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A B S T R A C T

Linear discriminant analysis (LDA) is a powerful supervised dimensionality reduction method for analysing
high-dimensional data. However, LDA cannot use locality information in data, which makes LDA degrade
dramatically in performance on multimodal data. A number of LDA variants have been proposed to exploit
locality information in data, including subclass-based LDAs. We discover a problem with these variants, which
is that subclasses are selected on a within-class basis without considering other classes. This causes the loss
of important information at class boundaries. In this paper, we present a novel variant of subclass-based
LDA, Global Subclass Discriminant Analysis (GSDA). Unlike other subclass-based LDAs, GSDA selects subclasses
from global clusters that may cross class boundaries, thus utilising within-class information and between-class
information. More specifically, GSDA applies an effective clustering algorithm to the whole data to construct
global clusters. It then utilises the local structure refining strategy on these global clusters to construct subclasses.
Finally, GSDA learns a representative data subspace by maximising inter-subclass distance and minimising
intra-subclass distance simultaneously. GSDA is extensively evaluated on a wide range of public datasets
through comparison with the state-of-the-art LDA algorithms. Experimental results demonstrate its superiority
in terms of accuracy and run times.
1. Introduction

Dimensionality reduction is a significant approach for analysing
high-dimensional data. The main idea of dimensionality reduction is
to transform the high-dimensional data into a low-dimensional sub-
space and preserve the discriminative information of high-dimensional
data. Many dimensionality reduction algorithms have been proposed in
the literature. Among these algorithms, principal component analysis
(PCA) [1] and linear discriminant analysis (LDA) are the most repre-
sentative and commonly used methods. PCA is an unsupervised method
in which the label information is not taken into account. By contrast,
LDA is a supervised dimensionality reduction method. It is well-known
that LDA exceeds PCA in the majority of classification tasks. Thus, we
mainly concentrate on LDA in this paper.

As a popular supervised dimensionality reduction method, LDA is
widely used in many applications, for instance, computer vision [2,3],
pattern recognition [4,5] and document classification [6,7]. It was
originally proposed by Fisher for binary classification in [8,9]. Then,
LDA was generalised by Rao [10] for multiclass classification. The
goal of LDA is to find a subspace where the data of different classes
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are far from each other and simultaneously the data of the same
class are close. To achieve this, LDA attempts to obtain the optimal
transformation matrix by maximising the ratio of the between-class
scatter matrix to the within-class scatter matrix, where the between-
class scatter matrix and within-class scatter matrix are used to measure
the inter-class distance and intra-class compactness, respectively. The
optimal transformation matrix can be obtained analytically only under
the assumption that all classes of data have equal covariance matrices,
implying that the data are Gaussian distributed. However, real-world
data are often multimodal, which is more complex than Gaussian distri-
bution. For example, the face images from the same person are typically
multimodal due to different illumination conditions or head poses;
similarly, cat images of different breeds are also multimodal. Thus, LDA
is unable to achieve satisfactory performance on multimodal data. To
address the multimodal problem, i.e., LDA is ineffective in processing
multimodal data, many LDA variants have been developed. The goal of
these variants is to make use of the local structure in multimodal data to
improve LDA. According to the way in which local structure is utilised,
these LDA variants can be grouped into two categories: locality-based
vailable online 20 September 2023
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discriminant analysis methods and subclass-based discriminant analysis
methods.

Locality-based discriminant analysis methods typically utilise sim-
ilarity matrix to extract local structure information from multimodal
data. The first step is to construct the similarity matrix, which can
be done in different ways. The second step is to calculate two Lapla-
cian matrices based on the similarity matrix, namely, the inter-class
Laplacian matrix and the intra-class Laplacian matrix, which are used
to measure the inter-class distance and intra-class compactness sepa-
rately. The final step is to obtain the optimal transformation matrix
based on the two Laplacian matrices. For example, Local Fisher Dis-
criminant Analysis (LFDA) [11] combines k-nearest neighbour and
Gaussian kernel function to construct a similarity matrix. Locality Sen-
sitive Discriminant Analysis (LSDA) [12] utilises the nearest neighbour
graph to construct a similarity matrix. Unlike LFDA and LSDA, which
both use the pre-defined similarity measurements, Nie et al. recently
developed adaptive similarity measurements to construct similarity
matrix in Locality Adaptive Discriminant Analysis (LADA) [13] and
Adaptive Local Linear Discriminant Analysis (ALLDA) [14], respec-
tively. Other locality-based discriminant analysis methods include Mar-
gin Fisher Analysis (MFA) [15], Laplacian Linear Discriminant Analysis
(LapLDA) [16], Local Linear Discriminant Analysis (LLDA) [17], and so
on.

By contrast, subclass-based discriminant analysis methods capture
local structure by finding subclasses within each class, where the found
subclasses are the local structure of multimodal data. The main idea of
subclass-based discriminant analysis is to partition a class into several
subclasses and seek to maximise inter-class distance and minimise
intra-class distance based on subclasses. Fig. 1(a) shows an example
with two classes. It is clear that Class One (data in green) and Class
Two (data in red) are multimodal. Each class is comprised of two
Gaussian distributions. Suppose the two Gaussian distributions of each
class are captured as subclasses, such as Subclass-One1, Subclass-One2,
Subclass-Two1 and Subclass-Two2 shown in Fig. 1(b), then subclass-
based discriminant analysis naturally obtains the local structure of
the multimodal data. To accurately find subclasses, Zhu and Mar-
tinez [18] proposed subclass discriminant analysis (SDA). SDA utilises a
nearest neighbour-based clustering algorithm and a stability criterion
to partition every class into the same number of subclasses. Then,
SDA measures the inter-class distance using a between-subclass scatter
matrix and the intra-class distance using a sample covariance matrix.
Finally, SDA finds the subspace that maximises inter-class distance and
minimises intra-class distance through the LDA optimisation mecha-
nism. Mixture subclass discriminant analysis (MSDA) [19] partitions a
class into subclasses only when this class does not have a Gaussian
distribution according to the nongaussianity criterion the authors pro-
posed, where the number of subclasses is determined according to the
same stability criterion as in SDA [18]. As a result, different classes may
have different numbers of subclasses. MSDA uses the same between-
subclass scatter matrix as in SDA, and a new within-subclass scatter
matrix to measure the intra-class distance. Unlike SDA and MSDA,
separability-oriented subclass discriminant analysis (SSDA) [20] employs
a separability criterion to partition every class into a number of non-
overlapping subclasses. Based on these non-overlapping subclasses,
SSDA defines a new between-subclass scatter matrix and uses the
LDA optimisation mechanism to find a subspace that simultaneously
maximises between-class distance and between-subclass distance, and
minimises within-class distance.

We note that all subclass-based methods mentioned above restrict
themselves to finding subclasses within a class, which neglects the
local structure between different classes. Consequently, a boundary
cluster (i.e. cluster comprising samples at a class boundary) may not
form a cluster if viewed within any class, so it may not be found
by existing subclass-based methods. It is well-known that boundary
samples (i.e. samples at class boundaries) are important for classi-
fication. So, if we can take the boundary subclasses (i.e. subclasses
2

Fig. 1. An example of multimodal data. (a) A data set with two classes, in green
and red, respectively, which are multimodal. (b) The data from the same class are
partitioned into subclasses: subclass-One1 and subclass-One2 in Class One, subclass-
Two1 and subclass-Two2 in Class Two. Each subclass is represented by an orange
dashed circle.

comprising samples at class boundaries) into account, then a subclass-
based method would push them apart (i.e. separate them) as much as
possible, resulting in higher classification performance. This motivates
us to search for a new method which globally clusters the whole data
and uses these global clusters as the basis to find subclasses before
we apply the LDA mechanism. This effort results in Global Subclass
Discriminant Analysis (GSDA), the subject of this paper. Therefore, we
distinguish two types of clusters in this paper, ‘‘local cluster’’ and
‘‘global cluster’’, according to their scopes. A local cluster is one when
the clustering process is applied to one class of data, as is the case with
the existing subclass-based LDAs such as SDA, MSDA, and SSDA. In
contrast, a global cluster is one when the clustering process is applied
to the whole data, as is the case with GSDA.

Similar to SDA, MSDA and SSDA, GSDA also uses the idea of a
subclass, but at a global scale rather than a local scale, which we
call a global separation of the classes. GSDA seeks to capture boundary
subclasses, so better classification performance is expected. Specifically,
GSDA first finds global clusters across the whole data set rather than
locally within every class. A global cluster may consist of data from
different classes, suggesting the global cluster is the overlap of class-
specific clusters, which must be then separated. Then a local boundary
correction strategy is utilised to construct global subclasses from global
clusters. The main idea of the local boundary correction strategy is
to split every global cluster containing multiple classes of data into
subsets, each of which contains only one class of data. Based on
these global subclasses, a new between-class scatter matrix and a new
within-class scatter matrix are defined to measure inter-class distance
and intra-class distance, respectively. Finally, the LDA optimisation
mechanism is used to find a subspace spanned by a set of new features,
which maximises the inter-class distance and minimises the intra-
class distance simultaneously. Comparing the subspace found by GSDA
(GSDA subspace) with the subspaces found by SDA, MSDA and SSDA,
we show in Section 4.2 that the subclasses in the GSDA subspace are
not only separable between classes, but also separable within classes.

The contributions of this paper are the following:
(1) A novel subclass-based discriminant analysis, Global Subclass

Discriminant Analysis, is developed to address the problem of LDA
being ineffective in processing multimodal data. GSDA captures the
local structure from both within and between classes to enhance the
classification performance on multimodal data.

(2) A local structure refining strategy is proposed to obtain subclasses
in GSDA, including boundary subclasses which are essential for sep-
arating different classes. Thus, GSDA can capture the local structure
information between different classes.

(3) Extensive experiments on artificial and real-world data sets
demonstrate that the proposed method outperforms the state-of-the-
art locality-based and subclass-based discriminant analysis methods in
terms of accuracy and run times.



Knowledge-Based Systems 280 (2023) 111010H. Wan et al.

t

𝐽

w
i
a
d
b
t

𝑊

C
a
s

𝑆

𝛴

a

𝑆

2

e
m
I
s
s
e
s
w
i
L

𝐽

The rest of this paper is organised as follows. Section 2 provides an
overview of closely related work, including SDA, MSDA and SSDA. Sec-
tion 3 presents details of GSDA. Sections 4 and 5 present experimental
results. Section 6 concludes the paper with an outlook for future work.

2. Related work

In this section, we present an overview of subclass-based discrim-
inant analysis methods, which are closely related to GSDA, including
SDA, MSDA and SSDA. Furthermore, the context for this work and the
necessary technical notations are provided.

The classic LDA and its variants are based on maximising class
discriminability defined by Fisher–Rao’s criterion [9,21], also known as
he LDA objective function, as follows:

(𝑊 ) =
𝑡𝑟(𝑊𝐴𝑊 𝑇 )
𝑡𝑟(𝑊𝐵𝑊 𝑇 )

, (1)

here 𝑡𝑟() denotes the trace of a matrix, 𝐴 and 𝐵 are matrices for
nter-class difference and intra-class difference, respectively, and 𝑊 is
transformation matrix that maps samples in the original space into a
iscriminant subspace called LDA space. 𝐴 and 𝐵 are both assumed to
e symmetric and positive-definite. The optimal transformation is 𝑊 ∗

hat maximises 𝐽 (𝑊 ), i.e.
∗ = arg max

𝑊
𝐽 (𝑊 ).

lassically, the inter-class difference (𝐴) and intra-class difference (𝐵)
re measured by a between-class scatter matrix 𝑆𝑏 and a within-class
catter matrix 𝑆𝑤, respectively:

𝑆𝑏 =
𝐶
∑

𝑖=1
𝑝𝑖(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)𝑇 ,

𝑤 = 1
𝑁

𝐶
∑

𝑖=1

𝑁𝑖
∑

𝑗=1
(𝑥𝑖𝑗 − 𝜇𝑖)(𝑥𝑖𝑗 − 𝜇𝑖)𝑇 ,

where 𝐶 is the number of classes, 𝑁 is the number of samples, 𝑁𝑖 is the
number of samples in class 𝑖, 𝑝𝑖 = 𝑁𝑖∕𝑁 is the prior probability of class
𝑖, 𝜇𝑖 is the mean of class 𝑖, 𝜇 is the mean of all samples and 𝑥𝑖𝑗 is the 𝑗th
sample in class 𝑖. It is well known that 𝑊 ∗ is the analytic solution to
the generalised eigenvalue decomposition equation 𝑆−1

𝑤 𝑆𝑏𝑊 ∗ = 𝑊 ∗𝛬,
where 𝛬 is a diagonal eigenvalue matrix of 𝑆−1

𝑤 𝑆𝑏. Thus, the columns
of 𝑊 ∗ are the eigenvectors of 𝑆−1

𝑤 𝑆𝑏.

2.1. Subclass discriminant analysis

Subclass Discriminant Analysis [18] is a variant of LDA that solves
the multimodal problem of LDA by partitioning every class into the
same number of subclasses. Thus, SDA can capture the local structure
from the multimodal data based on these subclasses. The two matrices
𝐴 and 𝐵 in the objective function are re-defined based on subclasses,
with 𝐴 = 𝑆𝑆𝐷𝐴

𝑏𝑠𝑏 being the between-subclass scatter matrix and 𝐵 = 𝛴𝑋
being the sample covariance matrix:

𝑆𝑆𝐷𝐴
𝑏𝑠𝑏 =

𝐶−1
∑

𝑖=1

𝐻𝑖
∑

𝑗=1

𝐶
∑

𝑙=𝑖+1

𝐻𝑙
∑

𝑛=1
𝑝𝑖𝑗𝑝𝑙𝑛(𝜇𝑖𝑗 − 𝜇𝑙𝑛)(𝜇𝑖𝑗 − 𝜇𝑙𝑛)𝑇 , (2)

𝛴𝑋 = 1
𝑁

𝑁
∑

𝑗=1
(𝑥𝑗 − 𝜇)(𝑥𝑗 − 𝜇)𝑇 , (3)

where 𝐶 denotes the number of classes, 𝐻𝑖 denotes the number of
subclasses in class 𝑖, 𝜇𝑖𝑗 denotes the mean of the 𝑗th subclass in class
𝑖, 𝑝𝑖𝑗 = 𝑁𝑖𝑗

𝑁 (𝑝𝑙𝑛 = 𝑁𝑙𝑛
𝑁 ) denotes the prior probability of the 𝑗th (𝑛th)

subclass of class 𝑖 (𝑙), 𝑁𝑖𝑗 is the number of samples in the 𝑗th subclass
of class 𝑖, 𝑁 is the number of samples, 𝑥𝑗 is the 𝑗th sample of the data
set, and 𝜇 is the overall mean over all samples. These notations will be
3

used in the remainder of the paper.
Fisher–Rao’s criterion of SDA is then the following:

𝐽 (𝑊 )𝑆𝐷𝐴 =
𝑡𝑟(𝑊𝑆𝑆𝐷𝐴

𝑏𝑠𝑏 𝑊 𝑇 )

𝑡𝑟(𝑊𝛴𝑋𝑊 𝑇 )
. (4)

The number of subclasses, 𝐻𝑖, is a key parameter in SDA. To determine
𝐻𝑖, the leave-one-out-test (LOOT) criterion [18] or the stability crite-
rion [22] are used together with a nearest neighbour based clustering
algorithm [18]. For details of the algorithms please see [18].

2.2. Mixture subclass discriminant analysis

Mixture Subclass Discriminant Analysis [19] is an extension of
SDA, which captures the local structure of data based on the subclass
allowing different numbers of subclasses within the classes. While
SDA partitions every class into the same number of subclasses, MSDA
partitions a specific class (or subclass) based on a nongaussianity
criterion resulting in possibly different numbers of subclasses for dif-
ferent classes. The nongaussianity criterion is defined as the sum of
the skewness and kurtosis. Every time a class (or subclass) with the
largest nongaussianity is chosen, MSDA will partition it, repeat and
stop partitioning when no subclass can be found with large enough
nongaussianity or the specified maximum number of subclasses is
reached. Finally, MSDA obtains the number of subclasses for each class
based on LOOT or stability criterion. In MSDA the Fisher–Rao’s criterion
is defined as follows, adopting SDA’s between-subclass scatter matrix
𝑆𝑆𝐷𝐴
𝑏𝑠𝑏 but introducing a new within-subclass scatter matrix �̆�𝑋 :

𝐽 (𝑊 )𝑀𝑆𝐷𝐴 =
𝑡𝑟(𝑊𝑆𝑆𝐷𝐴

𝑏𝑠𝑏 𝑊 𝑇 )

𝑡𝑟(𝑊 �̆�𝑋𝑊 𝑇 )
, (5)

where �̆�𝑋 is defined as

̆𝑋 = 𝑆𝑆𝐷𝐴
𝑏𝑠𝑏 + 𝑆𝑀𝑆𝐷𝐴

𝑤𝑏𝑠 , (6)

nd

𝑀𝑆𝐷𝐴
𝑤𝑏𝑠 =

𝐶
∑

𝑖=1

𝐻𝑖
∑

𝑗=1
𝑝𝑖𝑗 (𝑥𝑖𝑗 − 𝜇𝑖𝑗 )(𝑥𝑖𝑗 − 𝜇𝑖𝑗 )𝑇 . (7)

.3. Separability-oriented subclass discriminant analysis

Separability-oriented Subclass Discriminant Analysis [20] is another
xtension of SDA. Similar to SDA and MSDA, SSDA deals with the
ultimodal problem by partitioning each class into several subclasses.

nstead of using the stability criterion to determine the number of
ubclasses as adopted in SDA and MSDA, SSDA employs a new criterion,
eparability criterion [20], to determine the number of subclasses for
ach class. SSDA seeks to find non-overlapping or lightly overlapping
ubclasses for each class using the agglomerative hierarchical clustering
ith the separability criterion (HC-SC). In SSDA, the Fisher–Rao criterion

s defined using a new between-subclass scatter matrix 𝑆𝑆𝑆𝐷𝐴
𝑏𝑠𝑏 and

DA’s within-class scatter matrix 𝑆𝑤 as

(𝑊 )𝑆𝑆𝐷𝐴 =
𝑡𝑟(𝑊𝑆𝑆𝑆𝐷𝐴

𝑏𝑠𝑏 𝑊 𝑇 )

𝑡𝑟(𝑊𝑆𝑤𝑊 𝑇 )
, (8)

where 𝑆𝑆𝑆𝐷𝐴
𝑏𝑠𝑏 is defined as follows:

𝑆𝑆𝑆𝐷𝐴
𝑏𝑠𝑏 =

𝑁𝑖𝑗

𝑁

𝐶
∑

𝑖=1

𝐻𝑖
∑

𝑗=1
(𝜇𝑖𝑗 − 𝜇)(𝜇𝑖𝑗 − 𝜇)𝑇 . (9)

3. Global subclass discriminant analysis

All subclass-based LDA methods seek to utilise local structure in-
formation via subclasses. Typically, SDA, MSDA and SSDA generate
subclasses by clustering each class into clusters without considering
other classes and taking these clusters as subclasses. In contrast, GSDA
generates subclasses by clustering the whole data into clusters, and
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Fig. 2. An illustration of how GSDA finds G-Subclasses. (a) A data set with two classes in green and red, and five non-overlapping global clusters (i.e. GC1, GC2, GC3, GC4 and
GC5) by the HC-SC clustering, denoted by dashed orange circles. (b) Seven G-Subclasses (i.e. GS11, GS12, GS13, GS14, GS21, GS22 and GS23) found using the local structure
refining strategy, denoted by dashed orange and black circles, where dashed black circles represent boundary subclasses. (c) Seven G-Subclasses listed separately – 4 G-Subclasses
(i.e. GS11, GS12, GS13 and GS14) for Class One, and 3 G-Subclasses (i.e. GS21, GS22 and GS23) for Class Two.
we call these clusters as global clusters. In GSDA, it utilises the HC-
SC clustering method [20] to obtain the global clusters. Note that
each global cluster may consist of data from different classes. Then
a local boundary correction strategy is applied to further separate each
global cluster into possibly multiple class-specific sub-clusters, i.e., each
sub-cluster being a subset of its parent cluster and consisting of data
samples from a single class. Each class-specific sub-cluster is a GSDA
subclass.

Those subclasses with the same parent cluster are boundary sub-
classes as they belong to the same global cluster but are from dif-
ferent classes. So, boundary subclasses contain boundary data. It is
well known that boundary data are hard to separate by their class
memberships, and the performance of a classifier is to a large extent de-
pendent on how it handles boundary data [23]. GSDA seeks to separate
boundary data explicitly by maximising the distance between different
boundary subclasses and then improves classification performance. We
call subclasses in GSDA as global subclasses or G-Subclasses for short.
Similarly, subclasses in SDA/MSDA/SSDA are called local subclasses or
L-Subclasses for short. In the rest of this section, we present details
of the local boundary correction strategy and our way of composing
Fisher–Rao’s criterion.

3.1. Local structure refining strategy

The local structure refining strategy (LSRS) is designed to construct
global subclasses from global clusters for GSDA. LSRS splits a global
cluster containing multiple classes of data into sub-clusters, or subsets,
each of which contains only one class of data. More specifically, let
𝐺𝐶𝑗 , 𝑗 = 1, 2,… , 𝐽 , be the set of global clusters; 𝐶𝑖, 𝑖 = 1, 2,… , 𝐼 , be
the set of all data samples from class 𝑖. For a global cluster 𝐺𝐶𝑗 , we can
construct one or more global subclasses as follows:

𝐺𝑆𝑖𝑗 = {𝑥 ∈ 𝐺𝐶𝑗 ∶ 𝑥 ∈ 𝐶𝑖} (10)

If all data samples in 𝐺𝐶𝑗 are from one class 𝑖, then we construct one
and only one subclass 𝐺𝑆𝑖𝑗 from 𝐺𝐶𝑗 ; otherwise, we construct multiple
subclasses from 𝐺𝐶𝑗 , which is then called boundary cluster.

The process of finding subclasses in GSDA is illustrated by an
example in Fig. 2. There are two classes in red and green in Fig. 2.
It is clear that the two classes have substantial overlap. GSDA employs
the HC-SC clustering to partition the whole data set, resulting in five
global clusters (GC) — see GC1–GC5 in Fig. 2(a), where GC2 and
GC5 are boundary clusters. Then LSCS is applied to these five global
clusters, resulting in seven G-Subclasses (GS). When we look at the
4

classes separately, we have four GS for Class One (GS11, GS12, GS13,
GS14) and three GS for Class Two (GS21, GS22, GS24). It is clear that
GS11, GS14 and GS22 are boundary subclasses. If we partition Class
One based on only Class One data (in green), we will get two local
clusters (LC), LC1 and LC2 (Fig. 3(b), top), which are taken as two
subclasses of Class One. Similarly, if we partition Class Two based on
only Class Two data (in red), we will get two local clusters, LC3 and
LC4 (Fig. 3(b), bottom), which are taken as two subclasses of Class
Two. Thus, they completely neglect the boundary subclasses due to
local subclasses being limited to within a class.

Comparing the G-Subclasses (GS) in Fig. 2(c) with L-Subclasses
(LS) in Fig. 3(c), it is clear that our global approach, through the
local structure refining strategy, can identify not only subclasses but
also boundary subclasses at the intersection of different classes. For
example, the dashed black circles in Fig. 2(c) are boundary subclasses.
It is well known that boundary data are notoriously hard to separate
correctly and are usually the culprits for incorrect classifications. Addi-
tionally, it is clear from this example that the number of G-Subclasses
varies for different classes. This differs from SDA, which requires
the same number of L-Subclasses for every class. This generalisation
is vital as there is nothing to guarantee that every class comprises
the same number of subclasses/clusters/distributions (i.e. Gaussian
distributions).

Once G-Subclasses are identified, we seek to separate them in order
to maximise the distance between these G-Subclasses and minimise the
distance within these G-Subclasses. This is achieved through the LDA
optimisation process with new scatter matrices, which are described in
the next subsection.

3.2. The re-defined Fisher–Rao’s criterion

A key component of the LDA optimisation is Fisher–Rao’s Criterion
in (1), where matrices 𝐴 and 𝐵 can be defined for different purposes. In
GSDA, 𝐴 is taken to be a scatter matrix between different G-Subclasses,
𝑆𝑏𝐺𝑠𝑏, and 𝐵 is taken to be a scatter matrix within G-Subclasses, 𝑆𝑤𝐺𝑠𝑏.
These two matrices are defined below:

𝑆𝑏𝐺𝑠𝑏 =
𝐾
∑

𝑘=1
(𝜇𝑘 − 𝜇)(𝜇𝑘 − 𝜇)𝑇 , (11)

𝑆𝑤𝐺𝑠𝑏 =
1
𝑁

𝐾
∑

𝑘=1

𝑁𝑘
∑

𝑙=1
(𝑥𝑘𝑙 − 𝜇𝑘)(𝑥𝑘𝑙 − 𝜇𝑘)𝑇 , (12)

where 𝐾 is the total number of G-Subclasses in a data set, 𝜇𝑘 is the
mean of G-Subclass 𝑘 and 𝜇 is the global mean of the data set, 𝑁
𝑘
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Fig. 3. An illustration of how to get L-Subclasses. (a) The same data set as in Fig. 2(a), in which two classes are in green and red, and each class consists of two clusters. (b)
Two local clusters (LC) found in each class separately. (c) L-Subclasses denoted by the dashed orange circles, each corresponding to a cluster in (b).
is the number of samples in G-Subclass 𝑘 and 𝑥𝑘𝑙 is the 𝑙th sample in
G-Subclass 𝑘.

The Fisher–Rao’s criterion, i.e. the objective function of GSDA, is
re-defined as:

𝐽 (𝑊 )𝐺𝑆𝐷𝐴 =
𝑡𝑟(𝑊𝑆𝑏𝐺𝑠𝑏𝑊 𝑇 )
𝑡𝑟(𝑊𝑆𝑤𝐺𝑠𝑏𝑊 𝑇 )

. (13)

The matrix 𝑊 ∗ that maximises the GSDA objective is obtained by
solving the generalised eigenvalue decomposition equation1

𝑆−1
𝑤𝐺𝑠𝑏𝑆𝑏𝐺𝑠𝑏𝑊 = 𝜆𝑊 .

𝑊 ∗ is a transformation matrix, which transforms data from the original
space to GSDA space, which is spanned by the eigenvectors of matrix
𝑆−1
𝑤𝐺𝑠𝑏𝑆𝑏𝐺𝑠𝑏.

According to the definition of 𝑆𝑏𝐺𝑠𝑏 and 𝑆𝑤𝐺𝑠𝑏 in (11) and (12),
GSDA aims to maximise between-class separation and within-class
compactness at the subclass level rather than the class level. If this is
achieved, separation and compactness should also be optimal at the
class level. Additionally, instead of trying only to compact G-Subclasses,
GSDA also tries to separate G-Subclasses. Thus, boundary data in the
boundary subclasses are well separated, and high classification perfor-
mance is achieved. The GSDA algorithm is summarised in Algorithm 1.

4. Evaluation using artificial data

To evaluate GSDA, we first use an artificial data set. We compare
GSDA with SDA/MSDA/SSDA by measuring the separability of the
transformed data in different feature spaces and visualising data distri-
bution in the original data space as well as the different feature spaces.
For clarity, we visualise data in two-dimensional space. Since the data
are high-dimensional, we use the T-distributed Stochastic Neighbour
Embedding (t-SNE) algorithm [24] to reduce dimensions. t-SNE is a
nonlinear dimensionality reduction technique and is widely used to
visualise high-dimensional data in a low-dimensional space of two or
three dimensions.

The artificial data were created to contain two classes. Each class
has 300 samples, in three subclasses with 100 samples per subclass.

1 Let 𝑊𝑆𝑤𝐺𝑠𝑏𝑊 𝑇 = 𝛼, where 𝛼 > 0 is any constant. Then, the LDA optimisa-
tion is equivalent to finding a projective matrix 𝑊 to maximise 𝑊𝑆𝑏𝐺𝑠𝑏𝑊 𝑇 and
under the constraint 𝑊𝑆𝑤𝐺𝑠𝑏𝑊 𝑇 = 𝛼. Thus, the Lagrangian multipliers method
is introduced to find 𝑊 ∗. We define 𝐿(𝑊 ,𝜆) = 𝑊𝑆𝑏𝐺𝑠𝑏𝑊 𝑇 −𝜆(𝑊𝑆𝑤𝐺𝑠𝑏𝑊 𝑇 −𝛼),
where 𝜆 ≠ 0 is Lagrange’s multiplier. By setting the derivative of 𝐿(𝑊 ,𝜆) with
respect to 𝑊 to zero, we get
𝜕𝐿(𝑊 ,𝜆)

𝜕𝑊
= 2𝑆𝑏𝐺𝑠𝑏𝑊 − 2𝜆𝑆𝑤𝐺𝑠𝑏𝑊 = 0

⇔ 𝑆 𝑊 = 𝜆𝑆 𝑊 ⇔ 𝑆−1 𝑆 𝑊 = 𝜆𝑊
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𝑏𝐺𝑠𝑏 𝑤𝐺𝑠𝑏 𝑤𝐺𝑠𝑏 𝑏𝐺𝑠𝑏
Algorithm 1 GSDA. In this algorithm, 𝑘𝑚𝑎𝑥 is the maximum number
of subclasses, which is a parameter in the HC-SC clustering method; 𝐾
is the number of G-Subclasses; 𝑁𝑘 is the number of data samples in
the 𝑘𝑡ℎ G-Subclass; 𝑊 ∗ is the final transformation matrix. The columns
of 𝑊 ∗ are the eigenvectors corresponding to the largest eigenvalues of
𝑆−1
𝑤𝐺𝑠𝑏𝑆𝑏𝐺𝑠𝑏, where 𝑆𝑤𝐺𝑠𝑏 and 𝑆𝑏𝐺𝑠𝑏 are the between G-Subclass scatter

matrix and within G-Subclass scatter matrix, respectively.
Input: A set of training data samples 𝑇𝑠𝑒𝑡 and 𝑘𝑚𝑎𝑥.
Output: 𝑊 ∗.
1: Apply HC-SC clustering method on 𝑇𝑠𝑒𝑡 with 𝑘𝑚𝑎𝑥 to obtain the

global clusters {𝐺𝐶𝑖}.
2: Apply local structure refining strategy (LSRS) on {𝐺𝐶𝑖} to obtain 𝐾

G-Subclasses.
3: for 𝑘 = 1 to 𝐾 do
4: Calculate 𝑆𝑏𝐺𝑠𝑏.
5: for 𝑙 = 1 to 𝑁𝑘 do
6: Calculate 𝑆𝑤𝐺𝑠𝑏.
7: end for
8: end for
9: Solve 𝑆−1

𝑤𝐺𝑠𝑏𝑆𝑏𝐺𝑠𝑏𝑊 = 𝜆𝑊 .
10: return 𝑊 ∗.

Samples in each subclass are generated by a 5-variate normal distri-
bution. Thus every sample is a vector of 5 feature values. So, this
artificial data set is a 600 × 5 matrix, named as artifi-600. The sample
distribution in the original space using two t-SNE dimensions is shown
in Fig. 4.

4.1. Comparison in the original space

We compare the subclasses found by different methods as they are
shown in the original data space. We use SDA, MSDA, SSDA and GSDA
on artifi-600 to find subclasses, which are shown in Fig. 5. According
to Fig. 4 and Fig. 5, we have the following observations.

• Qualitatively, the subclasses found by GSDA are more clearly
separable than those found by other methods. We visually inspect
and compare the subclasses found by different methods. The
subclasses found by SSDA and GSDA overlap much less than those
found by SDA and MSDA. In particular, the subclasses found by
GSDA are the least overlapping.

• Quantitatively, the separability of subclasses found by GSDA is
higher than that by other methods, which is consistent with
the visual perception from Fig. 5. We use the Dunn Index [25]
to measure the degree of separability between subclasses. Dunn
Index (DI) is commonly used to evaluate clustering algorithms. A
higher DI indicates better clustering in that clusters are compact
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Fig. 4. Sample distribution in the original space using the first two t-SNE dimensions. (a) Two classes, green for Class One and red for Class Two. (b) Both classes with boundary
points marked by black circles. (c) Class One, where dots in three different colours represent samples generated by three different 5-variate normal distributions. (d) Class Two,
where dots in three different colours represent samples generated by three different 5-variate normal distributions.
Fig. 5. Sample distribution in the original space with subclasses found by different methods. Subclasses are indicated by black circles and represented by sample dots in different
colours.
and well-separated from each other. The DIs of the subclasses
in the original space found by SDA, MSDA, SSDA and GSDA are
0.0046, 0.0059, 0.0188 and 0.0222, respectively.

• Again, quantitatively, the known subclasses in the original space
are better separated in GSDA space than in other spaces. The
DIs of the six known subclasses in SDA, MSDA, SSDA and GSDA
spaces are 0.0016, 0.0141, 0.0072 and 0.0144, respectively.

• GSDA can find natural clusters of data as subclasses since it
clusters the whole data set rather than one class of data at a
time. One example is the cluster of data in the colour cyan at
the top left corner of Fig. 4(c). This cluster is part of one subclass
generated by one normal distribution, and is well separated from
other clusters in the original space. This cluster has been correctly
identified as a single subclass by GSDA, which is represented by
red dots in Fig. 5(d), but not by any of the other methods.

• In terms of boundary subclasses, GSDA can find boundary data
and place them in separate subclasses, while this is not the
case with SDA, MSDA and SSDA. For example, in Fig. 5(d), two
boundary subclasses are clearly marked, which contain Class Two
samples that are mixed up with Class One samples, see Fig. 4(b).

4.2. Comparison in the LDA spaces

Now we compare the results of the different methods in different
LDA spaces. These methods project data into respective subspaces
6

spanned by a number of extracted features. SDA found 4 features, and
MSDA, SSDA and GSDA all found 5 features. In order to visualise data
in the subspace, we again use t-SNE to find two dimensions from each
subspace and plot data against these two dimensions (see Fig. 6). Note
that the classical LDA finds 𝐶 − 1 LDA features for a data set with 𝐶
classes, so the LDA space in Fig. 6(b) has only one feature.

In Fig. 6, the data samples are plotted in different spaces, with green
or red representing different classes. Comparing the original space with
the classical LDA space, it is clear that the two classes are completely
joined up in the classical LDA space, which confirms the problem that
the classical LDA is unable to process the multimodal data. In the
SDA space, the class separability does not improve much. However,
the separability clearly improves substantially in MSDA, SSDA and
GSDA spaces (see Fig. 6(d-f)). Furthermore, three clusters in each class
are clearly observable in these three spaces, which correspond to the
three multivariate normal distributions in each class. In particular, six
clusters in the GSDA space are more apparent than in the other spaces.
Moreover, it is also clear that the two classes are better separated in
the GSDA space than in MSDA and SSDA spaces — only a few green
samples are mixed into the red class in GSDA, whereas some red and
green samples are still mutually mixed in both the MSDA and SSDA
spaces.

4.3. Summary

The above comparative evaluations support the following conclu-
sions.
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Fig. 6. Sample distribution in different spaces, where different colours represent different classes.
• GSDA can find some boundary subclasses at the class boundary,
such as the two boundary subclasses shown in Fig. 5(d), which
will be the anchor points to separate different classes.

• Using the LDA optimisation process, coupled with the newly
defined between-subclass and within-subclass scatter matrices,
GSDA can more effectively separate different classes and also
separate subclasses.

5. Evaluations using real data

In this section, we use real data to evaluate the proposed GSDA
through a series of experiments. We compare GSDA with LDA and
its subclass-based variants that are closely related: LDA, SDA, MSDA,
SSDA, Kernel SDA (KSDA) [26] and Kernel MSDA (KMSDA) [27].
Furthermore, we also compare GSDA with locality-based discriminant
analysis methods: Locality Sensitive Discriminant Analysis (LSDA) [12],
Adaptive Local Linear Discriminant Analysis (ALLDA) [14] and Dy-
namic Maximum Entropy Graph (DMEG).For KSDA and KMSDA, we
employ commonly used kernels: Gaussian radial basis (RBF) kernel,
Gaussian kernel, Polynomial (Poly) kernel, PolyPlus kernel and Linear
kernel. In our experiments, we consider a range of classification tasks:
imbalanced classification, general classification and face recognition.
Five data sets are selected from the KEEL [28] repository for imbal-
anced classification; eleven data sets from the UCI Data Repository [29]
for general classification; and YouTube faces database [30] for face
recognition.

5.1. Data sets and notation

Five imbalanced data sets and eleven UCI data sets are selected in
the experiments. The data sets are all numerical due to the need to
compute the mean and distance. General information about these data
sets is shown in Table 1 and Table 2, respectively.

We also use the YouTube faces database for the face recognition
task. It contains 3425 videos of 1595 different people collected from
YouTube. The average length of each video clip is 181.3 frames,
and there are large variations in expression, pose and illumination in
each video. In our experiments, we use the aligned images database,
7

Table 1
General information about the five imbalanced data sets used in the experiments. Here
#Class denotes the number of classes, #Attribute denotes the number of attributes,
#Instance is the number of instances and IR is short for imbalance ratio.

Name of dataset #Class #Attribute #Instance IR

Dermatology 6 34 366 5.55
Glass1 2 9 214 1.82
Hayes-roth 3 4 132 1.7
New-thyroid1 2 5 215 5.15
Wisconsin 2 9 683 1.86

Table 2
General information about the eleven UCI datasets used in the experiments. FTM and
WDBC denote forest type mapping and Wisconsin diagnostic breast cancer, respectively.
#Class denotes the number of classes, #Attribute denotes the number of attributes and
#Instance is the number of instances.

Name of dataset (Acronym) #Class #Attribute #Instance

Diabetic 2 19 1151
FTM 4 27 523
Glass 6 9 214
Haberman 2 3 306
Leaf 30 14 340
Letter 26 16 20000
Pageblock 2 10 5472
Penbased 10 16 1100
Pima 2 8 768
Seeds 3 7 210
WDBC 2 30 569

which contains aligned face frames broken from videos, and we use
CenterSymmetric LBP (CSLBP) descriptor [31] provided by YouTube
faces database website to represent each face frame.

5.2. Experimental results

In our experiments, every DA method mentioned above is applied
to find a subspace where different classes are most separated based on
the method’s criteria. We project a data set to this subspace, then use
k-Nearest Neighbour (kNN, 𝑘 = 1) as the classifier and ten-fold cross-
validation as the evaluation framework. The evaluation metrics are
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Table 3
EMA±SEM of LDA, GSDA and other subclass-based DA methods on five imbalanced data sets.

Methods
Datasets Derma-

tology
Glass1 Hayes-

roth
New-

thyroid1
Wiscon-

sin

LDA
0.9645

±
0.0134

0.6119
±

0.0226

0.7725
±

0.0499

0.9483
±

0.0150

0.9635
±

0.0090

GSDA
0.9726

±
0.0072

0.8459
±

0.0197

0.8401
±

0.0437

1.0000
±

0.0000

0.9663
±

0.0038

SSDA
0.9673

±
0.0068

0.7716
±

0.0318

0.8099
±

0.0478

0.9859
±

0.0072

0.9649
±

0.0082

SDA
0.9561

±
0.0085

0.7708
±

0.0317

0.7500
±

0.0454

0.9810
±

0.0105

0.9648
±

0.0059

MSDA
0.9679

±
0.0087

0.7721
±

0.0347

0.8099
±

0.0492

0.9952
±

0.0048

0.9634
±

0.0062

KSDA(RBF)
0.9589

±
0.0103

0.7987
±

0.0237

0.8176
±

0.0366

0.9907
±

0.0062

0.9663
±

0.0062

KMSDA(Gaussian)
0.3135

±
0.0288

0.7236
±

0.0283

0.8104
±

0.0349

0.8556
±

0.0163

0.9194
±

0.0074

KMSDA(Linear)
0.9617

±
0.0109

0.7519
±

0.0037

0.7571
±

0.0340

0.9764
±

0.01065

0.9531
±

0.0079

KMSDA(Poly)
0.9673

±
0.0055

0.7610
±

0.0234

0.7879
±

0.0407

0.9907
±

0.0062

0.9643
±

0.0059

KMSDA(PolyPlus)
0.9727

±
0.0081

0.7284
±

0.0303

0.8181
±

0.0322

0.9907
±

0.0062

0.9561
±

0.0072
Table 4
EMA±SEM of GSDA and locality-based DA methods on five imbalanced data sets.

Methods
Datasets Derma-

tology
Glass1 Hayes-

roth
New-

thyroid1
Wiscon-

sin

GSDA
0.9726

±
0.0072

0.8459
±

0.0197

0.8401
±

0.0437

1.0000
±

0.0000

0.9663
±

0.0038

DMEG
0.9178

±
0.0142

0.8219
±

0.0329

0.7505
±

0.0494

0.9861
±

0.0071

0.9561
±

0.0069

ALLDA
0.8962

±
0.0088

0.7143
±

0.0255

0.7725
±

0.0512

0.9671
±

0.0142

0.9487
±

0.0074

LSDA
0.9480

±
0.0076

0.7701
±

0.0214

0.7637
±

0.0581

0.9952
±

0.0048

0.9576
±

0.0067
Estimated Mean Accuracy (EMA) and Standard Error of the Mean (SEM).
Besides, EMA and SEM are calculated in (14) and (15), respectively.

𝐸𝑀𝐴 =
∑10

𝑖=1 𝑝𝑖
10

, (14)

𝑆𝐸𝑀 = 𝛿
√

10
, 𝛿 =

√

∑10
𝑖=1(𝑝𝑖 − 𝐸𝑀𝐴)2

9
, (15)

where 𝑝𝑖 denotes the percentage of correct classification in the 𝑖th fold
validation. For the face recognition task, we use PCA to reduce data
dimensionality and keep 95% of variance before the DA method is used.

5.2.1. Classification accuracy: All methods
Imbalanced Data: The classification accuracies of the subclass-based

and locality-based DA methods on the five imbalanced data sets are
shown in Table 3 and Table 4, respectively. We see from Table 3 that
GSDA obtains the best on 4 out of 5 imbalanced data sets and second
best on the remaining data set (only 0.01% inferior to the best). In
particular, GSDA outperforms LDA on Glass1 by over 20%. Moreover,
compared with the locality-based DA methods, GSDA is the best on all
imbalanced data sets according to Table 4.
8

UCI Data: Results on the 11 UCI data sets are shown in Tables 5
and 6. It can be observed from Table 5 that GSDA achieves better
classification accuracy than SDA and MSDA on the majority of data
sets. Again, it is no surprise that GSDA outperforms LDA on all ten data
sets. Compared with SSDA, GSDA appears to be on par with it on these
UCI data sets. Additionally, comparing GSDA with kernel DA methods,
it is noted that GSDA is superior to KSDA, KMSDA (Gaussian), KMSDA
(Linear), KMSDA (Poly) and KMSDA (PolyPlus) on 8 out of 11, 10 out of
11, 9 out of 11, 9 out of 11 and 7 out of 11 UCI data sets, respectively.
Furthermore, GSDA outperforms the locality-based DA methods on 7
out of 11 UCI data sets and achieves second best on 3 based on Table 6.

Face data: Results for LDA, subclass-based DA and locality-based DA
on YouTube are presented in Table 7 and Table 8, respectively. It can
be readily seen that GSDA is superior to LDA, SDA, MSDA, SSDA and
KSDA on the YouTube data set. Compared with the KMSDA, GSDA
is also quite competitive. From Table 8, we can observe that GSDA
obtains better classification accuracy than LSDA, ALLDA and DMEG on
the YouTube data set.

5.2.2. Runtime performance
Runtime results for all DA methods used in our experiments are
shown in Tables 9–11. It is not surprising that GSDA is slower than LDA
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Table 5
EMA±SEM of LDA, GSDA and other subclass-based DA methods on eleven UCI data sets.

Methods
Datasets Diabetic FTM Glass Haberman Leaf Letter Pageblock Penbased Pima Seeds WDBC

LDA
0.6377

±
0.0128

0.8468
±

0.0142

0.5747
±

0.0269

0.6603
±

0.0196

0.6912
±

0.0417

0.9551
±

0.0014

0.9117
±

0.0026

0.9582
±

0.0043

0.6782
±

0.0216

0.9524
±

0.0142

0.9579
±

0.0079

GSDA
0.6699

±
0.0131

0.8871
±

0.0106

0.6775
±

0.0303

0.7025
±

0.0216

0.7765
±

0.0197

0.9717
±

0.0011

0.9439
±

0.0030

0.9800
±

0.0052

0.6939
±

0.0216

0.9619
±

0.0119

0.9613
±

0.0090

SSDA
0.6907

±
0.0103

0.8603
±

0.0175

0.6647
±

0.0372

0.7029
±

0.0229

0.7676
±

0.0242

0.9676
±

0.0013

0.9673
±

0.0022

0.9809
±

0.0039

0.7004
±

0.0157

0.9524
±

0.0142

0.9632
±

0.0088

SDA
0.6508

±
0.0144

0.8813
±

0.0091

0.7106
±

0.0273

0.6605
±

0.0144

0.5971
±

0.0186

0.9582
±

0.0013

0.9318
±

0.0034

0.9745
±

0.0038

0.6873
±

0.0190

0.9524
±

0.0142

0.9297
±

0.0070

MSDA
0.6846

±
0.0080

0.8737
±

0.0175

0.6595
±

0.0400

0.6898
±

0.0295

0.7265
±

0.0260

0.9599
±

0.0017

0.9678
±

0.0017

0.9791
±

0.0041

0.6965
±

0.0150

0.9571
±

0.0085

0.9648
±

0.0045

KSDA(RBF)
0.6959

±
0.0146

0.8870
±

0.0127

0.6491
±

0.0114

0.6762
±

0.0206

0.7676
±

0.0230

0.9708
±

0.0010

0.9631
±

0.0017

0.9827
±

0.0050

0.6925
±

0.0179

0.9381
±

0.0201

0.9349
±

0.0111

KMSDA(Gaussian)
0.5153

±
0.0196

0.3725
±

0.0188

0.6067
±

0.0289

0.7286
±

0.0187

0.7676
±

0.0212

0.9492
±

0.0019

0.7666
±

0.1013

0.0764
±

0.0049

0.6509
±

0.0216

0.9048
±

0.0188

0.5292
±

0.0447

KMSDA(Linear)
0.6907

±
0.0135

0.8735
±

0.0216

0.6636
±

0.0317

0.7061
±

0.0289

0.7559
±

0.0224

0.9611
±

0.0012

0.9609
±

0.0024

0.9773
±

0.0039

0.6900
±

0.0206

0.9333
±

0.0177

0.9298
±

0.0108

KMSDA(Poly)
0.6786

±
0.0103

0.8755
±

0.0164

0.6677
±

0.0246

0.6924
±

0.0295

0.7559
±

0.0248

0.9653
±

0.0017

0.9543
±

0.0023

0.9791
±

0.0027

0.6848
±

0.0155

0.9524
±

0.0159

0.9420
±

0.0117

KMSDA(PolyPlus)
0.6716

±
0.0097

0.8698
±

0.0165

0.6677
±

0.0248

0.6799
±

0.0304

0.7529
±

0.0253

0.9592
±

0.0018

0.9576
±

0.0022

0.9800
±

0.0040

0.6861
±

0.0148

0.9714
±

0.0127

0.9367
±

0.0126
Table 6
EMA±SEM of GSDA and locality-based DA methods on eleven UCI data sets.

Methods
Datasets Diabetic FTM Glass Haberman Leaf Letter Pageblock Penbased Pima Seeds WDBC

GSDA
0.6699

±
0.0131

0.8871
±

0.0106

0.6775
±

0.0303

0.7025
±

0.0216

0.7765
±

0.0197

0.9717
±

0.0011

0.9439
±

0.003

0.9800
±

0.0052

0.6939
±

0.0216

0.9619
±

0.0119

0.9613
±

0.0090

DMEG
0.6143

±
0.0134

0.8449
±

0.0130

0.6818
±

0.0301

0.6535
±

0.0329

0.6206
±

0.0311

0.9538
±

0.0024

0.9618
±

0.0023

0.9700
±

0.0049

0.6757
±

0.0167

0.9048
±

0.0159

0.8944
±

0.0150

ALLDA
0.6282

±
0.0111

0.6942
±

0.0136

0.6736
±

0.0249

0.6602
±

0.0282

0.8000
±

0.0174

0.9454
±

0.0016

0.9680
±

0.0019

0.9773
±

0.0047

0.6900
±

0.0146

0.8905
±

0.0175

0.8383
±

0.0122

LSDA
0.6272

±
0.0182

0.8622
±

0.0135

0.6732
±

0.0204

0.6995
±

0.0184

0.6882
±

0.0278

0.9731
±

0.0014

0.9649
±

0.0024

0.9773
±

0.0058

0.6653
±

0.0163

0.9524
±

0.0100

0.9490
±

0.0130
G
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Table 7
EMA±SEM of LDA, GSDA and other subclass-
based DA methods on YouTube data set.

Methods
Datasets YouTube

LDA 0.9790± 0.0043
GSDA 0.9820 ± 0.0035
SSDA 0.9790 ± 0.0050
SDA 0.9760 ± 0.0050
MSDA 0.9790 ± 0.0043
KSDA(RBF) 0.9750 ± 0.0050
KMSDA(Gaussian) 0.9850 ± 0.0040
KMSDA(Linear) 0.9780 ± 0.0039
KMSDA(Poly) 0.9810 ± 0.0043
KMSDA(Polyplus) 0.9840 ± 0.0034

on all data sets. However, GSDA is faster than SDA, MSDA and SSDA on
most data sets. Moreover, GSDA is faster than KSDA and all KMSDAs on
all data sets. In particular, GSDA is much faster than them on data sets
that have large numbers of samples, such as Diabetic, Letter, Pageblock,
9

g

Table 8
EMA±SEM of GSDA and locality-based DA
methods on YouTube data set.

Methods
Datasets YouTube

GSDA 0.9820 ± 0.0035
DMEG 0.9770 ± 0.0040
ALLDA 0.9410 ± 0.0288
LSDA 0.9730 ± 0.0045

Penbased and YouTube. This is because constructing the Gram matrix,
needed in these nonlinear DA methods, is time-consuming with time
complexity of 𝑂(𝑁2), where 𝑁 is the number of samples. In addition,

SDA is much faster than LSDA, ALLDA and DMEG on all data sets.

. Conclusions

This paper has presented a new subclass-based variant of LDA,
lobal subclass discriminant analysis (GSDA), to deal with the problem
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Table 9
Running time,in seconds, of the DA methods on five imbalanced data sets.

Methods
Datasets Derma-

tology
Glass1 Hayes-

roth
New-

thyroid1
Wiscon-

sin
LDA 1.65 0.23 0.13 0.12 0.15
SDA 2.77 1.15 0.29 0.36 0.92
MSDA 52.47 5.26 0.96 0.39 0.61
SSDA 2.26 0.32 0.65 0.22 0.33
GSDA 2.16 0.75 0.46 0.22 0.60
DMEG 168.72 369.62 21.17 103.45 2358.83
ALLDA 525.52 328.02 53.16 369.88 1010.86
LSDA 6.44 4.41 3.53 4.79 13.47
KSDA(RBF) 19.08 7.46 15.60 4.75 594.88
KMSDA(Gaussian) 141.02 20.32 13.22 4.04 150.73
KMSDA(Linear) 131.76 17.74 31.53 7.59 123.11
KMSDA(Poly) 66.04 24.44 31.43 9.77 75.22
KMSDA(PolyPlus) 86.81 26.29 7.81 13.10 165.44
Table 10
Running time,in seconds, of the DA methods on eleven UCI data sets.

Methods
Datasets Diabetic FTM Glass Haberman Leaf Letter Pageblock Penbased Pima Seeds WDBC

LDA 0.19 0.16 0.14 0.12 0.38 2.55 0.42 0.19 0.13 0.11 0.15
SDA 2.62 0.82 0.34 0.42 1.59 211.29 27.05 1.33 2.29 0.36 1.31
MSDA 3.33 8.19 2.67 1.50 212.46 378.81 11.75 3.77 2.31 0.28 0.92
SSDA 3.02 0.63 0.45 0.43 1.73 534.01 23.96 1.07 1.01 0.27 0.85
GSDA 1.71 0.32 0.71 0.22 0.41 5099.17 29.91 3.11 0.88 0.24 1.21
DMEG 8747.86 287.63 6.14 143.20 8.92 2605909.38 386651.37 829.58 1853.98 67.58 1123.95
ALLDA 10321.52 311.97 7.66 199.85 7.30 885633.00 490167.10 1149.97 2364.29 42.15 1103.36
LSDA 65.62 21.12 12.84 11.95 16.29 12044.72 943.86 47.26 27.97 11.51 26.19
KSDA(RBF) 213.28 23.65 6.05 3.61 42.76 430820.91 8093.85 209.93 46.03 1.36 181.99
KMSDA(Gaussian) 349.31 10.52 7.05 37.73 222.65 160333.85 60107.48 410.15 249.09 86.48 149.79
KMSDA(Linear) 297.07 102.67 12.43 31.29 213.60 113362.91 23502.76 362.47 205.71 26.22 107.47
KMSDA(Poly) 355.02 51.24 12.90 15.44 219.32 256316.28 30886.48 399.88 113.16 31.40 82.21
KMSDA(PolyPlus) 228.58 106.97 6.38 19.31 215.76 236059.91 38842.89 136.90 169.28 3.51 70.41
w
o

that LDA is unable to process multimodal data effectively. The new
method is designed to capture local structure information from within
and between classes. We observe that most existing subclass-based LDA
variants select subclasses locally, i.e. based only on data within individ-
ual classes, neglecting information between classes at class boundaries.
To solve this problem, GSDA finds subclasses, global subclasses, by
applying the HC-SC clustering algorithm to the whole data rather than
one class of data at a time, then applying the local structure refining
strategy to the clusters. Finally, GSDA finds a subspace that maximises
the average distance between these global subclasses and concurrently
minimises the average distance within every global subclass. This is
achieved by re-defining Fish-Rao’s criterion using new scatter matrices,
one for between global subclasses and one for within global subclasses,
and then applying the LDA optimisation process.

Extensive experiments using a variety of challenging data sets with
multiple modalities and a mixture of subclass-based LDA methods
and locality-based LDA methods have produced convincing results to
conclude that GSDA is a new state-of-the-art method for discriminant
analysis. GSDA has outperformed LDA consistently and also outper-
formed subclass-based and locality-based DA methods in most of our
experiments in terms of both accuracy and runtime. In particular, GSDA
has consistently outperformed both subclass-based and locality-based
DA methods on imbalanced data sets. This suggests that GSDA is a
competitive solution to multimodal data analysis and, in particular,
a state-of-the-art solution to the challenging problem of imbalanced
classification.

We have argued, using examples and supported by our experiments
in Section 4, that this superior performance is due to the fact that GSDA
is able to find subclasses at class boundaries so that pushing such sub-
classes apart can effectively separate different classes. In future work,
the idea of using global subclasses to separate different classes will
be extended from LDA to partial least square regression/classification.
The idea will also be exploited to improve existing machine-learning
10

algorithms and even design new ones.
Table 11
Running time in seconds, of the DA
methods on YouTube data set.

Methods
Datasets YouTube

LDA 4.70
SDA 12.07
MSDA 31730.14
SSDA 7.01
GSDA 10.78
DMEG 54.32
ALLDA 12.10
LSDA 47.78
KSDA(RBF) 8207.46
KMSDA(Gaussian) 116396.15
KMSDA(Linear) 121923.74
KMSDA(Poly) 169384.55
KMSDA(PolyPlus) 116007.91
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