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A B S T R A C T   

African swine fever (ASF), caused by the African swine fever virus (ASFV), is highly virulent in domestic pigs and 
wild boar (Sus scrofa), causing up to 100% mortality. The recent epidemic of ASF in Europe has had a serious 
economic impact and poses a threat to global food security. Unfortunately, there is no effective treatment or 
vaccine against ASFV, limiting the available disease management strategies. Mathematical models allow us to 
further our understanding of infectious disease dynamics and evaluate the efficacy of disease management 
strategies. The ASF Challenge, organised by the French National Research Institute for Agriculture, Food, and the 
Environment, aimed to expand the development of ASF transmission models to inform policy makers in a timely 
manner. Here, we present the model and associated projections produced by our team during the challenge. We 
developed a stochastic model combining transmission between wild boar and domestic pigs, which was cali-
brated to synthetic data corresponding to different phases describing the epidemic progression. The model was 
then used to produce forward projections describing the likely temporal evolution of the epidemic under various 
disease management scenarios. Despite the interventions implemented, long-term projections forecasted 
persistence of ASFV in wild boar, and hence repeated outbreaks in domestic pigs. A key finding was that it is 
important to consider the timescale over which different measures are evaluated: interventions that have only 
limited effectiveness in the short term may yield substantial long-term benefits. Our model has several limita-
tions, partly because it was developed in real-time. Nonetheless, it can inform understanding of the likely 
development of ASF epidemics and the efficacy of disease management strategies, should the virus continue its 
spread in Europe.   

1. Introduction 

1.1. Background to African Swine Fever 

African swine fever (ASF) is a highly contagious viral disease capable 
of infecting all swine. It is caused by the African swine fever virus 
(ASFV), a double-stranded DNA virus that is the sole member of the 
Asfarviridae family. ASFV is endemic across much of sub-Saharan Africa 
(Penrith et al., 2019). An ancient sylvatic cycle involving warthogs 
(Phacochoerus africanus) and soft ticks of the species Ornithodoros exists 

in eastern and southern Africa (Chenais et al., 2018; Costard et al., 2013; 
Dixon et al., 2019; Penrith et al., 2019). Juvenile warthogs are infected 
with the virus within the first few weeks of their lives when they are 
bitten by ticks living within their burrows. They develop a transient 
viraemia and remain infected for life but do not show any clinical signs 
of disease (Jori et al., 2013). The situation is very different in domestic 
pigs and wild boar (Sus scrofa) in which ASFV causes a range of clinical 
signs including sudden death, haemorrhage, lethargy, high fever and 
inapparent infection (Blome et al., 2020, 2013). Mortality rates range 
between 0% and 100% depending on the strain of the virus, the host, the 
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viral dose, and the route of exposure (Blome et al., 2013, 2012; Costard 
et al., 2013). The existence of a carrier state following recovery from 
lower virulence strains has been suggested (Dixon et al., 2019). 

Transmission routes for ASFV include direct contact between swine, 
contact with infected carcasses, meat products, fomites, the environ-
ment, and tick vectors (Costard et al., 2013; Guinat et al., 2016a; Pepin 
et al., 2020). A transmission cycle involving haematophagous flies has 
been suggested to occur in Europe, but its importance is still uncertain 
(Mellor et al., 1987; Olesen et al., 2018; Vergne et al., 2021). Trans-
mission between wild boar and domestic pigs has been demonstrated 
(Dixon et al., 2019; Guinat et al., 2016a) and is thought to play an 
important role in the spread of ASFV. In high-biosecurity commercial pig 
farms where contact with wild boar has been excluded as a means of 
transmission, indirect transmission mediated by humans is usually 
considered the most likely route of introduction (Guinat et al., 2016a; 
Olesen et al., 2018). Infected animal carcasses have also been identified 
as a potential route of transmission and under certain conditions could 
pose a risk of infection for several months (Fischer et al., 2020). Wild 
boar have been shown to have frequent contact with conspecific car-
casses (Probst et al., 2017) and carcass-based transmission may be 
especially important in locations with low host density (Pepin et al., 
2020). 

The strains currently circulating in Europe have shown high viru-
lence during experimental infection of domestic pigs and wild boar 
(Blome et al., 2020). Typically, death occurs within 7–10 days 
post-infection, but survival up to 36 days post-infection has been re-
ported (Blome et al., 2020; Pietschmann et al., 2015). There is currently 
no approved treatment or vaccine against ASFV. Instead, disease man-
agement measures include culling on infected pig farms, disinfecting 
farm equipment, imposing restrictions on pork trade, conducting 
epidemiological surveillance of domestic pig and wild boar populations 
and managing wild boar populations (World Organisation for Animal 
Health, 2021). 

1.2. Current situation in Europe 

Although ASFV was eradicated from most of Europe in the 1990s 
(with the exclusion of Sardinia, where ASFV genotype I remains endemic 
to date), it was reintroduced to the continent via Georgia in 2007, most 
likely by importation of infected pork products (Beltrán-Alcrudo et al., 
2008; Rowlands et al., 2008). Following its introduction, ASFV became 
established in the local wild boar population leading to further out-
breaks in domestic pigs, with transmission between infected wild boar 
and domestic pigs thought to play an important role in the spread of the 
disease (Dixon et al., 2019; Gogin et al., 2013; Oganesyan et al., 2013). 
In 2014, the first cases were reported in the European Union (EU) (Eu-
ropean Food Safety Authority, 2015). Since then, a series of outbreaks 
have been recorded resulting in major economic losses for the European 
pig industry (Danzetta et al., 2020; Guinat et al., 2016a). EU countries 
that have been affected by the current ASFV strain (genotype II) include 
Belgium, Bulgaria, Czech Republic, Estonia, Germany, Greece, Hungary, 
mainland Italy, Latvia, Lithuania, Poland, Romania, Serbia, and 
Slovakia (Blome et al., 2020). The first ASFV cases in Germany were 
reported in wild boar in September 2020 (Sauter-Louis et al., 2021a). 
Then, in July 2021, ASFV was confirmed in two domestic pig herds in 
the Brandenburg region bordering Poland (International Society for 
Infectious Diseases, 2021). Most recently, in January 2022, ASFV ge-
notype II was confirmed in wild boar in mainland Italy (International 
Society for Infectious Diseases, 2022). Belgium and the Czech Republic 
are the only EU countries that have successfully eradicated ASFV 
following its introduction during the current epidemic. Outbreaks in 
these two countries were geographically localised and confined to the 
wild boar population. Disease management measures implemented 
included fencing off high-risk areas to limit movement of wild boar, 
active search and removal of wild boar carcasses and alterations to 
hunting patterns (Dellicour et al., 2020; Marcon et al., 2020). Whilst 

ASFV was eradicated from most of Europe in the 1990s, it has remained 
endemic in Sardinia since its introduction in 1978. The epidemiology of 
ASFV in Sardinia is complicated by the presence of free-roaming do-
mestic pigs (FRPs) which have hindered previous eradication efforts. 
However, recent evidence highlighting the central role that FRPs play in 
maintaining ASFV and the implementation of a new eradication pro-
gramme have led to marked reductions in the levels of ASFV in Sardinia 
and eradication appears achievable if the controls are maintained (Vil-
trop et al., 2021). 

Whilst we focus on the situation in Europe here, it is worth noting 
that ASFV continues to circulate across sub-Saharan Africa (Mulum-
ba-Mfumu et al., 2019; World Organisation for Animal Health, 2020) 
and, since its introduction to Asia in 2018, ASFV has spread to many 
Asian countries causing substantial economic impacts and posing a 
threat to vulnerable and endangered wild pig species (Luskin et al., 
2020; Mighell and Ward, 2021; Tian and Von Cramon-Taubadel, 2020). 
In 2021, ASFV was reported in the Americas for the first time in almost 
40 years when the disease was reported in the Dominican Republic in 
July 2021 and then in Haiti in September 2021 (Gonzales et al., 2021; U. 
S. Department of Agriculture, 2021; World Organisation for Animal 
Health, 2022). 

1.3. Mathematical models 

The first mathematical models of ASFV were published in 2011 
following introduction of the virus to Europe (Hayes et al., 2021). Since 
then, mathematical models have been widely utilised to further our 
understanding of the transmission dynamics of ASFV (see Hayes et al. 
(2021) for a recent review). Examples of the uses of modelling studies of 
ASFV include estimation of epidemiological parameters (Barongo et al., 
2015; de Carvalho Ferreira et al., 2013; Guinat et al., 2018, 2016b; 
Gulenkin et al., 2011; Hu et al., 2017; Lange and Thulke, 2017; Loi et al., 
2020; Nielsen et al., 2017; Pietschmann et al., 2015; Shi et al., 2020), 
investigation of transmission dynamics in particular species (Halasa 
et al., 2019, 2016a; Mur et al., 2018; O’Neill et al., 2020; Pepin et al., 
2021, 2020; Taylor et al., 2021), exploration of the role of vectors in 
transmission (Vergne et al., 2021) and assessment of the potential im-
pacts of interventions (Barongo et al., 2016; Croft et al., 2020; Gervasi 
et al., 2020; Halasa et al., 2016b; Lange, 2015; Lange et al., 2018; Lange 
and Thulke, 2015; Lee et al., 2021; Taylor et al., 2021; Thulke and 
Lange, 2017). 

Single-species models are used most frequently, despite the impor-
tant role of between-species transmission of ASFV (Taylor et al., 2021). 
Domestic pig models may incorporate within-herd and/or between-herd 
transmission whilst wild boar models are frequently individual-based 
spatially structured models that incorporate existing knowledge of 
wild boar demography. Many models of ASFV transmission use the 
classic Susceptible-Exposed-Infectious-Removed (SEIR) structure (Gui-
nat et al., 2018; Halasa et al., 2019), with some including an extra class 
for infectious/non-infectious carcasses (Pepin et al., 2021). Other vari-
ations include using a Susceptible-Latent-Subclinical-Clinical-Removed 
structure (Halasa et al., 2016a), in which the infectious stage is split 
into sub-clinical and clinical stages, and a 
Susceptible-Infectious-Carrier-Removed structure (O’Neill et al., 2020) 
which incorporates the possibility that pigs that have recovered from 
lower virulence strains continue to carry the virus. 

1.4. Challenge overview and objectives 

Motivated by the ongoing global spread of ASFV, the French National 
Research Institute for Agriculture, Food and the Environment (INRAE) 
organised the ASF Challenge to expand the development and application 
of mathematical methods for ASF epidemic forecasting and to better 
understand the strengths and limitations of different modelling ap-
proaches (Picault et al., 2022). An additional goal was to improve the 
readiness of modelling teams and hence their ability to advise policy 
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makers in a timely manner when faced with emerging epidemic threats 
such as ASF (https://www6.inrae.fr/asfchallenge/). Similar events in 
the past have led to important statistical and computational innovations 
for epidemic forecasting and have fostered fruitful collaborations be-
tween research teams and policy makers (Johansson et al., 2019; 
McGowan et al., 2019; Viboud et al., 2018). 

The challenge took place from August 2020 to January 2021. It was 
comprised of three phases, describing different stages of a simulated ASF 
epidemic on a fictional island (Merry Island). In each phase, simulated 
data regarding the number and location of reported infected pig herds 
and wild boar – as well as simulated data describing movements of pigs 
exchanged or traded between herds – were provided. Modelling teams 
were then asked to provide projections, informed by their own analyses, 
of the course of the epidemic over a specified future time period 
(generally 30 days) incorporating specified disease management mea-
sures where indicated. Day 0 represented the date of the first reported 
case of ASF on Merry Island. In phase 1, simulated data from days 0–50 
(period 1) were provided, with projections requested for days 51–80 
(period 2). In phase 2, simulated data from periods 1 and 2 were pro-
vided to underpin projections for days 81–110 (period 3). Finally, in 
phase 3, simulated data were provided from days 0–110 with two sets of 
projections requested: one short-term set for days 111–140 and one 
longer-term set for days 111–230. 

Here we provide details of the model and the associated projections 
that were produced by our team in each phase of the challenge. To 
facilitate reproducibility, we have made all code and relevant data files 
used for this analysis freely available on GitHub: https://github.com/ 
emmanuelle-dankwa/ASF_model. 

2. Materials and methods 

2.1. Synthetic data provided by the challenge coordinators 

2.1.1. Demographic data 
In the challenge, a simulated ASF epidemic on Merry Island – a 

fictional island located in the North Atlantic Ocean with area 144,208 
km2 divided into 25 administrative units – was considered. There were 
4,532 registered pig farms on the island. Farms were classified as either 
backyard or commercial, and either outdoor or indoor. For each farm, 
additional information provided included the size of the pig herd, its 
geographical coordinates, its production type (farrow-to-wean, farrow- 
to-finish or finishing), and whether it belonged to the same producer 
as other farms (i.e., “multisite farms” comprising several geographically 
distinct farms). Farms belonging to the same producer were expected to 
be more epidemiologically connected to each other than to any other 
farm. Outdoor herds were assumed to be in contact with the wild boar 
population (see Model section). There were 1069 registered outdoor 
herds (23.6%), scattered throughout the Island (see Fig. A1, Appendix 
A). 

In addition to these registered farms, there was an unknown number 
of small, unregistered farms. Eight unregistered farms were identified in 
total from period 1–3 and were added to the 4532 registered farms: two 
farms were identified because they became infected, four farms were 
identified because they became part of a surveillance zone, and two 
others were identified because they were culled preventively. 

Registered movements of pigs in the trade network were provided for 
the two months before the first detected infected pig herd (suspected on 
8th July 2020, referred to as “day 0” during the challenge, and 
confirmed three days later), with the day at which each movement 
occurred, the source and destination herds, and the number of pigs 
traded. 

Finally, data on the hunting bag (number of boar hunted during a 
hunting season) in each administrative unit in 2019 (the calendar year 
before the detection of ASFV) were also provided (260,675 hunted wild 
boar in total). It was estimated by the ASF Challenge coordinators that 
around 50% of wild boar are shot during a hunting season, giving a 

rough wild boar population size estimate of 521,350 for Merry Island. 

2.1.2. Epidemiological data 
In each of the three phases of the challenge, incidence data for both 

pigs and wild boar were provided. This synthetic epidemiological data 
originated from an epidemiological model developed by the challenge 
coordinators, which remained unknown to the participating teams at the 
time of the challenge. Briefly, the model used to produce synthetic 
epidemiological data was a discrete-time, stochastic, spatially explicit 
and agent-based model. Agents were pig herds and individual wild boar, 
each with their specific location. Transmission pathways included 
transmission between wild boar, transmission between pig herds (via 
introduction of infected pigs through trade movements or indirect 
contact with infectious farms), and transmission from wild boar to pig 
herds and vice versa. Trade movements were determined based on a 
temporal directed graph between farms. All other transmission path-
ways were modelled based on an exponential transmission kernel, 
assuming that the contribution of infected pig farms was proportional to 
their within-herd prevalence (modelled using a within-herd compart-
mental SEIRD – Susceptible, Exposed, Infectious, Recovered, Deceased – 
model). The synthetic data corresponded to one stochastic simulation of 
the model. Further details on the original model and data generation can 
be found in the first article in this special issue (Picault et al., 2022). 

For pig herds, the data provided included the identity of each herd in 
which infection was detected, with the mode of detection as well as the 
dates of suspicion, confirmation, and culling. The first reported infected 
herd was herd 3594, and two other infected herds were detected during 
period 1 (days 0–50). Nine new infected herds were confirmed during 
period 2 (days 51–80), followed by 14 others during period 3 (days 
81–110), resulting in a total of 26 detected infected pig herds from 
period 1 to period 3 (days 0–110). For wild boar, the locations of tested 
wild boar found each day through passive surveillance, active surveil-
lance and hunting were provided, as well as the date of confirmation and 
the test results (positive or negative). A total of 2984 detected infected 
wild boar were reported from period 1 to period 3 (days 0–110). 
Although the epidemiological data provided were synthetic, we later 
refer to them as “observed data” to clearly distinguish the results of our 
model from the data to which they were compared. 

Contextual information on disease management measures in both pig 
herds and wild boar was also provided by the challenge coordinators in 
each phase (see details in Model section below). 

2.2. Model 

We modelled ASFV transmission on Merry Island using a model 
combining a stochastic, spatial Susceptible-Infectious-Post-infectious 
(SIP) model for transmission across the island via wild boar and a sto-
chastic, metapopulation Susceptible-Exposed-Infectious-Recovered- 
Deceased (SEIRD) model for pig herds. The model included trans-
mission from wild boar to pig herds but did not account for transmission 
from pig herds to wild boar since we saw no evidence, based on the 
synthetic data provided by the challenge coordinators, of such trans-
mission. All simulations and analyses were performed with R version 
4.0.5 (R Core Team, 2022). 

2.2.1. Transmission 

2.2.1.1. Wild boar. Transmission via wild boar was modelled using a 
stochastic SIP model with an exponential spatial dispersal kernel. Due to 
the large number of wild boar on the island and for computational ef-
ficiency, only wild boar within a defined area around the initial detected 
cases in wild boar and pig herds were considered (see Appendix A for 
details). Wild boar live in matrilineal groups, with reported mean group 
sizes of 4–8 individuals (Maselli et al., 2014; Pepin et al., 2020; 
Podgórski et al., 2014). These groups are typically composed of adult 
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and subadult females and their offspring (Pepin et al., 2020). Reports of 
home range sizes vary but are typically estimated as between 2 and 10 
km2 (Janeau et al., 1995; Keuling et al., 2008; Podgórski et al., 2013). To 
represent this social structure, we divided the area into 2500 rectangular 
patches and assumed that the infectious pressure on every susceptible 
wild boar within a specific patch was identical. Thus, patches were 
treated as model units. The area per patch was 16 km2 in phase 1, and 
7.5 km2 in phases 2 and 3. Patch dimensions were reduced in the latter 
phases to enable a finer-grained resolution for more accurate results. 

In addition to tracking the health states of patches, we also tracked 
the health state of each wild boar in a patch. Each day, a patch was either 
susceptible S, infectious I, or post-infectious P: a patch was considered 
infectious if at least one boar within the patch was infectious; a patch 
was considered susceptible if there were no infectious boar within the 
patch; and a patch was considered post-infectious if all boar in the patch 
were carcasses that were no longer infectious (see Appendix A, 
Table A1). We assumed that infected wild boar were infectious imme-
diately after infection. As we assumed 100% mortality in wild boar for 
this strain of ASFV (Blome et al., 2013, 2012), the infectious wild boar 
transitioned to become a carcass after a fixed period of 14 days after 
infection (ASF modelling challenge coordinators, 2020; Hayes et al., 
2021; Pietschmann et al., 2015) if it had not been removed (by hunting) 
before then. Although the period from infection to end of infectiousness 
(infectious period) was set to 14 days, based on the upper limits of es-
timates for infection to infectiousness (4–5 days) and the duration of 
infectiousness (2–9 days), we also conducted a sensitivity analysis in 
which we explored different lengths of the infectious period. Carcasses 
remained infectious for 90 days after death (ASF modelling challenge 
coordinators, 2020; Fischer et al., 2020) if not removed by surveillance 
before then. Thus, a carcass could either be in the I or P state, depending 
on whether the boar died less than/more than 90 days ago. Carcasses 
could not be re-infected. 

For each patch, the number of new infections at each daily time step 
was chosen stochastically assuming a Poisson distribution with rate 
equal to the total “infectious pressure” being exerted on the patch. The 
infectious pressure on a patch j (accounting for the number of suscep-
tible boar in patch j that are available for infection) exerted by an 
infected patch i at day t was given by 

βij(t) = βexp
(
−dij

α

)
Ii(t)Sj(t), (1)  

where β > 0 determines the overall infection rate, α > 0 is the scale 
parameter of the exponential dispersal kernel, exp(), dij is the Euclidean 
distance between the midpoints of patches i and j (measured in km), Ii(t)
is the number of infected wild boar in patch i on day t and Sj(t) is the 
number of susceptible wild boar in patch j on day t. The total infectious 
pressure on patch j at day t, ωj(t), was computed as the sum of the in-
fectious pressures exerted on j: 

ωj(t) =
∑

i
βij(t). (2) 

The number of new infections in boar in each patch was determined 
by treating the infectious pressures as Poisson rates: 

nj ∼ Pois
(
ωj
)
, (3)  

where nj is the number of new infections in patch j. The specific wild 
boar infected in each patch on any day were randomly selected from the 
remaining susceptible boar in the patch. If nj was greater than the 
number of susceptible wild boar remaining in the patch, all susceptible 
boar in the patch became infected. 

2.2.1.2. Pig herds. The transmission model for pig herds considered 
individual pigs by describing the numbers of animals in each compart-
ment within a herd, and the flows between the different compartments. 

Each herd was considered as a homogeneous, random-mixing popula-
tion, not accounting for any within-herd structure (Guinat et al., 2018; 
Halasa et al., 2016a). Health statuses were susceptible S, exposed and 
pre-infectious E, infectious I, and immune (recovered) R. In addition, we 
distinguished infectious animals into subclinical (Isc) and clinical stages 
(Ic) (Halasa et al., 2016a). 

The force of infection λi (Eq. (4)) exerted on susceptible pigs in herd i 
at time t was calculated based on: (1) the proportion of infectious pigs 
and of infectious residues from dead pigs within herd i (Fischer et al., 
2020; Halasa et al., 2016a); (2) the local spread due, for example, to 
shared material and fomites from neighbouring infected herds within a 
2 km radius (Andraud et al., 2019; Halasa et al., 2016c); and (3) for 
outdoor herds, the number of infectious wild boar (alive and carcasses) 
in each infected patch and the distance between the herd and each 
infected patch using an exponential kernel: 

λi(t) = 1 − exp
(

− βPH ∗ Ii(t) + Di(t)
Ni(t)

−
∑

j

( ρ
dij

∗ Ij(t) + Dj(t)
Nj(t)

)
− Ωi(t)

)
,

(4)  

where βPH > 0 is the transmission rate within pig herds (Table 1), Ii(t) is 
the total number of infectious pigs in herd i (subclinical and clinical 
cases), Di(t) is the contribution of residues from dead pigs in herd i to 
transmission, Ni(t) is the total number of live pigs in herd i, ρ > 0 is the 
transmission rate by local spread (Table 1), dij is the distance between 
herds i and j, and Ωi ≥ 0 is the infectious pressure exerted by wild boar 
on outdoor herd i (Ωi = 0 for indoor herds). 

Susceptible pigs S that acquired infection moved to the exposed pre- 
infectious compartment E, where they stayed during the pre-infectious 
period (with average duration δ), and then moved into the infectious 
compartment I, where they stayed during the infectious period (with 
average duration γ). Infectious pigs were first subclinical (Isc) during the 
subclinical period (average duration ϕ), and then became clinical (Ic) for 
the rest of the duration of the infectious period. Infectious pigs either 
survived and became immune and moved into the recovered compart-
ment R, or died with probability μ (Halasa et al., 2016a). Although dead 
pig carcasses were assumed to be removed, dead pigs entered the 
compartment D to represent residues from dead animals contributing to 
transmission. These residues stayed in the environment during the mean 
lifetime of the virus in residues (with average duration τ). We assumed 
lifelong immunity in the R compartment. Parameter values are given in 
Table 1. 

In addition to transmission by local spread, between-herd trans-
mission was explicitly driven by the modelling of animal movements in 
the trade network (Brooks-Pollock et al., 2014), where animals in each 
compartment could enter or leave a herd, representing opportunities of 
contacts and transmission between individuals from different herds (see 
“Movements” (Section 2.2.3) and Appendix A for details). 

For outdoor herds, the total infectious pressure exerted by wild boar 
on herd i at time t was given by: 

Ωi(t) =
∑

k
β exp

(
− dik

α
)

Ik(t) (5)  

where β > 0 and α > 0 are the same parameters as in the wild boar 
model (Eq. (1) and Table 1), dik is the Euclidean distance between herd i 
and the centre of infected wild boar patch k, and Ik is the number of 
infectious boar (alive and carcasses) in patch k. 

2.2.2. Population dynamics 

2.2.2.1. Wild boar. We assumed a constant population size among wild 
boar in the absence of hunting, carcass removal and ASFV-related 
mortality. Across Europe, wild boar breeding is typically seasonal, 
commencing in late autumn/early winter with peaks in November/ 
December. Following a gestation period of 115 days, peak birthing of 
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piglets occurs between February and April (Alves da Silva et al., 2004; 
Podgórski and Śmietanka, 2018; Rosell et al., 2012; Sabrina et al., 
2009). Therefore, we did not account for births since the period over 
which projections were required (27th August 2020 until 23rd February 
2021, corresponding to days 51–230) was not within the known peak 
birthing period for wild boar. We also did not account for natural 
mortality due to the short duration of the projection period relative to 
the average lifespan of wild boar (Herrero et al., 2008; Jezierski, 1977) 
and given that the predominant causes of mortality over the projection 
period were likely to be hunting and ASFV, both of which our model 
accounted for. Thus, the population of wild boar, both dead and alive, 
remaining in the landscape at any time could only be decreased through 
removal by hunting (all hunted boar were removed from the landscape) 
or via surveillance. For wild boar, two main types of surveillance were 

carried out on the island: (1) passive surveillance, which involved the 
removal and reporting of found wild boar carcasses, and (2) active 
surveillance, which involved active search for wild boar carcasses 
around already detected infected carcasses. Details on the imple-
mentation of surveillance are provided in Section 2.2.5.1.4. 

2.2.2.2. Pig herds. We assumed a constant population size in each herd 
in the absence of ASFV-related mortality, with two population dynamics 
processes depending on the production type of the herds: birth of sus-
ceptible pigs in farrow-to-wean and farrow-to-finish herds, and animals 
sent to the abattoir in finishing and farrow-to-finish herds. Natural 
mortality was not accounted for. 

Thus, in farrow-to-wean and farrow-to-finish herds, the number of 
pigs leaving the herd (outgoing movements) was compensated by the 
entry of the same number of pigs (susceptible only). On the other hand, 
in finishing and farrow-to-finish herds, the number of pigs entering the 
herd (ingoing movements) was compensated by the same number of pigs 
leaving to the abattoir. Such processes were considered an acceptable 
approximation of the population dynamics of the pig herds given the 
batch system used in swine production and the timescale of the 
simulations. 

2.2.3. Movements 

2.2.3.1. Wild boar. In phase 3, to make the model more representative 
of wild boar movement dynamics, we implemented a threshold – the 
maximum infection range (MIR). This was chosen to be 8 km to reflect 
reports of the maximum distance travelled and the estimated home 
range of wild boar (Janeau et al., 1995; Podgórski et al., 2013). 
Consequently, an infectious wild boar in a patch A could infect other 
susceptible wild boar in the same patch or in another patch B if the 
centre of B was situated less than 8 km from the centre of A (see Fig. A2, 
Appendix A). Similarly, a pig herd i could only be infected by infectious 
wild boar in a patch k whose centre was located less than 8 km from herd 
i (i.e., k such that dik ≤ MIR in Eq. (5)). In phases 1 and 2, no threshold 
was set for this maximum distance (Table 2). 

2.2.3.2. Pig herds. Data on pig movements up to day 50, 80 and 110 (for 
phases 1, 2 and 3, respectively) were provided by the challenge co-
ordinators and therefore these pig shipments between herds were 

Table 1 
Epidemiological parameters. For estimated parameters, mean values along with 
95% credible intervals (CrI; in parentheses) are reported.   

Description Mean value(s) (95% 
CrI) 

Source(s) 

Wild boar 
α Scale parameter of 

dispersal kernel 
Phase 1: 0.8225 km 
(0.8006–0.8800) 
Phase 2: 0.87 km 
Phase 3: 1 km 

Estimated at phase 1 
Fixed at phases 2 & 3 

β Overall infection rate Phase 1: 0.0018 day- 

1 (0.0011–0.0028) 
Phase 2: 0.0077 day- 

1 (0.0069–0.0084) 
Phase 3: 0.0035 day- 

1 (0.0034–0.0036) 

Estimated  

Time from infection to 
death 

14 days (Blome et al., 2012; 
Pietschmann et al., 
2015)  

Infectious period for 
carcasses 

90 days (Fischer et al., 2020)  

ASFV-related mortality 
rate 

100% (Blome et al., 2013, 
2012) 

Additional parameters for phase 1 model 
r1 Fraction of infected boar 

in a patch when day 
< 28, averaged over all 
patches 

0.16 (0.09–0.20) Estimateda 

r2 Fraction of infected boar 
in a patch when day 
≥ 38, averaged over all 
patches 

0.25 (0.20–0.38) Estimateda 

d Detection probability for 
infected boar 

0.10 Based on hunting and 
testing estimates 
provided by challenge 
organizers 

Domestic pig herds 
βPH Transmission rate 0.60 day-1 (Guinat et al., 2016b) 
τ Mean lifetime of ASF 

virus in residues from 
dead pigs 

1/log(2) days Adapted from: (Halasa 
et al., 2016a) 

δ Average duration of the 
pre-infectious period 

PERT(3;4; 5) daysb (Guinat et al., 2016b; 
Vergne et al., 2021) 

ϕ Average duration of the 
subclinical period 

2 days ASF Challenge 
coordinators 

γ Average duration of the 
infectious period 

PERT(3;7; 14) daysb (Guinat et al., 2016b; 
Vergne et al., 2021) 

μ Probability of pigs dying 
following infection 

0.95 (Gallardo et al., 2017; 
Halasa et al., 2016a) 

ρ Transmission rate by 
local spread 

0.005 km.day-1 Adapted from: (Halasa 
et al., 2016c)  

a This parameter was defined to be time-varying to reflect the spread of the 
infection (in the absence of disease management measures) as time progressed. 

For day ∈ [28,37], the fraction of positive boar in a patch was given by: r1 +
r2 − r1

38 − 28
× (day−28).  

b PERT distribution of parameters (minimum; mode; maximum). 

Table 2 
Differences between models across the three phases of the challenge. As the 
challenge progressed, the models had to be slightly adapted to account for new 
data and information provided by the challenge coordinators and/or to answer 
new questions.   

Phase 1 Phase 2 Phase 3 

Explicit modelling 
of individual 
infected boar in a 
patch (and their 
locations) 

No Yes Yes 

Detection of 
infected wild boar 

Yes (fixed 
probability) 

Yes (through 
testing of hunted 
boar and active 
surveillance of boar 
carcasses) 

Yes (through 
testing of hunted 
boar and active 
surveillance of boar 
carcasses) 

Increased hunting 
pressure in fence 
and buffer zone 

Yes (no 
buffer zone) 

Yes Yes 

Permeability of the 
fence 

No No Yes 

Maximum infection 
range (MIR) 

No No Yes (8 km) 

Test of preventively 
culled pig herds 

Not 
applicable 

No Yes 

Delay before 
preventive culling 

Not 
applicable 

Yes (24 hours) Yes (5–7 days)  
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considered as deterministic (day of the shipment, source and destination 
herds, number of pigs shipped). Pig movements from day 51, 81 or 111 
onwards (for phases 1, 2 and 3, respectively) were projected using 
Exponential Random Graph Models (ERGMs) to determine a pair be-
tween a source herd and a destination herd (Relun et al., 2017), and 
using Generalized Linear Models (GLMs) with zero-truncated negative 
binomial distribution to determine the number of pigs exchanged (more 
details are provided in Appendix A). 

2.2.4. Initial conditions 

2.2.4.1. Wild boar. The initial size and spatial distribution of the wild 
boar population in each patch was estimated using the hunting bag data 
and hunting rate estimates for 2019. At each phase, the model was 
seeded with some ASFV infections among wild boar, as observed in the 
synthetic data. See Appendix A for details. 

2.2.4.2. Pig herds. Pig herds were distributed according to the co-
ordinates provided. We considered all known herds on the island. The 
number of known pig herds changed at each phase as the number of 
unregistered farms identified increased (see details in Section 2.1 
above): 4533 for phase 1, 4537 for phase 2 and 4540 for phase 3. Each 
herd was initialized with susceptible pigs based on its size provided by 
the challenge coordinators. In all analyses, ASFV was introduced in pig 
herd 3594 (the first detected infected pig herd) by replacing a suscep-
tible pig (S) by an exposed pre-infectious pig (E) at day − 31, giving a 
median suspicion date in the model at day 0 and a median detection date 
at day 3, as observed in the synthetic data. 

2.2.5. Disease management measures and model implementation 

2.2.5.1. Wild boar 
2.2.5.1.1. Fence. As part of the measures to curb the spread of the 

virus out of the forest area, a 300 km rectangular fence was set up 
around the area where ASFV had been initially detected in wild boar 
(ASF Challenge coordinators). The fence was operational from day 60 
and was assumed to have no impact on transmission before this date. In 
the models we presented for phases 1 and 2, the fence was assumed to be 
100% effective from day 60. However, by phase 3, the locations of some 
newly detected infections in the synthetic data suggested that the fence 
was not fully effective. Thus, we allowed for a “leaky” fence in all di-
rections, such that ASFV could be transmitted between two patches on 
opposite sides of the fence if the distance between their centres was less 
than or equal to half the MIR (Table 2 and Appendix A). This also applied 
to transmission from wild boar to pig herds: in phase 3, only wild boar 
patches situated on the same side of the fence as outdoor herd i and 
satisfying dik ≤ MIR and wild boar patches situated on the other side of 
the fence and satisfying dik ≤ MIR/2 were considered in the computa-
tion of the infectious pressure (Eq. (5)). In phases 1 and 2, only wild boar 
patches situated on the same side of the fence as herd i were considered. 

2.2.5.1.2. Normal hunting pressure. The “normal hunting pressure” 
scenario involved hunting according to the usual hunting rates for a 
typical hunting season, which corresponds to a hunting rate of 50% of 
the wild boar population from day − 36 to day 204 (8 months) and at a 
uniform rate over the period. This measure was maintained outside the 
fence for the entire duration of the projection period. Under this sce-
nario, both active and passive surveillance were possible and 20% of all 
hunted wild boar were tested. 

2.2.5.1.3. Increased hunting pressure. Within the fenced area and a 
buffer zone including all land within 15 km of the fence, an “increased 
hunting pressure” management strategy was implemented, beginning at 
day 60. This involved applying a hunting rate of 90% of the wild boar 
population (much higher than that observed in a typical hunting season) 
from day 60 to day 120 (2 months), at a uniform rate, to decrease wild 
boar density and thus slow the spread of ASFV (ASF Challenge 

coordinators). Under this measure, active surveillance ceased within the 
fence and the buffer zone, given “the potential risks posed by hunts” 
(ASF Challenge coordinators). However, passive surveillance was still 
possible. Moreover, 100% of all hunted wild boar were tested. 

2.2.5.1.4. Surveillance. For model fitting, the number of boar hun-
ted daily was estimated based on the data provided on the number of 
hunted boar tested daily. The proportion of hunted boar tested was 20% 
under normal hunting pressure and 100% under increased hunting 
pressure. Thus, under normal hunting pressure, the number of boar 
hunted daily was equal to five times the number of tested boar, whereas 
under increased hunting pressure, the number of boar hunted daily was 
equal to the number of tested boar. The number of boar carcasses found 
daily (by passive or active surveillance) was solely determined based on 
the synthetic data provided, since all found boar carcasses were tested 
and hence reported. According to the synthetic data provided, carcasses 
may persist on the island for more than one day; i.e., not all carcasses are 
removed via surveillance on a given day. As participating teams were 
blind to the synthetic data-generating process, we are unable to provide 
details such as the parameterization of the boar removal data provided. 
For details on the synthetic data-generating process, see Picault et al., 
2022. 

For the projection periods, no data were provided on the daily 
number of hunted boar and found carcasses. For these periods, we 
estimated the daily number of hunted boar and found carcasses based on 
the fractions of removed boar in the synthetic data provided; i.e., the 
data provided on the observed periods. Refer to Tables A9, A10, and A12 
in Appendix A for detailed descriptions on the estimation of the number 
of wild boar removed during the projection periods in phase 1, phase 2 
and phase 3, respectively. 

For both model fitting and model projections, after the number of 
boar to be removed had been determined, we determined the particular 
boar to be removed by randomly sampling from the remaining boar 
within a specific area of focus. Within the projection periods for phases 2 
and 3, and for boar located within the fence and buffer zone, we defined 
the probability of removal by hunting to be dependent on a boar’s 
infection status (this was not the case for phase 1). We assigned a higher 
removal probability to infected boar than to susceptible boar, such that 
infected boar were more likely to be hunted or found as carcasses , as we 
thought it reasonable to assume that infected boar were less likely to 
escape a hunt due to reduced activity as a result of lethargy, a typical 
clinical signof ASF. The absolute difference in hunting probabilities for 
live infected boar and live susceptible boar was 0.6 in phase 2 and 0.1 in 
phase 3: these were chosen to ensure a high agreement between the 
synthetic data and simulated dynamics. 

2.2.5.2. Pig herds 
2.2.5.2.1. Baseline regulatory interventions. According to the chal-

lenge coordinators, disease management measures defined by European 
regulations were immediately implemented in Merry Island in response 
to the epidemic, when the first detected infected pig herd was confirmed 
(day 3). These regulations were originally established by the European 
Union (European Commission, 2002) and are now described in the new 
“Animal Health Law” (European Commission, 2016) and its supplement 
as regards rules for the prevention and management of diseases such as 
ASF (European Commission, 2020a). 

Based on the description of the disease management measures pro-
vided by the challenge coordinators, the following measures were 
implemented in our model: (1) suspected pig herds were confirmed 
infected three days after suspicion, assuming perfect ASFV detection 
tests; (2) all herds with confirmed infection were culled the day after 
confirmation (four days after suspicion), implemented in our model by 
setting all compartments to zero (including residues from dead pigs, i.e., 
assuming cleaning and disinfection were effective immediately); (3) 
after a herd was confirmed infected, a protection zone (3 km radius for 
40 days) and a surveillance zone (10 km radius for 30 days) were 
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defined, and at-risk herds that traded pigs with infected herds (ingoing 
or outgoing movements) within the previous three weeks were traced; 
(4) all movements of pigs (ingoing or outgoing) were banned for 40 days 
in protection zones and at-risk herds, and for 30 days in surveillance 
zones; (5) awareness of farmers about ASF was improved in surveillance 
and protection zones, as well as for at-risk herds; (6) repopulation of a 
culled herd was allowed 50 days after culling (except if the herd was still 
in a protection or surveillance zone), assuming that all pigs used for 
repopulation were susceptible. 

In our model, suspicion of a herd was assumed to occur when two 
conditions were met: (1) when the mortality rate caused by ASFV during 
the previous 14 days in the herd was more than 6% (Andraud et al., 
2019); and (2) the number of clinical or dead animals in the herd 
reached a minimum value of five during the previous 14 days (Halasa 
et al., 2016c). The minimum number of clinical or dead animals was 
introduced to represent more accurately the probability of detecting 
abnormal events, especially in small herds, where only one death could 
make the mortality rate exceed the threshold (Halasa et al., 2016c). 
Increased awareness of farmers in protection and surveillance zones and 
in at-risk herds was represented in our model by reducing the minimum 
number of clinical or dead animals required for detection to one (Halasa 
et al., 2016c). 

2.2.5.2.2. Additional interventions (phases 2 and 3). During phase 2, 
additional disease management strategies in pig herds were incorpo-
rated into the model as requested by the challenge coordinators (see 
Appendix A for more details): (1) preventive culling of all herds in a 
protection zone (“cullPZ”); (2) increasing the size of the surveillance 
zone from 10 km (the standard radius used) to 15 km (“incrSZ”); (3) 
preventive culling of all pig herds located at less than 3 km from positive 
wild boar carcasses (“cullWB”); and (4) preventive culling of all at-risk 
herds (“cullTR”). Those additional interventions were implemented in 
forward projections during phase 2, i.e., from day 81 to day 110. During 
phase 2, pig herds preventively culled before detection in scenarios 
cullPZ, cullWB and cullTR were not tested (Table 2). Culling was 
assumed to take place 24 hours after the event triggering the interven-
tion, as for confirmed herds in baseline interventions. 

During phase 3, cullWB was implemented starting day 90 according 
to the challenge coordinators. Preventive culling happened 5–7 days 
after a wild boar case was confirmed, and tests were performed rapidly 
in all culled herds, providing results the day after (Table 2). 

2.3. Analyses 

2.3.1. Comparison of scenarios 
Using model simulations, we compared epidemic outcomes (number 

and locations of cases) under the range of scenarios discussed, to 
determine the effectiveness of each at limiting the epidemic. 

2.3.2. Probability of epidemic fade out by day 230 
A key question of interest posed by the challenge coordinators in 

phase 3 was how likely the epidemic was to fade out by day 230 given 
the following conditions: (1) a cessation in increased hunting pressure at 
day 120 (due to a reduction in reported incidence), (2) end of the 
hunting at day 204 (usual last day of hunting on the island), and (3) 
possibility of passive discovery of wild boar carcasses beyond day 204. 
To estimate the probability of fade-out, we simulated from our model 
under these conditions and computed the proportion of simulations 
having at least one case by day 230. This was done for both wild boar 
and pig herd populations. 

2.3.3. Parameter estimation 
The wild boar model was calibrated using Approximate Bayesian 

Computation (ABC) (Beaumont et al., 2002). In phase 1, the type of ABC 
algorithm employed was ABC-Sequential Monte Carlo with M-nearest 
neighbours (Minter and Retkute, 2019; Toni et al., 2009) while in phases 
2 and 3, the ABC rejection algorithm (see Toni et al. (2009)) was 

employed. 
In all phases, the transmission parameter β was estimated. In phases 

2 and 3, to improve the runtime of the estimation algorithm, the scale 
parameter α of the dispersal kernel was fixed based on its estimated 
value at Phase 1 and results from some trial runs of the model. 

The wild boar summary statistics used in the ABC estimation were: 
(1) the daily number of detected infected wild boar, and (2) the area of 
the minimum convex polygon enclosing the locations of infected 
patches. By choosing these summary statistics, we sought to make our 
model fit reflect well both the size and spatial extent of the epidemic in 
wild boar, as in the synthetic data. The parameter values producing 
simulated summary statistics closest to the summary statistics as 
computed from the synthetic data provided were retained for model 
predictions. The tolerances used in the ABC were chosen based on an 
iterative sequence of trial runs which compared simulated model out-
puts to the synthetic data. 

Parameters exclusively associated with the pig herd model were 
derived from published estimates (Table 1). After a graphical compari-
son between the synthetic data provided and the simulated daily and 
cumulative numbers of detected infected pig herds over time at each 
phase, the same transmission parameter values for transmission from 
wild boar to pigs in outdoor herds were used as those calibrated for wild 
boar-to-wild boar transmission (α and β). 

2.3.4. Simulations and outputs 
During the challenge, the number of stochastic repetitions decreased 

from 500 for phase 1, to 72 for phase 2 and 32 for phase 3 because of 
constraints imposed by real-time analysis. However, the results pre-
sented in this paper were expanded to include 500 stochastic repetitions 
for each phase. 

For the wild boar model, the simulated period was from day 1 in 
phases 1 and 2, but from day 60 in phase 3, due to computational 
constraints. For the pig herd model, the simulated period was from day 
–59 (when data on pig movements started) in all phases. Each repetition 
corresponded to a given set of parameter values retained by ABC (α and 
β in phase 1, only β in phases 2 and 3). In addition, model stochasticity 
was driven by drawing events randomly from probability distributions. 

For wild boar, model outputs across all phases were the daily number 
of detected/infected wild boar and the locations of infected wild boar 
patches. In phases 2 and 3, additional outputs were infected wild boar 
locations. For pig herds, model outputs were the daily number of sus-
pected/confirmed/infected herds, and the probability of suspicion/ 
detection/infection for each herd (expressed as the proportion of sim-
ulations where a given herd was suspected/detected/infected). Model 
outputs were expressed as the median of the simulations and the asso-
ciated 95% equal-tailed credible interval (CrI), using the 2.5% and the 
97.5% percentiles of the simulations as lower and upper bounds of the 
95% CrI, respectively. Additional details on model outputs are provided 
in Table A8, Appendix A. 

2.3.5. Sensitivity analyses 
To assess the sensitivity of our model to changes in parameter values 

and assumptions, we conducted two sensitivity analyses. 
First, we assessed the influence of the MIR, the scale parameter of the 

dispersal kernel α, the duration of infectiousness in wild boar carcasses, 
and the duration of infectiousness in live boar on the daily number of 
infections and detected cases in wild boar and pig herds. For this anal-
ysis, we focused on phase 3, from day 60–110, corresponding to the 
period over which the phase 3 model was fitted. We chose to use the 
phase 3 model since it was the only model which incorporated the MIR. 
We considered values ranging from 2 km to 20 km for the MIR; from 
0.6 km to 1.2 km for α; from 10 days to 130 days for the duration of 
infectiousness of wild boar carcasses (Fischer et al., 2020; 
Mazur-Panasiuk and Woźniakowski, 2020); and from 5 days to 14 days 
for the infectious period in live boar (Gervasi et al., 2020; Gervasi and 
Guberti, 2021; Halasa et al., 2019; Hayes et al., 2021; O’Neill et al., 
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2020; Pepin et al., 2020). 
Second, we assessed the sensitivity of projections for the number of 

detected infections in wild boar and pig herds by day 140 to the level of 
efficacy of three interventions: (1) fencing; (2) testing of hunted or found 
wild boar post-removal; and (3) culling of pig herds located less than 
3 km away from positive wild boar. For each of these interventions, we 
assessed the changes in the number of detected infected animals if the 
parameters associated with these interventions were reduced to 75% 
and 50% of their baseline values. This analysis was performed using a 
full factorial design (Saltelli et al., 2008) in which there were three 
factors (the interventions parameters) and three levels for each factor 
(100%, 75%, and 50%). Thus, 27 (=33) combinations of intervention 
efficacies were assessed. For testing of wild boar and culling of pig herds, 
the parameters controlling efficacy were the proportion of tested wild 
boar and the proportion of culled pig herds, respectively. For fencing, 
the parameter controlling efficacy was the permeability of the fence. 
During phase 3, ASFV could be transmitted between patches i and j on 
opposite sides of the fence if dij ≤ MIR/2 = 4 km. Here, we decreased 
the efficacy of the fence by increasing its permeability, using dij ≤ MIR/
(2 × 0.75) = 5.3 km and dij ≤ MIR/(2 × 0.5) = 8 km instead. 

For each parameter X assessed, we compared model outcomes under 
different values of X, including the baseline value employed in our 
model. For each value of X studied, the sensitivity analyses involved 
running 100 stochastic repetitions of the model. In these model simu-
lations, all other parameters and all model assumptions, including 

control measures, were as in the baseline model. We then computed the 
median and 95% CrIs for each outcome across the 100 stochastic repe-
titions. 

3. Results 

3.1. Parameter estimation and model fit 

Parameter estimates at each phase are provided in Table 1. Our 
model fitted well to the temporal and spatial dynamics of the epidemic 
(Fig. 1 and Table 3; Fig. B1, Appendix B). To evaluate the ability of our 
model projections to capture the dynamics of the epidemic, we also 
compared model projections for the detected number of cases in wild 
boar and pig herds during phase 1 (up to day 78) and phase 2 (up to day 
110) to the synthetic data provided by the challenge coordinators after 
these two phases were completed. We were not provided with synthetic 
data corresponding to the projection period for phase 3 (beyond day 
110), thus precluding comparison of our projections in that phase with 
synthetic data. The 95% CrIs for the number of detected infected pig 
herds and wild boar captured the synthetic observations in phase 1 
(Table 4). In phase 2, the 95% CrIs for the number of detected infected 
pig herds captured the number observed in the synthetic data, although 
the corresponding statistic for the number of detected infected wild boar 
did not; the median estimate for wild boar overestimated the number 
observed in the synthetic data by 7.7% (Table 4). 

Although ASFV was seeded in both wild boar and pig herds, pig herd 

Fig. 1. Distribution of detected infected pig herds on Merry Island: comparison between data (top panels showing only detected infected pig herds) and model 
simulations (bottom panels showing all pig herds that were detected as positive in at least one simulation) for each phase. Top panels (A-C): detected herds by (A) 
day 50, (B) day 80 and (C) day 110 (for phase 1, 2 and 3 respectively) in the data provided by the challenge coordinators. Detected herds are indicated by red dots, 
while the fence and buffer zones (implemented during phases 2 and 3) are indicated by thick and thin rectangles, respectively. Bottom panels (D-F): detected herds 
by (D) day 50, (E) day 80 and (F) day 110 in the model simulations run with estimated parameter values. Dots indicate herds that were detected in at least one 
simulation, with colours indicating the proportion of simulations in which a given herd was detected (among 500 simulations). 
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incidence was driven by the wild boar epidemic, as illustrated in Fig. B2, 
Appendix B. Indeed, in the absence of ASFV transmission from wild boar 
to pig herds, the cumulative number of detected infected pig herds up to 
day 230 remained very low (median: 2, 95% CrI: (2−7)). 

3.2. ASF management strategies 

3.2.1. Fencing and increased hunting pressure 
The challenge coordinators were interested in the difference in 

effectiveness between the scenario involving the implementation of the 
fence alone and that involving the implementation of the fence com-
bined with increased hunting pressure within the fence (and from phase 
2 also in the buffer zone; see Table 2). For all phases, we report model 
projections of the daily number of detected infected wild boar and the 
daily number of detected infected pig herds under the increased hunting 
pressure and normal hunting pressure scenarios (Fig. 2). In general, our 
model projections showed a better efficacy of the combination of fence 
with increased hunting pressure in comparison with fence and normal 
hunting pressure (Fig. 2, Table 3). 

In wild boar, for phase 1, there were 90% more detected cases under 
increased hunting pressure compared to normal hunting pressure 
(Table 3). However, for phases 2 and 3, there were more cases under 
normal hunting pressure than under increased hunting pressure: the 
projected median estimates for normal hunting pressure were 1.8% and 

131% higher than corresponding estimates for increased hunting pres-
sure, for phases 2 and 3, respectively (Table 3). The projected number of 
detected infected pig herds was very similar for both scenarios in phase 1 
(Fig. 2, Table 3). In phase 2, the projected median number of detected 
infected pig herds was 7% lower for increased hunting pressure than for 
normal hunting pressure (Fig. 2, Table 3). It was only in phase 3 that 
increasing hunting pressure had a strong impact, with a 56% lower 
median estimate of detected infected pig herds compared to the normal 
hunting pressure scenario (Fig. 2, Table 3). 

3.2.2. Additional interventions in pig herds 
The model projections showed that culling all pig herds in protection 

zones (“cullPZ”), culling all herds that have traded pigs with an infected 
farm less than three weeks before detection (“cullTR”), or increasing the 
size of the surveillance zone from 10 km to 15 km (“incrSZ”) all had a 
negligible impact on the number of infected herds and detected infected 
herds compared to the baseline management strategies in pig herds 
(Fig. 3; Fig. B3, Appendix B). However, culling of all pig herds located 
less than 3 km from positive wild boar carcasses (“cullWB”) led to 4 
fewer infected herds on average, compared to the baseline management 
strategies, a 18.5% reduction over a 30-day period (Fig. 3). This reduced 
number of infected herds was obtained by culling 65 more herds on 
average compared to the baseline management strategies, a 422% in-
crease over a 30-day period. 

3.3. Probability of epidemic fade-out by day 230 

Our model simulations showed the persistence of the virus within the 
population by day 230 in all projections (Fig. 4), given the new disease 
management measures introduced at day 120. The estimated daily 
numbers of detected cases beyond day 120 were generally lower than 
had been observed in the synthetic data at the start of the increased 
hunting pressure activities (day 60) and followed a steady trend up to 
day 204, after which even fewer cases were detected daily, given the end 
of the hunting season. The probability of fade-out in pig herds depended 
on the probability of fade-out in wild boar (Fig. B2, Appendix B). Indeed, 
as long as the virus persists within the wild boar population, further 
infections of pig herds are to be expected. 

3.4. Sensitivity analyses 

3.4.1. Sensitivity analysis to spatial parameters and durations of infectious 
periods 

There was no substantial difference between the trajectories for the 
daily number of detected infected boar corresponding to MIR values of 
8 km, 14 km and 20 km, although there was a marked difference 

Table 3 
Model fit and projections for the cumulative number of detected infections under the two main disease management scenarios considered in wild boar: increased 
hunting pressure and normal hunting pressure. The model fits are median model estimates for the observed period (days 1–50 for phase 1, days 1–80 for phase 2 and 
days 1–110 for phase 3) while the model projections are median model estimates for the unobserved periods over which projections were computed (days 51–78 for 
phase 1, days 81–110 for phase 2, days 111–230 for phase 3). Model estimates are medians of 500 simulations along with 95% credible intervals (CrI) in parentheses.  

Phase By 
day 

Disease management 
scenarioa 

Wild boar Pig herd 

Observed Model fit (95% 
CrI) 

Model projections (95% 
CrI) 

Observed Model fit (95% 
CrI) 

Model projections (95% 
CrI) 

1 50   397 396 (358–435)   3 4 (2–6)  
78 Increased hunting pressure    1770 (1445–2503)    8 (5–14) 

Normal hunting pressure    933 (751–1289)    8 (5–14) 
2 80   2007 2009 (1912–2102)   12 12 (8–17)  

110 Increased hunting pressure    3214 (3112–3378)    28 (22–35)  
Normal hunting pressure    3272 (2973–3868)    30 (23–38) 

3 110   2984 2994 (2897–3077)   26 25 (21–31)  
140 Increased hunting pressure    3442 (3372–3514)    38 (32–48) 

Normal hunting pressure    7954 (6891–8827)    87 (67–100) 
230 Increased hunting pressure    4599 (4480–4711)    113 (99–129)  

a For all phases, scenarios are only indicated for projected periods and not for observed periods. For the observed periods, the scenario for phase 1 is normal hunting 
pressure with no fence whereas the scenario for phases 2 and 3 is increased hunting pressure. 

Table 4 
Comparison of model projections and observed (synthetic) data on the cumu-
lative number of detected infected wild boar and pig herds up to days 78 and 
110. For both wild boar and pig herds, model projections shown here assumed 
disease management measures as implemented during the indicated periods. 
Model estimates are medians of 500 simulations along with 95% credible in-
tervals in parentheses.  

Population Category Cumulative number of detected infections up to:   

Day 78 Day 110 

Wild boar Model 1770 (1445–2503) 3214 (3112–3378) 
Observed 1903 2984 

Pig herds Model 8 (5–14) 31 (23–39)a 

Observed 10 26  

a To adequately compare the results of the model with the synthetic data, the 
projections for pig herds up to day 110 (phase 2 model) were simulated using 
disease management measures as implemented during the indicated period, i.e., 
incorporating preventive culling of all pig herds located at less than 3 km from 
positive wild boar carcasses from day 90, with a delay of 5–7 days between the 
confirmation of a wild boar case and pig herd culling, and performing tests in all 
culled herds which provided results the day after. 
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between these trajectories and that corresponding to a MIR of 2 km 
(Fig. 5A). Increasing the MIR from 2 km to 8 km resulted in a 187% 
(95% CrI: 160%−206%) increase in the number of detected infected 
boar within the period considered (days 60–110), whereas increasing 
from 8 km to 14 km resulted in only a 2.02% (95% CrI: −5.4%−12%) 
increase (Table 5). Similarly, the number of detected infected pig herds 
increased by 100% (95% CrI: 61%−152%) when increasing the MIR 
from 2 km to 8 km but did not change further for values above 8 km. 
Similar results as for detected infected boar and pig herds were obtained 
when considering the number of infections (detected or not: Fig. C1A, 
Appendix C). 

For the duration of infectiousness in boar carcasses, we observed a 
similar trend where the results changed only for the smallest parameter 

value. Indeed, there was no notable difference between the median 
trajectories corresponding to the 50-day, 90-day and 130-day durations, 
but the trajectory corresponding to a 10-day duration was slightly lower 
starting from day 70 (Fig. 5C). However, CrIs corresponding to estimates 
for all parameter values were largely overlapping (Fig. 5C, Table 5). 
Similar results were observed for the number of infections and the 
number of detected infected pig herds (Table 5 and Fig. C1C, Appendix 
C). 

The trend was however different for the scale parameter of the 
dispersal kernel, α (Fig. 5B), and the duration of infectiousness in live 
boar (Fig. 5D). For these parameters, larger parameter values resulted in 
larger values of the daily number of detected infected wild boar. This 
was especially true for the scale parameter α, for which the number of 

Fig. 2. Comparison of disease management scenarios for wild boar (increased hunting pressure and normal hunting pressure) across all phases. Top panels (A-C): 
Observed (black dots) and projected daily number of detected infected wild boar under the increased hunting pressure (blue) and normal hunting pressure (light 
orange) scenarios. In panel C, the drop at day 120 is due to a cessation in increased hunting pressure activities. Middle panels (D-F): Observed (black dots) and 
projected daily number of detected infected pig herds under the increased hunting pressure (blue) and normal hunting pressure (light orange) scenarios. Bottom 
panels (G-I): Observed (black dots) and resulting cumulative numbers of detected infected pig herds from the daily projections (D-F), under the increased hunting 
pressure (blue) and normal hunting pressure (light orange) scenarios. All panels: Median model projections are shown along with 95% credible intervals (shaded 
areas with corresponding colours). Projections were obtained using the model calibrated to data up to days 50, 80 and 110 for the increased hunting pressure 
scenario in Phase 1 (A, D, G), phase 2 (B, E, H) and phase 3 (C, F, I) respectively. For the normal hunting pressure scenario, the model was calibrated using data up to 
day 50 for phase 1 and up to day 59 for phases 2 and 3. [Note: the observed data in all cases arose in the challenge scenario in which hunting pressure 
increased from day 60, making these data not directly comparable with the normal-hunting-pressure-throughout projections (light orange) in the middle 
and right-hand columns.]. 
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detected infected wild boar increased by 190% (95% CrI: 169%−212%) 
from 0.6 km to 1.2 km, and the number of detected infected pig herds 
increased by 140% (95% CrI: 82%−204%) from 0.6 km to 1.2 km 
(Table 5). A similar trend was observed for the number of infected wild 
boar (Fig. C1B, Appendix C). 

Decreasing the infectious period of live boar in the baseline model 
(14 days) by 4 days, 7 days, and 9 days resulted in a decrease of 16% 
(95% CrI: 10%−23%), 30% (95% CrI: 24%−37%) and 40% (95% CrI: 
35%−45%), respectively, in the number of infected detected boar, 
compared to baseline (Fig. 5D, Table 5). However, decreasing the in-
fectious period in live boar led to no substantial changes in the number 
of infected wild boar (Fig. C1D, Appendix C) nor in the number of 
detected infected pig herds (Table 5). See Section 4.2 of the “Discussion” 
for an interpretation of these results. 

3.4.2. Sensitivity analysis to efficacy of management interventions 
Results on the sensitivity of the number of detected infections to the 

level of intervention efficacy are presented in Table 6. For any fixed 
fence efficacy level, decreasing the testing fraction led to fewer detected 
infections in wild boar. On the other hand, for a fixed testing fraction for 
wild boar, the number of detected boar and pig herds did not vary 
substantially with varying fence efficacy – credible intervals for esti-
mates were largely overlapping. Given any fixed combination of inter-
vention efficacy levels in wild boar (e.g., fence efficacy as 100% and 
testing efficacy as 75%), varying the fraction of pig herds culled if found 
less than 3 km away from positive wild boar (cullWB) led to only 
negligible changes in the median estimates of the number of detected pig 
herds. Across levels of cullWB, the credible intervals of estimates were 
largely overlapping for all combinations of fence and testing efficacies 

Fig. 3. Comparison of the impact of additional disease management measures on the number of detected infected pig herds (phase 2). Median model projections are 
shown along with 95% credible intervals (shaded areas with corresponding colours), for a baseline scenario and four additional disease management measures 
implemented in pig herds. The baseline scenario (“Baseline”) involved regulatory interventions in pig herds and the implementation of fencing and increased hunting 
pressure in wild boar. The four disease management measures implemented in addition to the baseline scenario are: (1) “cullPZ”: culling of all pig herds in protection 
zones; (2) “incrSZ”: increasing the size of the surveillance zone from 10 km (the standard surveillance radius used) to 15 km; (3) “cullWB”: culling of all pig herds 
located at less than 3 km from positive wild boar; (4) “cullTR”: culling of all herds that have traded pigs with an infected farm less than three weeks before detection. 
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considered. 

4. Discussion 

We have developed a stochastic spatiotemporal model describing the 
transmission dynamics of ASF in a multispecies context involving wild 
boar and domestic pigs. Our model captured the shape of the epidemic 
trajectory, as reflected in the synthetic data, as well as its spatial char-
acteristics (Fig. 1; Tables 3 and 4; Fig. B1, Appendix B). Furthermore, the 
model was complex enough to allow for the incorporation of a range of 
disease management measures and for the estimation of their respective 
effects on the epidemic trend (Figs. 2 and 3, Table 3). 

4.1. What do our results show and what do they mean? 

4.1.1. Key point 1: Increased hunting pressure effective, long-term 
evaluation more beneficial 

To inform recommendations for ASF management measures in the 
wild boar population – assumed to be the reservoir for ASFV on the is-
land we considered – we evaluated the effectiveness of an increased 
hunting pressure scenario and a normal hunting pressure scenario, both 
including a fenced area to restrict wild boar movement beyond an 
identified epicentre. Our model results showed a superior efficacy 
associated with the increased hunting pressure scenario (Fig. 2, Table 3). 
It is worthy of note that the benefits (reduction in the number of infected 

Fig. 4. Model projections from day 111 to day 230 under the increased hunting pressure scenario. A. Observed and projected daily numbers of detected infected wild 
boar. Projections were obtained using the disease management measures as implemented over the indicated period: (1) increased hunting pressure from day 111 to 
day 120, (2) normal hunting pressure from day 121 to day 203 and (3) cessation in hunting activities (end of the hunting season) from day 204 onwards but 
permitting passive discovery of wild boar carcasses. The drop at day 204 is due to the cessation in hunting activities. B. Observed and projected daily numbers of 
detected infected pig herds. C. Observed and projected cumulative numbers of detected infected pig herds. All: Black dots, blue line and shaded areas represent the 
observed data, median model projections and 95% credible intervals, respectively. Projections were obtained using the model fitted to data up to day 110. 
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boar removed) realized under the increased hunting pressure scenario 
were more apparent in the longer term, in both the wild boar and pig 
herd populations (Fig. 2). For wild boar, the benefit of increased hunting 
pressure could only be seen in phases 2 and 3 (Fig. 2B-C), where the 
number of detected infected boar decreased despite testing more (as 
100% of hunted boar within the fence and buffer zones were tested in 
the increased hunting pressure scenario, compared to only 20% in the 
normal hunting pressure scenario). For pig herds, increased benefit in 
the longer term can be visually observed in the cumulative curves in 
Fig. 2G-I, where the divergence between the scenario curves is seen to 
increase as the epidemic progresses. In the face of emerging threats such 
as ASF, where there is typically a haste to suppress disease spread, 
mechanisms which do not prove highly effective in the short term might 
be quickly abandoned or less favoured. These results suggest that the 
timescale over which different interventions are evaluated may influ-
ence the evaluation outcomes. In particular, the difference in efficacy 
between two interventions may be negligible when the interventions are 
evaluated over a short time window, but this difference may become 
considerably larger when the interventions are evaluated over a longer 
window. Consequently, we recommend that rather than comparing in-
terventions over a fixed time window (e.g., 30 days, as in phase 1), 
which may not be enough to see an effect, interventions are compared 
based on the time it takes these interventions to reach a certain level of 
efficacy as defined by, for example, the public health manager. 

4.1.2. Key point 2: Preventive culling around positive wild boar was 
effective in pig herds 

As done for wild boar, we compared various ASF management 
measures in pig herds, that could complement the baseline interventions 
defined by the EU and that were implemented in Merry Island. These 
additional measures included increasing the size of the surveillance zone 
from 10 km (the standard radius used) to 15 km, or the preventive 

culling of herds either in a protection zone, defined as being at-risk 
(based on previous trade with infected herds), or located at less than 
3 km from positive wild boar (Table A11, Appendix A). These measures 
were evaluated and compared during phase 2 of the challenge. 

Increasing the size of the surveillance zone by 5 km was not effective 
in reducing the number of infected or detected pig herds (Fig. 3; Fig. B3, 
Appendix B). We also found that preventive culling of herds connected 
to detected infected herds had a negligible impact on the number of 
infected and detected pig herds (Fig. 3; Fig. B3, Appendix B). Similar to 
our results, increasing the size of the surveillance zone or pre-emptive 
culling around infected herds were not predicted to improve the man-
agement of a hypothetical ASFV epidemic in Denmark (Halasa et al., 
2016b, 2018). In our case, these results can be explained by the fact that 
incidence in pig herds was largely driven by transmission from wild boar 
(Fig. B2, Appendix B). Therefore, these scenarios strictly relating to 
pig-to-pig transmission had only limited impact. 

In contrast, culling pig herds located less than 3 km away from 
positive wild boar decreased the number of infected pig herds by 18.5% 
in one month (Fig. 3). This type of preventive culling was more effective 
as it prevented boar-to-pig transmission, by depleting pig herds before 
they were exposed to transmission from wild boar. However, this sce-
nario required the culling of 65 additional herds in a month compared to 
the baseline scenario. Although the costs of disease management in-
terventions were not directly evaluated in our model, the costs associ-
ated with this scenario would probably be substantial. The cost-benefit 
ratio of this strategy should therefore be evaluated by comparing the 
costs of culling additional herds with the benefits of preventing ASF in a 
few herds. 

One possible refinement of this scenario would be to preventively 
cull the herds most at-risk of transmission from wild boar, i.e., outdoor 
herds. Here, all herds (indoor and outdoor) were indiscriminately cul-
led, whereas only outdoor herds were assumed to be exposed to 

Fig. 5. Sensitivity of the daily number of detected infected wild boar (from day 60 to day 110) to A: the maximum infection range (values: 2 km, 8 km, 14 km, 
20 km); B: the scale parameter α of the dispersal kernel (values: 0.6 km, 0.8 km, 1 km, 1.2 km); C: the duration of infectiousness in carcasses (values: 10 days, 50 
days, 90 days, 130 days); and D: the duration of infectiousness in live boar (values: 5 days, 7 days, 10 days, 14 days). Trajectories are medians computed from 100 
stochastic repetitions of the model. Shaded regions are corresponding 95% credible intervals. Simulations corresponding to baseline parameter values (maximum 
infection range = 8 km, α =1 km, duration of infectiousness in carcasses = 90 days; and duration of infectiousness in live boar = 14 days) are the same across panels. 
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transmission from wild boar. By culling only outdoor herds close to 
positive wild boar, this scenario would be expected to produce similar 
benefits while decreasing the number of preventively culled herds, 
hence reducing the costs and potentially reducing delays required to 
implement such culling. Double fencing of outdoor pig herds as an 
alternative to keeping FRPs has been implemented as part of the recent 
eradication programme in Sardinia (Viltrop et al., 2021). Whilst the 
epidemiology of ASFV in Sardinia is different to that of Merry Island as 
FRPs rather than wild boar are considered the main drivers of trans-
mission, double fencing of outdoor pig farms could also be considered as 
an alternative or addition to culling as a means of reducing transmission 
between wild boar and outdoor pig herds. Scenarios such as these could 
have been evaluated using our model; however, given the time re-
strictions imposed in the challenge to mimic real-time analysis and de-
cision making, we restricted our analyses to the scenarios asked by the 
challenge coordinators. 

4.1.3. Key point 3: ASFV persistence beyond day 230 and what this means 
for disease control 

Concerning the probability of epidemic fade-out, our model esti-
mates suggest the strong likelihood of the persistence of ASFV in the 
landscape by day 230 (Fig. 4), translating to a probability of incidence 
among pig herds, since the epidemic in pig herds is sustained by that in 
wild boar (Fig. B2, Appendix B). The fact that our simulations stopped at 
the beginning of the peak birthing season (February – April (Alves da 
Silva et al., 2004; Podgórski and Śmietanka, 2018; Rosell et al., 2012; 
Sabrina et al., 2009)), also suggests a potential for endemicity of the 

virus in the landscape with seasonal epidemics, since the peak of 
introduction of new susceptible individuals into the population repre-
sents increased opportunities for transmission (Altizer et al., 2006). In 
addition, boar piglets have been seen to survive for longer periods after 
infection compared to adult boars (Sánchez-Cordón et al., 2019), 
meaning an increased potential for effective contacts per infected indi-
vidual and hence a higher chance of epidemic take-off. 

However, the simulated epidemic which was used to provide the 
data used in the challenge showed a decline in real incidence in wild 
boar from around day 35, down to almost no new cases by day 230 (ASF 
Challenge coordinators). This discrepancy between our results and the 
original model could have originated from the differences in assump-
tions. For instance, ASFV was introduced into a single wild boar in the 
original model 112 days before the first detected case (ASF Challenge 
coordinators). In our model, ASFV infections were seeded in wild boar at 
day 1 for phases 1 and 2 or at day 60 for phase 3, based on the number of 
infected boar in the synthetic data provided (Appendix A). As the 
number of seeded infections was assumed based on the number of 
infected boar as observed in the synthetic data and not estimated, this 
number could have been underestimated. This could have resulted in a 
temporal shift of the epidemic according to our model, whereby day 230 
would be in earlier stages of the epidemic than observed in the “real” 

Table 5 
Number of detected infections in wild boar and pig herds by day 110 under 
alternative parameter values tested in the sensitivity analysis. Estimates pre-
sented are medians and 95% credible intervals (CrI) of 100 stochastic repetitions 
of the model. Parameter values as used in the baseline model (maximum 
infection range = 8 km, α= 1 km, duration of infectiousness in carcasses = 90 
days; and duration of infectiousness in live boar = 14 days) and corresponding 
outcomes are in bold.  

Parameter Values Median number of detected 
infections by day 110 (95% CrI) 

Wild boar Pig herds 

Maximum infection range (km) 2 1435 
(1395–1476) 

12 
(10–16)  

8 2991 
(2856–3125) 

24 
(20–29)  

14 3043 
(2891–3199) 

24 
(21–31)  

20 3061 
(2924–3189) 

24 
(20–30) 

Scale parameter of dispersal kernel, α 
(km) 

0.6 1804 
(1736–1861) 

14 
(11–19)  

0.8 2282 
(2202–2361) 

17 
(14–21)  

1.0 2991 
(2856–3125) 

24 
(20–29)  

1.2 4094 
(3945–4279) 

33 
(28–40) 

Duration of infectiousness in carcasses 
(in days) 

10 2756 
(2639–2890) 

23 
(19–28)  

50 2995 
(2868–3106) 

24 
(20–30)  

90 2991 
(2856–3125) 

24 
(20–29)  

130 2982 
(2835–3103) 

24 
(20–30) 

Duration of infectiousness in live boar 
(in days) 

5 2071 
(1986–2138) 

24 
(20–29)  

7 2308 
(2224–2434) 

24 
(20–29)  

10 2638 
(2501–2774) 

24 
(20–28)  

14 2991 
(2856–3125) 

24 
(20–29)  

Table 6 
Number of detected infections in wild boar and pig herds by day 140 under 
alternative intervention efficacies between day 111 and 140. Estimates pre-
sented are medians and 95% credible intervals (CrI) of 100 stochastic repetitions 
of the model.  

Parameter value relative to baseline Median number of detected infections 
by day 140 (95% CrI) 

Fencea Wild boar testingb cullWBc Wild boar Pig herds 

100%  100% 100% 3443 (3323–3547) 38 (31–45) 
75% 37 (30–45) 
50% 37 (30–45)  

75% 100% 3407 (3297–3507) 39 (31–45) 
75% 38 (31–45) 
50% 37 (32–45)  

50% 100% 3361 (3252–3456) 38 (32–47) 
75% 37 (31–45) 
50% 37 (31–45) 

75%  100% 100% 3443 (3338–3550) 38 (31–47) 
75% 38 (31–44) 
50% 38 (31–44)  

75% 100% 3400 (3299–3501) 39 (32–46) 
75% 37 (31–46) 
50% 37 (32–46)  

50% 100% 3369 (3278–3479) 39 (32–46) 
75% 38 (31–44) 
50% 38 (31–43) 

50%  100% 100% 3444 (3344–3561) 39 (32–47) 
75% 38 (31–46) 
50% 38 (31–46)  

75% 100% 3408 (3312–3517) 39 (32–45) 
75% 38 (31–46) 
50% 38 (31–46)  

50% 100% 3372 (3273–3471) 39 (33–47) 
75% 38 (31–45) 
50% 39 (31–45)  

a During phase 3, we allowed for a “leaky” fence in all directions, such that 
ASFV could be transmitted between two patches on opposite sides of the fence 
depending on the distance between their centres. Here, we tested different 
values of the efficacy of the fence when the maximum transmission distance for 
two patches i and j on opposite sides of the fence is equal to: 4km = MIR/2 
(baseline; 100%), 5.3km = MIR/(2 × 0.75) (75%), or 8km = MIR/(2 × 0.5)
(50%). 

b We evaluated three scenarios where a smaller fraction (compared to our 
baseline scenario) of wild boar were tested post-removal: 100% (baseline), 75% 
or 50%. 

c Similarly, we evaluated three scenarios where only a fraction of pig herds 
located less than 3 km away from positive wild boar were culled: 100% (base-
line), 75% or 50%. 
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trajectory, thus overestimating virus persistence. Estimating the number 
of infections at the beginning of the simulations or the date of intro-
duction of the virus could represent possible refinements to avoid this 
issue. Another possible explanation could be the spatial spread of the 
virus. Spatial diffusion is dependent on the probability of the virus 
reaching new areas with susceptible individuals. Differences in param-
eter estimates or in spatial structure (patches in our model versus indi-
vidual boar in the original model) could explain a faster diffusion in our 
model compared to the original one, increasing the chances of reaching 
new areas with susceptible boar and therefore increasing virus 
persistence. 

However, virus persistence, as predicted by our model, is more 
reflective of the current situation and challenges being faced by many 
countries within Europe. Wild boar play an important role in the 
epidemiology of ASFV in Europe with current evidence suggesting that 
ASFV is maintained at low prevalence in the wild boar population with 
the persistence of ASFV within wild boar carcasses and the associated 
environmental contamination contributing to the maintenance and 
spread of disease (Chenais et al., 2019). In areas where ASFV is present 
in local wild boar populations, transmission to pig herds may occur via 
direct contact between wild boar and outdoor pig herds or may occur via 
human-mediated introduction from the contaminated local environ-
ment (Chenais et al., 2019). Since its re-introduction to Europe in 2007, 
only two countries – the Czech Republic and Belgium – have managed to 
eradicate ASFV when it has been present in wild boar (European Food 
Safety Authority et al., 2021; Miteva et al., 2020; Sauter-Louis et al., 
2021a). In both countries, ASFV was restricted solely to wild boar 
following a focal human-mediated introduction. In the Czech Republic 
the closest infected wild boar to the first confirmed wild boar case was 
over 300 km away, whilst in Belgium the distance was over 800 km 
(Sauter-Louis et al., 2022). This focal introduction is considered an 
important factor in the success of interventions within both the Czech 
Republic and Belgium (Sauter-Louis et al., 2022). In contrast, ASFV is 
endemic within the resident wild boar population in some eastern Eu-
ropean countries, which hampers control efforts (Chenais et al., 2019). 
The control measures utilised in the Czech Republic and Belgium reflect 
measures currently recommended by the EU when a focal introduction 
within wild boar has occurred in a previously disease-free area (Euro-
pean Commission, 2020b; Miteva et al., 2020). Three separate zones are 
demarcated – a core zone, a buffer zone and an intensive hunting zone 
(European Food Safety Authority et al., 2018; Miteva et al., 2020). The 
core zone is the area within which ASFV-positive boar have been iden-
tified. This area is fenced to control the movement of the wild boar with 
the goal of reducing disturbance and avoiding dispersal of infected an-
imals over a wider area. Mortality associated with ASFV is allowed to 
occur and carcasses promptly removed. During the period of active 
ASFV transmission, it is recommended that boar are undisturbed within 
both the core and buffer zones. Once the epidemic starts to decline, 
active population management is recommended under strict biosecurity. 
Within the intensive hunting zone (which is the outermost of the three 
zones), the goal is to reduce the population of wild boar to below a level 
at which transmission of ASFV cannot be sustained. In Belgium, in 
addition to measures targeted at wild boar, domestic pigs within the 
infected area were also culled at the start of the outbreak (Global 
Framework for the Progressive Control of Transboundary Animal Dis-
eases, 2020; Mauroy et al., 2021). Following the success of these stra-
tegies in Europe, a similar approach has been adopted in South Korea 
but has met with variable success. Differences between counties in the 
speed and method of implementation of control measures such as 
fencing and culling of wild boar are considered likely to have contrib-
uted to this variation in success (Jo and Gortázar, 2021). Breaches in 
biosecurity are also suggested to have contributed to both local spread 
and long-distance translocations of the disease (Jo and Gortázar, 2021). 
The challenge presented by ASF management highlights the importance 
of developing accurate mathematical models of ASFV transmission in 
wild boar and domestic pigs, to improve our understanding of ASFV 

transmission dynamics and to evaluate potential disease management 
strategies in various situations and locations. 

4.2. What factors influenced model dynamics? 

The sensitivity analysis provided insights on the impact of a few 
selected key parameters and assumptions on the infection and detection 
dynamics, namely (1) the limit in wild boar movements introduced 
during phase 3 (MIR), (2) the value of the scale parameter (α) of the 
transmission kernel, which was fixed in phases 2 and 3, and (3) the 
duration of infectiousness in live and dead boar. 

We found that the detected incidence was largely unaffected by 
changing MIR values when MIR ≥ 8 km (Fig. 5A). To understand this, it 
is helpful to consider the value of the dispersal kernel (where α = 1km as 
in the baseline model): both the value of the dispersal kernel and, 
consequently, the infectious pressure exerted on a susceptible patch j by 
an infectious patch i, decreases with increasing distance between 
patches (Eq. (1)). Thus, although the MIR increases, resulting in an in-
crease in the number of possible patches j that could be infected by i, the 
infectious pressure exerted by i on patches located at least 8 km away is 
negligible (value of dispersal kernel for dij = 8 km is 3.3× 10−4), hence 
such long-distance infection events are unlikely in the model. Conse-
quently, increasing the MIR beyond 8 km does not contribute substan-
tially to the number of new infections, as observed in Fig. 5A. Hence, 
fixing the MIR at 8 km did not artificially restrict the dynamics. 

Larger values of α led to larger estimates for the detected incidence 
(Fig. 5B and Table 5). Indeed, given constant β, dij, and the prevalence in 
patches i and j, larger values of α will result in higher infectious pres-
sures on a susceptible patch j (Eq. (1)) and hence more infections 
(Fig. C1B, Appendix C), and consequently, detections, than would be 
realized with a smaller value of α. 

When the duration of infectiousness in carcasses was 50 days or 
more, there was almost no sensitivity of either infection or detection 
dynamics to changes in the values of this parameter (Fig. 5C; Fig. C1C, 
Appendix C). This is due to the fact that once boar became carcasses, 
they persisted in the landscape no more than 43 days on average (by day 
110), a consequence of model assumptions and the removal dynamics as 
explained in Section 2.2.5.1.4. That is, an average boar carcass gets 
removed from the landscape before the end of its 90-day infectious 
period. Thus, values larger than 43 days will be expected to produce 
similar dynamics. However, values smaller than 43 days will be ex-
pected to produce different dynamics; in particular, the number of daily 
infections and consequently, detections will be generally lower, as in-
fectious carcasses spend less time in the landscape. 

Finally, we found that when the length of the infectious period in live 
boar was assumed to be shorter than 14 days (as in the baseline model), 
the detected incidence was generally lower than realized with the 
baseline model (Fig. 5D). Indeed, the more days infectious boar spend 
alive, the higher the proportion of infected boar among all hunted boar, 
given that within the period considered (day 60-day 110), the major 
mode of detection of infected boar was hunting. The graph of the cor-
responding dynamics for all infections (i.e., including undetected 
infected boar; Fig. C1C, Appendix C) reveals that compared to the 
detection dynamics, infection dynamics were less sensitive to changing 
values of this parameter. The number of days an infected boar spends 
alive (14 days in the baseline model) is expected to influence detection 
dynamics more than it does the infection dynamics because: (1) the bulk 
of detections targeted live boar; hence, increasing the lifespan of 
infected boar means a higher probability of detecting an infected boar; 
and (2) shortening the duration of infectiousness as a live boar only has a 
small impact on the overall duration of infectiousness (because the 
duration of infectiousness in carcasses is much higher: 90 days in the 
baseline model), and hence on the overall contribution of wild boar 
(alive and dead) to transmission. 

The sensitivity analysis also allowed us to assess the influence of 
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efficacy of interventions on model projections. Interventions assessed 
were the fence, wild boar testing and culling of pig herds located less 
than 3 km away from positive wild boar. The analyses showed that 
decreased testing resulted in fewer infected detected boar (Table 6), as 
expected, and increased permeability of the fence did not appear to 
result in an increase in the number of detected infections in boar 
(Table 6). 

4.3. What challenges did we face? 

The main challenge faced in model implementation concerned 
computation time. The complexity of the models, coupled with the 
increasing amounts of data as the modelling challenge progressed, made 
simulations and parameter estimation slow. This efficiency drawback 
was even more evident during the early stages of phases 2 and 3 for two 
reasons: (1) in these phases, we included information on individual 
boars and locations because this level of granularity was needed for the 
implementation of pig management strategies, such as the culling of pig 
herds less than 3 km away from an infected wild boar, and (2) candidate 
models had to be iteratively tested prior to parameter estimation. To 
mitigate this issue, we employed three approaches. First, algorithms 
were parallelized where possible and useful, taking advantage of high- 
performance computing clusters. Second, cross-language programming 
was utilised where needed. Although the main programming language 
was R, some sections of the model were written in the faster C++ lan-
guage to improve the overall speed. Third, the final model (at phase 3) 
was fitted to data from day 60, rather than from day 1. (This choice 
likely contributed to the accuracy of the phase 3 projections: in a pre-
vious epidemic modelling challenge, it was observed that models fitted 
to more recent data performed better than those fitted to data over the 
entire observed period (Viboud et al., 2018)). Still, the computational 
resources required were substantial (see Table A7, Appendix A for al-
gorithm runtimes). It is crucial, particularly in real-time analysis of 
epidemics, for modellers to have efficient tools in order to provide 
timely evidence-based recommendations for disease management. 
Therefore, more work is required on the efficient design of epidemic 
models to minimize computational burden upon implementation. Also, 
work to develop highly efficient parameter estimation methods which 
have the potential to scale with large datasets and complex models will 
be useful for real-time epidemic response. 

4.4. How could the modelling approach/choices be improved? 

Since we constructed the model rapidly during a hypothetical animal 
health emergency, the modelling approach presented here can be 
improved in a number of ways. First, the component of the model 
describing transmission dynamics in wild boar could be made more 
realistic by including a latent compartment, as in the pig herd model. 
The sensitivity analysis on the duration of infectiousness in live boar 
may be considered an approximate test on the length of a latent period 
on infection dynamics: one may think of the baseline model as allowing 
for no latent period and of the alternative models as allowing for a latent 
period of D days, where D is the decrease in infectious period between 
the baseline and the alternative model. The difference in the number of 
infected detected boar between the baseline model and the alternative 
models (decrease in infectious period by 4, 7 and 9 days) was notable – 
the lower the infectious period, the lower the number of infected 
detected boar relative to the baseline (Fig. 5, Table 5). The absence of a 
latent period in the wild boar model may therefore explain the over-
estimation in the number of infected detected cases in phase 2 (Tables 4 
and 5). 

Second, our model could be fitted to pig herd incidence, to better 
characterize infection dynamics between herds. We were not able to fit 
our model to pig herd data because the data were restricted to the 
number of detected infected pig herds, which was very low especially 
during the early phases of the challenge. Incorporating the analysis of 

data on pig herds could have allowed the separate estimation of α and β 
parameters for boar-to-boar and boar-to-pig transmission. However, the 
close similarity between model projections and data for pig herds 
(Table 3; Fig. B1, Appendix B; Table 4) show that the use of common 
parameters for boar-to-boar and boar-to-pig transmission was sufficient 
for the purposes of our model. In addition, this avoided the need to 
perform ABC for both components of the model, which would have 
increased an already long computation time. Parameters for within- and 
between-herd transmission were based on experimental infections 
(Gallardo et al., 2017; Guinat et al., 2016b), previous modelling work 
(Halasa et al., 2016c, 2016a) or adapted from knowledge from classical 
swine fever virus. More detailed data, for instance on the number of 
infected or dead pigs in each herd, could have been useful to estimate 
within-herd parameters (Guinat et al., 2018). These kinds of data could 
be collected when facing a real ASF epidemic to better inform mathe-
matical models used. 

4.5. How can the projections be improved? 

Our projections could be improved by utilising multi-model ensem-
bles as these have consistently demonstrated superior prediction abili-
ties and lower variance, on average, compared to single models for 
epidemic forecasts (Johansson et al., 2019; McGowan et al., 2019; Reich 
et al., 2019; Viboud et al., 2018), deriving advantage from their ability 
to incorporate various signals from their constituent models, each of 
which may capture a distinct combination of system characteristics 
(McGowan et al., 2019). In the context of modelling challenges or 
real-time analysis of epidemics, the limited time available for analysis 
may make it challenging to develop multiple, diverse models needed for 
a good ensemble. For some modelling challenges, an ensemble based on 
the presented models have been developed (for example, (McGowan 
et al., 2019; Viboud et al., 2018)) and such ensembles could serve as 
useful tools for informing disease management in the event of a real 
epidemic. 

4.6. Comparison to previously published modelling studies 

The pig herd model used within this study was broadly based on the 
models reported by Halasa et al. (2016c, 2016a). For within-herd 
transmission, the main modification that was implemented within our 
model related to the duration of the latent and infectious periods. We 
based these on experimental data reported by Guinat et al. (2016b) 
rather than on expert knowledge and we incorporated uncertainty in 
these parameter values as in Vergne et al. (2021). As in previous studies 
(Guinat et al., 2018; Halasa et al., 2016a), we assumed homogeneous 
mixing within herd, i.e., ignoring the impact of herd structure on ASF 
transmission. Although this may not represent adequately the reality for 
some highly-structured pig herds, this assumption was mainly the result 
of an absence of within-herd epidemiological data and a lack of infor-
mation on how pig herds were structured. The impact of this assumption 
on within- and between-herd transmission remains to be assessed, but 
would require detailed epidemiological data to allow the estimation of 
multiple within-herd transmission parameters (Guinat et al., 2018, 
2016b). 

For between-herd transmission, a number of modifications were 
implemented. We only considered disease spread via animal movements 
and via local transmission, as these were the main drivers of between- 
herd transmission in Halasa et al. (2016c) and Andraud et al. (2019). 
We therefore assumed transmission by indirect contacts (e.g. via people 
visiting the farm, trucks moving animals to abattoirs, or feed trucks) to 
be negligible, except for local spread within a 2-km radius (e.g. via 
shared material). For spread via animal movements, instead of 
computing probabilities of virus transmission via movements (Halasa 
et al., 2016c), we explicitly modelled animal movements as a potential 
source of introduction (e.g., as in Brooks-Pollock et al. (2014)), using the 
synthetic movement data provided and projected movements using 
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ERGMs. For local transmission, we used a continuous function of dis-
tance to represent the decreasing probability of transmission with 
increasing distance, instead of using discrete values for certain distance 
ranges as in Halasa et al. (2016c). 

The wild boar model was developed independently and was not 
based on any previously published modelling studies. As noted in Hayes 
et al. (2021), until 2020 the majority of the published ASFV transmission 
models for wild boar were based on Lange and Thulke’s ASF model 
(Halasa et al., 2019; Lange, 2015; Lange et al., 2018; Lange and Thulke, 
2017, 2015; Thulke and Lange, 2017) or parameterized as per that 
model (Croft et al., 2020). Our model is similar to that by Lange and 
Thulke (2017) in that it is a spatially explicit model. However, whilst 
many of the published wild boar ASF modelling studies include detailed 
demographic information (age and sex of individual boar, births, 
sub-adult dispersal, annual reproduction, litter sizes and mortality) 
(Croft et al., 2020; Gervasi and Guberti, 2021; Halasa et al., 2019; Lange, 
2015; Lange et al., 2018; Lange and Thulke, 2017, 2015; O’Neill et al., 
2020; Pepin et al., 2020; Thulke and Lange, 2017) we chose to simplify 
the demographic processes included within our model due to the short 
time-frame modelled within the ASF Challenge. 

The average duration of infectiousness for live infected wild boar 
used in published models is typically 5–7 days (Croft et al., 2020; Ger-
vasi et al., 2020; Gervasi and Guberti, 2021; Halasa et al., 2019; Lange, 
2015; Lange and Thulke, 2017, 2015; O’Neill et al., 2020; Pepin et al., 
2020; Thulke and Lange, 2017), a considerably shorter period than that 
used within our model (14 days) and this may have contributed to our 
overestimation of the number of cases in wild boar. 

The duration of infectiousness of carcasses is variable across studies 
and varies from 4 weeks (Lange and Thulke, 2017) to 12 weeks (Gervasi 
and Guberti, 2021). The 90-day period used in our model would thus be 
at the upper end of this range. More recently, studies have varied the 
rate of carcass decomposition by season to reflect different seasonal 
rates of carcass decomposition (Gervasi and Guberti, 2021; Pepin et al., 
2020; Thulke and Lange, 2017). Another study has demonstrated the 
influence of temperature and environmental conditions on ASFV 
persistence in carcasses (Fischer et al., 2020; Mazur-Panasiuk and 
Woźniakowski, 2020). The projection periods for the ASF modelling 
Challenge ran from August to February and thus these seasonal and 
temperature variations in the duration of infectiousness of carcasses 
could have been considered in our model. 

Prior to 2020 (when the ASF Challenge started), there had been a 
lack of diversity among ASFV models in both domestic pigs and wild 
boar although the situation has been improving (Hayes et al., 2021). Our 
model, alongside the other models produced in the ASF Challenge, 
provides a valuable contribution to increasing the diversity in the ASFV 
modelling literature. The number of studies modelling transmission 
between wild and domestic hosts remains small (Pietschmann et al., 
2015; Pollock et al., 2021; Taylor et al., 2021; Yoo et al., 2021). Given 
the importance of wild boar in the transmission of ASFV in Europe, the 
multi-host nature of our model is one of the major strengths of our study. 

5. Conclusions 

In summary, we have developed a framework for modelling ASFV 
transmission during outbreaks. The model can be parameterized in real- 
time during outbreaks and refined as additional outbreak data become 
available. The model can be used to generate forward projections and to 
predict the effectiveness of different proposed disease management 
strategies. 

For the simulated epidemic on Merry Island, our model indicated 
that transmission between wild boar (and from wild boar to pig herds) 
was the main driver of epidemic dynamics. Effective control measures 
included the construction of a fence around the main area of the island 
with high prevalence, followed by increased hunting of wild boar both 
within and near the fenced region. Culling of pig herds was generally not 
an effective control strategy, except in regions with substantial numbers 

of infections in wild boar. This is because there was only a low risk of 
transmission through the pig trade network. Our model predicted that 
the virus is likely to persist in future on Merry Island, at least in the 
short-to-medium term. 

An important general finding is that it is important to consider the 
timescale over which different control strategies are evaluated: in 
particular, the difference in efficacy between two interventions may be 
negligible when the interventions are evaluated over a short time win-
dow but this difference may become considerably larger when evaluated 
over a longer time window. 

Further refinement of our modelling framework is necessary going 
forwards. Nonetheless, we have demonstrated the potential for this 
approach to be used to generate projections and assess different possible 
control measures during future African swine fever virus outbreaks. This 
will help animal health policy makers optimise disease management 
decisions during future outbreaks. 
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