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We study motility-induced phase separation (MIPS) in living active matter, in which cells interact
through chemical signaling, or quorum sensing. In contrast to previous theories of MIPS, our multiscale
continuum model accounts explicitly for genetic regulation of signal production and motility. Through
analysis and simulations, we derive a new criterion for the onset of MIPS that depends on features of the
genetic network. Furthermore, we identify and characterize a new type of oscillatory instability that occurs
when gene regulation inside cells promotes motility in higher signal concentrations.
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Introduction.—Chemical signals control cell motility to
regulate self-organized patterning in living systems, from
tissue morphogenesis and wound healing to cancer [1]. In
bacterial populations, chemical signaling, or quorum sens-
ing (QS), drives self-organization by promoting popula-
tion-level behaviors such as biofilm formation and
swarming motility [2,3]. Bacterial QS systems have been
engineered to connect directly to genes controlling motility
in synthetic genetic networks, enabling the generation of
tunable patterns in vitro [4–6]. However, we lack funda-
mental understanding of how cell-level features, such as
gene-regulatory networks, determine emergent population-
level pattern formation in living active matter.
Minimal physical models of active and living matter

typically consist of physically interacting self-propelled
particles. Despite their simplicity, such models can display
complex emergent dynamics, such as motility-induced
phase separation (MIPS) [7,8]. This phenomenon is caused
by a self-trapping mechanism whereby particles experience
reduced motility at high densities owing to their inter-
actions, eventually leading to dense macroscopic clusters of
immotile particles coexisting with a dilute phase of motile
particles [7]. Similar phase transitions have been observed
in active matter systems with agents that interact through
flows [9–13], morphogens [14], social interactions [15,16],
chemotaxis [17–21], and electrostatic torques [22]. In the
past, models for chemically interacting particles have been
placed within this framework by representing signals
indirectly through a density-dependent motility [7,23–25]

or an effective physical force [26,27], but it is not known
how far these approaches accurately represent chemical
signaling in living matter.
More recently, minimal models of active matter have

been supplemented with a concentration field of signaling
molecules that mediates the orientation [21,28–34] or
motility [5,35–37] of cells or particles. Such models have
demonstrated that, broadly, repression of motility by
intercellular signals tends to promote variations in cell
density [5,36,38–41], in line with models of physically
interacting particles. However, these existing models often
represent gene regulation and chemical signaling using
coarse-grained or effective terms, rather than accounting for
gene-regulatory kinetics explicitly. Therefore, it is not
known in general how the properties of gene-regulatory
networks connect to the characteristics of emergent patterns
in living active matter.
Here, we develop a multiscale continuum model of

chemically interacting particles or cells. Our theory sys-
tematically accounts for intracellular processes through
careful treatment of the population’s gene regulation and
phenotype (i.e., motility). Thereby, we connect population-
level patterns with the gene-regulatory network inside cells
and intercellular QS signaling. We derive a criterion for
MIPS mediated by QS in terms of the properties of the
gene-regulatory network and discover a new route to MIPS
via genetic regulation of tumbling frequency. We clarify
that it is only consistent to approximate chemically medi-
ated interactions by a density-dependent motility in the
limit of fast chemical timescales; in general, one must
account for chemical timescales to predict the onset of
QS-induced MIPS. Moreover, the density dependence we
derive is nonlinear, in contrast to physically interacting
active Brownian particles (ABPs) [42–44]. Finally, we
identify and explain a new type of oscillatory instability
that occurs when cell motility is promoted, rather than
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repressed, in higher concentrations of QS signal. This new
instability does not occur in active matter systems in which
the interactions are purely physical.
Model setup.—We start by imposing rules at the cell

level, before systematically deriving a continuum model
from the cell dynamics. We consider a population of N
chemically interacting bacteria in two dimensions, and
neglect physical interactions to focus on the role of
chemical signaling.
Each cell is denoted by the index i and is located at

position xi with an internal chemical concentration uiðtÞ,
which represents a gene-regulatory protein or transcription
factor. The internal chemical obeys the kinetics

u̇i ¼ f½ui; cðxi; tÞ� þ
ffiffiffiffiffi
2ε

p
ξiðtÞ: ð1Þ

Here, f characterizes the gene-regulatory network (GRN),
and depends on the internal chemical concentration ui and
the local concentration field c of autoinducer (AI), which
permeates the population. Although our upscaling is
general, we later define f for definiteness. The last term
in (1) represents the stochastic behaviour inherent to
chemical reactions; ξi represents zero-mean Gaussian white
noise and ε its magnitude. We work in the limit of small
magnitude noise in the gene-regulatory kinetics. We
include this small noise term for two reasons. First,
biochemical reactions are intrinsically stochastic, espe-
cially if the reagents are present in small amounts [45].
Second, this term regularizes the continuum equations and,
as we show below, the system is singular in the limit ε → 0.
In terms of cell motility, we assume that the cells

undergo both active motion and passive diffusion. The
active component is characterized by active Brownian
motion [46,47] and run-and-tumble dynamics. Between
tumbles, the particle positions xi therefore obey

ẋi ¼ vðuiÞei þ
ffiffiffiffiffiffiffiffi
2Dt

p
ζ iðtÞ; ð2Þ

where vðuiÞ is the gene-regulated self-propulsion speed
and Dt a passive translational diffusion coefficient
associated with the zero-mean Gaussian white noise ζ i.
The cell orientations are described by the vector ei ¼
ðcosϕi; sinϕiÞT , where the angle ϕi undergoes diffusion
with no directional bias due to the active Brownian
component:

ϕ̇i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrðuiÞ

p
ηiðtÞ; ð3Þ

whereDr is a rotational diffusion coefficient associated with
the zero-mean Gaussian white noise ηi. The active motility
parameters Dr, v, and the tumble rate γ are gene-regulated,
which is modeled by allowing a dependence on ui. Such
regulation may arise naturally [3,48] or synthetically [4–6].
We derive continuum equations from the individual-

based equations of motion (1)–(3) for a large population

of cells using standard methods (see Sec. A of the
Supplemental Material [49], cf. [44,53–55]). In the con-
tinuum equations, the intracellular chemical concentration
u becomes an independent variable. That is, the population-
level equations are structured in terms of the GRN inside
cells; we refer to these multiscale equations as GRN
structured.
The continuum GRN-structured cell density nðx; u; tÞ

satisfies

∂tn ¼ DðuÞ∇2nþ ε∂2un − ∂uðfðu; cÞnÞ; ð4aÞ

DðuÞ ≔ Dt þ
v2ðuÞ

2½γðuÞ þDrðuÞ�
: ð4bÞ

Here, DðuÞ is the effective gene-regulated diffusion
coefficient, and ∇ refers to spatial derivatives. The second
term on the rhs of (4a) accounts for the stochastic
component of the kinetics. The third term on the rhs
of (4a) codifies the GRN through an advection of the
structured cell density in the u coordinate. The second term
on the rhs of (4b) is the contribution arising from the run-
and-tumble and active Brownian dynamics. The physical
cell density ρðx; tÞ is related to the GRN-structured cell
density n through ρ ¼ R

∞
0 n du. In deriving Eqs. (4), we

assume that the gene-regulatory kinetics and cell diffusion
occur on timescales much longer than the tumbling and
reorientation timescales, in line with biological parameter
estimates [36,56], and consider length scales much larger
than the cell persistence length (see Sec. A of the
Supplemental Material [49]).
Positive feedback is a canonical component of quorum-

sensing GRNs, present in many bacterial species [2,56]. We
pose the following specific functional form for f which
incorporates positive feedback:

fðu; cÞ ¼ aþ Lc
K þ c

− λu: ð5Þ

Here, a represents a constant base production rate of the
intracellular chemical u, and λ is a natural decay rate. The
second term on the rhs of (5) represents the production of u
induced by the local AI concentration c, which constitutes
one half of the positive feedback loop illustrated in
Fig. 1(a). This term saturates at a maximal rate of L and
has a “threshold” activation at c ¼ K where the production
rate is half-maximal.
The other half of the positive feedback loop in the QS

circuit involves the AI concentration field cðx; tÞ. We
assume that AI diffuses passively with coefficient Dc,
decays with rate β, and is generated through cell secretion
at a rate αðuÞ. Thus, we have

∂tc ¼ Dc∇2c − βcþ
Z

∞

0

αðuÞnðx; u; tÞdu; ð6Þ
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where the final term on the rhs is the continuum secretion
term. This term is nonlocal in u as it encodes the
contribution from all internal concentrations in a locally
averaged region of space. We emphasize that positive
feedback is only present in the QS circuit when the
secretion rate αðuÞ is nonconstant across internal concen-
trations u. For simplicity, we pose a secretion rate that is
proportional to the internal concentration, i.e.,

αðuÞ ¼ α0u: ð7Þ

Finally, we assume that the cell population and concen-
tration field are confined to a rectangular domain Ω,
imposing no flux boundary conditions on the boundaries
∂Ω. Hence,

∇n · N ¼ 0; ∇c ·N ¼ 0; x∈ ∂Ω; ð8Þ

where N is the unit normal on ∂Ω. To ensure physical (i.e.,
non-negative, bounded) concentrations, we also impose no
flux at u ¼ 0 and as u → ∞. These conditions correspond to

ε∂un − fðu; cÞn ¼ 0; for u ¼ 0; u → ∞: ð9Þ

Our continuum model therefore consists of the governing
equations (4)–(7), and the boundary conditions (8) and (9).
The multiscale nature of our model is illustrated schemati-
cally in Fig. 1(a). We verify the predictions of our theory in
the following section via numerical simulations of the
governing equations, using the open-source finite-element
library oomph-lib [57] (see Sec. E of the Supplemental
Material [49]).
Instability of the uniform equilibrium state.—To inves-

tigate the emergence of MIPS in our model, we search for
instabilities in the spatially uniform equilibrium state,

emphasizing that this is not chemically uniform in general.
To this end, we perform a linear stability analysis of
the governing equations (4)–(9) to derive an instability
criterion for the onset of MIPS.
We derive the steady uniform solution by directly

integrating (4a) and imposing the boundary conditions (9).
The spatially uniform equilibrium is then given by

c� ¼ const; neðuÞ ¼ ρ�

ffiffiffiffiffiffiffiffi
λ

2πε

r
exp

�
−

λ

2ε
ðu − u�Þ2

�
;

ð10Þ

where the steady AI concentration c� and mean internal
concentration u� are defined through the unique positive
solution of the algebraic system

fðu�; c�Þ ¼ 0; βc� ¼ α0ρ�u�; ð11Þ

where ρ� ≔
R
∞
0 nedu represents the uniform cell density.

The analysis is singular in the limit ε → 0, since the
equilibrium density ne (10) formally tends to a Dirac
delta function centred at u ¼ u�, representing identical
internal concentrations in each cell. To analyze this singular
perturbation problem, we perform a WKBJ-like asymptotic
approximation and explicitly factor out the singular expo-
nential term. This reduces the analysis to a regular
perturbation problem (see Sec. B of the Supplemental
Material [49]).
We perform the linear stability analysis by substituting

small perturbations of the form

nðx;u;tÞ¼neðuÞþηðuÞeik·xþσt; cðx;tÞ¼c�þCeik·xþσt;

ð12Þ

into the governing equations (4)–(6) and linearizing the
result. Here, k denotes the wavenumber and σ the growth
rate of the small perturbations. This yields the dispersion
relation (see Sec. B of the Supplemental Material [49])

σ þDck2 þ β − α0f�cρ�
σ þ ðD� −D0�u�Þk2

ðσ þD�k2Þðσ þD�k2 þ λÞ ¼ 0:

ð13Þ

Here k ≔ jkj while D� ≔ Dðu�Þ, D0� ≔ D0ðu�Þ, and
f�c ≔ ∂cfðu�; c�Þ. The spatially uniform steady-state (10)
is unstable if Eq. (13) has any root σ with ReðσÞ > 0. We
refer to D0� as the motility response since it characterizes
how the motility responds to changes in internal concen-
tration. We find that there are two types of instability
depending on the sign of D0�.
Case I: Internal chemical represses motility: The first

type of instability occurs when higher internal concentrations
reduce motility (D0� < 0), analogous to classic MIPS where

FIG. 1. (a) Schematic illustration of our multiscale model of
chemically interacting cells. We derive a continuum population
model that retains the genetic structure of the population through
chemical stratification. The motility of individual cells depends
on their internal chemical concentration. The transcription factor
can either repress or promote motility. (b) Snapshots in time of
the cell density from an initially homogeneous state (AI con-
centration profile is similar). See also video S1 in the Supple-
mental Material [49].
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higher cell densities reduce motility through physical
interaction.
We derive the following instability criterion by substitut-

ing σ ¼ 0 into (13) and rearranging:

D0�
D�

< −
A
u�

; ð14aÞ

where we define

A ≔
1

α0ρ�f�c

�
Dcπ

2

L2
m

þ β

��
D�π2

L2
m

þ λ

�
− 1 > 0: ð14bÞ

Here, Lm is the largest side length of the domain, and we
use k ¼ π=Lm since the longest wavelength mode is always
the first to lose stability as D0� is decreased from zero (see
Sec. B of the Supplemental Material [49]). However, the
mode with the largest growth rate, i.e., largest value of
ReðσÞ, typically corresponds to an intermediate wave-
length, as shown in Fig. 2.
Equation (14) is the first key result of our Letter.

Qualitatively, it states that a spatially uniform population
of chemically interacting cells begins to form clusters when
the cellular motility (characterized by the diffusion coef-
ficient D�) is sufficiently repressed in response to pertur-
bations in the internal concentrations. The constant A,
defined in (14b), encodes the required strength of repres-
sion in terms of the chemical timescales and genetic
structure of the population. The mechanism driving the
instability is shown schematically in Fig. 4(a).
A key feature of the instability characterized by (14) is

that any of the gene-regulated active motility parameters
in (4b) can trigger MIPS, not just the self-propulsion speed
vðuÞ. This is in contrast to physical MIPS for which the
analog of (14) is given by the criterion [7]:

1

V
dV
dρ

����
ρ�

< −
1

ρ�
; ð15Þ

where VðρÞ is the effective density-dependent propulsion
speed in physical active matter. A similar phenomenon
occurs for active (velocity) fluctuations where rotational
diffusion affects the onset of MIPS, but is not the under-
lying cause [53]. The difference between (14) and (15) is
that (14) accounts for the timescales of chemical diffusion
and gene-regulated motility parameters. As such, we expect
that the classical result (15) should be recovered when both
the AI concentration and gene-regulatory kinetics equi-
libriate quickly. We clarify in Secs. B and D of the
Supplemental Material [49] that in order to recover (15),
the chemical timescales need to be fast not just by
comparison to the cell diffusion timescale but also by
comparison to the tumbling and reorientation timescales,
which necessitates modifying the upscaling procedure used
to obtain (4). In this very-fast-chemical-timescale limit,
nonconstant rotational diffusion or tumbling frequency
cannot cause MIPS, consistent with (15).
The dynamics of the cell density ρ are illustrated in

Fig. 1(b), clearly exhibiting MIPS. In Fig. 2 we compute
steady-state branches that bifurcate from the uniform state,
and show that the bifurcation point predicted by our
analysis in (14) agrees well with numerically computed
branches. The unstable spatial modes from the dispersion
relation σðkÞ, determined from (13), are illustrated in Fig. 2.
The spatial mode with the largest growth rate measures the
cluster sizes that initially form from the uniform state.
Case II: Internal chemical promotes motility:

Surprisingly, our linear stability analysis predicts a new
type of instability when higher internal concentrations
promote motility (D0� > 0). Since physical interparticle
forces act to reduce motility as density increases, this
new instability would not be induced in populations with
purely physical interactions. Chemically interacting pop-
ulations do not have this restriction; GRNs connected to
intercellular signalling can increase cell motility directly in,
e.g., bacterial swarming where QS regulates flagella
assembly [48], and indirectly by, e.g., controlling biosur-
factant production [3].
Mathematically, this instability occurs when σ is purely

imaginary, i.e., via a Hopf bifurcation. The analog
of (14a) for this instability is given by (see Sec. C of
the Supplemental Material [49]):

D0�
D�

>
B
u�

; ð16aÞ

where we define

B ≔
ωλ þ ω

ω0

�ðω0 þ ωλÞðω0 þ ωÞ
α0f�cρ�

− 1

�
> 0; ð16bÞ

FIG. 2. Bifurcation diagram in one dimension with 2D steady-
state stripe (cluster) patterns shown as red (green) stars, respec-
tively (see right panels and video S2 in the Supplemental Material
[49]). The trivial branch corresponds to (10) and the bifurcating
branch is the 1D MIPS-patterned state [computed from steady-
state versions of (4)–(7)]. The bifurcation point (yellow star) is
indistinguishable from that predicted from (14). Inset: dispersion
relation from linear theory. Parameter values are given in Table S1
of [49].
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ωj ≔ D�k2 þ j; ω ≔ Dck2 þ β: ð16cÞ

Equation (16) is the second key result of our Letter. It
quantifies the condition under which a uniform population
of chemically interacting cells undergoes spatiotemporal
density oscillations. Qualitatively, the population becomes
unstable when the cellular motility is sufficiently promoted
in response to perturbing the internal concentrations. The
constant B, defined in (16b), encodes information about the
chemical timescales and genetic structure of the population.
Similar to the criterion (14), the instability can be triggered
if any of the active motility parameters in (4b) are non-
constant. In contrast to (14), the longest wavelength mode,
in general, is not the first to become unstable, as can be seen
by comparing the dispersion relations for the two insta-
bilities in Figs. 2 and 3(c). We show the type of spatio-
temporal dynamics arising from this instability in Fig. 3(a).
The oscillations tend to a limit cycle resembling a standing
wave pattern, which bifurcates from the uniform state as
illustrated by Fig. 3(b).
Themechanismdriving this newoscillatory instability is an

effective time delay between local density fluctuations and
changes in motility, illustrated schematically in Fig. 4(b).
Oscillatory patterns are known to arise in chemotactic active
matter where effective time-delays between changes in
density and orientation [21] or chemoattractant [29] drive
the instability. Here, the time delay between density and
motility is caused by finite timescales in the QS circuit. To
understand the mechanism physically, consider a region of
locally higher cell density.As the density fluctuationbegins to
relax, the AI concentration field increases locally in response
to the higher density, which leads to locally higher internal
concentrations due to the reaction kinetics. Owing to the
chemically regulated motility DðuÞ, the cells with higher
internal concentrations experience a higher motility. As the
local density returns to the equilibrium value, the locally
higher motility persists and the region begins to deplete of

cells, thereby forming a region of lower density. This forms
the first half of the periodic cycle, with the second half having
equivalent reasoning. The oscillations decay if the time delay
is too short, which can be seenmathematically by considering
the behavior ofB as the delay tends to zero, i.e., in the limit of
fast chemical timescales (in which a ∼ L ∼ λ ∼ α0 ∼ β are
large). From (16b), it can be shown that B → ∞ in this limit
and hence the criterion (16a) cannot be satisfied, favoring a
stable uniform colony.
Our results demonstrate that explicit modeling of gene

regulation in cell populations is key to understanding MIPS
in living active matter. Our GRN-structured model allows
for a direct link between cell-level genetic processes
and macroscale pattern formation—in principle, the model
can be simplified via an internal mean-field formulation
of the governing equations (4)–(7), but this is only
quantitatively accurate near the spatially uniform equilib-
rium (Supplemental Material [49]). More fundamentally,
our theory predicts that gene-regulated tumbling frequency
alone can cause MIPS, in contrast to classical physical
MIPS. Additionally, gene regulation that promotes motility
in higher signal concentrations is required for the oscil-
latory instability (Hopf bifurcation) that we identify here;
this instability is absent in systems with purely physical
interactions between particles. Our continuum model is
appropriate for large cell populations, which are common
in many natural [3] and synthetic [5] biological systems.
In future work it would be interesting to explore the
predictions of agent-based simulations of the microscopic
model (1)–(3), (5), and (6), especially for small cell
populations.

The code that was used to perform the simulations in this
paper is available at Ref. [58]. All data is provided in the
paper and in the electronic supplementary material [49].
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FIG. 3. (a) Oscillatory patterning in one dimension showing the
formation of periodic spatiotemporal oscillations resembling
standing waves (see also video S3 in [49]). (b) Bifurcation
diagram showing the amplitude of density oscillations.
(c) Dispersion relation from the linear theory.

FIG. 4. Schematic illustrations of the instability mechanisms.
(a) Small density or AI perturbation from the unstable uniform
equilibrium in Case I. (b) Periodic spatiotemporal oscillations in
Case II.
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