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Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive 

Manufacturing  

 

Ankita Agarwal*      Tanvi Banerjee*      Joy Gockel†      Saniya LeBlanc‡      Joe Walker§      John Middendorf§   

Abstract 

An additive manufacturing (AM) process, like laser 

powder bed fusion, allows for the fabrication of objects 

by spreading and melting powder in layers until a 

freeform part shape is created. In order to improve the 

properties of the material involved in the AM process, it 

is important to predict the material characterization 

property as a function of the processing conditions. In 

thermoelectric materials, power factor is a measure of 

how efficiently the material can convert heat to electricity. 

While earlier works have predicted the material 

characterization properties of different thermoelectric 

materials using various techniques, implementation of 

machine learning models to predict the power factor of 

bismuth telluride (Bi2Te3) during the AM process has not 

been explored. This is important as Bi2Te3 is a standard 

material for low temperature applications. As a proof of 

concept, we used data about manufacturing processing 

parameters involved and in-situ sensor monitoring data 

collected during AM of Bi2Te3, to train different machine 

learning models in order to predict its thermoelectric 

power factor. We implemented supervised machine 

learning techniques using 80% training and 20% test data 

and further used the permutation feature importance 

method to identify important processing parameters and 

in-situ sensor features which were best at predicting 

power factor of the material. Ensemble-based methods 

like random forest, AdaBoost classifier, and bagging 

classifier performed the best in predicting power factor 

with the highest accuracy of 90% achieved by the bagging 

classifier model. Additionally, we found top 15 

processing parameters and in-situ sensor features to 

characterize material manufacturing property like power 

factor. These features could further be optimized to 

maximize power factor of the thermoelectric material and 

improve the quality of the products built using this 

material. 
Keywords—additive manufacturing, powder bed fusion, 

bismuth telluride, machine learning, thermoelectric material 

 

1 Introduction 

Additive manufacturing (AM) is a process of creating an 

object by building one layer at a time. The types of AM 

processes can be classified into different types, one of 

these is the laser powder bed fusion type (PBF-LB), which 

can be used to create multiple device components of 

desired geometry and complexity in one process with 

minimal waste [1]. In this process, thermoelectric material 

powder can be melted and fused to create new objects 

using a laser beam. The steps involved in the 

manufacturing of these materials determine the overall 

quality of the product and the efficiency with which heat 

is converted to electricity [2]. So, predicting the measure 

of efficiency, known as the power factor, plays an 

important role in identifying the important parameters 

involved in the manufacturing process. These parameters 

and measures could be collected from processing 

parameters and images captured by in-situ sensors like 

tomography and polarimetry during the AM process 

which can be used for material characterization. 

The AM process involves processing parameters like 

laser power, laser travel speed, hatch spacing, layer 

thickness, and laser focus which influence the output of 

AM like density, electrical and thermal properties [3, 4, 5, 

6]. Additionally, in-situ sensor features and ex-situ 

material characterization features can also be collected 

during the AM process to optimize the process [7]. As the 

processing parameters are modified, the size of the molten 

pool of material (melt pool) changes. At any given point, 

this pool is very small (~100 µm). Many passes of the 

laser and many layers are required to fabricate even a 

small coupon. Therefore, collecting in-situ data with 

sensors monitoring the AM process can give valuable 

insight to the AM processing as additional inputs to 

predict ex-situ material characterization features like 

power factor. This is important so as to achieve the 

desired material properties. Additionally, this can help 

understand the influence of laser processing on grain 

morphology and thermoelectric properties which can 

reveal how PBF-LB processing affects thermoelectric 

material parts [6]. Optimizing laser processing parameters 

can also help guide the manufacturing process to build 

homogenous materials through PBF-LB.  

Power factor is equal to the Seebeck coefficient 

squared multiplied by the electrical conductivity. High 

performing thermoelectric materials with high Seebeck 

coefficient and high electrical conductivity but low 

thermal conductivity is increasingly desirable. The figure 

of merit Z, which determines the efficiency of 
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thermocouples and thermoelectric generators is directly 

proportional to the power factor of a thermoelectric 

material [8]. It is an important material characterization 

feature which measures the efficiency with which heat is 

converted to electricity. So, identifying the processing 

parameters and in-situ sensor features which are useful in 

predicting power factor can play a critical role in ensuring 

that materials are built with the optimal thermal and 

electrical properties, as well as to prevent defects during 

the PBF-LB process. 

PBF-LB has most often been used with metals, 

ceramics, and polymers and only recently has research 

been extended to study PBF-LB of thermoelectric 

materials [2, 4, 5, 9]. While in-situ sensor data has been 

collected for traditional AM material (e.g.- titanium alloys 

and nickel superalloys), these data have never been 

collected for thermoelectric material like bismuth 

telluride (Bi2Te3) which is a useful thermoelectric material 

for refrigeration or portable power generation [10]. 

Additionally, predicting material properties like power 

factor using AM processing parameters and in-situ sensor 

features for this material using machine learning methods 

have not been done earlier. This can help in modifying the 

processing parameters to optimize the thermoelectric 

properties of Bi2Te3. In this paper, we addressed the 

following research questions: 

• RQ1: Can we build a machine learning model to 

predict the power factor of thermoelectric 

material, Bi2Te3 using processing parameters and 

in-situ sensor features collected during the AM 

process? 

• RQ2: Which processing parameters and in-situ 

sensor features play the key role at predicting the 

power factor of this material during the AM 

process? 

 

2 Related Work 

Scientific experiments and simulation methods have been 

the traditional methods of AM for process parameter 

optimization which can be time consuming, erroneous and 

costly [11]. So, earlier researchers have used machine 

learning methods to optimize processing parameters. 

With respect to the powder bed fusion AM process of 

stainless steel 316 L, [12] used laser power and scan speed 

to predict the melt pool and to construct the process map 

through gaussian process-based framework. [13] trained 

random forest model to link the process parameters to 

pore formation by using data about part orientation, part 

position, and fraction of recycled powder during the AM 

process of Inconel 718.  Similarly, spreader translation 

and rotation spread data collected during the AM process 

of Ti-6A1-4V were used by [14] to train a multilayer 

perceptron model to construct a process map in order to 

optimize surface roughness and spreading efficiency for 

powder bed. To study the influence of support structure 

parameters on part quality, [15] built decision trees with 

presence of core support, support density and angle as 

inputs collected during the AM process. Additionally, 

ensemble based multi-gene genetic programming was 

implemented by [16] to achieve desired open porosity 

values by regulating the process parameters like layer 

thickness, laser power, and scan speed.  

In addition to the processing parameters, in-process 

monitoring of the layer deposition of the powder using in-

situ sensors play a vital role in the quality of the final 

product and to identify defects in the manufacturing 

process like distortion, rough surface, cracks, and lack of 

porosity. Some of these defects may propagate from one 

layer to the next. [17] detected anomalies of melt tracks 

through support vector machines and convolutional 

neural network models using layer wise images of melt 

pools, plume and spatter captured through high-speed 

cameras during the AM process of stainless steel 316 L. 

Similarly, during the AM process of IN 718, high-speed 

camera and optical microscope captured the morphologies 

of the melt pool which were used to detect keyhole 

porosities and balling instabilities using support vector 

machines [18]. Studies such as [19] detected and located 

defects due to overheating using K-means clustering on 

the intensity profile of melt pools captured through high-

speed cameras during the AM process of SS316 L. In a 

different study, analysis of the layer wise surface images 

before and after powder coating using random forests and 

support vector machines revealed elevated regions after 

laser exposure [20]. Self-organizing maps have also been 

used in previous studies to detect location of pores using 

thermal profile of the melt pools captured during the AM 

of Ti-6A1-4V [21]. 

Artificial intelligence-based data-driven methods 

have recently been used to discover high performance 

thermoelectric materials. [22] used machine learning 

methods to classify the materials into binary classes based 

on high or low Seebeck coefficients or electrical 

conductivity based on the features generated using only 

their molecular formula. Based on the results of machine 

learning models, they pointed out that machine learning 

models may misclassify materials that have a relatively 

low Seebeck coefficient and low thermal conductivity at 

the same time as poor thermoelectric materials and so 

predicting figure of merit (Z) or power factor directly 

through machine learning models is a better choice. [23] 

predicted thermoelectric performance for layered IV-V-

VI semiconductors using high throughput ab initio 

calculations and machine learning. They generated a 

dataset from high-throughput ab initio calculations, and 

developed two neural network models to predict the 

maximum Z (Z max) and corresponding doping type. 

Using machine learning models, they were able to identify 

n-type Pb2Sb2S5 as a potential thermoelectric material 

with a decent power factor and ultralow thermal 

conductivity.  



While earlier researchers have studied the importance 

of implementing machine learning methods using 

processing parameters and monitoring data collected 

during the AM process for various tasks on different 

thermoelectric materials, they have not collected in-situ 

sensor monitoring layer data for Bi2Te3. Moreover, 

machine learning models using processing parameters 

and monitoring layer data to predict how efficiently this 

thermoelectric material is able to convert heat to 

electricity during the PBF-LB process have not been 

implemented. So, we addressed this gap in the literature 

by predicting a material property like power factor of 

Bi2Te3 using processing parameters and in-situ sensor data 

from tomography and polarimetry collected during its 

PBF-LB AM process. We chose Bi2Te3 for this study as it 

is the only well-established thermoelectric standard 

reference material for low temperature (up to ≈150 °C) 

applications [24]. Additionally, it is also the only raw 

material which is commercially available.  

3 Methods 

3.1 Data collection 

3.1.1. Laser Powder Bed Fusion Machine 

The AM process is controlled by the processing 

parameters laser power, laser travel speed, hatch spacing, 

layer thickness, and laser focus. These parameters can be 

specified for each coupon separately during the PBF-LB 

manufacturing process. The PBF-LB process works by 

first spreading powder from the powder stock using the 

roller over the powder bed. A counter rotating roller re-

coater was necessary to help spread the powder into even 

layers on the build plate due to the irregularities in the 

particle shape and size. Then the energy source (laser) 

melts the material on the powder bed in a specified hatch 

pattern. Next the build platform lowers, and the process is 

repeated for a given number of layers until the desired 

thickness was achieved. For this study, coupons were 

fabricated using a custom built PBF-LB machine at the 

OpenAdditive facility 1 . Alongside process monitoring 

sensors were also installed to capture in-situ sensor data. 

The overall process of the manufacturing process is 

shown in Figure 1. 

 

3.1.2 Coupon fabrication  

Bi2Te3 coupons were fabricated using PBF-LB using the 

processing parameter range chosen based prior experience 

[4]. A total of 220 coupons were successfully 

manufactured using PBF-LB. So, each coupon was 

fabricated layer-by-layer. The processing variables used 

for PBF-LB were laser power, laser speed, hatch spacing, 

                                                           
1 https://openadditive.com/ 

 
Figure 1: AM process using PBF-LB of Bi2Te3 showing 

(a) Laser power bed fusion machine, (b) Tomography 

sensor, (c) Polarimetry sensor 

 

layer thickness, spot size, and scan strategy. Laser powers 

used for the coupons included 10 W, 12 W, 13 W, 14 W, 

16 W, 18 W, 19 W, 20 W, 22 W, 24 W, 25 W, and 30 W. 

The laser speeds used were 300 mm/s, 350 mm/s, 400 

mm/s, 450 mm/s, 500 mm/s, and 700 mm/s. The hatch 

spacings used included 0.01 mm, 0.02 mm, 0.025 mm, 

and 0.0375 mm. The layer thickness for the coupons was 

either 0.1 mm or 0.15 mm. The laser focus determined the 

spot size of the laser beam on the surface of the specimen. 

Two spot sizes that were used were 30 µm (focused on the 

surface) and 257 µm (defocused).  

 

3.1.3 In-situ sensors 

Most approaches to process monitoring in PBF-LB use at 

least one sensor. We focused on two modalities provided 

by OpenAdditive. These were polarimetry and thermal 

tomography. Each modality was captured by an off-axis 

camera, so we were given a calibration image to compute 

a homography matrix to calibrate camera perspective of 

the images into an overhead view. After calibration, each 

layer image was cropped to the internal area of each 

coupon. These 15 cropped regions were resampled up or 

down using Lanczos4 interpolation to 64 x 64 pixels. 

 

(a) Thermal Tomography  

The thermal tomography was captured by a Basler 

acA4024-29um camera with a Sony IMX226 CMOS 

sensor equipped with near-infrared (750-1000 nm) and 

neutral density filtering lenses. It was configured for long-

exposure (250 ms) and low-frame-rate (4 Hz) at a 2000 x 



2500 resolution. The sensor had several noisy pixels 

which required the images to be cleaned using a median 

window convolution around the hot pixels. Each coupon 

had a unique processing parameter set that influenced the 

amount of energy in the welding process. This affected 

the emission of photons within the camera’s operating 

wavelength spectrum. Sometimes the sensor is not 

calibrated to handle the full range of emissions which 

coincidentally washes out texture detail when the sensor 

response is maxed out by too many emissions.  The 

texture in this sensor modality can be very informative 

because several phenomena are known to show up in 

thermal tomography. These include white comets 

(spatter), dark spots (missing powder), dark lines 

(recoater streaking or hopping), bright edges 

(delamination). The thermal tomography data consisted of 

thermograms from each coupon on each layer.  

 

(b) Polarimetry  

The polarimetry data was collected by taking two images 

per layer, one after spreading powder (post spread) and 

another after melting it (post melt); therefore, no 

compiling step was necessary. The polarimetry data was 

captured by a Basler acA4024-29um camera with a Sony 

IMX226 CMOS sensor that takes 2456 x 2052 resolution 

monochrome pictures of the build area after spreading a 

powder layer and after melting it. The post-spread images 

can reveal the uniformity of the powder spread and 

whether material from the previous layer is protruding 

into the next layer. The post-melt images may reveal how 

the powder spread affect the melted material. They also 

document each layer such that defects in other process 

monitoring data may be cross-validated with these data. 

The polarimetry post-spread data consists of powder 

spreads from each coupon on each layer while the 

polarimetry post-melt data consists of melted powder 

from each coupon on each layer. Both post-spread and 

post-melt images contained corresponding images for 

angle of polarization and degree of linear polarization.  

 

3.2 Image processing and feature engineering 

To implement machine learning models using in-situ 

sensor data, the raw images collected through these 

sensors need to be processed and engineered into features 

before they can be used for building the models. For this 

purpose, histogram equalization, image filters such as the 

Weiner filter for deblurring or the median filtering for 

cleaning were utilized. Then the following features were 

engineered for each layer of the coupon using Python 

OpenCV package2: 

 

                                                           
2 https://pypi.org/project/opencv-python/ 

Tomography sensor features: average, median, maximum, 

minimum, standard deviation of pixel intensity, and 

surface roughness. 

 

Polarimetry sensor features: 

1. Post spread features (features engineered from 

polarimetry data after the powder layer was 

spread):  

i. Angle of polarization (AoP):  average, median, 

maximum, minimum, standard deviation of 

pixel intensity, and surface roughness. 

ii. Degree of linear polarization (DoLP): average, 

median, maximum, minimum, standard 

deviation of pixel intensity, and surface 

roughness. 

2. Post melt features (features engineered from 

polarimetry data after laser scanning was done): 

i. Angle of polarization (AoP):  average, median, 

maximum, minimum, standard deviation of 

pixel intensity, and surface roughness. 

ii. Degree of linear polarization (DoLP): average, 

median, maximum, minimum, standard 

deviation of pixel intensity, and surface 

roughness. 

 

3.3 Dataset preparation 

When a coupon was fabricated, in-situ sensor data was 

collected for each layer of the coupon. The processing 

parameters remained the same while manufacturing each 

layer of a particular coupon. Additionally, the ex-situ 

material characterization output data, power factor at 

77°C mW/m K2 was measured for each coupon when it 

was fabricated. We considered data from 117 coupons for 

our analysis. We considered each layer of the coupons as 

a single data point for our analysis. Thus, after performing 

feature engineering on in-situ sensor data collected for 

each layer of the coupon, we appended these in-situ sensor 

features values, corresponding to each layer of the coupon 

in the dataset with the corresponding value of processing 

parameters and power factor at 77°C mW/m K2, which 

were the same for all layers of a particular coupon.  

After combining the AM in-situ sensor monitoring 

data, processing parameters, and power factor to each 

layer of the coupon, we had a total of 3,157 sample points 

for our analysis and for building machine learning models. 

Each layer of a particular coupon had the same value of   

processing parameters and power factor but different 

values for in-situ sensor features.  The overall framework 

depicting the various steps involved from data collection, 

image processing and feature engineering to building 

predictive machine learning models to predict power 

factor using processing parameters and in-situ sensor 

features is shown in Figure 2. 



 

 

 
Figure 2: Framework for predicting power factor using processing parameters and in-situ sensor data 

3.4 Machine learning models

We experimented with four classes of machine learning 

models in increasing order of complexity: 1) linear 

models; 2) non-linear kernel-based models; 3) 

bootstrapping (ensemble) models; and 4) neural networks, 

to predict a material property known as power factor using 

processing parameters and in-situ sensor features. As 

linear models, we implemented naive Bayes, logistic 

regression, and linear support vector machines (SVM) 

while polynomial kernel SVM and radial basis function 

SVM were chosen as non-linear models. We implemented 

decision tree, random forest, bagging classifier or 

bootstrap aggregator, and AdaBoost classifier as 

ensemble models and multilayer perceptron as neural 

network model. Since the various parameters used as 

predictors of a target variable come in different ranges, we 

perform feature scaling (standardization) on processing 

parameters and in-situ sensor features by normalizing 

these in the range of 0 and 1. Thereafter, we split our 

dataset into 80:20 training and test ratio. The random 80% 

of the dataset was used for training machine learning 

models while the rest 20% of data was used to test the 

performance of machine learning models. We 

implemented these models using the Python scikit-learn 

library3. 

Naive Bayes classifiers are the probabilistic 

classifiers based on applying Bayes' theorem with strong 

                                                           
3 https://scikit-learn.org/stable/ 

‘naive’ independence assumptions between the features. 

Logistic regression estimates the probability of an event 

occurring based on a linear combination of one or more 

independent variables. Support vector machines separate 

the data points on an appropriate hyperplane in an n-

dimensional input variable space between the two classes 

of observations based on the maximal-margin 

approach.  We implemented SVM using three kernel 

functions. Linear SVM is used for linearly separable data. 

Polynomial kernel SVM uses a polynomial function to 

map the data into a higher-dimensional space so that 

classes can be separated in a hyperplane. Similarly, the 

radial basis function kernel SVM (RBF kernel SVM) is 

used when the classes cannot be separated linearly.  

Decision trees use a rule-based approach or tree-like 

model to classify output based on the conditions applied 

to the independent variables. Random forests are 

ensemble learning methods for classification that operate 

by constructing a multitude of decision trees at training 

time. We set the number of decision trees to be 50 for our 

model. Similarly, AdaBoost classifiers and bagging 

classifiers are also ensemble learning methods. In the 

AdaBoost algorithm, a bunch of models are trained 

sequentially. We start with the first model which produces 

some error in the prediction. The next model focuses more 

on data points that produce errors in the previous model 



by giving them more weights. This way a series of models 

are combined for a single prediction. We set the number 

of estimators to be 50 at which boosting was terminated. 

Bagging is a bootstrap-aggregated ensemble meta 

estimator of decision trees where random samples with 

replacement are generated from the same training set. 

Then a model is trained on each of these random samples 

in parallel. Finally, the outcome from all these models are 

combined. If the target variable is categorical, a majority 

vote is taken from the results of different models. 

Otherwise, if the target is numerical, an average of results 

from all models is calculated. We chose the number of 

estimators to be 50 to implement bagging. Multilayer 

perceptron is a type of artificial neural network which 

consists of three layers of nodes: an input layer, hidden 

layer and an output layer to predict the output.  

The power factor values were continuous and so we 

binned these into two categories high and low based on 

the median value. Any power factor value less than the 

median value was categorized as 0 (low power factor) and 

greater than the median value was categorized as 1 (high 

power factor). To analyze the performance of a machine 

learning method, we used accuracy, F1 score, precision, 

recall, and area under the Receiver Operating 

Characteristic Curve (ROC AUC) as the performance 

metrics. 

 

3.5 Feature selection 

To select the features which were important in predicting 

the power factor, we used the permutation feature 

importance technique. A permutation feature importance 

is defined as the decrease in a model score when a single 

feature value is randomly shuffled keeping the rest of the 

features the same. This is done to break the relationship 

between the feature and the target. By doing so, a drop in 

the model score indicates how much the model depends 

on the feature. We implemented the permutation feature 

importance technique using python scikit-learn library5. 

 

4 Results 

The results of the performance of different machine 

learning methods organized from least to most complex 

models to predict power factor using processing 

parameters and in-situ sensor features is shown in Table 

1. It can be seen that the ensemble-based methods like 

random forest, AdaBoost classifier, and bagging 

performed the best in predicting power factor with the 

highest accuracy as compared to other machine learning 

methods. 

The top processing parameters and in-situ sensor 

features selected using the permutation feature 

importance technique to predict power factor with their 

                                                           
5 https://scikit-learn.org/stable/modules/permutation_importance.html 

Table 1: Performance metrics for predicting power factor 

using processing parameters and in-situ features using 

different machine learning methods organized from least 

to most complex models. Results of best performing 

model (Bagging classifier) is highlighted in bold. 

 
Classification Model P R F1  AUC  Acc. 

Naive Bayes 0.72 0.72 0.72 0.77 0.72 

Logistic Regression 0.68 0.68 0.68 0.76 0.68 

Linear SVM 0.68 0.68 0.68 0.75 0.68 

Polynomial kernel SVM 0.68 0.67 0.67 0.75 0.67 

RBF kernel SVM 0.68 0.68 0.68 0.75 0.68 

Decision Tree 0.88 0.88 0.88 0.97 0.88 

Random Forest 0.89 0.89 0.89 0.97 0.89 

AdaBoost Classifier 0.88 0.88 0.88 0.88 0.88 

Bagging Classifier 0.90 0.90 0.90 0.98 0.90 

Multilayer perceptron 0.74 0.73 0.73 0.79 0.73 

Note: P: Precision, R: Recall, F1: F1 score, AUC: area under the 

Receiver Operating Characteristic Curve, Acc.: Accuracy 

 

feature importance scores and standard deviation are 

shown in Table 2. The results of feature selection show 

that the process parameters were dominant over the in-situ 

sensor parameters in predicting power factor. 

Additionally, it was found that the polarimetry sensor 

features were more important in predicting power factor 

as compared to the tomography sensor features. 
 

5 Discussion 

This study played a role in identifying the machine 

learning models which were best at predicting power 

factor of thermoelectric material, Bi2Te3 during the PBF-

LB AM of the coupons using this material. Ensemble-

based models were found to be the best models to 

characterize a thermoelectric material property of material 

like Bi2Te3. This finding coincides with the earlier studies 

where the ensemble-based classification scheme was used 

to detect defects during the AM process using in-situ 

sensor data in the form of layer wise images [25] and 

highlights that no individual processing parameter is 

responsible for the material properties.   

Ensemble learning is a suitable way of building 

machine learning models for sample-based data like the 

one collected during AM process so that the overall 

accuracy of the model is less affected by anomalous 

points that occur when sub-optimal processing parameters 

are used during the build process. This is important since 

we do not know apriori what these values are and want to 

create robust machine learning models that can learn the 

“weak features” that affect the manufacturing process. 

Specifically, this occurs when there are more than two or 

three processing parameters that impact the thermal and 

electrical properties. The model can be trained either on 

random samples of data points or the bad data points can 



Table 2: Top 15 important features along with their mean 

importance score and standard deviation 

 
S. 

No. 

Feature Mean score and 

standard deviation 

1. Laser Focus (mm) 0.142 +/- 0.007 
2. Power (W) 0.070 +/- 0.005 

3. Speed (mm/s) 0.052 +/- 0.008 

4. Polarimetry post spread AoP roughness 0.033 +/- 0.005 
5. Layer (mm) 0.030 +/- 0.004 

6. Polarimetry post melt AoP roughness 0.029 +/- 0.006 

7. Hatch (mm) 0.026 +/- 0.002 
8. Polarimetry post spread AoP std 0.017 +/- 0.005 

9. Tomography roughness 0.014 +/- 0.003 

10. Polarimetry post melt DoLP std 0.013 +/- 0.004 
11. Polarimetry post melt AoP std 0.012 +/- 0.005 

12. Polarimetry post spread DoLP max 0.012 +/- 0.004 

13. Tomography median 0.011 +/- 0.004 

14. Tomography avg 0.010 +/- 0.003 

15. Polarimetry post melt AoP median 0.010 +/- 0.004 

Note: AoP: Angle of polarization, DoLP: Degree of linear 

polarization, std: standard deviation, max: maximum, avg: average 

 

be picked over and over again and assigned a higher 

weight during training. This also reduces the amount of 

bias and variance of the model [26]. Process parameters 

play an important role in predicting power factor but as 

these values remain the same for each layer of the coupon, 

feature engineering using images collected from in-situ 

sensors can also reveal the layer-by-layer monitoring data 

to get insights about the manufacturing process and 

thermoelectric properties of the material. Roughness is 

one such feature which is measured using in-situ sensor 

data. Surface roughness from both tomography and 

polarimetry data during both spreading and melting 

process of the powder was identified as an important 

feature in predicting the power factor of Bi2Te3. So, if the 

roughness value exceeds a certain threshold, the 

manufacturing process may need to be aborted since the 

properties may be unacceptable and could adversely 

affect the parts built from that material. The features, 

tomography median and tomography average identified 

as important features during the AM process indicated 

that it is important to reduce the bright or dark spots in the 

thermal images and finding an optimum laser power to 

reduce porosity. Finally, the standard deviation of the 

pixel intensity in the polarimetry data after spreading and 

melting the powder revealed that the designs or geometry 

of the parts of the object manufactured using Bi2Te3 

should be modified based on these deviations [27]. These 

parameters which were best at predicting power factor can 

further be optimized so as to maximize power factor, 

enhancing the thermoelectric material’s ability to generate 

electrical power or pump heat.  

Designing machine learning models for the AM 

process has its own limitations and challenges due to a 

smaller sample size. Techniques like few-shot learning 

can be implemented [28] in the future to address the lower 

sample size constraint. Additionally, this study depends 

on the precision and quality of the images captured by the 

sensors. Integrating data from multiple sensors can reveal 

significant patterns in the layer-by-layer manufacturing 

process.  

 

6 Conclusion 

To improve the quality of the product manufactured using 

a thermoelectric material through PBF-LB AM, it is 

important to be able to predict this material’s important 

characteristic property i.e. power factor. In this study, we 

implemented machine learning models to predict the 

power factor of Bi2Te3 through supervised machine 

learning techniques using processing parameters involved 

and in-situ sensor data collected during the manufacturing 

process. We found that ensemble-based methods, like 

bagging, performed the best in predicting power factor of 

Bi2Te3 with an accuracy of 90%. Additionally, we found 

the top 15 features from processing parameters and in-situ 

sensor features to characterize the material manufacturing 

property like power factor which can further be optimized 

to maximize the power factor of this thermoelectric 

material. 
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