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Abstract: Concept drift (CD) refers to a phenomenon where the data distribution within datasets
changes over time, and this can have adverse effects on the performance of prediction models in
software engineering (SE), including those used for tasks like cost estimation and defect prediction.
Detecting CD in SE datasets is difficult, but important, because it identifies the need for retraining
prediction models and in turn improves their performance. If the concept drift is caused by symmetric
changes in the data distribution, the model adaptation process might need to account for this
symmetry to maintain accurate predictions. This paper explores the impact of CD within the context
of cross-version defect prediction (CVDP), aiming to enhance the reliability of prediction performance
and to make the data more symmetric. A concept drift detection (CDD) approach is further proposed
to identify data distributions that change over software versions. The proposed CDD framework
consists of three stages: (i) data pre-processing for CD detection; (ii) notification of CD by triggering
one of the three flags (i.e., CD, warning, and control); and (iii) providing guidance on when to
update an existing model. Several experiments on 30 versions of seven software projects reveal
the value of the proposed CDD. Some of the key findings of the proposed work include: (i) An
exponential increase in the error-rate across different software versions is associated with CD. (ii) A
moving-window approach to train defect prediction models on chronologically ordered defect data
results in better CD detection than using all historical data with a large effect size (δ ≥ 0.427).

Keywords: chronological splitting; software defect prediction; concept drift; cross-version defect
prediction

1. Introduction

Software defect prediction (SDP) has been one of the most prominent research areas in
software engineering (SE) in recent decades [1,2]. SDP helps developers to perform the early
identification of faulty modules in software and assists project managers in maintaining a
trade-off between quality and time-to-market [3].

In the context of prediction models, if the underlying data distributions caused by
symmetric change over time for any unforeseeable reason, the performances of models
based on these data also degrade [4]. We refer to this phenomenon as “concept drift”, which
can be formally defined as follows. Given two distinct time-points defining the time interval
[t, t + ∆], if the feature vector is x and the class label is l, then the distribution is D(t,∆)(x, l).
CD occurs between two distinct time-points, t and (t + ∆), i f f ∃ t : D(t)(x, l) 6= D(t+∆)(x, l)
where Dt(x, l) = Dt(l | x)Dt(x) denotes the joint probability distribution at time t between
the attributes in feature vector x and class label l.
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Identifying CD is a relatively new research area in data mining and machine learn-
ing [5], but is a well-known phenomenon in data-stream mining [4]. When the underlying
distribution changes over time in non-stationary environments, the data behavior is sus-
ceptible to CD. This problem was first reported as “concept drift” by Schlimmer et al. [6]
who observed it while working on noisy data that were changing over time [4]. One aspect
of SDP that has received very little attention is how to detect the changes across versions
of chronological defect datasets. Leveraging the symmetry of the data labels can aid in
building robust and generalizable models, while addressing concept drift helps ensure the
model’s relevance and accuracy. We discuss the existing work in this area in Section 7.

In order to construct prediction models that are more efficient, the research community
should address the challenge posed by evolving data distributions over time, as elucidated
by Turhan [7]. Therefore, it is necessary to be conscious of dataset shifts and their implica-
tions in the SE domain. Dataset shifts can generate biased prediction results, for example,
due to changes in class prior probabilities. Changes in data probability, including probabil-
ity distributions, can lead to inaccurate results, and even a well-trained prediction model
will become outdated in the face of such drift, as noted by Dong et al. [8]. Furthermore,
other researchers [9–13] have reported that the distribution changes among the versions
in chronological defect datasets. Findings from streaming data analytics verify that if the
historical data change over time, the prediction models become outdated [4]. Likewise,
Ekanayake et al. [14,15] confirmed that the accuracy of SDP models fluctuates if the chrono-
logical data change over time, meaning that the prediction performance varies. In order
to construct prediction models that are more efficient, the research community should
address the challenge posed by evolving data distributions over time, as elucidated by
Turhan [7]. Therefore, it is necessary to be conscious of dataset shifts and their implications
in the SE domain. Dataset shifts can generate biased prediction results, for example, due to
changes in class prior probabilities. Alterations in data probabilities, encompassing shifts
in probability distributions, can result in erroneous outcomes. Even a prediction model
that is well trained can become obsolete in the presence of such drift, as highlighted by
Dong et al. [8]. Furthermore, other researchers [9–13] have reported that the distribution
changes among the versions in chronological defect datasets. Empirical evidence from the
field of streaming data analytics corroborates that, as temporal shifts occur in historical
data, prediction models experience obsolescence [4]. Likewise, Ekanayake et al. [14,15]
confirmed that the accuracy of SDP models fluctuates if the chronological data change over
time, meaning that the prediction performance varies.

1.1. Research Questions

In this paper, we describe our systematic investigation to detect CD in chronological
defect datasets (i.e., in the scenario of CVDP) to answer the following research questions.

RQ1: Is there any data distribution difference across software versions that degrades
the prediction performance?

RQ1 is characterized by the null hypothesis H0: There is no data distribution difference
across project versions.

RQ1 is answered by proposing and evaluating a framework that we term concept
drift detection (CDD). The framework includes a detection method to identify CD across
versions by providing information about when to update or re-train the prediction mod-
els. The adopted statistical hypothesis test—a chi-square test with Yates’s continuity
correction [16]—is designed to identify the statistically significant differences across project
versions, and the practical significance is computed by adopting a robust effect-size compu-
tational method, namely Cliff’s delta (δ).

RQ2: Can insights be gained by observing the trends in CD detection results while the
window size varies?

RQ2 is observationally addressed by analyzing the trends of experimental results
across the versions and by varying the window size covering the training set over time to
avoid the ill effects of CD. Specifically, we use the following:
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1. All data from past versions, excluding the most recent one, with a window size of
n = N, where N encompasses all historical data;

2. Data from the two most recent completed versions prior to the latest completed
version, where the window size n = 2;

3. Data from the most recent completed version prior to the latest completed version,
where the window size n = 1;

4. As a control, data from the most recent completed version are used as a testing set to
obtain prediction results.

1.2. Contributions

The main contributions of the work are listed as follows:

1. This study is one of the few initial contributions to conduct theoretical analysis and
identification of CD in software defect datasets.

2. A CDD framework is proposed to recognize CD in cross-version defect datasets.
3. The potential effects of CD on CVDP performance are empirically evaluated.

We encourage the use of the CDD framework for the identification of CD in chrono-
logical defect datasets for CVDP. Having the capacity to detect CD, software quality teams
will have the opportunity to implement the required measures for enhancing the prediction
models related to CVDP.

The subsequent sections of this paper are structured as follows: in Section 2, we
delve into the elucidation of key concepts, namely dataset shift, drift detection methods,
and concept drift. Section 3 offers an intricate description of our framework, providing
a step-by-step breakdown of its components. This section is dedicated to outlining the
experimental settings used to assess the effectiveness of our proposed framework. Our
experimental results are detailed in Section 4, while Section 5 is dedicated to the analysis
and discussion of these results. In Section 6, potential threats to the study’s validity are
identified and discussed. Section 7 explores relevant prior research, specifically focusing
on studies pertaining to cross-version defect prediction (CVDP). Lastly, we draw the
paper to a conclusion in Section 8, summarizing the key findings and providing our
concluding remarks.

2. Preliminaries
2.1. The Notion of Dataset Shift

A vast amount of data are now available in streaming format as a result of the increased
pervasiveness of digitization. Streaming data are typically thought to be non-stationary
in nature [17]. The data-generating process in non-stationary environments is variously
characterized as data shift, or concept drift [17]. Multiple researchers in the field of data-
stream mining have offered definitions for this phenomenon, which is also referred to
as “prior probability shift” [4,7,18]. Data drift is observed when there is a change in the
probability of the occurrence of event X at a specific time, denoted as time t. It can be
described formally as:

Pt(X) 6= Pt+1(X) (1)

Data drift can be understood by considering two distinct data distributions referred to
as historical data and new data, which correspond to different timeframes or perspec-
tives. In Figure 1, the historical data Dt+1 to Dt+6 are regarded as the new data and the
old window Dt+7 are considered as the recent window, and are determined by the indi-
vidual as indicated by Lu et al. [4]. As new data accumulate over time, the windows
move continuously.
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Dt Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7

Historical Data New Data

Old Window Recent Window

Figure 1. Data distribution using two windows at a timestamp t + 7.

To quantify the severity of drifting data, Figure 2 portrays the severity of a scenario
that starts at the distribution Dt+3 and ends at Dt+7. The start and end points have a
decisive effect on the learning process, which in turn determines the effectiveness of the
prediction model. The prediction model often requires an update in order to adjust for
variations in data distribution, as is well recognized in the literature [4,8,19–21].

Dt Dt+1 Dt+2

Dt+4 Dt+5 Dt+6 Dt+7

Dt+10Dt+8 Dt+9

D
a

ta
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is
tr

ib
u

ti
o

n

Time

Dt+3

Period of changes
Start time of  concept 
drift Concept reappears

Severity of concept drift

Figure 2. Severity of data drift in occurrence time. The changes occur at time t + 2 and t + 7.

2.2. Approaches of Detecting Data Drift

The method that is most widely used in the literature on data streaming is that
of change detection in the underlying distribution. Change-detection methods usually
monitor the error estimates of prediction models. The drift detection method (DDM) [22]
and early drift detection method (EDDM) [22] are the most widely used change-detection
methods in data-stream mining research.

DDM is a learning framework that is considered applicable to any learning model [22].
When new data are available, the learning model makes a judgment. If the sample i in the
distribution is stationary, the error-rate pi of the learning model will decrease. However,
if the distribution changes over time, pi will increase and the actual model will gradually
become inappropriate. The drift detection method (DDM) was the pioneering model to
introduce the concept of defining warning and drift levels based on alterations in the data
distribution. The warning level is reached if:

pi + si ≥ pmin + 2smin, (2)

where the standard deviation is:

si =
√
(pi(1− pi)/i) (3)

The drift level is reached if:
pi + si ≥ pmin + 3smin (4)

The developers of DDM set the threshold parameters to 0.95 and 0.90 for the warning level
and drift level, respectively.

In contrast, EDDM takes into account the average separation of two error rates pì and
the standard deviation sì of the classification model. This approach stores the values of pì,
sì and the maximum values of p `max and s `max. When (pì + 2sì)/(pì + 2sì) < α, the warning
level for drift detection is triggered. When (pì + 2sì)/(pì + 2sì) < β, drift has actually
occurred. The developers of EDDM set the values of α and β to 0.95 and 0.90. To detect
drift in streaming data, both DDM and EDDM make use of a single data instance and rely
on predefined thresholds.
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2.3. Concept Drift

The concept of dataset shift or drift was first identified in the data-stream mining
community [7,23,24]. Detecting the dataset drift is still very challenging in non-stationary
environments, as in these environments, the data change over time [25]. Lu et al. [23]
pointed out that the uncertainty of a dataset is an inherent property of streaming data.
Change is unavoidable and inevitably deteriorates the prediction results. The concept
of dataset shift in software engineering-prediction models was introduced by Turhan [7],
who cautioned about its effects and attempted to account for changes in data distributions.
However, drift-identification techniques used for the analysis of chronological software
datasets remain suboptimal. As shown by [15,26,27], the accuracy of such prediction
models degrades over time due to the changes in software-defect datasets.

The concept of dataset shift refers to the changes in data distributions [28]. More
formally, the problem is formulated as follows. Suppose that t is the discrete time index,
and v is the version index of a chronological dataset.

Ξ = [v1, v2, v3, . . . , vN ] (5)

Φ =


m11 m21 . . . mN1
m12 m22 . . . mN2

. . . . . .

. . . . . .
m1p m2p . . . mNp

 (6)

The total dataset consists of a number of N in versions Ξ of the dataset. By Equations (5) and (6),
we can define the dataset as {Ξ, Φ} where each version v contains the number of p in
modules m = 1, 2, 3, . . . , p. In Equation (6), matrix Φ is constructed to describe the modules
m of the versions Ξ. As an example, suppose there are two versions, v1 and v2, at discrete
time t. The data of these two distributions change over time. If the joint probability changes
in the data of versions Ξ, it can be defined as vi 6= vj where (i, j) = 1, 2, 3, . . . , p.

3. Materials and Methods

Within this section, we present an intricate overview of our framework and the
meticulous details of our experimental configuration. This encompasses a comprehensive
introduction to the chronological defect datasets we have employed and an in-depth, step-
by-step illustration of the CD detection process, utilizing the sophisticated chronological
split approach.

3.1. Benchmark Datasets

In this empirical research endeavor, we explored a set of 30 distinct versions originating
from seven benchmark software projects, all of which have been made available through
the dataset curated by Jureczko and Madeyski [29]. These chronological datasets have seen
extensive use in numerous studies (i.e., [9,30,31]) of CVDP. These datasets are gathered
from the SEACRAFT (https://zenodo.org/communities/seacraft (accessed on 10 July
2023)) repository of empirical software engineering data. More detailed descriptions of the
datasets can be found in [32,33].

Table 1 displays the benchmark datasets’ statistics where #M, #FM, and %FM describe
the number of modules, the number of faulty modules, and the percentages of faulty
modules, respectively. Note that the current versions inherit many modules from the prior
versions. Some modules are added or deleted from the previous between versions, which
leads to making a difference across between theme versions. Table 1 also shows the values
of skewness and kurtosis of the datasets. If the value of skewness is higher or greater than
+1, it indicates a skewed distribution. If the value of kurtosis is greater than +1, it seems
to indicate that the distribution is peaked [34]. The dataset consists of modules, with each
module being categorized as either defective or non-defective. Additionally, these datasets

https://zenodo.org/communities/seacraft
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incorporate 20 static code metrics for analysis (Table 2) for the prop projects’ datasets and
21 static code metrics (Table 3) prepared by the NASA metrics data program [35] for the JM
defect datasets.

Table 1. Statistics of the benchmark dataset.

Project Version # M #FM %FM Skew Kurt

jm
1 7782 1672 21.49% 1.39 2.93
1.2 9593 1759 18.34% 1.64 3.68
1.3 7782 1672 21.49% 1.39 2.93

prop-1

9 4255 149 3.50% 5.06 26.59
44 4620 389 8.42% 2.99 9.97
92 3557 1269 35.68% 0.60 1.36
128 3527 220 6.24% 3.62 14.10
164 3457 319 9.23% 2.82 8.94
192 3598 85 2.36% 6.27 40.35

prop-2

225 1810 147 8.12% 3.07 10.40
236 2231 76 3.41% 5.14 27.39
245 1962 103 5.25% 4.01 17.10
256 1964 625 31.82% 0.78 1.61
265 2307 229 9.93% 2.68 8.18

prop-3

285 1694 177 10.45% 2.59 7.69
292 2285 209 9.15% 2.83 9.03
305 2344 89 3.80% 4.83 24.38
318 2395 365 15.24% 1.93 4.74

prop-4
347 2871 162 5.64% 3.84 15.78
355 2791 924 33.11% 0.72 1.52
362 2854 213 7.46% 3.24 11.48

prop-5

4 3022 264 8.74% 2.92 9.54
40 4053 466 11.50% 2.41 6.83
85 3077 948 30.81% 0.83 1.69
121 2998 425 14.18% 2.05 5.22
157 2496 367 14.70% 1.99 4.97
185 2825 268 9.49% 2.77 8.65

prop-42
452 256 33 12.89% 2.21 5.91
453 192 20 10.42% 2.59 7.72
454 212 13 6.13% 3.66 14.37

Table 2. Description of the static metrics for prop dataset.

Metric Description

WMC Each class using weighted methods
DIT Tree depth of the inheritance
NOC Children in the sample
CBO Connecting classes of objects
RFC Class’s response
LCOM Methods are not cohesive enough
Ca Afferent couple
Ce Successful coupling
NPM The quantity of public methods
LCOM3 Methods are not cohesive and

from LCOM
LOC Lines of code
DAM Access to data metrics
MOA Aggregation measurement
MFA Functional abstraction index
CAM Coherence of classification methods
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Table 2. Cont.

Metric Description

IC Coupling with inheritance
CBM Linking different methods
AMC Method complexity on the average
MaxCC The highest possible values for a class’s

methods’ cyclomatic complexity
Avg(CC) Calculating the average cyclomatic complexity

of a class of methods
BUG Bugs in the class

Table 3. Description of the metrics for JM dataset.

Attribute Description

V(g) Cyclomatic complexity
Iv(G) Design_complexity
Ev(G) Essential_complexity
loc Loc-total
n Halstead total operators + operands
v Halstead total operators + operands
l Halstead “volume”
d Halstead “difficulty”
i Halstead “intelligence”
e Halstead “effort”
b Halstead
t Halstead’s time estimator
lOCode Halstead’s line count

lOComment
Halstead’s count of lines of
comments

lOBlank Halstead’s count of blank lines
lOCodeAndComment
uniq_Op : unique operators
uniq_Opnd : unique operands
total_Op : total operators
total_Opnd : total operands
branchCount : of the flow graph
defects {false,true}: module has/has not reported defects

3.2. Framework

This framework contains three primary stages: (1) data streams; (2) concept drift de-
tection and understanding; and (3) concept drift adaptation. Figure 3 describes the details.

STREAMING
DATA DRIFT ADAPTATIONDRIFT DETECTION  

& UNDERSTANDING

Data Streams

COMPONENT I COMPONENT II COMPONENT III

Time point to update decisions 
DRIFT  

DETECTION   
When did the drift occur? 

DRIFT UNDERSTANDING 
What types of drift is it?

IDENTIFY THE DRIFT 
Update model 

Chronological
data sets

Figure 3. CDD, a CD detection and adaptation framework.
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Stage I collects all available data from the sources and restructures them in a time frame.
The data can be reformed according to the user demands as instructed by Lu et al. [23]. For
example, if the data come in chronological order, therefore, we could use a chronological
split approach to process the data and make the scenario as chronological splitting for CVDP.
We can also refer this step as data preprocessing. This stage is considered an important part
for building a practical scenario.

Stage II identifies the CD if the data change over time. For recognizing CD in the con-
sidered data streams, it triggers three flags; CD, warning, and control. The CD flag reports
the changes in the compared distributions that deteriorate the prediction performance. The
warning flag is triggered when it tends to be CD, whereas the control flag refers to the
stationary distributions. This triggering process helps to know the state of CD and where
the CD is located.

CD adaptation is dependent on the knowledge gained from stage II. In the CD adaption
stage (stage III), the model is updated or retrained according to the result of CD detection.
Section 3.3 describes this framework step by step, as implemented by chronological defect
datasets and applied for CVDP. In this paper, we conduct the experiment by focusing the
detection of CD from where the guidance can be taken on when to update or retrain the
prediction model.

3.3. CDD Implementation

Stage I: Data streams and CVDP scenario design
The software project experiences several releases because of adding and deleting the

software functions [9,31]. The CVDP scenario is designed in such a way where the software
project contains several versions and behaves as streaming data. Since the changes occur in
every version of the software projects that release at different times, the motivation to carry
out this experiment is to further examine whether the changes in the data of each version
would lead to CD causing poor prediction results.

Each version of the application system is referred to as windows when describing
stage I. As an example, two consecutive versions can be deliberated as two windows—
where one window is considered as training, and the other one is the test set in a window-
based approach. Motivated by the studies of software cost estimation [36,37], we assume
that each version arrives one-by-one, taking a chronological split approach into account for
CVDP. Similarly, the splitting fashion also exhibits a window-based approach called a data
management technique, as described by research in the field of data stream mining [38].

The chronological split approach is assessed in our CD detection framework: it divides
the accessed data and considers training set in three ways: (1) the entire history of past
versions as window-of-size-n where n refers to all historical data (i.e., called a full-memory
approach in data streaming mining literature [38]) except the recent version of the software
project (Figure 4); (2) one recent version’s data prior to the recently completed version as
window-of-size-1 (i.e., called a no-memory approach [38]) (Figure 5); and (3) completed
recent two version’s data as window-of-size-2 approach (Figure 6). Furthermore, the
window-of-size-1 and window-of-size-2 approaches are the forgetting mechanism of the
modules of the non-stationary environment. We employ two-window-based approaches
(see Figure 1) considered to be the training set and the currently completed version consid-
ered to be test set.

In the learning process, the most recently completed version is considered to be the
testing set to assess the model. In CVDP, the potential shortcoming is that of how many
data need to be considered for learning as data arrive version by version and behave as
streaming data. The above-mentioned chronological splitting approach is more closely
related to practice. Because of this, the most practical issue is to form the window as
suggested by Iwashita et al. [39].

Describing the chronological splitting approach for CVDP, the window-of-size-n (full-
memory approach) employs all the historical data, which means not forgetting the old
versions of the software project. In window-of-size-1 (no-memory approach), the learner



Symmetry 2023, 15, 1934 9 of 25

induces only one completed version’s data that is prior to the most recent completed
version (Figure 5). For example, version 1 was used as a train set to build the model for
the jm project dataset. After that, the model was tested on the instances of version 1.2. In
window-of-size-2, the learner only induces two completed version’s data that is prior to
the most recent completed version (Figure 6).

Train Data

Test Data

v
e
r
si

o
n

Version 2 Version 3Version 1

Version 3 Version 4Version 2Version 1

Version 4 Version 5Version 3Version 2Version 1

Version 5 Version 6Version 4Version 3Version 2Version 1

Version 1 Version 2

time

Version 5 Version 6Version 4Version 3Version 2Version 1

Figure 4. Window-of-size-n where n refers to all available historical data.
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Figure 5. Window-of-size-1.
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Version 1

Version 2
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Figure 6. Window-of-size-2.
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Stage II: CD detection and understanding
For detecting CD, we operate under the assumption that data arrive in a streaming

fashion, and the surrounding environment undergoes non-stationary changes. In this
environment, it is difficult to assume that the instances are identically distributed and the
distributions change over time.

In this CD detection process, it is assumed that the data arrive in batches of instances
at a time. Supposedly, the instances can be presented as a pair of (−→a , b) where −→a are the
values with different attributes and b is the label of class. For the i− th instances, it can
be presented as (−→ai , bi). When the prediction model is built, the class level can be either
(bi = b́i) or (bi 6= b́i) where the error-rate is a random variable in Bernoulli trails. The
general scheme is adopted from the drift detection method, DDM [22]. In the binomial
distribution, the probability of the random variable illustrates the errors of i instances. For
each point i, the error-rate eri is computed with its corresponding standard deviation:

sdi =
√
(eri(1− eri)/i) (7)

According to probably approximately correct (PAC) learning theory [40], the distribution is
stationary if the error-rate of the learning model decreases. Changes in the error-rate of
learning models increase the probability of the distribution being non-stationary. Therefore,
the error-rate eri of the learning model will decrease if the number of samples i in the
distribution is stationary. The distribution changes over time if the error-rate eri of the
learning model increases and the actual model becomes inappropriate. The binomial
distribution is considered a normal distribution for a large number of data distributions,
and consequently, it contains approximately the same variance and mean. The probability
distribution should not be changed unless the changes in the data distributions happen
and then the 1− α

2 confidence interval for error-rate eri with i instances is (eri ± α ∗ sdi)
where the parameter α relies on the confidence level.

For managing the lowest possible values of the error rate and average deviation
throughout the learning process, two registers are assigned, ermin and sdmin, accordingly.
When the new instances become available, the error-rate and its standard deviation are
computed during the modeling process. It is compared with the existing ermin and sdmin.
If it becomes lower than the assigned values of registers, the registers are kept updated
with the new minimum values. In cross-version settings, as an example, every version of
chronological defect datasets contains a sufficient number of data distributions. Each time
the data of new versions become available, the instances i are processed to learn the model
to obtain its corresponding error-rate eri and standard deviation sdi and compared with
stored register values to keep updated. For detecting CD in cross-version settings, we set
the confidence level for triggering the warning flag to 95% (α = 0.05) with the threshold
eri + sdi ≥ ermin + 2sdmin. The confidence level for triggering the CD flag was determined
to 99% with the threshold eri + sdi ≥ ermin + 3sdmin as suggested by Gama et al. [22].

For detecting CD in the data distributions, we define three flags: warning Kw flag, CD
KCD flag, and control Kc flag. We discuss the triggering process as follows.

1. Warning flag Kw: The learning process maintains the current decision model and it
triggers the warning flag if it reaches the threshold eri + sdi ≥ ermin + 2sdmin.

2. CD flag KCD: It triggers the CD flag if it reaches the threshold eri + sdi ≥ ermin +
3sdmin.

3. Control flag Kc: When the learning error does not reach the level of Kw and KCD, it is
assumed that the environment is stationary.

For replicating this study, we provide the pseudo-code for the CD detection process
described in Algorithm 1. The algorithm employs the base classifier on the train set
and generates the error-rate of the prediction model (lines 1 and 2). We determine the
train window Tr and test window Ts according to the considered chronological splitting
approaches (as can be seen in Figures 4–6). After calculating the standard deviation and
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finding the minimum values of error-rate ermin with standard deviation sdmin and stored in
register, we identify the CD, warning, and control flags (lines 8–13).

Algorithm 1 Overview of CDD
Input:
Training window Tr and testing window Ts
Learner BaseClassi f ier
Sample of training and testing i
Outcome:
CD flag KCD, warning flag Kw and control flag Kc.
Procedure:

1: for t = 1, 2, . . . do
2: Learner construction on Tr
3: Prediction of the of the learner on Ts
4: Rate of error calculation eri
5: Compute sdi =

√
(eri(1− eri)/i)

6: Preserve eri, sdi and discover the values of register as lowest value of ermin with sdmin
during the process of learning

7: if (eri + sdi ≥ ermin + 3sdmin) then
8: KCD detected
9: else if (eri + sdi ≥ ermin + 2sdmin) then

10: Kw detected
11: else
12: Kc
13: end if
14: end for

The CD detection process helps to include a discussion of when to enhance the
prediction models in the learning process over time. By comprising the triggering process,
the three types of flags attained help to make a conclusion sharper with regard to when to
enhance or update the models. CD flags show that the CD is present when immediate action
is required to produce more accurate predictions. The target distributions are generally CD,
according to warning flags. If not, the control flag is triggered, meaning that target data
distributions are stationary, which prevents changes over time.

Stage III: CD adaptation
In the situation where there is uncertainty in the streaming data, the learning model

is often challenged to adapt the changes. It is a challenging task to address the changes
in such distributions, which change over time [38]. The most common remedy in such
situation is to update or enhance the existing model, as recommended by Lu et al. [41]. By
knowing where the CD occurs and how it happens in the distributions, the learning model
could be enhanced and personalized.

3.4. Designing CD Detection Statistical Test

We adopt a statistical test and design it for a two-window-based data distribution
in cross-version settings for achieving statistically significant CDs. We assume that the
two distributions indicate two subsequent versions. In addition, a chronological splitting
approach is adopted to maintain the order of the software’s versions. Moreover, it is also
referred to as two-window-based data distribution. In the CVDP scenario, two contiguous
software’s versions exhibit two-window-based data distributions.

The implementation of a statistical method primarily serves to make sure that the
CD is not a result of an error in sampling and that the CD results are statistically note-
worthy. The implementation of the chi-square test with Yates’s continuity correction is
applied to window-based data distributions utilizing 2× 2 contingency tables displayed in
Tables 4 and 5 below.



Symmetry 2023, 15, 1934 12 of 25

Table 4. Recent window—confusion matrix.

Predicted as Positive Predicted as Negative

Actual positive q1 r1
Actual negative s1 t1

Table 5. Old window—confusion matrix.

Positive Prediction Negative Prediction

Actual positive q2 r2
Actual negative s2 t2

According to Tables 4 and 5, the adapted contingency table (i.e., for recent and old
windows) is displayed in Table 6 which is defined below.

Table 6. Adapted contingency table—recent and old window.

Recent Window
Ri

Old Window
Oi

# of
correct class Cc

q1 + t1 q2 + t2

# of
errors Ot

r1 + s1 r2 + s2

Let Ri and Oi be the labeled two-window-based chronological datasets that have two
feature spaces transformed into Vi = q1, r1, s1, t1 and Vj = q2, r2, s2, t2 of the recent Ri and
old Oi window where q1, t1 are the correctly classified and s1, r1 are the misclassification
among the actual positive and negative values. Similarly, for the old window (in Table 5),
q2, t2 are correctly classified and s2, r2 are incorrectly classified among the positive and
negative values, accordingly. Tables 4 and 5 provide descriptions of the confusion matrix
for the current and previous windows, respectively.

According to the 2× 2 contingency table, the probability of instances wherein recent
and old windows are correctly and incorrectly classified as one or the other is presented in
Table 6 and determined by Equation (8) where q1 + t1 denotes the number of correct class
RiCc among the total instances (q1 + t1 + r1 + s1) of the recent window Ri. r1 + s1 denotes
the number of incorrect class RiOt among the total number of instances (q1 + t1 + r1 + s1)
of recent window Ri. Again, q2 + t2 denotes the number of correct class OiCc among the
total instances (q2 + t2 + r2 + s2) of the old window Oi. r2 + s2 are the number of incorrect
class OiOt among the total instances (q2 + t2 + r2 + s2) of the old window Oi. The statistic
derived from Equation (8) is analogous to the chi-squared test with Yates’s continuity
correction. This statistical approach helps prevent the overestimation of significant values,
particularly for small data distributions, and is a method commonly employed in the
literature, as evidenced by references such as [42,43].

T(OiCc, OiOt, RiCc, RiOt) =
| OiCc

OiOt
− RiCc

RiOt
| −0.5( 1

OiOt
+ 1

RiOt
)√

RiCc+OiCc

RiOt+OiOt
(1− RiCc+OiCc

RiOt+OiOt
)( 1

RiOt
+ 1

OiOt
)

(8)

The two sequential data distributions in the temporal versions of defect datasets are
not identical if and only if the calculated p-values are below the threshold for significance.
Considering that the measured values of p (0.05) are lower than at the 5 percent significance
level, the null hypothesis is that the distribution on both windows is not identical.
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3.5. Evaluation Settings

To evaluate the ability of the CDD framework to detect CD in the chronological defect
datasets, we adopt naïve Bayes (NB) as a single base learner to classify the modules and
their output, with the latter to be used in class prediction. We use NB because it is simple
and widely used in data-stream mining. We evaluate the models using the confusion matrix
(see Table 7) and in terms of their error rate, which is computed as:

error− rate = 1− accuracy (9)

We compute accuracy as:

accuracy =
(TP + TN)

(TP + TN + FP + FN)
(10)

where the outcomes are categorized in one of four ways: true positives (TP) represent the
instances where the model correctly identifies defective modules as such. False positives
(FP) occur when the model incorrectly categorizes non-defective modules as defective.
True negatives (TN) denote situations where the model accurately identifies non-defective
modules as non-defective, and false negatives (FN) refer to cases wherein the model
erroneously labels defective modules as non-defective.

RQ1: Is there any data distribution difference across software versions that degrades the
prediction performance?

While assessing the prediction performance, the objective of the models is to identify
the defective modules from minority classes. Menzies et al. [44] argued against using only
overall accuracy for performance assessment because of the unequal error-cost associated
with minority classes. Other researchers [45,46] used the probability of a false alarm (p f ) as
recommended by Menzies et al. [44] as a stable evaluation metric to assess the performance
of classification models. However, the key objective of this empirical study is to identify
the CD across versions, where the error-rates of the models were analyzed based on our
CDD framework. From Table 7, it can be seen that the mathematical definition of pf used
for this experiment is:

p f =
FP

(FP + TN)
(11)

Low values of pf correspond to a better value for prediction performance [47].

Table 7. Confusion matrix.

Predicted
Positive

Predictive
Negative

Actual positive TP FN
Actual negative FP TN

Regarding the chronological splitting of the versions, we utilize an approach called
a “two-window-based approach” in our proposed CDD framework. As described earlier,
we consider three versions of the splitting procedure: a window-of-size-n (Figure 4); a
window-of-size-1 (Figure 5); and a window-of-size-2 (Figure 6)—bearing in mind that
consecutive versions share similar characteristics, which helps to train the model accurately,
as suggested by Amasaki [48].

RQ2: Can insights be gained by observing the trends in CD detection results while the
window size varies?

In Section 3.3, the procedures of chronological splitting are outlined in stage I. In the
three aforementioned splitting approaches, the training and test sets change in a streaming
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manner. For a better understanding of the learning process in the chronological splitting
(when the data of the new version become available), the recent window is updated
(referred to as the moving window). In the approach of a window-of-size-n, all old versions
are summed into a single package containing all of the completed versions. In doing
so, the size of the window is increased. This procedure was also adopted by Lokan and
Mendes [49] in a software-effort estimation studies. As an example, for the project prop-1,
there are six versions available. In the window-of-size-n splitting approach, the first two
versions (i.e., 9 and 44) are considered to be the training set (old window) and the next
version, 92, is considered to be the testing set (recent window). The prediction model is
built and results are computed. When version 128 becomes available, the data of version 92
along with the previous two versions are considered to be the training set (old window) and
version 128 is considered to be the testing set (recent window). This procedure is iterated
until all of the versions of the datasets of interest have been taken into consideration.

The error-rate is computed each time the new version’s data become available for the
mentioned splitting processes (see stage I in Section 3.3). Note that the ability to identify
the best among all of the prediction models is out of the scope of this study.

Based on the CDD procedure, the CD detector triggers one of three flag values (warn-
ing, CD, and control) to indicate the CD status in the target data distributions, as discussed
in stage II (see in Section 3.3). The statistical significance test serves the purpose of con-
firming that the CD values are indeed statistically significant, thus helping to rule out the
possibility that these CDs are merely a result of sampling error.

3.6. Cliff’s δ Effect Size Computation

Numerous studies in disciplines like behavioral science have used the quantitative
measure of an impact’s magnitude known as “effect size” (ES) [50]. According to Carl
et al. [51], it is advisable to employ effect sizes (ESs) in empirical studies as they can
contribute to obtaining results that are not only statistically significant but also practical
and meaningful.

Moreover, to strengthen our empirical technique, we perform a comparison of the
chronological split approach with Cliff’s delta, a widely adopted and robust effect-size
computation method, (Cliff’s δ), [52] to quantify the practical significance of differences
across the defect datasets.

RQ1 characterizes the hypothesis tested in this study. To avoid the inaccurate results
of hypothesis testing, it is recommended by Kampenes et al. [53] to acknowledge the effect
sizes in the experimental evaluation of software engineering (SE) and to use a statistical
significance test to obtain meaningful outcomes. In this context, a 1% increase in the
predicted defect results would be likely to have a highly negative effect if the defects
are critical.

Kitchenham et al. [54] suggested the utilization of Cliff’s delta (δ) as an effective
method for calculating effect sizes due to its capacity to manage circumstances where the
results are deadlocked. This method yields an effective measure of two-window-based data
distributions having different distribution sizes, which indicates the practical usefulness
of an empirical SE study [10]. In our analysis, the interpretation of practical significance
and the calculation of effect sizes draw upon the magnitude thresholds outlined by Kamp-
enes et al. [53]. These thresholds provide a structured framework for understanding the
significance of the observed effects. A negligible effect, for instance, is indicated when the
effect size (δ) is less than 0.112, signifying a minimal practical impact. A small effect is
characterized by an effect size falling in the range of 0.112 to less than 0.276, suggesting a
modest yet noteworthy influence. When the effect size ranges from 0.276 to less than 0.427,
it is deemed a medium effect, indicating a more substantial impact. Finally, a large effect
is inferred when the effect size is equal to or greater than 0.427, highlighting a substantial
and practically meaningful consequence. These thresholds aid in providing a clear under-
standing of the magnitude and relevance of the observed results in our empirical study. As
recommended by [54], we implement Cliff’s δ method using the effsize R package.
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4. Results

In this section, we present the results of the empirical study to identify the CD of the
considered defect datasets and evaluate the models’ performance using their error-rate,
p f , and a base learner, NB. The experimental results are presented based on the CDD
framework by taking chronological splitting into account and performance accessed using
Cliff’s δ effect size, chi-squared with Yates’s continuity correction, and the Nemenyi test at
5% significant level.

Table 8 presents the overall prediction performance of CDD across the versions of our
considered chronological datasets. Within this table, the terms “IVersion,” “#InsOWin,” and
“#InsRWin” correspond to specific attributes. “IVersion” stands for the initial version, while
“#InsOWin” and “#InsRWin” represent the counts of instances within the old window and
recent windows, respectively. Column five (from the left) shows the CD values, in which
“*” is used to denote the versions where CDs are identified. The rightmost column shows
the statistically significant values calculated by the adopted statistical test, denoted by “**”
in this Table 8, where the statistically significant (p < 0.05) differences between the data
distributions associated with the projects’ versions are identified. This identification helps
the user decide when to re-train or update the prediction models. Stage III of our proposed
CDD framework uses this information in a process called CD adaptation, which indicates
the ideal time-point at which to take appropriate action so that the prediction model is
made or kept reliable.

In addition, we found that the software projects’ versions for which the differences
of data distributions are practically significant exhibited large effect sizes, as illustrated in
Table 9. It is worth mentioning that the versions identified by CDD as having a statistically
significant CD also exhibit large-effect sizes in the pairwise comparison, except for the data
of version 355 of the project prop-4. Regarding the question of which splitting approach
performs best, it can be seen that the moving-window-based approach, specifically window-
of-size-1, achieves the largest effect size for CD detection (i.e., δ ≥ 0.427).

Figure 7 portrays the CD values associated with the versions of the software projects
for which the differences in the data distributions are statistically significant. The significant
values of CDs are marked by the vertical lines, which indicate that, at this point, the user
should make a decision to update or re-train the model. According to our proposed
CDD framework, these are the optimal time-points to make these decisions to ensure the
reliability of the prediction model.

By closely observing the CD values (see Table 8), it can be seen that the CD detection
procedure of our proposed CDD framework identifies statistically significant CDs in the
considered chronological datasets. It can also be seen that the CDs identified in the data
distribution are generally identical among the three adopted chronological split approaches.
One exception is observed for the prop-1 dataset, which contains six versions. Window-
of-size-2 identifies the most statistically significant CDs of this dataset, in that CDs are
identified for the first four versions (i.e., 91, 44, 92, and 128) by the CD detector. Among
these versions, the CDs are statistically significant in versions 44, 92, and 128, again the
maximum number found by any of the splitting approaches, meaning that the window-of-
size-2 performs better only for the prop-1 dataset. The experimental results reveal that the
exponentially increasing error-rate across different software versions is associated with CD,
which consequently leads to poor prediction performance.
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Table 8. Results obtained from the adopted the three chronological split approaches by the CDD
technique and the chi-squared test with Yates’s continuity correction for finding significant CDs’ from
the chronological defect datasets for CVDP. Here, “*” is used to denote the versions where CDs are
identified, “**” means significant values, the CDs are identified and marked in the table by changing
the background color of the table’s cells.

Window-of-Size-1
Project IVersion #InsOWin #InsRWin CD t-Value p-Value

9 4255 4620 8.153 * 5.422 0.116
44 4620 3557 91.621 * 24.591 0.026 **
92 3557 3527 89.879 * 23.172 0.027 **
128 3527 3457 8.310 * 2.173 0.275

prop-1

164 3457 3598 0.998 6.331 0.100
225 1810 2231 5.260 * 3.661 0.170
236 2231 1962 0.995 0.085 0.946
245 1962 1964 30.591 * 12.821 0.050 **prop-2

256 1964 2307 33.783 * 9.171 0.069
285 1694 2285 5.973 * 0.626 0.644
292 2285 2344 0.999 1.553 0.364prop-3
305 2344 2395 16.202 * 5.765 0.109
347 2871 2791 26.242 * 21.006 0.030 **prop-4 355 2791 2854 1.003 17.890 0.036
4 3022 4053 0.991 2.366 0.255
40 4053 3077 28.760 * 13.823 0.046 **
85 3077 2998 11.260 * 10.779 0.059
121 2998 2496 4.637 * 0.856 0.549

prop-5

157 2496 2825 2.632 3.433 0.180
452 256 192 2.280 2.562 0.237prop-42 453 192 212 3.000 * 9.811 0.045 **
1 7782 9593 11.689 * 19.296 0.033 **jm 1.2 9593 7782 9.422 * 9.811 0.065

Window-of-Size-N
Project IVersion #InsOWin #InsRWin CD t-Value p-Value

9 4255 4620 4.887 * 5.422 0.116
44 8875 3557 48.356 * 32.327 0.020*
92 12,432 3527 3.994 * 10.491 0.060
128 15,959 3457 6.396 * 6.070 0.104

prop-1

164 19,416 3598 1.069 12.759 0.050
225 1810 2231 7.216 * 3.661 0.170
236 4010 1962 1.006 2.307 0.260
245 6003 1964 34.406 * 15.811 0.040 **prop-2

256 7967 2307 6.282 * 3.787 0.164
285 1694 2285 4.693 * 0.626 0.644
292 3973 2344 0.933 2.208 0.271prop-3
305 6323 2395 11.838 * 7.441 0.085
347 2871 2791 39.092 * 21.006 0.030 **prop-4 355 5662 2854 0.953 11.578 0.055
4 3022 4053 2.627 2.366 0.255
40 7075 3077 30.946 * 16.657 0.038 **
85 10,152 2998 10.129 * 2.901 0.211
121 13,150 2496 5.532 * 2.969 0.207

prop-5

157 15,646 2825 1.210 7.181 0.088
452 256 192 1.148 2.562 0.237prop-42 453 448 212 4.319* 14.507 0.044 **
1 7782 9593 10.968 * 19.296 0.033 **jm 1.2 17,375 7782 9.069 * 3.193 0.193

Window-of-Size-2
Project IVersion #InsOWin #InsRWin CD t-Value p-Value

9 4255 4620 7.540 * 5.422 0.116
44 8875 3557 51.009 * 32.327 0.020 **
92 8177 3527 13.581 * 15.962 0.040 **
128 7084 3457 33.327 * 16.404 0.039 *

prop-1

164 6984 3598 0.970 6.025 0.105
225 1810 2231 7.216 * 3.661 0.170
236 4010 1962 1.006 2.307 0.260
245 4193 1964 34.360 * 16.148 0.039 **prop-2

256 3926 2307 9.437 * 8.416 0.075
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Table 8. Cont.

Window-of-Size-2
Project IVersion #InsOWin #InsRWin CD t-Value p-Value

285 1694 2285 4.693 * 0.626 0.644
292 3973 2344 0.933 2.208 0.271prop-3
305 4629 2395 11.298 * 8.312 0.076
347 2871 2791 39.092 * 21.006 0.030 **prop-4 355 5662 2854 0.953 11.578 0.055
4 3022 4053 1.173 2.366 0.255
40 7075 3077 29.492 * 16.657 0.038 **
85 7130 2998 9.838 * 5.517 0.114
121 6075 2496 4.893 * 7.311 0.087

prop-5

157 5494 2825 1.183 4.408 0.142
452 256 192 1.148 2.562 0.237prop-42 453 448 212 4.319 * 14.507 0.044 **
1 7782 9593 10.968 * 19.296 0.033 **jm 1.2 17,375 7782 9.069 * 3.193 0.193

Table 9. Projects with significant data distributions differences that achieved a large effect size for the
window-of-size-1 by adopting Cliff’s δ effect size.

Project Old
Window

Recent
Window t-Value p-Value Cliff’s δ

Effect Size

prop-1 44 92 24.591 0.026 0.497
92 128 23.172 0.027 0.484

prop-2 245 256 12.821 0.050 0.437

prop-4 347 355 21.006 0.030 0.490
355 362 17.890 0.036 0.462

prop-5 40 85 13.823 0.046 0.461

prop-42 453 454 9.811 0.065 0.477

jm 1 1.2 19.296 0.033 0.464
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Figure 7. Performance curve and portrait of the error-rate fluctuation of the considered datasets
using NB. Significant CD values are inserted and marked by a line across the versions of the chrono-
logical datasets.
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Based on our proposed CDD framework, the statistical tests, and the empirical experi-
ment (where the data of the versions become available over time) in the context of CVDP,
we conclude the following:

− In the chronological defect datasets, our proposed CDD framework identifies CDs by
considering the fact that the data of the projects’ versions arrives in streaming format.

− The performance of CVDP models is affected by the data distributions in the chrono-
logical splitting scenario. The prediction performance fluctuates among the versions
for each chronological split approach.

− A trend is observed: when CDs are detected, the error-rate of the affected versions is
increased when splitting methods are applied in the experiment.

Our CDD framework is able to spot the CDs in the chronological versions of defect
datasets throughout all iterations, as well as the ideal time-point for updating or retraining
the prediction models. Our empirical study’s statistical analysis revealed that the CD
values are statistically significant and that the sampling error is not the cause of the CDs.
Therefore, we demonstrated that chronological splitting methods can effectively handle
distributions when they are presented in the CVDP chronological splitting format.

5. Discussion

One can speculate on how CD can impede the cross-version prediction performance.
Take the following instance as an example. Six variants are included in the dataset prop-
1. The model will not be able to detect defects effectively due to the huge distribution
discrepancies if it is developed using the data of version 44 as training data to forecast
defects for subsequent releases and CD occurs in that version. According to our empirical
analysis, the model has to be updated or retrained to improve the prediction performance
because there is a large difference between the data from versions 44 and 92, which causes
CD in that data distribution and lowers the model performance. In order to examine RQ1
by formulating it, we propose addressing CD in the versions of the defect datasets to
forecast defects in cross-version contexts.

Furthermore, a key aspect may be that the window size of the training set changes
over time in the context of CVDP. We configure RQ2 for observing the trends in CD
detection while varying the window size. The window size is managed by the chronological
split approach; this is helpful in processing the data in chronological order when they
come in streaming format, as suggested by Lokan and Mendes [36]. Moreover, the RQs
are answered by taking the guidance of the Software Engineering Body of Knowledge
(SWEBOK V.3.0) [55]. The acquired knowledge from RQs could help to enrich the software
professionals for building more reliable software systems.

5.1. RQ1: Is There Any Data Distribution Difference across Software Versions That Degrades the
Prediction Performance?

The CDD framework is proposed to answer this question. CDD uses a CD detection
method to determine when the distribution differences significantly affect the streaming
data, resulting in poor prediction performance. We employ statistical testing, specifically
the chi-square test with Yates’s continuity correction, to establish the statistical significance
of the CD values and to validate that they do not result from a sampling error. Furthermore,
in our pair-wise comparisons, the computation of effect sizes using Cliff’s δ reinforces the
meaningful and practical significance of the identified CDs.

The results from the experiments show that there is a data distribution difference across
the project versions that degrades the prediction performance. Concerning chronological
defect datasets, we observe that the CDs are identical for all three of the adopted chronolog-
ical split approaches based on the CD detection procedures. The statistical significance test
also identifies uniform CD values, except for the splitting approach of window-of-size-2
for the prop-1 project. The observations in this study are consistent with the PAC learning
theory [40], showing that exponential increases in the error-rate of cross-version prediction
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models indicates the existence of CD in streaming data, which degrades the prediction
performance of the associated models.

5.2. RQ2: Can Insights Be Gained by Observing the Trends of CD Detection Results While the
Window Size Varies?

We address RQ2 by observing the results of our experimental study. In the approach
of window-of-size-1, the training set is small. The number of versions in the training set,
which is used to predict the defects for the subsequent version as it changes over time,
always remains one. We observe that the prediction performance curve fluctuates in the
cross-version prediction models, meaning that the prediction performance deteriorates. In
our approach, CD flags alert the user to significant differences in distribution where the
prediction performance degrades. Thus, software quality teams can take necessary steps
for improving CVDP. Moreover, by triggering the CD flags, the CDD framework helps to
detect CD, and advises users on when to update or re-train models for improving CVDP.
Thus, the CD detection results improve the defect-prediction performance.

To observe how the learning curve behaves when the window size is increased, we
perform window-of-size-2, where the number of versions in the training set is two, and
window-of-size-n, where all available completed versions are used, for the training set.
For these approaches, which have sufficient data to train the models, the latest completed
version of the project is again used as the test set. We again observe that the learning curve
fluctuates over time. The CDs are identical in the same training set among the three splitting
approaches. Furthermore, the same CDs are statistically significant in the same training
sets, even though the size of the window varies over time for all of the chronological split
approaches. For all of these approaches, the CD flags are triggered by the same prediction
models, helping the user update or re-train the models to enhance the prediction results in
CVDP settings.

To further investigate and sharpen our conclusion on which splitting approach is
appropriate, we conducted the Nemenyi post hoc test [56], a popular approach in the SDP
literature, to examine the statistical similarity between splitting approaches by using the
critical difference (CrDi).

In Figure 8 (using p f ), the CrDi is portrayed by a bar and connects the approaches
that are statistically similar. Using the computed value of CrDi = 0.70704, we connect the
statistically similar approaches. We note that these splitting approaches are not statistically
different from one another.

Figure 8. Comparison of p f results of the chronological splitting approaches using the Nemenyi test,
with 95% confidence on the cross-version defect datasets.

In summary, in a comprehensive empirical comparison of chronological split ap-
proaches, we observe the following results. A moving-window approach, window-of-size-
1, is better for CD detection than the other two splitting approaches as it achieves the largest
effect size (i.e., δ ≥ 0.427). An additional robustness check of our results, the Nemenyi post
hoc test, refines our conclusion over which splitting approach should be considered for
CD detection. We note that the adopted splitting approaches are not statistically different
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from one another. As software projects change over time, new versions are continually
released, and a moving-window approach could be helpful in managing the data for CVDP.
For conducting experiments in practice and for identifying CD in streaming data, any of
the chronological split approaches could be reasonable to use for CVDP, depending on the
resources available to a specific software developer.

6. Threats to Validity

This section describes the potential limitations of our empirical study.
External Validity—The concern for external validity revolves around extending the

applicability of outcomes obtained through experimental analysis. In our analysis, we chose
cases that adhere to the chronological sequence of the software development cycle. We
employed the chronological split method to address scenarios involving different software
versions. Alternate choices for conducting experiments in cross-version defect prediction
(CVDP) are possible. The empirical approach adopted for this study does indeed influence
the results of defect detection in the context of version changes. Importantly, our cross-
version defect detection (CDD) framework hinges on the presence of class labels within the
testing data. Detecting version changes without these labels falls outside the scope of this
empirical study, despite its significance as a noteworthy limitation in practical applications.

Internal validity—We conducted our empirical study in chronological defect datasets
with a sufficient number of chronologically ordered versions. However, this has been
neglected in the literature on CVDP. Motivated by studies of data-stream mining [18],
we considered a single base learner, NB, to monitor the error estimates and observe the
learning trends. Menzies et al. [35,44] found NB to be the best predictor in defect prediction
studies. With respect to the validity of the classification model, it is obvious that the
learner in this experiment is a potential bias. To test generalizability, we evaluated the
prediction performance using two measures, error-rate and p f , which are widely considered
valid measures.

Conclusion validity—Conclusion validity scrutinizes the efficacy of the data analysis
procedure in terms of its utility. To examine the effectiveness of the data analysis proce-
dure, we employed the chi-square test along with Yates’s continuity correction to identify
statistically significant version changes (CDs) within the datasets. Effect-size calculation
was conducted using Cliff’s δ effect size computation method. To compare the different
chronological split approaches, we utilized the Nemenyi post hoc test to determine the
most suitable approach.

7. Related Work

In this section, we provide an overview of CVDP. In existing studies, the attempts to
avoid distribution differences between two adjacent versions of a project have mostly been
based on module selection techniques.

Xu et al. [30] introduced a framework for chronological video data processing (CVDP)
that utilizes a combination of hybrid active learning and kernel principal component
analysis (KPCA). In the initial phase of their approach, they carefully selected modules from
the current version of their software project and augmented these chosen modules with
the prior version to create a robust training set. In the subsequent phase, they employed
KPCA to map these mixed training modules and trained a logistic regression model. In a
series of experiments involving 31 versions across 10 software projects, their aim was to
mitigate the distribution disparities between prior and current software project versions by
adding crucial modules to the prior version. However, this method has certain limitations.
It necessitates substantial effort in labeling selected modules and preparing an appropriate
training dataset. Furthermore, the removal of labeled modules from a current software
project version can result in a significant loss of valuable information. Another drawback
is the need to convert metrics back to datasets for the estimator, which can influence the
estimation results during model construction, as noted by [11].
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Another work by Xu et al. [9] employed a two-stage process for training-subset
selection, with the subset modules chosen from the most recent version. To reduce the
burden of labeling the modules of the software projects, they minimized the distribution
differences by eliminating the labeled modules from the previous version at the cost of
losing some crucial information from that version. Modules from project versions were
eliminated in both trials [9,30] in an effort to reduce distributional discrepancies and provide
an appropriate training set. This inevitably resulted in the loss of data containing details on
both of the most recent and earlier iterations of the software projects. The performance of
such models suffers from these information losses.

Yang and Wen [11] investigated the ridge and lasso regression models in CVDP for
sorting modules according to defects. They used 41 versions of 11 projects and focused
on defect numbers instead of defect categories. Instead of data quality, they targeted
the multicollinearity problem, which arises when there are strong correlations among
the predictor variables. Their findings confirmed the existence of multicollinearity in the
datasets. To prevent the loss of valuable information about the distribution as a result of
deleting metrics from the datasets, as found by Xu et al. [9,30], they refrained from the
process of variable selection. However, their study [11] did not take into consideration
the distribution differences between the versions, which is the most important element
to consider when detecting changes between versions to enable the building of effective
prediction models.

Shukla et al. [57] tackled the challenge of multi-objective optimization within the con-
text of CVDP. They developed prediction models using multi-objective logistic regression
(MOLR) for minimizing the cost (regarding classification and lines of code (LOC)) and
maximizing the effectiveness of the model. They found that the distributions of adjacent
versions of the same project shared the same distribution parameters. Taking into con-
sideration the Chidamber and Kemerer (CK) metrics [58] from 41 versions of 11 projects
in the PROMISE repository, they found that MOLR outperformed four single-objective
algorithms in terms of cost-effectiveness.

Bennin et al. [10] conducted a comparative study where they examined 11 density-
based prediction models, specifically focusing on the Norm (Popt) effort-aware indicator.
This investigation encompassed both inner-version defect prediction (IVDP) and CVDP
scenarios. This study took into account various factors, including dataset size, the cost-
effectiveness of the models, and validation techniques. Through pairwise comparisons
of 25 open source projects, they identified K-star and M5 as the best performers in the
CVDP context.

Xu et al. [31] conducted a comparative study in which they evaluated a method
called dissimilarity-based sparse subset selection (DS3) against three baseline methods.
These baseline methods included the ALL method, as well as the subset selectors Peter
Filter [59] and Turhan Filter [60]. Their investigation revealed that the distribution differ-
ences negatively impacted the prediction performance of all four models. In an experiment
involving 40 cross-version pairs originating from 15 projects, Xu et al. utilized DS3 to
create representative modules from the prior version. These modules were then combined
with the current versions to construct a new training set. This approach was employed
to mitigate the distribution disparities between two consecutive versions by removing
labeled modules.

Furthermore, the removal of modules from the prior version can impede the develop-
ment of an effective prediction model. However, the work of Xu et al. [31] did not show any
significant improvement when all of the modules of the previous version were considered
(using ALL as a baseline method). Even prediction models built on a subset of modules
are perishable, due to information loss caused by removing essential modules. The result
of this is to deteriorate the prediction performance of CVDP. The outcome of Xu et al.’s
experiment represents a dissenting opinion from that argued by [57].

Bernstein et al. [61] pinpointed that the prediction accuracy variation between SDP
models occurs due to changes in temporal features. In attempting to find the latent
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relationship between data features, they concluded that the prediction accuracy varies
because of the differences among features in the bug generation process. Subsequently,
Ekanayake et al. [14] extended the research of Bernstein et al., finding that the models
become unstable because of the changes in distribution. They also proposed that concept
drift occurs in software-defect datasets, proposed an accuracy-estimation approach in [15],
and attempted to identify the most stable prediction models.

In contrast to [11,57], we examine whether the changes in data distribution in a
project’s versions lead to the degradation of the prediction performance, resulting in un-
trustworthy prediction models. In three recent studies, Xu et al. [9,30,31] attempted to
alleviate the distribution differences in chronological defect datasets by using training-
subset selection techniques for improving SDP models. In these approaches, however, the
module-selection process involves more effort to process the data and may lead to the
excessive loss of useful information, resulting in poor SDP models. Instead, we take all
available version data into account, and the versions are considered to arrive in chrono-
logical order. Prior researchers [14,15,61] asked why the prediction accuracy fluctuates
across SDP models and highlighted the notion of concept drift in defect datasets. How-
ever, these researchers did not consider streaming data, did not try to find the significant
changes in the data distributions of chronological defect datasets, and did not recognize CD
across versions of the same project. In advancing the field of CVDP research, the essential
capability to recognize CD becomes pivotal. This identification enables researchers and
practitioners to undertake the necessary measures to enhance the prediction performance
in cross-version scenarios.

The studies of Gangwar et al. [12,13] introduced an approach known as a pair of paired
learners called “PoPL” within the realm of SDP, aimed at addressing CD. The primary
objective is to improve the prediction performance beyond what the most successful
paired learner methods have achieved in recent times. In a related study, Kabir et al. [62]
investigated the performance of class-rebalancing techniques to observe the performance
of drift detection and reduction for SDP. The PoPL approach developed by Gangwar
et al. [12,13] could be one of the considerable methods for accessing CD for CVDP. We kept
this work as one of the our future works.

8. Conclusions

Concept drift (CD) is the phenomenon wherein dataset characteristics gradually
shift over time, adversely affecting the performance of predictive models in software
engineering (SE), such as those used for cost estimation and defect prediction. In this study,
we introduce a sophisticated CD detection framework designed to pinpoint instances of
CD within software-defect datasets. Our investigation entails a comprehensive empirical
analysis covering 30 versions drawn from seven distinct software projects. These versions
exhibit evolving data characteristics as they progress over time. To maintain data integrity
and structure it into two-window-based data distributions arranged in chronological
order, we employ a chronological split approach. Ensuring the statistical significance
of the identified CDs is paramount, and to this end, we leverage Yates’s chi-square test.
Renowned for its effectiveness in handling two-window-based data distributions, this test
confirms that the observed CDs are not a product of mere sampling error. Furthermore,
we gauge the practical significance of these CD occurrences by calculating Cliff’s δ effect
size. This research underscores the critical significance of recognizing and addressing
concept drift within software-defect datasets. The occurrence of concept drift is linked
to exponential increases in error rates across various software versions. Furthermore,
within the chronological splitting scenario, the predictive performance of data distributions
exhibits fluctuations.

Therefore, the identification of CD in data distributions is a must while using CVDP
for building reliable prediction models. Furthermore, we anticipate that our proposed
framework and methodologies will provide valuable assistance to researchers and practi-
tioners in the field of defect prediction. These contributions aim to foster the development
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of more robust and adaptable predictive models. As software systems continue to evolve,
the capacity to detect and adapt to CD becomes increasingly vital. This study represents a
significant stride in that direction.

The study is specifically tailored to software cross-version datasets, making it challeng-
ing to extrapolate the proposed framework’s applicability to other domains. As a future
research direction, it would be advantageous to assess the framework’s performance on
more diverse datasets, thus expanding its potential utility.

Additionally, it is crucial to acknowledge that the effectiveness of the proposed frame-
work is closely tied to the availability of labeled data. This reliance on labeled data
could potentially restrict its applicability in situations where such data are scarce or en-
tirely unavailable.
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