e|
−1, ‖φa‖L1(ea) . |e| and ‖φe‖L1(e) . 1,

which result from inverse estimates as introduced in [11, Section 4.5].

B.3 An extension operator

In this section we prove an auxiliary result required for showing that the pair Vh × Σa
h,

defined in (3.53), is “inf-sup” stable in the sense of (3.37). We build an extension operator

Φ : Σ→ Vh which is uniformly bounded and satisfies

〈µh, γn(Φφ)〉Σ = 〈µh, φ〉Σ ∀µh ∈ Σa
h. (B.10)

Step 1. We first find a uniformly bounded linear operator Π : Σ→ γn(Vh) with the property

that ∫
e
(φ−Πφ) ds = 0 for any e ∈ E(Th,Γa) and φ ∈ Σ. (B.11)

Let

Zh = {φh ∈ C(Γa) : φh|e ∈ P2(e) ∀e ∈ E(Th,Γa)}

and note that Zh ⊂ γn(Vh). For φ ∈ Σ and e ∈ E(Th,Γa), we define Π2 : Σ→ Zh by setting

(Π2φ)(a) = 0 for the endpoints a in e,∫
e

Π2φ ds =

∫
e
φ ds.

We clearly have that Π2φ = 0 if and only if
∑

e∈E(Th,Γa)

∫
e |φ| ds = 0, so the latter defines

a norm on Π2(Σ). By exploiting this fact and the norm equivalence on finite dimensional

spaces, one can see that

‖Π2φ‖W 1−1/r,r(e) . |e|
−1/r′ ‖φ‖Lr(e) ∀e ∈ E(Th,Γa)

for all φ ∈ Σ. Now, let πZ : Σ → Zh be the quasi-interpolation operator defined in [26].

This operator is uniformly bounded in the W 1−1/r,r(Γa) norm and satisfies

‖φ− πZφ‖Lr(e) . |e|
1−1/r ‖φ‖W 1−1/r,r(e)
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for any edge e ∈ E(Th,Γa) and function φ ∈ Σ. As a result, the operator Π = πZ+Π2(I−πZ)

is uniformly bounded and possesses the required property (B.11).

Step 2. For the final step, we define a uniformly bounded operator γ−1
n,h : γn(Vh) → Vh for

which γ−1
n,hφh · n = φh on Γa. This operator can be defined as the solution of the problem:∫

Ω
∇(γ−1

n,hφh) : ∇vh dx = 0 ∀vh ∈ Vh,

γ−1
n,hφh · n = φh on Γa,

γ−1
n,hφh · n = 0 on Γi.

Then, the operator Φ = γ−1
n,h ◦Π is uniformly bounded and property (B.10) holds.

Remark B.1. The construction of the uniformly bounded operator Π : Σ→ γn(Vh) in step 1

above closely resembles that of the Fortin operator in [10, Proposition 8.4.3]. In fact, the

operator Φ ◦ γn : V → Vh acts as a Fortin operator in the proof of Lemma 3.8.
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Appendix C

Linearised solution of the steady
subglacial cavity problem

For a Newtonian flow (n = 1) and a bedrock with small amplitude topography, the theory of

[31] and [87] can be used to find steady solutions to the subglacial cavity problem presented

in Sections 1.6 and 4.2 with which the numerical calculations can be compared. The method

involves a linearisation of the boundary conditions and the use of complex variables to solve

a Riemann-Hilbert problem for the velocities and stresses. We summarise the result for the

particular case when b = rL cos (2πx/L).

It is convenient to parameterise the solution in terms of the scaled cavity end points c

and d, such that the cavity occupies the region d < x̂ < c+ 1, where x̂ = x/L. The velocity

is u = (u,w) with u ≈ ub, and on the cavitated region the vertical velocity w satisfies

∂w

∂x
=− 4π2rub

L
cos

(
2πx

L

)
+

4π2rub
L

∣∣∣∣sinπ(d− x̂)

sinπ(x̂− c)

∣∣∣∣1/2 [cosπ
(
2x̂+ 1

2(d− c)
)
− sinπ(c+ d) sin

π

2
(d− c)

]
.

(C.1)

The linearised steady kinematic condition for the cavity roof is ub
∂θ
∂x = w, and integrating

this subject to the conditions that θ = b at the cavity end points provides a constraint

between c and d. In addition, c and d are related to the effective pressure by

N =
8π2rηub

L
cos

π

2
(3d+ c) sin

π

2
(d− c). (C.2)

Thus, for given values of N and ub, these two constraints determine the end points c and

d. Further, the normal stress on the contact region c < x̂ < d is given by

σnn + pw =

− 8π2rηub
L

∣∣∣∣sinπ(d− x̂)

sinπ(x̂− c)

∣∣∣∣1/2 [cosπ
(
2x̂+ 1

2(d− c)
)
− sinπ(c+ d) sin

π

2
(d− c)

]
,

(C.3)
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and the integral in (4.13) then gives the basal shear stress as

τb =
π3r2ηub

L
[5− sin 2π(c+ d) sin 2π(d− c)− cos 2π(d− c)− 4 cosπ(d− c)

− cosπ(3c+ d) + cosπ(c+ 3d)] .

(C.4)

This cavitated solution requires N < 8π2rηub/L. Otherwise, there is no cavity and we have

τb = 8π3r2ηub/L.

133



Bibliography

[1] Sobolev Spaces, Pure and Applied Mathematics 140, Academic Press, Elsevier, 2003.

[2] S. Adly and D. Goeleven, A discretization theory for a class of semi-coercive

unilateral problems, Numerische Mathematik, 87 (2000), pp. 1–34.

[3] C. Amrouche and V. Girault, Decomposition of vector spaces and application to

the Stokes problem in arbitrary dimension, Czechoslovak Mathematical Journal, 44

(1994), pp. 109–140.

[4] L. C. Andrews, G. A. Catania, M. J. Hoffman, J. D. Gulley, M. P. Lüthi,
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[64] G. Jouvet, Modélisation, analyse mathématique et simulation numérique de la dy-

namique des glaciers, PhD thesis, École Polytechnique Fédérale de Lausanne, Lau-

sanne, Switzerland, 2010.

[65] B. Kamb, Sliding motion of glaciers: Theory and observation, Reviews of Geophysics,

8 (1970), pp. 673–728.

[66] , Glacier surge mechanism based on linked cavity configuration of the basal water

conduit system, Journal of Geophysical Research: Solid Earth, 92 (1987), pp. 9083–

9100.

139



[67] R. F. Katz and M. G. Worster, Stability of ice-sheet grounding lines, Proceedings

of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466 (2010),

pp. 1597–1620.

[68] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity, Society for Industrial

and Applied Mathematics, 1988.

[69] R. J. LeVeque, Finite difference methods for ordinary and partial differential equa-

tions: Steady-state and time-dependent problems, SIAM, 2007.

[70] L. Lliboutry, General theory of subglacial cavitation and sliding of temperate

glaciers, Journal of Glaciology, 7 (1968), pp. 21–58.

[71] D. R. MacAyeal, Large-scale ice flow over a viscous basal sediment: Theory and

application to ice stream B, Antarctica, Journal of Geophysical Research: Solid Earth,

94 (1989), pp. 4071–4087.

[72] D. W. F. Mair, M. J. Sharp, and I. C. Willis, Evidence for basal cavity opening

from analysis of surface uplift during a high-velocity event: Haut Glacier d’Arolla,

Switzerland, Journal of Glaciology, 48 (2002), pp. 208–216.

[73] B. Minchew and I. Joughin, Toward a universal glacier slip law, Science, 368

(2020), pp. 29–30.

[74] L. W. Morland, Unconfined ice-shelf flow, in Dynamics of the West Antarctic Ice

Sheet, C. J. Van der Veen and J. Oerlemans, eds., Springer Netherlands, 1987, pp. 99–

116.

[75] M. Morlighem, E. Rignot, T. Binder, D. Blankenship, R. Drews, G. Ea-

gles, O. Eisen, F. Ferraccioli, R. Forsberg, P. Fretwell, et al., Deep

glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice

sheet, Nature Geoscience, 13 (2020), pp. 132–137.

[76] S. M. J. Nowicki and D. J. Wingham, Conditions for a steady ice sheet-ice shelf

junction, Earth and Planetary Science Letters, 265 (2008), pp. 246–255.

[77] J. Nye, A calculation on the sliding of ice over a wavy surface using a Newtonian

viscous approximation, Proceedings of the Royal Society, 311 (1969).

[78] F. Pattyn, L. Perichon, G. Durand, L. Favier, O. Gagliardini, R. C. Hind-

marsh, T. Zwinger, T. Albrecht, S. Cornford, D. Docquier, and et al.,

Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea

MISMIP3d intercomparison, Journal of Glaciology, 59 (2013), pp. 410–422.

140



[79] F. Pattyn, C. Schoof, L. Perichon, R. C. A. Hindmarsh, E. Bueler,

B. de Fleurian, G. Durand, O. Gagliardini, R. Gladstone, D. Goldberg,

G. H. Gudmundsson, P. Huybrechts, V. Lee, F. M. Nick, A. J. Payne,

D. Pollard, O. Rybak, F. Saito, and A. Vieli, Results of the marine ice sheet

model intercomparison project, MISMIP, The Cryosphere, 6 (2012), pp. 573–588.

[80] S. S. Pegler and M. G. Worster, An experimental and theoretical study of the

dynamics of grounding lines, Journal of Fluid Mechanics, 728 (2013), pp. 5–28.

[81] D. Pollard and R. M. DeConto, Description of a hybrid ice sheet-shelf model,

and application to Antarctica, Geoscientific Model Development, 5 (2012), pp. 1273–

1295.

[82] , Improvements in one-dimensional grounding-line parameterizations in an ice-

sheet model with lateral variations (PSUICE3D v2.1), Geoscientific Model Develop-

ment, 13 (2020), pp. 6481–6500.

[83] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T.

McRae, G.-T. Bercea, G. R. Markall, and P. H. Kelly, Firedrake: au-

tomating the finite element method by composing abstractions, ACM Transactions on

Mathematical Software (TOMS), 43 (2016), pp. 1–27.

[84] J. N. Reddy, Energy principles and variational methods in applied mechanics, John

Wiley & Sons, 2017.

[85] C. Ritz, T. L. Edwards, G. Durand, A. J. Payne, V. Peyaud, and R. C. A.

Hindmarsh, Potential sea-level rise from Antarctic ice-sheet instability constrained

by observations, Nature, 528 (2015), pp. 115–118.

[86] R. A. V. Robison, H. E. Huppert, and M. G. Worster, Dynamics of viscous

grounding lines, Journal of Fluid Mechanics, 648 (2010), pp. 363–380.

[87] C. Schoof, The effect of cavitation on glacier sliding, Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 461 (2005), pp. 609–

627.

[88] , Ice sheet grounding line dynamics: steady states, stability, and hysteresis, Jour-

nal of Geophysical Research: Earth Surface, 112 (2007).

[89] , Marine ice-sheet dynamics. Part 1. The case of rapid sliding, Journal of Fluid

Mechanics, 573 (2007), pp. 27–55.

141



[90] , Coulomb friction and other sliding laws in a higher order glacier flow model,

Mathematical Methods in the Applied Sciences, 20 (2010), pp. 157–189.

[91] , Marine ice sheet dynamics. Part 2. A Stokes flow contact problem, Journal of

Fluid Mechanics, 679 (2011), pp. 122–155.

[92] , Marine ice sheet stability, Journal of Fluid Mechanics, 698 (2012), pp. 62–72.

[93] C. Schoof and I. J. Hewitt, Ice-sheet dynamics, Annual Review of Fluid Mechan-

ics, 45 (2013), pp. 217–239.

[94] C. Schoof, I. J. Hewitt, and M. A. Werder, Flotation and free surface flow

in a model for subglacial drainage. Part 1. Distributed drainage, Journal of Fluid

Mechanics, 702 (2012), pp. 126–156.

[95] O. V. Sergienko and D. J. Wingham, Grounding line stability in a regime of low

driving and basal stresses, Journal of Glaciology, 65 (2019), pp. 833–849.

[96] W. Spann, Error estimates for the approximation of semicoercive variational inequal-

ities, Numerische Mathematik, 69 (1994), pp. 103–116.

[97] A. G. Stubblefield, M. Spiegelman, and T. T. Creyts, Variational formula-

tion of marine ice-sheet and subglacial-lake grounding-line dynamics, Journal of Fluid

Mechanics, 919 (2021), p. A23.

[98] S. Sugiyama and G. H. Gudmundsson, Short-term variations in glacier flow con-

trolled by subglacial water pressure at Lauteraargletscher, Bernese Alps, Switzerland,

Journal of Glaciology, 50 (2004), pp. 353–362.

[99] C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using

the finite element technique, Computers & Fluids, 1 (1973), pp. 73–100.

[100] R. Trémolières, J. Lions, and R. Glowinski, Numerical Analysis of Variational

Inequalities, Elsevier Science, 2011.

[101] V. C. Tsai, A. L. Stewart, and A. F. Thompson, Marine ice-sheet profiles and

stability under Coulomb basal conditions, Journal of Glaciology, 61 (2015), pp. 205–

215.

[102] S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt, Basal mechanics of Ice

Stream B, West Antarctica: 1. Till mechanics, Journal of Geophysical Research: Solid

Earth, 105 (2000), pp. 463–481.

142



[103] T. Van Bon, Finite element analysis of primal and dual variational formulations of

semicoercive elliptic problems with nonhomogeneous obstacles on the boundary, Ap-

likace Matematiky, 33 (1988), pp. 1–21.

[104] J. Weertman, On the sliding of glaciers, Journal of Glaciology, 3 (1957), pp. 33–38.

[105] , Stability of the junction of an ice sheet and an ice shelf, Journal of Glaciology,

13 (1974), pp. 3–11.

[106] A. Wilchinsky and V. Chugunov, Modelling ice flow in various glacier zones,

Journal of Applied Mathematics and Mechanics, 65 (2001), pp. 479–493.

[107] L. K. Zoet and N. R. Iverson, Experimental determination of a double-valued

drag relationship for glacier sliding, Journal of Glaciology, 61 (2015), pp. 1–7.

[108] L. K. Zoet and N. R. Iverson, Rate-weakening drag during glacier sliding, Journal

of Geophysical Research: Earth Surface, 121 (2016), pp. 1206–1217.

143


	Introduction
	Outline of the thesis
	Notation
	Modelling ice as a viscous fluid
	Formulation of a viscous contact problem
	The weak formulation of the Stokes equations as a variational inequality
	Subglacial cavitation
	Marine ice sheets
	Concluding remarks

	Numerical methods for viscous contact problems
	Notation for the discrete problem and assumptions
	A general class of numerical schemes for viscous contact problems
	The discrete variational inequality
	The discrete free boundary equation

	A numerical scheme for solving viscous contact problems
	Examples of other schemes and numerical results
	Discussion

	Analysis and approximation of the Stokes variational inequality
	Analysis of the variational inequality
	Strong formulation of the Stokes problem
	The weak formulation as a variational inequality
	The mixed formulation with a Lagrange multiplier
	Existence, uniqueness and stability of solutions

	Abstract discretisation of the variational inequality
	The discrete mixed formulation
	Upper bounds for the velocity error
	Upper bounds for the pressure and Lagrange multiplier errors

	Analysis of a finite element scheme with P2P0 elements
	Convergence of the finite element approximation
	Discrete algebraic formulation
	A numerical test

	Discussion

	Subglacial cavitation and glacial sliding
	Past research on glacial sliding with cavitation
	Non-dimensional formulation of the problem
	Computation of the basal shear stress and the sliding speed
	Some properties of the solution

	Steady sliding with cavitation
	Steady subglacial cavities
	Computation of the linear and nonlinear steady friction law

	Unsteady sliding with cavitation
	Discussion

	Marine ice sheets
	Existing studies on grounding line dynamics
	The parallel slab marine ice sheet problem
	Modelling the marine ice sheet problem with the Stokes equations
	The shallow stream/shelf approximation (SSA)

	Steady grounding line configurations
	Computational considerations
	The steady flux-thickness relationship at the grounding line
	A comparison with depth-integrated models for grounded and floating ice

	Parametrising the steady grounding line position
	The sliding-dominated case
	The shear-dominated case

	Discussion

	Conclusions and further work
	Existence and uniqueness of solutions to an abstract semicoercive variational inequality
	Some technical results on finite element spaces
	Approximation properties in a fractional order Sobolev space and its dual
	An interpolation operator for the velocity
	An extension operator

	Linearised solution of the steady subglacial cavity problem
	Bibliography

