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Abstract: Internet of Things (IoT) devices within smart cities, require innovative detection methods.
This paper addresses this critical challenge by introducing a deep learning-based approach for the
detection of network traffic attacks in IoT ecosystems. Leveraging the Kaggle dataset, our model
integrates Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs) to capture
both spatial and sequential features in network traffic data. We trained and evaluated our model
over ten epochs, achieving an impressive overall accuracy rate of 99%. The classification report
reveals the model’s proficiency in distinguishing various attack categories, including ‘Normal’, ‘DoS’
(Denial of Service), ‘Probe’, ‘U2R’ (User to Root), and ‘Sybil’. Additionally, the confusion matrix offers
valuable insights into the model’s performance across these attack types. In terms of overall accuracy,
our model achieves an impressive accuracy rate of 99% across all attack categories. The weighted-
average F1-score is also 99%, showcasing the model’s robust performance in classifying network
traffic attacks in IoT devices for smart cities. This advanced architecture exhibits the potential to
fortify IoT device security in the complex landscape of smart cities, effectively contributing to the
safeguarding of critical infrastructure

Keywords: network traffic attacks; IoT; smart cities; deep learning; CNN; GRU

1. Introduction

The growth of “smart cities” is largely dependent on the IoT. Improved efficiency,
sustainability, and quality of life are the results of the IoT technology that allows for the
connectivity and communication of numerous objects and systems inside a city [1–5]. Con-
necting and managing household appliances and public lighting is only one example of
how the IoT may be used to improve urban infrastructure and provide better services
for residents. The medical applications of IoT-based systems include remote patient mon-
itoring, effective ambulance services, and enhanced healthcare delivery [6–8]. The IoT
facilitates the development of smart cities by easing the flow of information across disparate
systems and simplifying the coordination of disparate services and devices. However, there
are issues with trust and transparency that need to be resolved in order for IoT to be
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successfully implemented in smart cities [9]. As a whole, the IoT is essential to the growth
of smart cities, as it presents a plethora of prospects for both technological advancement
and environmentally responsible city planning [10,11].

The need for IoT security in smart cities is of paramount importance due to the potential
risks and vulnerabilities associated with interconnected devices and systems [12–14]. As the
adoption of the IoT in smart cities continues to grow, it is crucial to address the security
challenges that arise. However, the adoption of IoT security measures in smart cities is still
lagging behind [12]. Limited financial resources for investments in new physical and IoT
infrastructure pose a challenge in implementing robust security measures [12]. The intercon-
nected nature of IoT devices and systems increases the attack surface, making them susceptible
to cyber threats and unauthorised access. Without adequate security measures, smart cities
can be vulnerable to various risks, including data breaches, privacy violations, and the dis-
ruption of critical services. Therefore, it is essential to prioritise IoT security in smart cities
to safeguard sensitive data, protect privacy, and ensure the reliable and secure operation
of critical infrastructure [12,15]. Implementing strong authentication protocols, encryption
mechanisms, and regular security audits can help mitigate the risks associated with the IoT in
smart cities. Additionally, collaboration between stakeholders, including government bodies,
technology providers, and citizens, is crucial to establish comprehensive security frameworks
and guidelines for IoT deployment in smart cities [16].

In this context, we propsed a hybrid deep learning approach for the detection of cyber
attack traffic in smart cities with respect to IoT. Following are our contributions:

• Integration of Convolutional Neural Networks (CNNs) and Gated Recurrent Units
(GRUs) to capture both spatial and sequential features in network traffic data, enhanc-
ing the model’s ability to identify attacks.

• Achieved an impressive overall accuracy rate of 99% after ten training epochs, demon-
strating the effectiveness of the proposed approach.

• Proficiency in distinguishing various attack categories, including ‘Normal’, ‘DoS’ (Denial
of Service), ‘Probe’, ‘U2R’ (User to Root), and ’Sybil’, as shown in the classification report.

The rest of the paper is organised as follows: Section 2, presents the related work and
the details about our proposed work are presented in Section 3. The analysis of our propsed
work is presented in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

There are a number of tried-and-true methods for detecting attacks in the IoT, all of
which are aimed at keeping the network safe from harm. Several Studies [17,18] proposes
a multiclass classification approach that fits this description. The MQTT-IoT protocol
is frequently used for inter-device communication; therefore, authors are investigating
ways to identify attacks against it. In order to categorise network traffic and spot hostile
actions, the suggested technique utilises an intrusion detection system (IDS) that makes
use of machine learning methods [17,19]. The IDS is able to identify suspicious activity
by comparing network packets against a baseline of known good behaviour [17,20,21].
With this method, IoT devices can be monitored and alerted in real time, which improves
their security and allows for faster responses and resolutions to security events [17,22].
The findings of [17] aid in the creation of efficient attack detection techniques in IoT settings,
which in turn protects IoT devices and networks from harm. Though useful, there are a
number of obstacles in the application of machine learning to detect attacks in the IoT.

Based on the provided references, below are some limitations of traditional methods
for attack detection in the IoT:

• Traditional approaches may not be able to keep up with the immense size and ever-
changing nature of IoT networks, in which many devices produce vast volumes of
data in near real-time [23].

• Traditional solutions are less effective against changing attack tactics since they depend
on static rules or signatures to identify threats [24].
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• Traditional approaches may produce a high number of false positives, which results
in unwanted notifications and extra work for security staff [24].

• Sensor readings, network traffic, and device information are just a few examples of the
many types of data that are generated by IoT networks. It is possible that conventional
approaches will have difficulty analysing and comprehending such varied data [25].

• The low processing capabilities of many IoT devices make it difficult to deploy
resource-intensive classical detection techniques [23].

• Delays in identifying and reacting to assaults caused by using traditional approaches
might be disastrous in IoT settings, in which prompt action is required [23].

• Traditional approaches may only be able to detect anomalies that fit established attack
patterns, making it difficult to identify innovative or complex attacks [26].

Table 1 present a comparative analysis of some the latest research papers. Also,
Authors in [27–29] presents a detailed review of the application of deep learning in IoT
environment. In addition to that, Refs. [30,31] presents a framework for IoT environment.
From Table 1, it is clear that researchers are exploring the use of machine learning and
deep learning techniques that can adapt to dynamic IoT environments, handle diverse data
types, and provide more accurate and timely detection of cyber attacks [23,32].

Table 1. Analysis of recent papers.

Ref. Dataset Method Accuracy Precision F1 Recall

[33]

NSL-KDD 1D-CNN 0.99 1 0.99 0.99

2D-CNN 0.99 1 1 1

UNSW-NB 15 1D-CNN 0.80 0.48 0.06 0.10

2D-CNN 0.81 0.57 0.04 0.07

[34]

KDD-CUP-1999 Stochastic gradient descent classifier
(SGDC) 0.9961 0.9724 0.9713 0.9718

BotIoT-2018 SGDC 0.88 0.9403 0.9285 0.9344

N-BaIoT-2021 SGDC 0.9691 0.9979 0.9513 0.9089

[35] NA Game Theory NA NA NA NA

[36] NSL-KDD Hybrid-CNN 0.92 0.90 0.85 0.81

[37] OTD20 XG-Boost 0.86 1 1 1

DeepPower was proposed by Ding et al. [38] as a non-intrusive method for detect-
ing active malware infections in IoT devices by analysing power side-channel data using
deep learning. Using supervised machine learning techniques like Decision Tree, Fow-
dur et al. [39] explored the detection of dangerous traffic in IoT networks. In order to
identify fraudulent packets in IoT settings, researchers have turned to deep learning mod-
els like LSTM and CNN. Taken together, these publications show that deep learning has
promise as a method for identifying harmful behaviour in IoT systems.

3. Proposed Approch
3.1. Loss Function

In this research, we use the Cross-Entropy Loss function as a central part of our
model’s optimisation. This loss function is crucial in determining the extent to which an
attack categorization on network data deviates from the actual labels. Our model learns
to discriminate between “Normal” and other types of attacks by minimising this loss
during the course of training. Our deep learning-based solution to detecting attacks on
networks carrying data from Internet of Things devices in the context of smart cities is
underpinned by the Cross-Entropy Loss function. The loss function is calculated by the
following equation [40]:
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l(x, y) = L = {l1, · · · , lN} (1)

ln = −
C

∑
c=1

wc log
exp(xn,c)

∑C
i=1 exp(xn,i)

(2)

where ‘x’ is the input, ‘y’ is the target, ‘w’ is the weight, ‘C’ is the number of classes, and ‘N’
spans the batch dimension.

3.2. Optimiser

In this research, the Adam optimizer [41,42] played a significant role in our learning
process. Adaptive Moment Estimation, or Adam for short, is a widely used and very effec-
tive optimisation approach for deep learning models. Because it is a hybrid of the RMSprop
and Momentum optimisers, it can update model parameters quickly and accurately using
gradients. Adam is well-suited for tasks like network traffic assault detection in IoT devices
inside smart cities because of its dynamically adjustable learning rates for each parameter
during training. As a consequence of this flexibility, the optimizer is better equipped to
deal with dynamic loss landscapes, leading to quicker convergence and higher overall
model performance. Using the Adam optimizer was critical in honing our deep learning
architecture and improving the model’s sensitivity to assaults in network traffic. Adam’s
algorithm is presented in Algorithm 1 [41,42].

Algorithm 1: Adam algorithm

Data: Learning Rateα, Beats β, Objective function f (θ), weight decay
λ,amsgrad,maximize

Result: m0 ←− 0 ( first moment),v0 ←− 0 (second moment),v̂0
max ←− 0

while t = 0 do
if maximize then

gt ←− −∇θ ft(θt−1);
else

gt ←− ∇θ ft(θt−1)
end
if λ 6= 0 then

gt ←− gt + λθt−1
mt ←− β1mt−1 + (1− β1)gt
vt ←− β2vt−1 + (1− β2)g2

t
m̂t ←− mt

1−βt
1

v̂t ←− vt
1−βt

2

end
if amsgrad then

v̂max
t ←− max(v̂max

t , v̂t

θt ←− θt−1 − γm̂t√
v̂max

t +ε

else
θt ←− θt−1 − γm̂t√

v̂t+ε

end
end

3.3. Model Architecture

The architecture of our network traffic attack detection model is presented in Figure 1.
This model is a deep learning architecture that combines Convolutional Neural Networks
(CNNs) and Gated Recurrent Units (GRUs) to effectively detect different types of network
traffic attacks within the context of IoT devices in smart cities.
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Figure 1. Model architecture.

The model consists of several layers that are organised sequentially, as follows:

• The initial layer, labelled ‘DeepLearning’, represents the overall architecture.
• The first layer is a 1D convolutional layer (‘Conv1d’) with a depth of 32 and is designed

to extract features from the input data. This layer has 1344 parameters.
• The ‘ReLU’ activation layer follows the convolutional layer, introducing non-linearity

to the model.
• Next is a ‘MaxPool1d’ layer, which performs max-pooling to downsample the data

and reduce its spatial dimensions.
• This is followed by another convolutional layer (‘Conv1d’) which has a depth of 128,

further extracting hierarchical features from the data. This layer has 4224 parameters.
• Again, a ‘ReLU’ activation layer introduces non-linearity.
• Subsequently, a ‘MaxPool1d’ layer performs max-pooling.
• This is followed by the ‘GRU’ (Gated Recurrent Unit) layer, which has 128 units. GRUs

are recurrent layers that can capture sequential patterns in the data.
• The ‘Flatten’ layer reshapes the output from the previous layers into a flat vector.
• Two fully connected (‘Linear’) layers follow, one with 64 and other with 5 output units.

These layers have 8256 and 325 parameters, respectively.
• ‘ReLU’ activation is applied to the first fully connected layer, introducing non-linearity.
• A ‘Dropout’ layer is included for regularization, which helps prevent overfitting.
• Finally, the last ‘Linear’ layer produces the model’s output with 5 units, corresponding

to the different attack categories.

This model has a total of 14,165 parameters, all of which are trainable. It combines
convolutional and recurrent layers to capture both spatial and sequential features in the
network traffic data, making it well-suited for the task of network traffic attack detection in
IoT devices for smart cities. The model’s architecture, as depicted in Figure 1, demonstrates
its depth and complexity in effectively handling the task.

4. Results and Disscussion
4.1. Data Representation

In order to construct a reliable prostate cancer detection model, we performed a
thorough examination of the dataset after data preprocessing (Figure 2). This allowed us to
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better understand the correlations between the various variables and the target variable.
Box plots, a robust visualisation tool, were used for this purpose.

(a)

(b)
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(c)

(d)

(e)
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(f) (g)

(h)
Figure 2. Data representaiton. (a) Attack map representation; (b) Protocol vs. attack type; (c) Flag vs.
attack type; (d) Service vs. attack type; (e) Destination host server count vs. attack type; (f) Destination
host server rate vs. attack type; (g) Destination host server port rate vs. attack type; (h) Correlation.

4.2. Accuracy and Loss Curves

In this study, we conducted experiments using a Kaggle dataset to train and evaluate
our CNN- and GRU-based models for the detection of network traffic attacks in IoT devices
within smart cities. Our training process consisted of 10 epochs, during which we monitored
the performance of our model, as represented in Figure 3. The figures below illustrate the
changes in training loss, training accuracy, test loss, and test accuracy over these epochs.
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(a)

(b)
Figure 3. Loss and accuracy curves. (a) Training and test accuracy. (b) Training and test loss.

As the model learnt from the data, the training loss and training accuracy both de-
creased from their respective values during the first epoch (0.152987 and 95.42%). To
evaluate the models’ capacity to generalise, we assessed both the test loss and test accuracy
simultaneously. During the initial iteration, we saw a loss of 0.063867 and an accuracy of
97.51% in our tests. Both test loss and test accuracy increased during the course of training,
proving that our models are capable of identifying malicious network data. Training loss
reduced steadily over all 10 epochs, demonstrating that our models improved their ability
to reflect the data. Our models did not suffer from overfitting the training data, as shown
by a reduction in the test loss and an improvement in the test accuracy. These findings
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demonstrate the promise of CNN and GRU models for protecting IoT devices in smart
cities from cyberattacks.

4.3. Classification Report

In our research, we used our CNN and GRU models to identify four distinct types
of network traffic attacks in the context of the IoT deployed in smart cities. The model’s
effectiveness against various types of attacks is summarised in the Classification Report
(Figure 4). DoS, Probe, U2R, and Sybil attacks were considered.

Figure 4. Classification Report.

For each attack category, we computed three key metrics: precision, recall, and
F1-score. Precision measures the accuracy of positive predictions, recall gauges the model’s
ability to identify true positive cases, and the F1-score is the harmonic mean of precision and
recall. These metrics provide insights into the model’s effectiveness in correctly classifying
different attack types. The “support” column in the classification report represents the
number of instances in each class, indicating the distribution of attack types in the dataset.

Our model’s performance varies across attack categories. It excels in distinguishing
Normal and DoS attacks, with exceptionally high precision, recall, and F1-scores of 0.99 and
1.00. For Probe attacks, our model exhibits a commendable performance with an F1-score
of 0.99. However, it faces challenges in classifying U2R attacks, where the F1-score drops
to 0.50 due to limited support (only 10 instances). Notably, the model’s ability to detect
Sybil attacks is characterised by a reasonable F1-score of 0.77, emphasising its capability to
identify this specific type of attack.

In terms of overall accuracy, our model achieves an impressive accuracy rate of 99%
across all attack categories. The macro-average F1-score and weighted-average F1-score
are 0.85 and 0.99, respectively, showcasing the model’s robust performance in classifying
network traffic attacks in IoT devices for smart cities. These results demonstrate the
effectiveness of our approach in improving the security of smart city IoT networks by
accurately detecting various attack types.

4.4. Confussion Matrix

In our network traffic attack detection model, the confusion matrix is a valuable tool
that provides a detailed breakdown of the model’s performance in classifying the different
attack categories:, namely “Normal”, “DoS”, “Probe”, “U2R”, and “Sybil”. As represented
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in Figure 5, each row of the matrix corresponds to the true labels, while each column
represents the predicted labels.

Figure 5. Confussion Matrix.

The confusion matrix illustrates the following key aspects of our model’s performance:

• For “Normal” attacks, the majority of instances (13,287) are correctly classified as
“Normal”, with only a small number of instances (11) mistakenly classified as “DoS”
and a few instances (18) misclassified as “Probe”. Additionally, a few “Normal”
instances are incorrectly classified as “U2R” and “Sybil”, with 2 and 71 instances,
respectively.

• For “DoS” attacks, the model demonstrates excellent performance, correctly classifying
9199 instances as “DoS”. There are very few false negatives (instances mistakenly
classified as something other than “DoS”), with only 25 in total.

• In the case of ‘Probe’ attacks, the model correctly identifies the majority of instances
(2276), with just a couple of instances misclassified as ‘Normal’ and ’U2R’.

• “U2R” attacks, being a relatively rare class with only 10 instances, have some misclas-
sifications. Four instances are correctly classified, while six are incorrectly classified
as “Normal”.

• “Sybil” attacks are correctly identified for the most part, with 173 instances correctly
classified and only 26 instances mistakenly classified as ‘Normal’.

5. Conclusions

The security of connected devices is of critical importance in today’s ever-changing
IoT and smart city scene. In this research, we provide a systematic method for dealing with
the critical problem of network traffic assaults in IoT ecosystems for smart cities. Our model
uses a combination of CNNs and GRUs to identify and categorise a wide variety of attacks.
We have shown the efficacy of our methodology via thorough research and assessment,
attaining a remarkable overall accuracy of 99%. The model’s ability to differentiate between
“Normal”, “DoS”, “Probe”, “U2R”, and “Sybil” attacks was highlighted in the classification
report and confusion matrix, providing significant insights into the model’s strengths and
areas for development. Incorporating the findings of this study into smart city infrastructure
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would greatly improve the safety of IoT devices. Our model provides a reliable method for
detecting malicious network traffic by combining spatial and sequential feature extraction
with the capability of deep learning. Our methodology makes a substantial contribution
towards this important goal as the number of smart cities grows and the necessity for
robust IoT security measures becomes more pressing. In the future, networked systems
will form the basis of smart cities, and it is our goal that this study can pave the way for
improvements in security.
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