
69

volume 20 | issue 2
2023

ISSN 2329-9339

Stable URL: https://arcc-journal.org/index.php/arccjournal/article/view/1157
DOI 10.17831/enq:arcc.v18i1.1157

Corresponding Author: Alex Blanchard <a.blanchard@newcastle.ac.uk>

Published by the Architectural Research Centers Consortium under the terms of the
Attribution-NonCommercial-ShareAlike 4.0 International license

INTRODUCTION: THE BUILDING INFORMATION
MODEL AS PROSTHESIS
The Building Information Model
Spurred by benefits of efficiency and reliability,
contemporary AEC practices are assembling around

the use of digital BIM models to develop a script for
construction, envisioned to perform as a digital twin and
management tool for the constructed artefact. Situated
at a Graphical User Interface (GUI), the BIM-architect
adopts the structures and logic of a building model

Re-constituting Precarity for the BIM-Architect

Alex Blanchard

Abstract

As architecture, engineering, and construction (AEC) practices become broadly mediated by computational methods,
this article considers the modes of precarity implied for the architect adopting BIM as a medium of modelling and
design. Situating the computational apparatus as a prosthesis to the BIM-architect, the article outlines the degree of
agency configured for operators of BIM applications while they utilize the structures and methods of software pre-
programmed by the application’s original developers. Exploring the structures of Autodesk Revit’s database via the
Application Programming Interface (API), the paper interrogates the rationale and logic of building encoded by the
program through a reading of its operative code in textual form.

Situating an interplay between the Revit-architect and application, who programmes a building model while their
intention and conceptualization is programmed in turn, the conditions of precarity installed for the Revit-architect as
operator are considered as a result of their limited capacity to modify the programme’s operative methods. Drawing
from a political history of technology to interrogate the distributed agency between the Revit-architect and technical
apparatus, the article ultimately explores how the architect might adopt the phenomenal experience codified by
the procedural operations of algorithms through alternative means. It concludes by drawing from autoethnographic
practice and situated experiences at the site of the author’s studios, offering material from which to construct an
alternative and differentiated notion of algorithm-aided modelling and design according to a nuanced attention to
the depth of building.

Keywords: building information modelling, programming Autodesk Revit, codeworks, computational site-writing.

70
ENQUIRY: The ARCC Journal | VOLUME 20 ISSUE 2 | 2023

http://www. arcc-journal.org

translated into a computable program. The computer
is built upon the platform of electro-mechanical
hardware, which David M. Berry suggests encodes the
task of building information modelling as a calculable
problem (2011, 47).

In the case of Revit, the digital model is assembled from
a lexicon of architectural types and methods. Developed
from the basis of Euclidean geometry and parametric
meta-data to script components such as a wall, floor
door, or roof, information-rich BIM models are defined
according to a set of properties and variables by which
an operator can develop a record of existing built fabric
or a script to guide construction (Figure 1). BIM models
are proposed as a centralized site of collaboration
for a wider team of specialists, including structural
engineering, specification of mechanical and electrical
equipment, and environmental analysis, predominantly
performed using specialized toolsets integrated into
the application (Kolarevic 2005). Revit’s owners and

current developers Autodesk position the model as a
“single source of truth” (Autodesk 2022). The simulation
of building by a centralized digital model is purported
to reduce the risk of errors on site, streamline
production through file-to-factory processes, and offer
an indexical link between the components scripted
through computational means, indexed to standardized
components and computer-aided manufacturing
processes (Carpo 2014, 8, 9; Garber 2009).

Situated in a broader context of digitally-mediated
construction, BIM applications are also envisioned as
a management tool for the material life of the built
artefact, constituting a “digital twin” to reality (Pan and
Zhang 2021). BIM applications such as Autodesk Revit
have been situated as a tool for facilities management,
utilized for space and maintenance planning, linking
building product data and documents, and creating an
inventory of building equipment pre-occupancy (Meyer
and Spencer n.d.). Much of this information is embedded

Figure 1: Orthographic drawing of a model programmed via the Revit Application Programming Interface. (The Author).

71
ENQUIRY: The ARCC Journal | VOLUME 20 ISSUE 2 | 2023

http://www. arcc-journal.org

in the model through the use of proprietary products
that include a wealth of documentation categorized by
meta-data, ostensibly allowing a smooth transition from
the design and construction process through to facilities
operations (Meyer and Spencer n.d.). The BIM model is
proposed to be combined with principles such as the
Internet of Things in order to manage the built artefact,
combined with technologies such as blockchain to
manage the specification and procurement of discrete
parts through to the built project and for the duration
of its material life (Lagkas et al. 2018; Dounas, Lombardi,
and Jabi 2021).

In the context of climate and ecological crises, the close
mapping of material components through a digital
model as script could facilitate targeted re-use of fabric
and parts at the end of the building’s life. While utilized
as a design tool however, the possibilities of building
are prescribed and made precarious. As the model
becomes adopted as an indexical script, the design and
construction of built artefacts are modulated while being
encoded by the structures of the BIM application used.
This article takes the Revit-operator, whom I call the
“Revit-architect”, as its focus. Utilizing the application,
the Revit-architect may relatively quickly and efficiently
combine components to develop a model. Drawing from
the wider context of BIM adoption, and interrogating
the relationship between one such as the Revit-
architect and the programme they employ, I explore the
implications for an individual designer whose agency in
design might assume a precarious status as it becomes
co-configured by their medium.

The Prosthesis
In view of the coupled and entangled relationship
between the Revit-architect and programme they adopt,
Revit may be situated as a prosthesis to its operator.
The prosthesis denotes an artificial body part, such as a
limb that acts as a (supplementary) addition to the body
“proper”. Becoming structurally coupled with the body,
once in place it might radically shape the user’s relation
with the world. French philosopher Bernard Stiegler
interrogates the relationship between the human and
technology, arguing that one’s rationale and logic are co-
configured by their technical supplements. In Stiegler’s
account, an individual “exteriorizes” themselves into
prosthetic technical supports such as tools and media,
which are “not a mere extension of the human body”,
but “the constitution of this body” in the form of the
human (1998, 152–53). The tool is “no longer merely
inert matter, but neither is it living matter”, as the human
(the who) exteriorizes themselves into inert matter (the
what) (1998, 49). While engaging a technical object,
Stiegler suggests an individual is structurally coupled
with technological objects and apparatus in a play of
mutual influence between entangled cortex and matter
(1998, 158).

PROGRAMMING A BUILDING MODEL
Turning Stiegler’s thesis to BIM, the Revit-architect
is situated in close coupling with the application’s
structures. Through learned engagement with the
program, and their intimate knowledge of its methods,
the Revit-architect conceptualizes and imagines building
according to the manner in which it encodes the task of
modelling.

The Revit-architect’s phenomenal experience of design
is primarily formed by the minimal interface of the
click. Once they have learned and become attuned
to the software, through a combination of keyboard
shortcuts and the icons offered by the GUI their mode of
production holds the sensation of rapid flow, as their task
is characterized by inputting essential variables to the
algorithmic methods of Revit, which partially automates
calculation of the model. While the Revit-architect’s
work is expedited, it simultaneously follows the
pathways pre-programmed by the application’s original
developers. Their gestures are accelerated according to
essential input to the programme’s methods, directing
tasks related to modelling and representation which are
calculated through rote operations rapidly performed
by the central processing unit (Robinson 2008).

Translating the model into a form of digital data enables
its resampling and analysis by algorithmic means,
drawing from highly ordered and labelled information
to automate production of schedules, drawings (or
more properly, images), and renderings from the virtual
model space. Considering the character of “signalized”
computational methods in Signal. Image. Architecture.,
architect John May argues that the contemporary
architect’s character of work has from shifted from
orthographic methods such as drawing toward the
processing of digital images (2019, 97).

As the Revit-architect calls upon the pre-programmed
properties of the application, Florian Cramer and
Matthew Fuller suggest they are assimilated into the
structure of the computational program themselves—
the operator being cast as a computational object
(2008, 151). Stiegler’s notion of a prosthetic coupling
between human and technical apparatus suggests that
while utilizing Revit as a modelling medium, the Revit-
architect enters into a co-constitutive relationship with
the program. The hard categorical boundary between
the “who” and the “what” is blurred, as an individual
thinks through as much as with their modelling medium.

Contemporary BIM methods extend cultures of
design and construction characterized by distributed,
specialized labour. Indexed to historically evolving
and contingent patterns of work, the use of BIM
codifies a digital model as the mediating interface for a

72
ENQUIRY: The ARCC Journal | VOLUME 20 ISSUE 2 | 2023

http://www. arcc-journal.org

decentralized network of parties using a central model
and platform (Braun, Kropp, and Boeva 2022). In this
context, the contemporary architect’s role is positioned
by proponents of BIM as an organizer of expertise,
directing the labor of specialist designers, fabrication
and construction professionals remotely via the model,
while being directed by them in turn (Carpo 2013;
Garber 2014).

The contemporary BIM architect is indexed to
evolving practices of construction where the designer
programmed the work involved with building.
Historically, various technological means of developing a
record of design to guide or script construction included
methods such as the production of 1:1 mould forms to
direct the cutting of stone at a quarry, representation
of the built artefact through orthographic drawing,
and production of physical models alongside written
specification. Computational programmes developed
since the mid-twentieth century extend existing
cultures and AEC practices while translating the building
model into a computable problem. Developed in
the early 1960s Ivan Sutherland’s Sketchpad bridged
orthographic means of design with the computational
programme, translating drawing into a computational
simulation whereby an operator could input data using
a light pen to designate points and vectors on-screen
(Sutherland 1963). Graphical drawing methods were
combined with algorithmic operations such as “draw”,
“move,” and “delete”, re-mediating the modes of
(orthographic) design associated with a drafting board
into the capacity of the computer to automate tasks
(Müller-Prove 2002). Sketchpad represented an early
architectural use of the computer’s capacity to perform
labor “without the exercise of thought” (Davis and
Davis 2005, 82), a thread continued in contemporary
algorithm-aided design which adopts parametric
model structures where a user can change “only a
few parameters and the remainder of the model can
react and update accordingly”, extrapolating from the
operator’s point of input (Jabi 2013, 9). While the Revit-
architect adopts a similar series of algorithmic methods,
their conceptualisation of building might be made
compulsive according to the relatively fixed structures
of the application’s underlying database. The following

section draws from the compulsive experience of the
Revit-architect to explore the tendencies of industrial
objects materialized by contemporary computation.

INDUSTRIALIZED TECHNOLOGIES AND PRECARITY
Translating the model into computational media
enables its re-sampling through automated methods
that utilize labor crystallized in the form of algorithmic
code. Situated as a prosthesis, the experiential affect of
coding—which Joseph Weizenbaum noted reinforces a
compulsive way of thinking through the translation of
human intent into logical steps—is replayed through
the Revit-architect’s engagement with the program
predominantly through the GUI, with limited agency to
modify the software’s structures (1976).

John May reflects on the new modes of engagement
configured by computational technologies as practice
becomes “signalized”—that is, re-mediated into
automated digital forms (2019, 80). The nature of
human-computer interaction entails a shift from
hand-drawing toward programming, calling upon and
directing algorithmic operations via a user interface. On
these signalized modes, John May asks:

is it possible that the original” copy command, in
the first commercial release of AutoCAD in 1982,
constituted a fundamental and decisive rupture
in architectural reasoning? A rupture in which a
whole series of incredibly labor-intensive (that
is to say, time-intensive) orthographic gestures
were subsumed within an algorithmic logic
whose aim was to automate that labor in the
name of efficiency? (May 2019, 82–83)

Revit generates sensations of acceleration and
compulsion. I once left a project to retro-fit the Van
Nelle factory late. Over a few frantic weeks, with a
fixed, hunched posture over the screen, I relied on the
model as site of design. Revit codified my gestures, but
in return would automate production of most of my
images at the last moment (Figure 2). The fabric of the
Van Nelle lent itself to digital modelling. As I rolled out
mass produced components in multitudes using copy
and paste, I felt the sensation of engaging industrial

Figure 2: A project to retrofit the Van Nelle factory in Revit. (The Author).

73
ENQUIRY: The ARCC Journal | VOLUME 20 ISSUE 2 | 2023

http://www. arcc-journal.org

machinery related to those originally housed by the Van
Nelle factory for the processing of goods. My physical
gestures were made routine according to the set means
of engagement with a computer, my imagination
becoming compulsive to accord with the methods
prescribed by Revit’s underlying database.

Parallels extend from the industrial nature of the Van
Nelle, whose spatial design and engineering would
rationalize and streamline processes of sorting,
refinement, packaging, and logistics it housed, into the
rationalized task of the Revit-architect. As industrialized
forms of production broadly accelerated processes
of mineral extraction, refinement, and manufacture,
sophisticated technical apparatus of the early twentieth
century re-composed relations between their operators
and users. The forms of repetitive labour emerging
around Ford and Taylorist manufacture typically
situated the worker at the site of one fragmentary task
within divided production as a whole. Gilbert Simondon
responded to the industrialized forms of modernity
such as those at the Van Nelle, locating a shift in the
dynamic between technology and its modes of use.
Simondon posited that the sophisticated automated
apparatus of the mid-twentieth century assumed
increased agency and took on the role of “technical
individual”, re-situating the human’s role as an organizer
of the ensemble of apparatus, or relegating them as a
helper with reduced agency across the technical and
social milieu, “[they] grease, clean, remove detritus
[…]”(2017, 78).

Stiegler’s theoretical framework can be characterized
as a critical theory for technology, interrogating the
political implications of the relationship between one
such as the Revit-architect and the programme they
operate. In his later work on automatic society, Stiegler
argued that an industrial character of technology can be
situated according to the separation of producers from
consumers. In the case of Revit, the user effectively
consumes the labor of others, materialized in the methods
and operative algorithms of the programme to develop
a building model. Stiegler located a crisis emerging
through the rapidly evolving sophisticated technologies
of recent history, arguing that a disequilibrium occurs
when the possibilities for an individual to differentiate
their experience are over-determined by increasingly
automated apparatus. The architect’s reason and desire
become structured by the BIM package they engage
(Stiegler n.d.). According to Stiegler’s critical theory of
technology, the Revit-architect—relatively distant from
the computer’s operative algorithms and holding limited
agency to modify the programme—can be situated
as an operator rather than a programmer. As broader
cultures of building rely on the centralized BIM model, a
precarious condition is installed for the Revit-architect,
their capacity to differentiate possibilities of building

from the modulatory conditions of the application
resonant of the factory worker reduced to an operator
of industrialized apparatus.

CODING A BUILDING MODEL
The Revit application and model are comprised of
object-oriented code, which discretely scripts the
parameters of architectural types and their methods
of interaction (Goffey 2008). The architect accesses
these objects and methods via the abstracted graphical
interface, programming a building model according to
formal structures of the application. David M. Berry
describes the mechanism by which computational
practices perform a translation of the world. Parsing
it into “symbolic sets of discrete data to represent
reality [once encoded, the data] can be resampled,
transformed, and filtered endlessly” (Berry 2011). While
the architect programmes a digital model via a BIM
application, they call upon the computer-as calculating
device to co-develop a design, feeling sensations of
immediate production. Tapping the keys “W” and “A”
to open the wall method, and with two mouse clicks, a
fully detailed wall is generated in plan. Control-P. Enter,
enter, enter. Three drawings exported as PDF format.
The calculations of the software performed through
algorithmic methods are accessed from the distance
of the graphical user interface, automating the work
involved with modelling and representation.

A user may also engage with Revit via the Application
Programming Interface (API), which is offered for
practitioners to develop custom tools within the
application, or by third-party developers to create
macro extensions that supplement the functionality of
the program. The text-based programming console uses
words and phrases structured by syntax to develop or
engage with a model. The code offers another means
to read the underlying database of Revit along with its
operative algorithms. Programming a model through
the API demonstrates the manner in which Revit
encodes the building model from basic classes such as
point coordinates and vectors, building in complexity
toward architectural types such as a wall, floor, or door.
The following samples are presented from a dwelling
model developed through the API, exploring how the
types and methods typically accessed through icons are
structured by code.

Coding a floor slab
A slab at ground-floor level might be coded by first
declaring a set of four points:

XYZ ia = new XYZ(a.X + 0.5, a.Y + 0.5, a.Z);
XYZ ib = new XYZ(b.X + 0.5, b.Y 0.5, a.Z);
XYZ ic = new XYZ(c.X 0.5, ib.Y, a.Z);
XYZ id = new XYZ(d.X 0.5, ia.Y, a.Z);

74
ENQUIRY: The ARCC Journal | VOLUME 20 ISSUE 2 | 2023

http://www. arcc-journal.org

Each coordinate point then informs vectors which
delineate the plan form of the slab:

Line iab = (Line.CreateBound(ia, ib));
Line ibc = (Line.CreateBound(ib, ic));
Line icd = (Line.CreateBound(ic, id));
Line ida = (Line.CreateBound(id, ia));

Via the API, types of floor slab can be accessed through
a search function rather than graphical menus. In Revit’s
C# programming a language a filtered element collector
obtains a specific class to be used as floor type according
to name:

FloorType groundFloorSlab = new
F i l t e r e d E l e m e n t C o l l e c t o r (d o c) .
OfClass(typeof(FloorType)) .First<Element>(e
=> e.Name.Equals(“FloorGrndBearing_
65Scr90Ins125Conc50SBld150Hcore”))
as FloorType;

Once the floor family type is selected, the set of vectors
that delineate its boundary in plan are listed as an array
(a multi-dimensional list) of curves:

CurveArray slabCurves = application.Create.
NewCurveArray();
slabCurves.Append(iab);
slabCurves.Append(ibc);
slabCurves.Append(icd);
slabCurves.Append(ida);
XYZ normal = XYZ.BasisZ;

Finally, the floor plan, the floor type, and its level are
used as input values to model and create the floor:

tGroundSlab.Start();
Floor grndslab = doc.Create.
NewFloor(slabCurves, groundFloorSlab,
levelGround, false, normal);
grndslab.get_Parameter(BuiltInParameter.
FLOOR_HEIGHTABOVELEVEL_PARAM).Set(0);
tGroundSlab.Commit();

The code to program a floor slab illustrates the discrete
conceptualisation of building encoded according to
type. While the user’s possible input is modulated to
a relatively high degree by the application’s structures
and means of programming, their agency in modelling is
made precarious, contingent to the fixed database that
underlies the programme.

Seeking to respond to the compulsive experiences
conditioned by Revit according to my situated
experiences in a studio space, I set out to explore
alternative uses of BIM techniques, turning the
operative algorithms of Revit toward an alternative.

AN ALTERNATIVE NOTION OF ALGORITHM-AIDED
DESIGN
Programming code holds a double nature, performing
as both a form of machine language highly ordered
according to syntax and classes for execution by the
CPU, and as a means for human interpretation and
scripting. Programming a building model through Revit’s
API, I found myself experiencing the compulsive effects
of coding, replaying the sensations of Revit-modelling
via the GUI. The final component of this article explores
how situated autoethnographic practice can adopt
a mode of site-writing to critically engage with the
structures of computational programmes.

Re-contextualising Revit’s programming methods into
print form and working with them as a text makes
use of the double nature of code, creating a site to
modify the structures of Revit where an individual can
influence their media of design. Berry suggests the two-
phase structure of code allows “its program to be read
from its textual script form, and normative structures
and intentionalities explored” (2014, 17). Adopting
code as a typewritten text, I explored how it can open
a site of negotiation between the Revit-operator and
their technical prosthesis, offering means to fabricate
other means of conceptualizing building. Spending
approximately thirty-six months in artist studios that
temporarily occupied buildings in the city centre
of Newcastle upon Tyne in the UK, the compulsive
experience of coding a dwelling model in the Revit API
prompted me to write alternative (non-computational)
scripts according to observations at my workspace.
Seeking to adopt the algorithmic methods of Revit as
a means to describe processes of decay and modes of
habitation through procedural means, I documented
the site of my studios through a combination of
recording methods alongside a “textual model” of the
built artefact and my experiences there.

One of my studio spaces was situated within Carliol
House, a grand art-deco building constructed in the
1920s as headquarters for the North Eastern Electricity
Supply Company. My initial tests sought to write
the fabric in a textual form of code that explored the
calculation of data performed by Revit’s methods—such
as the algorithm to model a stair—in longhand (Figure
3). Each point was coded manually though the use of
lists as sets of coordinates, modified and transformed
using “for-loops” to denote the built fabric. From this
starting point, the code evolved toward a temporal
and procedural re-construction of the events on site
modelled according to my subjective encounters with
them.

While the model sets out from the use of Euclidean
geometry as a starting point, other means of describing

75
ENQUIRY: The ARCC Journal | VOLUME 20 ISSUE 2 | 2023

http://www. arcc-journal.org

Figure 3: Writing the Carliol House main stair script. (The Author).

76
ENQUIRY: The ARCC Journal | VOLUME 20 ISSUE 2 | 2023

http://www. arcc-journal.org

the experience of the building gradually emerged as I
differentiated my means of describing the site through
and with coding methods. The work began to portray
different events and processes, such as the material
decay observed within Carliol House. Paying close
attention to delaminating paint to one of the landings—
which was often remarked on by visitors—I scripted
other methods that simulated the process of material
decay in computational terms (Figure 4). The algorithm
offers means of conceptualizing sites and buildings
through temporal and procedural description. Working
between the writing of a text and procedural methods,
the flutter algorithm denotes a method by which
segments of delaminated paint fall to the ground after
losing contact with the plaster (Figure 5):

flutter()
{
find path from object datum to ground. Z at same
position equal to X and Y. Divide path into discrete
increments. For each path increment, object.
Z equals object. Z minus length given by path
division. Object X and Y plus or minus a random
float according to degree of flutter. For X and Y,
plus or minus value draws from a recollection of
drift from previous flutter iteration.
}

The textual model evolved from these initial tests,
its production rendered urgent by the notices of
eviction served to the artist studios ahead of extensive
demolition and redevelopment of the block, retaining
only the street-front façade of Carliol House. Developing
procedural means to describe situated experiences in
daily habitation of multiple studios at the block, the text
drifted from the quality of an executable script while
articulating other phenomena more often concealed or
omitted from BIM models, for example, the experience
of pulling open the heavy oak doors each morning to
enter the lobby of Carliol House, which was always cool
despite the weather outside. Other methods pointed
to alternative means of engaging computational
programmes according to my observations elsewhere
across the site, including an account of a studio member
who opened a storage room by estimating its access
code according to an observation of material wear to its
keys. Some of the events, things, and people observed
in the model were described in relation to upcoming
redevelopment at the site, witnessed during the move
out of studios. Other fragments of textual-code related
to the close attention and intimate knowledge of the
building fabric, ingrained over sustained daily use
(Figure 6).

CONCLUSION: RE-CONSTITUTING PRECARITY FOR
THE BIM-ARCHITECT
As BIM methods are adopted across AEC, they configure

Figure 4: Decay and at the site of my studios. (The Author).

Figure 5: Initial notes for the flutter algorithm at the site of
the stair. (The Author).

77
ENQUIRY: The ARCC Journal | VOLUME 20 ISSUE 2 | 2023

http://www. arcc-journal.org

new distributions of agency between professionals
and the media they employ. In this context, the
interfaces to modelling programmes retain potential for
reconstruction as a site of critique. This article draws
from Bernard Stiegler to demonstrate the agency held
by technological apparatus in prosthetic co-constitution
with their users, mediating and actively configuring
their experience and perception of design according
to the rationale and logic configured by computational
tools. As industrial tendencies are extended through
BIM platforms, the article demonstrates the precarity
installed for users such as Revit-architects holding
limited capacity to modify their tools. Drawing from
autoethnographic research and my own relationship
with Autodesk Revit, the article shows one possible
route to adopt situated practices to interrogate the
structures of BIM programmes and turn their methods
toward other means of conceptualizing building. Re-
contextualizing code in print is not foreclosed by the
requirement to execute but assumes a productive
mode of precarity in its interpretation, which remains
contingent to a subjective reader. The alternative
modes of algorithm-aided (textual) modelling that
resulted from observations and experiences in the built
environment offer one possible means to re-constitute a

technologically-mediate attention to building according
to a specific place.

ACKNOWLEDGEMENTS
The author wishes to thank the organizers and
participants of the Precarity Conference held at
the University of Pennsylvania in April 2022, whose
generous feedback and guidance shaped the research
presented in this paper. I extend my gratitude to Dr.
Franca Trubiano, Weitzman School of Design, Professor
Philip D. Plowright, College of Architecture and Design,
Lawrence Tech, and the anonymous reviewers. Thank
you also to Professor Adam Sharr and to my supervisors,
Dr. Edward Wainwright and Dr. Stephen Parnell at
Newcastle University, who helped to formulate a
positive critique of precarious practice.

RERERENCES

Autodesk. 2022. “Revit Software.” https://www.au-
todesk.com/products/revit/overview.

Berry, David M. 2011. The Philosophy of Software: Code
and Mediation in the Digital Age. Basingstoke, Hamp-

Figure 6: A fragment from the textual model of the site. (The Author).

78
ENQUIRY: The ARCC Journal | VOLUME 20 ISSUE 2 | 2023

http://www. arcc-journal.org

shire; New York: Palgrave Macmillan.

———. 2014. Critical Theory and the Digital, Critical
Theory and Contemporary Society. New York: Blooms-
bury.

Braun, Kathrin, Cordula Kropp, and Yana Boeva. 2022.
“Constructing Platform Capitalism: Inspecting the Po-
litical Techno-Economy of Building Information Model-
ling.” arq: Architectural Research Quarterly 26 (3).

Carpo, Mario. 2013. The Digital Turn in Architecture
1992-2012. AD Reader. Chichester: Wiley.

———. 2014. “Foreword.” In BIM Design: Realising the
Creative Potential of Building Information Modelling,
1st ed., 8–12. Chichester: Wiley.

Cramer, Florian, and Matthew Fuller. 2008. “Interface.”
In Software Studies: A Lexicon, edited by Matthew
Fuller, 149–53. Leonardo Books; Cambridge, MA: MIT
Press.

Davis, Martin, and Virginia Davis. 2005. “Mistaken An-
cestry: The Jacquard and the Computer.” Textile: The
Journal of Cloth and Culture 3 (1): 76–87. https://doi.
org/10.2752/147597505778052594.

Dounas, Theodoros, Davide Lombardi, and Wassim
Jabi. 2021. “Framework for Decentralised Architectural
Design BIM and Blockchain Integration.” International
Journal of Architectural Computing 19 (2): 157–73.
https://doi.org/10.1177/1478077120963376.

Garber, Richard. 2009. “Optimisation Stories: The Im-
pact of Building Information Modelling on Contempo-
rary Design Practice.” Architectural Design 79 (2): 6–13.
https://doi.org/10.1002/ad.842.

———. 2014. BIM Design: Realising the Creative Poten-
tial of Building Information Modelling, 1st ed. Chiches-
ter: Wiley.

Goffey, Andrew. 2008. “Algorithm.” In Software Studies:
A Lexicon, edited by Matthew Fuller, 15–20. Leonardo
Books; Cambridge, MA: MIT Press.

Jabi, Wassim. 2013. Parametric Design for Architecture.
London: Laurence King Publishing.

Kolarevic, Branko. 2005. Architecture in the Digital Age:
Design and Manufacturing. New York: Taylor & Francis.

Lagkas, Thomas, Vasileios Argyriou, Stamatia Bibi, and
Panagiotis Sarigiannidis. 2018. “UAV IoT Framework

Views and Challenges: Towards Protecting Drones
as ‘Things.’” Sensors 18 (11): 4015. https://doi.
org/10.3390/s18114015.

May, John. 2019. Signal. Image. Architecture. New
York: Columbia University Press.

Meyer, Bill, and Gareth Spencer. n.d. “Revit Model-
ing for Successful Facilities Management | Autodesk
University.” Autodesk. Accessed May 30, 2022. https://
www.autodesk.com/autodesk-university/class/Revit-
Modeling-Successful-Facilities-Management-2014.

Müller-Prove, Matthias. 2002. “Vision and Reality
of Hypertext and GUIs: 3.1.2 Sketchpad @mprove.”
https://www.mprove.de/visionreality/text/3.1.2_
sketchpad.html.

Pan, Yue, and Limao Zhang. 2021. “A BIM-Data Min-
ing Integrated Digital Twin Framework for Advanced
Project Management.” Automation in Construc-
tion 124: 103564. https://doi.org/10.1016/j.aut-
con.2021.103564.

Robinson, Derek. 2008. “Function.” In Software Studies:
A Lexicon, edited by Matthew Fuller, 101–10. Leonardo
Books; Cambridge, MA: MIT Press.

Simondon, Gilbert. 2017. On the Mode of Existence of
Technical Objects. Translated by Cécile Malaspina and
John Rogove. Minneapolis; London: University of Min-
nesota Press.

Stiegler, Bernard. 1998. Technics and Time, 1: The Fault
of Epimetheus. Translated by George Collins and Rich-
ard Beardsworth. Stanford: Stanford University Press.

———. n.d. “Anamnesis and Hypomnesis: Plato as the
First Thinker of the Proletarianisation.” Ars Industrialis
(blog). Accessed April 11, 2022. https://arsindustrialis.
org/anamnesis-and-hypomnesis.

Sutherland, Ivan. 1963. Sketchpad: a man-machine
graphical communication system (Technical Report).
Lexington, MA: MIT Lincoln Laboratory.

Weizenbaum, Joseph. 1976. Computer Power and Hu-
man Reason: From Judgement to Calculation. New ed.
San Francisco: W.H.Freeman & Co Ltd.

