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GRAPHS WITHOUT A 2C3-MINOR AND BICIRCULAR

MATROIDS WITHOUT A U3,6-MINOR

DANIEL SLILATY

Abstract. In this note we characterize all graphs without a 2C3-minor. A consequence of this result

is a characterization of the bicircular matroids with no U3,6-minor.

1. Introduction

We assume the reader has a basic familiarity with matroid theory as in [5]; however, it isn’t com-

pletely necessary to read this note. Given a fixed graph H, results characterizing the structure of

graphs G without an H-minor have a well-established history going back as far as 1937 with Wagner’s

seminal result [7] for H = K5. Recently Ding and Liu [3] surveyed the known results for 3-connected

graphs H and an older survey by Diestel [2] lists results for some other small graphs. In all of the

results listed in [2, 3], the graph H is simple. The graph 2C3 is obtained from the cycle of length 3 by

doubling each edge. The graph 2C3 is of interest in matroid theory in that a bicircular matroid B(G)

is isomorphic to U3,6 if and only if G ∼= 2C3 up to removal of isolated vertices (see [8, Lemma 2.12] or

[1, Theorem 4.11]).

The main result of this note is Theorem 1.1 which describes the very limited structure that a graph

with no 2C3-minor can have. We remark that Theorem 1.1 is enough to characterize all graphs without

a 2C3-minor because: G has a 2C3-minor if and only if some block of G has a 2C3-minor and if G has

a vertex v of degree 2, then G has a 2C3-minor if and only if the graph obtained from G by smoothing

out v has a 2C3-minor. We also prove Theorem 1.2.
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Let G be an outerplanar simple graph. Thus G consists of a Hamilton cycle H along with a set

of chords C. Let C ′ be a disjoint copy of C. Embed G ∪ C ′ with chords C inside H and chords C ′

outside H. A doubled outerplanar embedding is any graph K contained between H and G ∪ C ′ with

embedding inherited from G ∪ C ′.

Theorem 1.1. If G is a connected and nonseparable graph with minimum degree 3, then G has no

2C3-minor if and only if

(1) G ∼= K4 or

(2) G is the topological dual graph of some doubled outerplanar embedding.

Theorem 1.2. If G is 3-connected and loopless, then G ∼= K4 or G contains a 2C3-minor.

2. Proofs

Given a graph G, a k-separation is an expression G = G1 ∪ G2 in which each Gi has at least k

edges and G1 ∩G2 is a set of k vertices. A connected graph is separable when it has a 1-separation. A

graph G is nonseparable when it is connected and has no 1-separation. A link is an edge in a graph

that is not a loop. Note that every edge in a nonseparable graph is a link. A connected graph G is

k-connected when it has at least k+1 vertices and it has no set of t < k vertices whose removal leaves

a disconnected subgraph.

Proof of Theorem 1.1. Assume that G ∼= K4 or G = H∗ where H is a doubled outerplanar embedding.

It is important to note that the graph of a doubled outerplanar embedding is still an outerplanar graph.

If G ∼= K4, then G has no 2C3-minor. If G = H∗, then H has no K2,3-minor. (It is well known that

a graph G is outerplanar if and only if it has no K2,3- or K4-minor.) Since any embedding of 2C3 in

the plane has topological dual graph isomorphic to K2,3, we get that G has no 2C3-minor.

Conversely, suppose that G has no 2C3-minor. The reader can check that K3,3 and K5 both contain

2C3-minors and hence G is planar. Let H be the topological dual graph of some embedding of G in

the plane. Note that H has no faces of length two because G has minimum degree 3. Furthermore,

since G is nonseparable, so must be H. Now |V (H)| > 2 because G has minimum degree 3. Since

|V (H)| ≥ 3, H is 2-connected. Let Hv be the graph obtained from H by adjoining an apex vertex

to all other vertices of H. Thus Hv is 3-connected. If Hv is planar, then H is outerplanar and has

an embedding in the plane without faces of length 2. Thus H is a doubled outerplanar embedding,

a desired result. If Hv is non-planar, then by a theorem of D.W. Hall ([4] or see [5, 12.2.11]) either

Hv
∼= K5 along with maybe some doubled edges or Hv contains a K3,3-subdivision. In the former case,

H ∼= K4 along with maybe some doubled edges. If an edge of K4 is doubled, however, the resulting

graph has a 2C3-minor, a contradiction. Thus G ∼= K4, a desired outcome. In the latter case H

contains a K2,3-subdivision and so G contains a 2C3-minor, a contradiction. □

Proof of Theorem 1.2. Let Ĝ be the simplification of G; that is, for each class of parallel links, delete

all but one of them. Thus Ĝ is 3-connected and simple. By Tutte’s Wheel Theorem ([6] or see
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[5, Theorem 8.8.4]) there is a sequence of 3-connected simple graphs G1, . . . , Gt such that G1 = Ĝ,

Gi+1 = Gi/e or Gi\e, and Gt
∼= Wn for n ≥ 3 where Wn is the n-spoked wheel. If n ≥ 4, then Gt

has a 2C3-minor and therefore so does G. So suppose that Gt
∼= W3

∼= K4. If G = Gt, then we are

done. So suppose that Gt is a proper minor of G. Since there is no 3-connected simple graph H for

which H/e or H\e is K4, we must have that Ĝ = G1 = Gt
∼= K4. Since Gt is a proper minor of G, G

contains K4 along with one doubled edge. This contains a 2C3-minor, as required. □

References

[1] C. R. Coullard, J. G. del Greco and D. K. Wagner, Representations of bicircular matroids, Discrete Appl. Math.,

32 (1991) 223–240.

[2] R. Diestel, Simplicial decompositions of graphs: a survey of applications, Graph theory and combinatorics (Cam-

bridge, 1988). Discrete Math., 75 (1989) 121–144.

[3] G. Ding and C. Liu, Excluding a small minor, Discrete Appl. Math., 161 (2013) 355–368.

[4] D. W. Hall, A note on primitive skew curves, Bull. Amer. Math. Soc., 49 (1943) 935–936.

[5] J. Oxley, Matroid theory, second ed., Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford,

2011.

[6] W. T. Tutte, Connectivity in matroids, Canadian J. Math., 18 (1966) 1301–1324.
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