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unsteady flows, where they measure a pneumatically-averaged flow field that can 

differ from the time-mean. 

To better understand these pneumatic averaging effects, an analytical 

framework is constructed using a quasi-steady model. Total and static pressure 

coefficients have a symmetric response to both positive and negative incidence. 

When incidence fluctuates, there is therefore a bias in the pneumatic average. 

These errors are evident in a shedding wake experiment, where a 5HP over-

estimates total pressure loss by up to 44% compared to a Kiel probe. These effects 

can be predicted by coupling an Unsteady-Reynolds-Averaged-Navier-Stokes 

(URANS) calculation with the quasi-steady model.  

By predicting pneumatic averaging errors, the quasi-steady model can be used 

to obtain like-for-like validation of calculations against experimental data. 

Measurement data can also be corrected, provided flow angle fluctuations can be 

measured or estimated. This approach can be readily used to post-correct the 

large body of historical data likely to have been corrupted by pneumatic-averaging 

errors. 

Nomenclature 

𝐴 sinusoidal perturbation amplitude 

𝐶 calibration coefficient 

𝐶஽ drag coefficient 

𝐶௣, 𝐶௣௦ pressure coefficients, eq (33), (38) 

𝑑 probe diameter 

𝐷 dynamic pressure coefficient = 𝑓(𝑡) 
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𝐸 error 

𝑓 frequency 

𝑓௥ reduced frequency 

𝐹஽ drag force 

ℎ span 

𝐻 channel height 

𝑃 pressure 

𝑢, 𝑣, 𝑤 fluctuating velocity components 

𝑉 time-mean streamwise velocity 

𝑆𝑡 Strouhal number 

𝑡 time 

𝑊 width 

𝑥 axial direction  

𝑦 transverse direction  

𝛼 flow angle 

𝜆 disturbance wavelength 

𝜌 density 

𝜙 phase angle 

Sub-scripts 

0 total 



4 

 

1 inlet 

2 traverse plane 

𝑎𝑣𝑒 average 

𝑐𝑜𝑚𝑝 compound 

𝑐𝑜𝑟 corrected 

𝑑𝑦𝑛 dynamic pressure 

𝑓𝑠 freestream 

𝑝𝑖𝑡 pitch 

𝑅𝑀𝑆 root-mean-squared fluctuation 

𝑠 static 

Over-bars 

ഥ  time-averaged 

෡  pneumatically-averaged 

I. Introduction 

Many aerodynamic flows are highly three-dimensional by nature. The velocity components may 

be obtained from laser techniques (e.g. stereoscopic Particle Imaging Velocimetry) or hot-wire 

anemometry. However, such methods do not measure total pressure, which is often required to 

characterize performance, especially for internal flows. Velocity and pressure measurements are 

most readily obtained using calibrated multi-hole probes, such as the five-hole-probe (5HP) shown in 

Figure 1(a). This paper considers “steady” probes, where pneumatic tubing connects the probe head 

to the transducer, which only records averaged pressures. Steady 5HPs have many advantages. They 

are relatively simple to construct, low-cost and easy to operate. They can be made at small scale 
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(~1mm diameter) to minimise spatial errors, e.g. Grimshaw and Taylor [1], and enable measurement 

access, e.g. for intra-row traverses in multi-stage turbomachines. Furthermore, these probes can be 

made sufficiently robust to operate in harsh environments. With these advantages, steady muti-hole 

probes are widely used in a range of applications. 

“Steady” pneumatic probes are often used when there is significant unsteadiness in the flow. A 

key example is the measurement of turbomachinery performance, which often relies on stationary-

frame 5HP traverses downstream of rotating blade rows, e.g. Bauinger et al. [2], Evans and Longley 

[3] and Prahst et al. [4]. Other set-ups with significant unsteadiness include measurements in 

shedding wakes., e.g. Melzer and Pullan [5] used a un-Kieled pitot to assess shedding trailing edge 

loss. In such unsteady flows, it has been generally recognised that the pneumatic-averaged flow 

indicated by these steady probes may differ from the true time-average. However, these effects are 

poorly understood and are usually ignored. 

This work is thus motivated by the need to address the deficiency in our understanding of 

pneumatic-averaging. By focusing on long-wavelength unsteadiness, we develop a simple, rigorous 

approach to explain and quantify the resultant errors. We focus on 5HPs, but the analysis is equally 

applicable to other multi-hole pneumatic probes, and un-Kieled pitots. 

A. Previous Studies of Pneumatic-Averaging 

Most previous studies of pneumatic averaging considered small-scale turbulence. For a pitot 

tube, Goldstein [6] argued that the turbulent kinetic energy will be reversibly recovered if the eddies 

are small compared to the probe. Assuming incompressible flow, a pitot pointing into the flow will 

therefore indicate a total pressure 𝑃෠଴: 

𝑃෠଴ ≈ 𝑃ഥ +
𝜌

2
𝑉ഥ

2
+

𝜌

2
൫𝑢2തതത + 𝑣2ഥ + 𝑤2തതതത൯ = 𝑃ഥ0 (1)   
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where 𝑃ത is the time-averaged pressure, 𝑉ത  is the mean velocity and 𝑢, 𝑣, 𝑤 are the velocity 

fluctuation components. By these assumptions the probe will indicate the true time-mean total 

pressure, 𝑃ത଴. 

In practice the Goldstein approximation is not always applicable. Bailey et al. [7] compared hot-

wire and pitot measurements in boundary layers, and found that only the streamwise fluctuations 

contributed to the indicated total pressure: 

𝑃෠଴ ≈ 𝑃ഥ +
𝜌

2
𝑈ഥ

2
+

𝜌

2
𝑢2തതത = 𝑃ഥ0 −

𝜌

2
൫𝑣2ഥ + 𝑤2തതതത൯ (2)   

Thus the pitot indicates a total pressure below the true time-mean. A similar, but greater, effect is 

observed in our current analysis of 5HPs. 

Few authors have examined these effects for multi-hole probes. Building on the work of 

Bradshaw and Goodman [8], Christiansen and Bradshaw [9] examined yaw meters at high and low 

turbulence and found high static pressure errors when instantaneous yaw angles were large. This 

work is again consistent with the current findings. 

B. Quasi-Steady Pneumatic-Averaging 

Rather than focus on small-scale turbulence, we here focus on large-scale flow fluctuations, 

which affect the pressure field around the entire probe head and can thus cause large errors. The 

scale of the fluctuations can be characterised using the reduced frequency 𝑓௥, which is a ratio of 

characteristic lengths:  

𝑓௥ =
𝑓 𝑑

𝑉
=

𝑑

𝜆
 (3)   

where 𝑓 is the frequency of the fluctuation, 𝑉 is the flow velocity, 𝑑 is the probe diameter and 𝜆 is 

the fluctuation wavelength. A reduced frequency below ~0.3 typically indicates quasi-steady 

behaviour. At higher reduced frequencies the flow becomes fundamentally unsteady and the probe 

response will depart from quasi-steady behaviour. Nonetheless the general trends are likely to be 

similar. 
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Figure 1: Five-Hole-Probe nomenclature and response in steady and fluctuating flow. 

Figure 1(b) and (c) respectively illustrate the response of a 5HP to steady flow and with 

fluctuating yaw angle. The mean incidence is zero. In steady flow (Figure 1(b)), the central hole 

operates as a pitot and measures a pressure close to the flow total pressure, 𝑃஼ ≈ 𝑃଴. For fluctuating 

yaw (Figure 1(c)), the flow is at times aligned with the probe, 𝑃஼ ≈ 𝑃଴, but at other instances the 

incidence causes the central hole to measure a lower pressure, 𝑃஼ < 𝑃଴. Thus, on average, the 

central hole will measure a total pressure below the true time-mean, i.e. 𝑃ത஼ < 𝑃ത଴. This effect can 

also be inferred from Bailey’s result for turbulent fluctuations, equation (2), and applies equally to 

simple pitots and other multi-hole probes. 

The reduction in central-hole pressure (𝑃ത஼ < 𝑃ത଴) is deeply problematic for steady probes because 

they cannot distinguish between steady and fluctuating flow. The fluctuating flow condition is 

therefore interpreted simply as having lower total pressure. This effect is evident in the current 

experiments and in the data of Bauinger et al. [2], where a 5HP downstream of a turbine rotor 

indicated lower total pressure than Kiel-shrouded pitots, which are largely insensitive to angle. 
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C. Paper Aims and Outline 

The key aims of the paper are (1) to explain how pneumatic-averaging errors arise in unsteady 

flow and (2) to demonstrate how to predict and correct these errors. 

First, a theoretical framework is laid out: §II details the quasi-steady probe response model, and 

§III discusses the response of two different designs of 5HP to sinusoidal flow fluctuations. An 

experiment to examine unsteady flow errors and a complementary CFD calculation are described in 

§IV and §V respectively. §VI presents the measurements, demonstrates how these errors should be 

accounted for in CFD validation, and explores means to correct the experimental data. Finally, §VII 

considers the general implications of the findings. 

II. 5HP Pneumatic-Averaging Model 

A. Steady Flow Calibration Coefficients 

Non-dimensional pressure coefficients obtained from the steady calibration map are indicated by 

the symbol 𝐶. For individual holes these are given by (Dominy and Hodson [10]): 

𝐶௑ =
𝑃௑ − 𝑃଴

𝑃଴ − 𝑃௦

 (4)  

where 𝑃଴ is the flow total pressure, 𝑃௦ is the static pressure and 𝑃௑ is the pressure of the hole in 

question. The subscript 𝑋 indicates the index of the hole: centre 𝐶, left 𝐿, right 𝑅, top 𝑇, bottom 𝐵, 

Figure 1(a). The average side-hole pressure coefficient 𝐶௔௩௘ is expressed as: 

𝐶௔௩௘ =
𝑃௔௩௘ − 𝑃଴

𝑃଴ − 𝑃௦

=
(𝐶௅ + 𝐶ோ + 𝐶் + 𝐶஻)

4
 (5)  

Using these coefficients, the usual choice of yaw and pitch angle coefficients are: 

𝐶௬௔௪ =
𝑃௅ − 𝑃ோ

𝑃஼ − 𝑃௔௩௘

=
𝐶௅ − 𝐶ோ

𝐶஼ − 𝐶௔௩௘

 (6)  

𝐶௣௜௧ =
𝑃் − 𝑃஻

𝑃஼ − 𝑃௔௩௘

=
𝐶் − 𝐶஻

𝐶஼ − 𝐶௔௩௘

 (7)  

The total and dynamic pressure coefficients are typically taken as: 
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𝐶௉଴ =
𝑃଴ − 𝑃஼

𝑃஼ − 𝑃௔௩௘

=
−𝐶஼

𝐶஼ − 𝐶௔௩௘

 (8)  

𝐶ௗ௬௡ =
𝑃଴ − 𝑃ௌ

𝑃஼ − 𝑃௔௩௘

=
1

𝐶஼ − 𝐶௔௩௘

 (9)  

Together these coefficients can also define a static pressure coefficient, here defined as: 

𝐶௉௦ =
𝑃஼ − 𝑃ௌ

𝑃஼ − 𝑃௔௩௘

= 𝐶ௗ௬௡ − 𝐶௉଴ =
𝐶஼ + 1

𝐶஼ − 𝐶௔௩௘

 (10)  

Though rarely used, it is useful for the current analysis to separate static pressure in this manner. 

B. Probes and Calibration Ranges 

For simplicity the calibration is assumed to be independent of Reynolds and Mach number, so 

that 𝐶(𝑡) = 𝑓൫𝛼௬௔௪(𝑡), 𝛼௣௜௧(𝑡)൯. The methods can be readily extended to include these effects, 

which will be small for well-designed probes operating below transonic Mach numbers (<0.7). 

This paper uses calibration maps from two different 5HP probes, designated as: 

1) Grimshaw 60° Probe: This pyramid probe has side faces set at 60 from the probe axis and a 

diameter of 1.5mm. The calibration covers ±60 in yaw and ±20 in pitch, Grimshaw [11]. 

2) Ng 45° Probe: This conical probe has faces at 45 from the probe axis and 2.2mm diameter. The 

calibration covers ±26 in yaw and pitch. This probe was previously used by Ng and Coull [12]. 

As will be seen, the two probes exhibit similar total pressure errors but different static pressure 

errors. 

C. Sinusoidal Fluctuations 

For the analysis in §III, fluctuating flow is specified by defining sinusoids of arbitrary frequency. 

Flow angles are given by: 

𝛼௬௔௪(𝑡) = 𝛼ത௬௔௪ + 𝐴௬௔௪ 𝑠𝑖𝑛(𝑡) (11)  

𝛼௣௜௧(𝑡) = 𝛼ത௣௜௧ + 𝐴௣௜௧ 𝑠𝑖𝑛൫𝑡 + 𝜙௣௜௧൯ (12)  

where 𝜙௣௜௧ controls the relative phase. Fluctuating pressures can be specified relative to the true 

time-mean total (𝑃ത଴) and static pressure (𝑃ത௦) of the flow: 
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𝐷௉଴(𝑡) =
𝑃଴(𝑡) − 𝑃ത଴

𝑃ത଴ − 𝑃ത௦

= 𝐴௉଴ 𝑠𝑖𝑛(𝑡 + 𝜙௉଴) (13)  

𝐷௉௦(𝑡) =
𝑃௦(𝑡) − 𝑃ത௦

𝑃ത଴ − 𝑃ത௦

= 𝐴௉௦ 𝑠𝑖𝑛(𝑡 + 𝜙௉௦) (14)  

The symbol 𝐷 denotes a dynamic pressure normalized by the true time-mean dynamic pressure.  

D. Quasi-Steady Probe Response  

As shown in Figure 2, the instantaneous response of each hole is estimated by interpolating from 

the calibration data. From equation (4): 

𝑃௑(𝑡) = 𝑃଴(𝑡) + (𝑃଴(𝑡) − 𝑃௦(𝑡))𝐶௑(𝑡) (15)  

where 𝐶௑(𝑡) = 𝑓൫𝛼௬௔௪(𝑡), 𝛼௣௜௧(𝑡)൯ interpolates the hole calibration coefficient for the 

instantaneous angles. Normalized by the time-mean flow, the dynamic pressure coefficients 𝐷௑(𝑡) 

are thus: 

𝐷௑ =
𝑃௑ − 𝑃ത଴

𝑃ത଴ − 𝑃ത௦

= 𝐷௉଴ + 𝐶௑(𝐷௉଴ − 𝐷௉௦ + 1) (16)  

 

 

Figure 2: Quasi-Steady model. 
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E. Pneumatically-Averaged Response 

A precise model of pneumatic averaging would need to consider the dynamics of the pressure 

tubes, which can affect the average readings. However, such effects are likely to be small, and thus 

pneumatic averaging is simply modelled by time-averaging each hole pressure, giving the following 

pitch and yaw coefficients: 

𝐶መ௬௔௪ =
𝐷ഥ௅ − 𝐷ഥோ

𝐷ഥ஼ − 𝐷ഥ௔௩௘

 (17)  

𝐶መ௣௜௧ =
𝐷ഥ் − 𝐷ഥ஻

𝐷ഥ஼ − 𝐷ഥ௔௩௘

 (18)  

These probe-indicated values are denoted using over-hats, and may differ from the true time-average 

of the instantaneous coefficients, 𝐶௬̅௔௪ and 𝐶௣̅௜௧.  

Indicated angles are calculated by interpolating from the calibration map in typical fashion: 

𝛼ො௬௔௪ , 𝛼ො௣௜௧ = 𝑓൫𝐶መ௬௔௪ , 𝐶መ௣௜௧൯ (19)  

The errors from the true time mean flow angles are: 

𝐸௬௔௪ =  𝛼ො௬௔௪ − 𝛼ത௬௔௪ (20)  

𝐸௣௜௧ =  𝛼ො௣௜௧ − 𝛼ത௣௜௧  (21)  

The indicated total, static and dynamic pressure coefficients are interpolated from the calibration 

using the indicated angles: 

𝐶መ௉଴, 𝐶መ௉௦, 𝐶መௗ௬௡ = 𝑓൫𝛼ො௬௔௪ , 𝛼ො௣௜௧൯ (22)  

Again, these values will generally differ from the true time averages. Non-dimensional errors in the 

indicated total, dynamic and static pressure, are then defined relative to the true time-average flow: 

𝐸௉଴ =
𝑃෠଴ − 𝑃ത଴

𝑃ത଴ − 𝑃ത௦

= 𝐷ഥ஼ + 𝐶መ௉଴(𝐷ഥ஼ − 𝐷ഥ௔௩௘) (23)  

𝐸௉௦ =
𝑃௦
෡ − 𝑃ത௦

𝑃ത଴ − 𝑃ത௦

= 1 + 𝐷ഥ஼ − 𝐶መ௉௦(𝐷ഥ஼ − 𝐷ഥ௔௩௘) (24)  

𝐸ௗ௬௡ =
𝑃෠଴ − 𝑃௦

෡

𝑃ത଴ − 𝑃ത௦

− 1 = 𝐶መௗ௬௡(𝐷ഥ஼ − 𝐷ഥ௔௩௘) − 1 (25)  
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Each error is positive when the quantity is over-estimated by the probe and vice-versa. For steady 

flow all errors are zero by definition. 

III. Sinusoidal Flow Fluctuations 

We now examine the response of the quasi-steady model to sinusoidal fluctuations, the most 

important of which are angle fluctuations. 

A. Angle Fluctuations in One Component 

For the Grimshaw probe, Figure 3 shows the response to a sinusoidal fluctuation of ±25 in yaw 

angle, for zero mean incidence. The instantaneous points simply follow the calibration line for 𝛼௣௜௧ =

0. Because the calibration is approximately anti-symmetric, positive and negative incidence effects 

tend to cancel each other. Thus the pneumatic average Yaw Coefficient 𝐶መ௬௔௪ is close to zero, and the 

probe indicates a yaw angle 𝛼ො௬௔௪ ≈ 0°. 

 

Figure 3: Yaw Angle response to ±25 
fluctuating Yaw, 60° Grimshaw Probe. 

 

Figure 4: Total Pressure response to ±25 
fluctuating Yaw, 60° Grimshaw Probe. 
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Figure 4 shows the total pressure response for the same fluctuation. In contrast to yaw angle, 

𝐶௉଴ vs. 𝛼௬௔௪ is symmetric. Both positive and negative yaw cause the central hole pressure to drop 

(higher 𝐶௉଴); this is the process illustrated schematically in Figure 1(c). Due to this effect, the true 

time-average total pressure coefficient (equation (8)) is 𝐶௉̅଴ ≈ 0.2. This value is the correction that 

should be applied to the central hole pressure to give the correct flow total pressure, i.e. 

𝑃ത଴ = 𝑃ത௖ + (𝑃ത௖ − 𝑃ത௔௩௘)𝐶௉̅଴ (26)  

In the absence of knowledge of fluctuations, the 5HP operator must use the indicated flow 

angles (𝛼ො௬௔௪ ≈ 0, 𝛼ො௣௜௧ ≈ 0) to interpolate for 𝐶௉଴ from the steady calibration data. This gives an 

indicated total pressure coefficient 𝐶መ௉଴ = 0.01, which suggests that the flow total pressure should be 

very close to the central hole pressure. Without the correct factor (𝐶௉̅଴ ≈ 0.2), the probe thus 

indicates a lower total pressure than the true value: 

𝑃෠଴ = 𝑃ത௖ + (𝑃ത௖ − 𝑃ത௔௩௘)𝐶መ௉଴ ≈ 𝑃ത଴ − 0.19(𝑃ത௖ − 𝑃ത௔௩௘) (27) 

The calibration map for static pressure also has a generally symmetric response to angle, but it is 

more sensitive to the probe design and manufacture. Figure 5 shows the static pressure response for 

the Grimshaw probe. Because of its high face angle (60), the static pressure coefficient is relatively 

insensitive to angles over this range. Thus the underestimation of 𝑃௦ in Figure 5 is only around 

0.04(𝑃஼ − 𝑃௔௩௘). Figure 6 shows the response of the Ng probe, which has face angles of 45 and is 

more sensitive to angle. As shown, this probe underestimates static pressure by 0.37(𝑃஼ − 𝑃௔௩௘). 

 

Figure 5: Static Pressure response to ±25 
fluctuating Yaw, 60° Grimshaw Probe. 
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Figure 6: Static Pressure response to ±25 
fluctuating Yaw, 45° Ng Probe. 

B. Angle Fluctuations in Two Components 

We now consider simultaneous fluctuations in both angle components. Figure 7 shows total 

pressure errors for a range of 𝐴௬௔௪, 𝐴௣௜௧ and phase 𝜙௣௜௧ for the two probes, plotted against the root-

mean-square (RMS) of the fluctuating compound angle (i.e. the standard deviation): 

𝛼௖௢௠௣ିோெௌ = ට൫𝛼௬௔௪ିோெௌ൯
ଶ

+ ൫𝛼௣௜௧ିோெௌ൯
ଶ
 (28)  

The effect of probe design and phase is minimal, and the errors collapse to the following correlation: 

𝐸௉଴ ≈ −1.6 × 10ିସ ൫𝛼௖௢௠௣ିோெௌ൯
ଶ.ଷ

  (29)  

The collapse for both probes reflects the pitot-like configuration of the 5HP central hole and the 

similarity in pitch and yaw response. Similar errors would be expected for un-Kieled pitot 

measurements. Figure 7(a) includes the Bailey et al. [7] correction from equation (2), applied to the 

central hole. The Bailey equation is accurate for small incidence (𝛼௖௢௠௣ିோெௌ < 15°) but 

underestimates errors for larger fluctuations. 
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Figure 7: Total Pressure Errors for fluctuating 
yaw and pitch. 

 

Figure 8: Static Pressure Errors for 
fluctuating yaw and pitch, legend in Figure 7. 

The static pressure errors are presented in Figure 8; note the smaller scale compared to Figure 7. 

As observed above the two probes respond differently, but again the errors approximately collapse 

to 𝐸௉௦ ≈ 𝑓൫𝛼௖௢௠௣ିோெௌ൯. The scatter is greater than for total pressure, reflecting the poorer 

conditioning of the static pressure measurement, [10]. The static pressure coefficient is also less 

directionally symmetric than the total pressure coefficient (Figure 5, Figure 6). 

The static errors for 45° Ng probe (Figure 8(b)) are approximately equal to the total errors: 

𝐸௉௦ ≈ 𝐸௉଴ ≈ −1.6 × 10ିସ ൫𝛼௖௢௠௣ିோெௌ൯
ଶ.ଷ

  (30)  

As a result of these similar errors, the Ng probe has generally low dynamic pressure error. 
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With its sharper face angles, the 60° Grimshaw probe (Figure 8(a)) has smaller static errors which 

can be approximated by: 

𝐸௉௦ ≈ −0.2 × 10ିସ ൫𝛼௖௢௠௣ିோெௌ൯
ଶ.ହ

  (31)  

As indicated in Figure 8, this probe therefore suffers from relatively large dynamic pressure errors. 

These static error correlations should provide useful initial estimates for similar probes. For 

greater accuracy, the quasi-steady model in §II can be readily applied to any given calibration map 

and flow perturbation. 

C. Other Factors Affecting Errors 

The flow angle effects shown above are the dominant source of pneumatic-averaging errors. 

Nonetheless it is worth noting other factors that can influence the errors: 

 Reducing the time-averaged incidence, as in “nulled” 5HP operation, tends to slightly reduce 

errors but the benefits are unlikely to be significant. 

 The addition of pressure fluctuations to the angle fluctuations can increase or decrease error 

slightly, depending on the phase. These effects are driven by the covariance of angle and 

pressure, which adds further biasing to the pneumatic averaging. The quasi-steady model can be 

used to analyse these covariance effects, but there were found to be unimportant in the current 

experiment. 

D. Summary  

The calibration maps for total and static pressure coefficient are approximately symmetric. The 

probe therefore effectively responds to the magnitude of a fluctuation in flow angle, |𝛼′|. When 

probe incidence fluctuates, pneumatic averaging therefore causes a bias which cannot be accounted 

for by the steady calibration. Having demonstrated how these pneumatic-averaging errors arise, we 

will now examine them in practice in a canonical bluff body flow. 
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IV. Experimental Set-Up 

The case study is a D-shaped body in an enclosed channel, as shown in Figure 13. Air is driven 

through the test section by an open-loop wind tunnel. The body has a semi-circular leading edge, a 

width 𝑊 of 80mm, chord 187.5mm and span of 375mm. The body is mounted at zero incidence in 

the middle of a long channel of height (𝐻) of 650mm, giving a blockage factor of 12%. The Reynolds 

number was 98,500 based on the body width 𝑊 and upstream velocity 𝑉ଵ. The flow was 

incompressible (Mach < 0.15), and the inlet turbulence level was 0.5%. 

 

Figure 9: D-Shaped bluff body experiment. 

 

Figure 10: Surface Static Tapping Locations. 

 

Figure 11: Surface Static Pressure Coefficient.  
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All pressure measurements were obtained using a Scanivalve DSA 3217 with a 10” H20 range. The 

inlet total pressure 𝑃଴ଵ was measured using wall mounted pitots in the upstream wind tunnel, prior 

to a ~4:1 flow contraction into the constant-area test section. Inlet static pressure 𝑃ଵ was measured 

on the wall centreline 600mm (7.5𝑊) upstream of the leading edge. 

A. Wake Traverses and Probe Reduced Frequency 

Wake traverses were obtained with the Ng 5HP probe described in section B. This probe has a 

conical head with 45° face angles and a diameter of 2.2mm (0.035𝑊). The probe was calibrated in a 

separate facility for ±26° yaw and pitch, at a similar velocity as in the experiments. Using an 

automated stepper-motor controller, traverses were obtained along the midspan plane at a 

streamwise distance of 323mm (≈ 4𝑊) behind the trailing edge, covering a vertical height of 0.34m 

(= 4.25𝑊) which fully captured the wake. 

The reduced frequency of the 5HP probe (equation (3)) can be related to the flow Strouhal 

number (𝑆𝑡 = 𝑓𝑊/𝑉ଵ): 

𝑓௥ =
𝑓 𝑑

𝑉
=

𝑑

𝜆
= 𝑆𝑡

𝑉ଵ

𝑉

𝑑

𝑊
 (32)  

where 𝑉 is the local velocity at the probe head. The velocity ratio 𝑉ଵ/𝑉 varies between about 0.9 and 

1.4 through the wake traverse, and the probe diameter is small relative to the body width, 𝑑/𝑊 =

0.035. For the primary shedding frequency (𝑆𝑡 ≈ 0.2), the reduced frequency is 𝑓௥ ≈ 0.01 and the 

probe will respond quasi-steadily. 

The 5HP measurements were complemented by traversing a Kiel probe (Kiel-shrouded-pitot) of 

4mm outer diameter at the same location. This Kiel probe is insensitive to flow angle over a range of 

at least ±30° and therefore does not suffer from significant biasing errors as flow angles fluctuate. An 

array of 11 static tappings were also situated on the side wall at the traverse plane, clustered towards 

the centreline and covering the full traverse height. Area traverses with the 5HP and Kiel probe 

showed that the flow is approximately two-dimensional over the central 60-70% of span. 
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B. Surface Static Pressure and Form Drag 

Forty-six surface static tappings were distributed around the D-shaped body as shown in Figure 

10. The measured static pressure coefficients are shown in Figure 11: 

𝐶௣ =
𝑃଴ଵ − 𝑃

𝑃଴ଵ − 𝑃ଵ

 (33)  

As can be seen, the front face pressures largely follow the potential flow theory distribution for a 

cylinder, while the trailing face has near-constant pressure. The form drag coefficient can be 

calculated by integration: 

𝐶஽ି௙௢௥௠ = ර
𝐶௣𝑑𝑦

𝑊
 (34)  

For this flow the form drag will dominate over viscous shear and one expects 𝐶஽ ≈ 𝐶஽ି௙௢ . 

Numerical integration using cubic interpolation between measurement points gives a form drag 

coefficient of 0.74. 

C. Drag Coefficient from Wake Traverses 

The drag coefficient is also calculated from the wake traverse after the method of Jones [13]. A 

virtual downstream plane is considered which has the same static pressure as the inlet, 𝑃ଵ. The drag 

coefficient is then given by: 

𝐶஽ =
𝐹஽

1
2

𝜌𝑉ଵ
ଶ𝑊

= 2
𝜃′

𝑊
 (35)  

The wake momentum thickness 𝜃′ at the virtual plane is calculated by assuming two-dimensional 

flow from the traverse plane, applying continuity and assuming isentropic flow: 

𝜃ᇱ = න ඨ
𝑃଴ଶ − 𝑃ଶ

𝑃଴ଵ − 𝑃ଵ

ቌ1 − ඨ
𝑃଴ଶ − 𝑃ଵ

𝑃଴ଵ − 𝑃ଵ

ቍ 𝑑𝑦 (36)  

The value of 𝐶஽ is sensitive to the assumptions made, but alternative calculation methods show the 

same trends observed in the current analysis.  
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V. Computational Methods 

To complement the measurement data, a URANS calculation of the experiment is performed. As 

well as allowing comparison of predictions and experiments, this calculation provides an estimate of 

unsteady flow angles and demonstrates the need to mimic the pneumatic-averaging errors when 

validating CFD.  

A. URANS Set-Up 

The URANS calculation was performed with Fluent v18.2 using a pressure-based incompressible 

solver, with second order accuracy in space and time. Full details of the governing equations are 

given in reference [14]. A midspan cross-section of the domain is shown in Figure 12. The full span 

(4.69𝑊) was simulated over an axial distance of 6.5 chords (~15.2𝑊). The figure also shows the 

mesh, which is a multi-block structured mesh with 5.8 million cells. Wall functions are used to 

resolve the boundary layers: with the exception of the trailing edge, a constant first cell width of 

0.009𝑊 was used on all viscous surfaces, giving a first cell 𝑦ା between 40 and 80 over the body 

surface and sidewalls. Mesh sensitivity is considered in the following sub-section. 

Boundary conditions are applied to mimic the experiment. The average static pressure at domain 

exit was set to be atmospheric. At the inlet, uniform values of total pressure (225 Pa gauge), 

turbulence intensity (1%) and turbulent viscosity ratio (10) are specified. Constant density (1.225 

kg/m3) and dynamic viscosity (1.7894×10-5 kg/ms) are assumed. The side-walls are treated as viscous 

walls, while the top and bottom walls of the domain were set to be inviscid walls: a separate 

calculation showed that this approximation had no significant impact on the results. In order to 

duplicate the experimental post-processing, the inlet reference pressure 𝑃ଵ was taken as the area- 

and time-average at the inlet at midspan. Around 100 timesteps were used for each fundamental 

shedding cycle, and data were collected for approximately 40 cycles after initial transients. 

Turbulence is modelled using the Scale-Adaptive-Simulation model of Menter and Egorov [15], 

which has been developed specifically to help capture the multiple scales of vortex interaction and 
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shedding flows. The presence of multiple vortex scales is evident in Figure 13, which shows a 

snapshot of turbulent kinetic energy from the URANS calculation. Figure 14 shows time traces of 

angles at the centreline of the traverse plane for around 12 shedding cycles. Yaw oscillations (within 

the plane of Figure 13) of over ±35 are observed, with smaller variation in pitch. 

 

Figure 12: URANS domain and fine grid, midspan plane. 

 

Figure 13: Instantaneous Turbulent Kinetic Energy (m2/s2) in the midspan plane, URANS (fine 
mesh). Dashed line indicates traverse plane. 

 

Figure 14: Instantaneous angles at the traverse centreline, URANS (fine mesh). 
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B. Mesh Sensitivity  

Mesh sensitivity was examined by isotropically scaling the freestream cell density while 

maintaining wall distances. Results at the experimental traverse plane are shown in Figure 15 for a 

coarse mesh of 2.4 million cells (dashed lines) and the final, finer mesh of 5.8 million cells (solid 

lines). The drag coefficient for the two meshes, calculated using equation (24), agreed to three 

significant figures (𝐶஽ = 0.725). 

 Figure 15(a) shows the angle fluctuations, including the compound angle which is the most 

crucial for 5HP errors. The peak value is around 27° at the wake centreline and the two grids agree to 

within 1° over the entire traverse. Using these values, Figure 15(b) shows predictions of 5HP total 

pressure error, 𝐸௉଴, from equation (29). The maximum amplitude for the fine grid is 𝐸௉଴ = −0.32 at 

the centreline, i.e. 32% of the local dynamic head, and the maximum discrepancy between the two 

grids is ~0.02. 

Figure 15(c) shows total pressure loss coefficient, defined as: 

𝑌௉ =
𝑃଴ଵ − 𝑃଴

𝑃଴ଵ − 𝑃௙௦

 (37)  

where 𝑃௙௦ is the static pressure in the freestream outside the wake, |𝑦/𝑊| > 2. The time-averaged 

loss is more diffuse for the coarse grid due to increased numerical dissipation, with a maximum 

discrepancy of ~0.02 at the centreline. This value is close to the estimated convergence uncertainty. 

The plot also includes predictions of 5HP-indicated loss using the values of 𝐸௉଴ from Figure 15(b). 

The local dynamic pressure at the wake centreline is ~0.62(𝑃଴ଵ − 𝑃௙௦), so 𝐸௉଴ = −0.32 corresponds 

to an overestimation of ~0.20 in 𝑌௣. As seen in the plot, the 5HP-indicated loss is up to ~40% higher 

than the time-mean. Again, the two grids give similar values with a maximum discrepancy of 0.03 at 

the centreline.  

The surface static pressure coefficients for the two meshes are also compared in Figure 11. The 

coarse mesh gives a lower base pressure (higher 𝐶௣) on the trailing face of the body, in part because 
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it predicts higher wake blockage (i.e. lower freestream pressure) downstream of the body. The fine 

mesh is in close agreement with the experiments and gives a similar value of form drag (0.80 vs. 

0.74). 

 

Figure 15: Mesh sensitivity at the wake traverse plane. Solid lines: fine mesh (5.8M 
cells); dashed lines: coarse mesh (2.4M cells). Prediction of 5HP response using 

equation (29). 

VI. Results and Analysis 

This section presents the wake measurements and computations. The 5HP errors are first 

quantified experimentally by comparison with the Kiel data. Comparison with the CFD then shows 

that it is vital to mimic the probe response to obtain a true like-for-like comparison with the 5HP 

data. Finally, we demonstrate how to correct the 5HP data using the URANS flow angles. 

A. Experimental Demonstration of 5HP Errors  

Figure 16(a) shows traverse measurements of total pressure loss from the 5HP and the Kiel 

probe. The Kiel is largely insensitive to angle so has minimal fluctuating angle error. The 5HP 



24 

 

indicates losses which are 0.22 (+44%) higher at the wake centreline, and are in line with the 

predictions shown in Figure 15(c). 

Figure 16(b) presents static pressure coefficient, 𝐶௣௦, defined in a similar manner to loss: 

𝐶௣௦ =
𝑃଴ଵ − 𝑃

𝑃଴ଵ − 𝑃௙௦

 (38)  

Compared to the sidewall statics, the 5HP indicates that the pressure at midspan is lower by 

~0.30(𝑃଴ଵ − 𝑃௙௦). The error in this measurements will become apparent in the following subsection. 

 

Figure 16: Total and Static Pressure in the wake: experiments and URANS with models of 5HP 
response. 

B. Validating CFD by Mimicking 5HP Probe Response  

The time-average of the URANS calculations is included in Figure 16. Total pressure (Figure 16(a)) 

is close to the Kiel measurements but the wake appears somewhat under-mixed, with higher loss at 

the centreline. Sidewall static pressure in Figure 16(b) is close to the measurements, especially at the 

centreline. URANS predicts that the midspan pressure is only ~0.10(𝑃଴ଵ − 𝑃௙௦) below the sidewall 

value, i.e. the pressure is significantly higher than indicated by the 5HP. 
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To mimic the 5HP response, the time-series of flow angles and pressure from the URANS 

calculation can be directly inputted into the quasi-steady model outlined in §II. Mimicking the probe 

response in this way gives a like-for-like comparison between the experiments and CFD. The 

instantaneous angles exceed the calibration range (±26) and the map was therefore extended by 

linearly extrapolating individual hole coefficients (equation (4)). This extrapolation introduces only 

small uncertainty since similar results were obtained by clipping the flow angles to ±26. The 

modelled response of the 5HP is included in Figure 16 using three methods: (1) the “full model”, 

where flow angles, total and static pressure fluctuations are inputted into the quasi-steady model. 

This case overlays almost exactly with (2) the “𝛼 model”, where only flow angles are input into the 

quasi-steady model. The final method (3) uses the correlation in equation (30) based on the RMS 

fluctuating flow angles. 

All three models correctly mimic the behaviour of the 5HP, and thus allow a like-for-like 

comparison of the CFD and 5HP data. The first two models are almost indistinguishable, 

demonstrating that it is the angle fluctuations that drive the error. The reason is highlighted in Figure 

17, which shows that pressure fluctuations are not strongly correlated with the yaw angle 

fluctuations. Pressure fluctuations are therefore ignored in all following corrections. The correlation 

in Figure 16 returns similar predictions to the model with the advantage of being much simpler to 

apply. 

 

Figure 17: (a) Total and (b) Static pressure correlation with yaw angle, wake centreline. 
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C. Correcting Experimental Errors using URANS Flow Angles 

The quasi-steady model and correlations can also be used to correct pneumatic-averaging errors 

in experimental data, provided we have an estimate of the unsteady flow angles. In general this 

could be measured experimentally, but here we use the CFD predictions. As discussed in the 

following section, this approach has the advantage of being able to be applied more generally – 

especially for the correction of historical data. 

In a similar manner to the previous section, URANS flow angles can be used to correct the 5HP 

measurements either by (1) direct calculation, inputting the time-series of flow angles into the quasi-

steady model with a known calibration map, or (2) applying the correlations given in equations 

(29)(31).  

Using the direct calculation method, the response model calculates the difference between the 

true time-averaged coefficients, e.g. 𝐶௉̅଴, and those indicated by the probe, e.g. 𝐶መ௉଴. Applying these 

differences to the indicated coefficients allows a direct correction of the data, e.g. for total pressure: 

𝐶௉଴ି௖௢௥ = 𝐶መ௉଴ + ൣ𝐶௉̅଴ − 𝐶መ௉଴൧
௠௢ௗ௘௟

  (39)  

𝑃ത଴ି௖௢௥ = 𝑃ത௖ + (𝑃ത௖ − 𝑃ത௔௩௘)𝐶௉଴ି௖௢௥  (40)  

Figure 18 shows that this correction, labelled “5HP direct calc.”, brings the 5HP total pressure in line 

with the Kiel (dashed blue line), and the static pressure is now in good agreement with URANS. 

Overall, the errors have been reduced by about an order of magnitude. 
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Figure 18: Correction of 5HP data using URANS flow angles: quasi-steady model (“direct calc”) 
and correlations (equations (29), (30)). 

 

The second approach uses the correlations based on the standard deviation of the compound 

angle. This approach has the advantage of being very simple to apply and does not require the probe 

calibration map. For this 45° angle 5HP, the total and static errors are of similar magnitude (equation 

(30)): 

𝐸௉௦ ≈ 𝐸௉଴  ≈ −1.61 × 10ିସ ൫𝛼௖௢௠௣ିோெௌ൯
ଶ.ଷ

 (41)  

From equations (23) and (24), the corrected total and static pressure are then given by: 

𝑃ത଴ =
𝑃෠଴(1 − 𝐸௉௦) + 𝑃෠௦𝐸௉଴

(1 − 𝐸௉ௌ + 𝐸௉଴)
 (42)  

𝑃ത௦ = 𝑃෠௦(1 + 𝐸௉଴) − 𝑃෠଴𝐸௉௦  (43)  

As Figure 18 shows, this method gives a similar correction to the direct calculation but is slightly less 

accurate.  
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Table 1 compares calculated drag coefficients calculated with equations (34) and (35). The 

uncorrected 5HP indicates a drag coefficient of 1.18, around 60% higher than the experimental form 

drag. The direct calculation correction brings the value to within 3% of the calculated form drag, and 

the correlation correction is within 7%. 

 

 
  5HP 

 
URANS 

Surface 
Statics Indicated 

Direct 
Correction 

𝐸௉଴, 𝐸௉௦ 
Correlation 

𝐶஽ି௙௢௥௠ 0.80 0.74 - - - 

𝐶஽ 0.72 - 1.18 0.72 0.69 

Table 1 : Calculated Drag Coefficients. 

VII. Discussion: General Implications 

This section considers the general implications of the results. In the presence of fluctuating flow 

angles, pneumatic-averaging errors affect a wide variety of pneumatic probes; a significant body of 

data is therefore likely to be corrupted. We first consider some common set-ups where angle 

fluctuations may be significant. We then consider the implications for CFD validation, practical steps 

to post-correct experimental data, and how to minimize angle fluctuation errors in experiments. 

A. Common Set-Ups with Significant Flow Angle Fluctuations 

We have demonstrated that fluctuating angles can cause large errors in bluff-body shedding 

wakes. Significant errors may also be expected in any flow where unsteady shear layers generate 

flow angle fluctuations. Examples include stalled aerofoils or diffusers, trailing edge shedding, and 

three-dimensional unsteady flows such as tip leakage, corner separation and stall in turbomachinery 

flows. Similar pneumatic-averaging errors would be expected for any multi-hole probe or 

unshrouded pitot. 

Measurements in turbomachines are particularly prone to pneumatic-averaging errors because 

of blade-passing fluctuations. Turbine efficiency is typically calculated from shaft torque and 
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stationary-frame 5HP area-traverses, e.g. [2], [3]. These 5HP measurements will be corrupted by 

periodic unsteadiness from upstream rotating blade rows. There is direct evidence of such errors in 

the comparison of Kiel and 5HP data in Bauinger et al. [2]. Coull et al. [16] estimated that angle 

fluctuations can lead to under-estimation of turbine efficiency by up to 1.5%. Such errors are large 

enough to warrant the post-correction and reinterpretation of a wide body of data. 

B. Implications for CFD Validation 

When significant flow unsteadiness is present, Figure 16 demonstrates the need to mimic the 

probe response to obtain a true like-for-like validation of CFD against experiments. To further 

illustrate this point, we present a preliminary validation exercise for the T106C linear cascade turbine 

reported by Michálek et al. [18]. A 5HP was used to traverse the blade wake. At a Reynolds number 

of 80,000 (based on true chord and exit conditions) and an exit Mach number of 0.65, the blade 

suction surface has a partially open separation which will lead to the shedding of vortical structures 

into the wake. As summarised by Cengiz et al. [19], this test case is a challenging test case for the 

CFD community: multiple authors have used computationally intensive Direct Numerical Simulation 

(DNS) and Large Eddy Simulation (LES), but the time-average of these simulations consistently under-

predicts the experimental total pressure loss. 

For the smooth-wall LES simulation of Cengiz et al. [19], data from four numerical probes at the 

traverse plane are assessed to examine the effect of flow unsteadiness. Figure 19(a) shows that the 

RMS angle fluctuations are around 12° at the wake centreline. Figure 19(b) shows the total pressure 

losses: the 5HP data shows significantly higher loss than the time-average from the LES (blue circles). 

Using equation (29) with the RMS angle fluctuations, the predicted 5HP response (red triangles) is 

around 0.01 higher than the time-average in the wake. While the mid-wake loss is still 

underpredicted, modelling the probe response in this way significantly improves the agreement 

between CFD and experiments. 
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Figure 19: Accounting for Flow Unsteadiness in the comparison of experiments and CFD for the 
T106C turbine blade, [18], [19]. 

C. Assessing and Correcting Experimental Errors 

We can assess pneumatic-averaging errors provided we have an estimate of probe incidence 

fluctuations. This information may be obtained from measurements (e.g. multi-element hot-wires), 

or from an analytical/computational prediction (as in the current example). As illustrated above, the 

correlations and/or quasi-steady model can then be used to correct errors in the experimental data.  

It is notable that we have not found any direct means of identifying problems with 5HP data, such 

as the error-detection methods proposed by Yasa and Paniagua [17] and Grimshaw and Taylor [1]. 

These detection methods examine the departure of measured data from the individual hole 

calibration maps, which is observed in shear layers and in proximity to walls. However, this type of 

approach is not reliable for angle fluctuations because some erroneous measurements still lie close 

to the calibration maps. 
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D. Designing-Out Experimental Error 

Finally, it is useful to consider how we can design experiments to minimise the errors from angle 

fluctuations. Several key observations can be made: 

 Kiel probes should be used to cross-check 5HP data when fluctuations may be present. 

 Turbomachinery traverses downstream of rotors should be performed in the rotating frame 

where possible to minimise fluctuations. Alternatively, stationary-frame traverses should be 

performed as far downstream as possible to allow more mixing to take place. 

 Errors can be avoided by use of fast-response multi-hole probes. More work is needed to further 

miniaturise such probes to improve their spatial accuracy, which is not yet acceptable for many 

applications. 

 Errors could be minimised with new multi-hole probes with low angle sensitivity for total and 

static pressure. For example, a hybrid 5HP with a Kiel-pitot central hole would be much less 

prone to errors. Challenges remain to develop, characterise and miniaturise such designs. 

VIII. Conclusions 

Quasi-steady arguments demonstrate how fluctuating incidence leads to pneumatic-averaging 

errors. Five-hole-probe calibration coefficients for total and static pressure have an approximately 

symmetric response to incidence angle, i.e. the probe has a similar response to both positive and 

negative incidence. When probe incidence fluctuates, the time-average therefore contains a bias, 

which cannot be accounted for by the steady calibration. Other multi-hole pneumatic probes and un-

Kieled pitots will suffer similar errors. 

The errors caused by fluctuating flow angles have been demonstrated in a shedding bluff-body 

wake. Compared to a Kiel probe, a five-hole-probe over-estimates total pressure loss by up to 44% 

and under-estimates static pressure, leading to a ~60% over-estimation of drag coefficient. These 

effects can be accurately predicted using a URANS calculation together with the quasi-steady model 
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of probe response. This modelling of the probe pneumatic-averaging is necessary to obtain a true 

like-for-like validation of CFD against experiments. 

Post-correction of experimental data can be achieved if the unsteady flow angles are measured 

or simulated. Using the URANS predictions, a simple correction is made using correlations based on 

the standard deviation of the compound angle. A more accurate correction uses the probe 

calibration map and flow time-series to predict the quasi-steady response. Both methods reduce 

errors by around an order-of-magnitude. 

A wide body of published and industrial data is likely to have been corrupted by fluctuating angle 

errors, in particular turbomachinery performance measurements. The approaches given in the paper 

can be used to analyse the likely errors and post-correct this data. Experiments should be planned to 

mitigate these errors, for example by corroborating multi-hole probe data with Kiel probes. 
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