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Abstract

This work presents a hierarchical distributed model predictive control approach for multiple
agents with cooperative negotiations based on fuzzy inference. Specifically, a fuzzy-based
two-layer control architecture is proposed. In the lower control layer, there are pairwise ne-
gotiations between agents according to the couplings and the communication network. The
resulting pairwise control sequences are sent to a coordinator in the upper control layer,
which merges them to compute the final ones. Furthermore, conditions to guarantee feasi-
bility and stability in the closed-loop system are provided. The proposed control algorithm
has been tested on an eight-coupled tank plant via simulation.

Keywords: Model predictive control, Hierarchical distributed control, Pairwise
negotiations, Fuzzy logic, Multi-agent systems, Stability.

1. Introduction

Centralized control methods generally achieve the best performance, for all the measure-
ments are gathered at a single point where decisions are taken using full information. Nev-
ertheless, there are compelling reasons to consider distributed control architectures. Firstly,
for complex large-scale processes, it is merely not feasible to compute control actions in this
manner due to timing constraints. Additionally, other systems such as traffic, power, and
water networks are geographically spread, i.e., there are several independent entities with
decision-making capabilities and possibly conflicting goals. In these situations, it might be
necessary (or preferable) to provide each subsystem with a local controller with communi-
cation capabilities to attain a coordinated solution with the rest of the system.
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In general, it is better to carry out local controller negotiations in a proactive fashion for
the sake of coordination, i.e., based on sequences of future states and inputs that provide lo-
cal subsystems with future coupling information. For this reason, Model Predictive Control
(MPC), a family of control methods that uses a system model to predict its evolution and
calculates optimal control actions for a given horizon (Rossiter, 2003), has become a pop-
ular choice for distributed implementations. The MPC framework allows dealing explicitly
with multiple variables, constraints, and disturbance information, which are very convenient
features in this context.

During the last decade, numerous Distributed Model Predictive Control (DMPC) schemes
have been proposed with significant differences on issues such as system decomposition, cou-
pling sources, and control goals, to name a few. Depending on the degree of cooperation, the
DMPC method can be decentralized, non-cooperative, or cooperative. Hierarchical architec-
tures are also used for coordination, e.g., to unify the control signals proposed by different
agents for some interconnecting variables, with iterative and ‘price-based’ algorithms. See
(Scattolini, 2009; Negenborn & Maestre, 2014) for reviews on this topic.

However, coordination comes at a price in terms of communication overhead. For ex-
ample, Maestre et al. (2015) show that some DMPC methods may require each agent to
exchange thousands and even millions of floats per time instant to attain an optimal solu-
tion. Whether this is a limiting issue depends on the particular application, but it might
be preferable to decrease the degree of optimality if the coordination burden is reduced.
Numerous studies can be found in the literature about this research line, i.e., Berglind et al.
(2012) and Mi et al. (2019) propose a self-triggered controller that decides the time to update
the control input, thus reducing the communication costs. Other studies such as (Maestre
et al., 2009; Xing et al., 2007) also focus on reducing the communication steps and power.

Another approach to tackle excessive communication burden is fuzzy logic, which can
be used as a tool for agent negotiations. The fuzzy logic theory was introduced by Zadeh
(1973), allowing for the consideration of imprecise or uncertain information in the same way
as human cognition and perception. One of the advantages of considering fuzzy logic in the
negotiation framework is the possibility to characterize a suitable control action employing
a large variety of criteria that, otherwise, would produce unwanted results or would be very
difficult to quantify. For example, given a constraint, the control action can be considered
‘good’ or ‘bad’ concerning that constraint, instead of considering only a feasible or non-
feasible action. Other criteria that can be considered for assessing control actions in the
fuzzy framework are economy, process safety, and environmental effects.

The use of fuzzy logic as a negotiation tool is scarce in the literature. Kosonen (2003)
presents a distributed traffic signal control system with a fuzzy inference system considering
the economy, fluency, environment, and safety as imprecise criteria for negotiation. The
results are discrete control actions for traffic lights. Sahebjamnia et al. (2016) propose a
fuzzy Q-learning algorithm in the distributed control of chemical plants. Negotiation with
fuzzy constraints for the planning and scheduling of supply chains is presented by Hsu
et al. (2016). Other studies such as (Kowalczyk, 2002) and (Thibodeau et al., 2013) include
decision-making process using fuzzy logic in the field of e-commerce, where this technique
is popular.
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This work proposes a two-layer hierarchical DMPC control architecture that uses fuzzy
logic in the negotiation process. In the low-level control layer, agents negotiate in pairs
according to the couplings and the possibilities offered by the communication network, as-
suming that the variables of interest that belong to other players will follow their current
evolution. The pairwise negotiation is based on a modification of the work proposed by
Maestre et al. (2011a), where a two-communication-step mechanism is considered to gen-
erate sub-optimal yet stable solutions with very low communication burden. One of the
disadvantages of that method is the combinatorial explosion of possible inputs when consid-
ering two or more subsystems.In general, the more agents are involved in a negotiation, the
more communication steps are required to attain an agreement. In this context, fuzzy nego-
tiation presents a remarkable advantage over other methods since computing the final input
does not require as many communication steps, but just merging all the inputs proposed by
the involved agents. Likewise, the proposed scheme allows agents to preserve their state and
even their internal model private, which can be useful in problems where agents are willing
to cooperate but may have concerns in this regard. Thus, the original negotiation scheme
is modified to deal with multi-agent systems by adding an extra fuzzy step that reduces the
communication burden. Moreover, it is considered additional criteria in the decision-making
process to soften the trajectory of control signals, which are prone to abrupt changes in the
original method.

As a result of the pairwise negotiations, a set of stabilizing sequences or proposals for
the system is obtained. In particular, we consider three possible input trajectories for each
subsystem: i) its shifted input (computed as an extension of the input applied at the previous
time step), which guarantees stability in the closed-loop subsystem when feedback is selected
properly; ii) its selfish input, which is the best control sequence locally computed; and iii)
the altruistic input, which consists of the action wished and computed by its neighbor.
This triplet seems a reasonable heuristic choice to obtain the final inputs via a fuzzification
process, as proposed by Maestre et al. (2011a). Note that the referred method was compared
with other well-known schemes in a four-tank benchmark, proving good performance despite
its heuristic nature (Alvarado et al., 2011). Afterwards, the set of proposal is sent to the
fuzzy-based supervisory layer, which merges them to obtain new control sequences for the
system. Finally, stability is guaranteed for this fast decision-making scheme. Note that
hybrid Fuzzy-MPC approaches are rare in the literature, except for (Francisco et al., 2019),
a previous work where fuzzy negotiation was applied to a four-coupled-tank system, but
without stability guarantees and limited to systems with only two agents. We would also like
to stress that hierarchical-distributed architectures are common in this context. Likewise,
some schemes rely on coordinators or supervisory layers (Zafra-Cabeza et al., 2011; Doan
et al., 2014; Saad et al., 2018).

The approach benefits are shown via simulation of a non-linear eight-coupled tanks
system, designed as an extension of the quadruple-tank process (Johansson, 2000). The
quadruple-tank process has significantly been used as a benchmark to analyze distributed
MPC techniques (Alvarado et al., 2011), to test a robust tube-based MPC for tracking
(Limón et al., 2010), to study multi-variable dead times (Shneiderman & Palmor, 2010),
and for the stabilization of linear systems with delays (El Haoussi et al., 2011).
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The rest of the article is organized as follows. Section 2 introduces the problem for-
mulation and the control goal. In Section 3, the proposed control architecture, the control
algorithm, and the fuzzy pairwise negotiation are detailed. Section 4 displays stability prop-
erties and the procedure used to design the controller. Section 5 illustrates the proposed
fuzzy DMPC scheme and the fuzzy negotiation criteria employed in the eight-coupled tanks
benchmark. The results obtained from the simulation of this plant are shown in Section 6.
Finally, conclusions are summarized in Section 7.

Notation: N0` and R` are, respectively, the sets of non-negative integers and positive
real numbers. Rn refers to an n-dimension Euclidean space. The scalar product of vectors
a, b P Rn is denoted as abJ or a ¨ b. Given sets X ,Y Ď Rn, the Cartesian product is
X ˆ Y fi tpx, yq : x P X , y P Yu. If tXiuiPN is a family of sets indexed by N , then
the Cartesian product is

Ś

iPN Xi fi X1 ˆ ¨ ¨ ¨ ˆ XN “ tpx1, . . . , xNq : x1 P Xi, . . . , xN P

XNu. Moreover, the Minkowski sum is X ‘ Y fi tx ` y : x P X , y P Yu. The set
subtraction operation is symbolized by z. The image of a set X Ď Rn under a linear
mapping A : Rn ÞÑ Rm is AX fi tAx : x P X u. The integral of the squared error ε is
defined as ISE “

ş8

0
ε2dt. The Np´long future input sequence at time instant k is defined

as Upkq “ rupkq, upk ` 1q, . . . , upk ` Np ´ 1qsJ, and the optimal sequence is denoted as
U˚pkq “ ru˚pkq, u˚pk ` 1q, . . . , u˚pk `Np ´ 1qsJ.

2. Problem Formulation

Let the system be composed of a set N= {1, 2, . . . , N} of input-coupled subsystems
whose state evolution is

xipk ` 1q “ Aixipkq `Biiuipkq ` wipkq, (1)

where k P N0` denotes the time instant; xi P Rqi and ui P Rri are, respectively, the state
and input vectors of each subsystem i P N , constrained in the convex sets containing the
origin in their interior Xi fi txi P Rqi : Ax,ixi ď bx,iu and Ui fi tui P Rri : Au,iui ď bu,iu,
respectively; and Ai P Rqiˆqi and Bii P Rqiˆri are matrices of proper dimensions. The
measurable disturbances vector wi P Rqi represents the coupling with other subsystems j
belonging to the set of neighbors Ni fi tj P N ztiu : Bij ‰ 0u, i.e.,

wipkq “
ÿ

jPNi

Bijujpkq, (2)

where uj P Rrj is the input vector of subsystem j P Ni, and matrix Bij P Rqiˆrj models the
input coupling between i and j. Moreover, wi is bounded in a convex set Wi fi

À

jPNi
BijUj

due to the system constraints. The neighborhood affected by agent i is defined as Mi fi

tj P N ztiu : Bji ‰ 0u.
From the global viewpoint, the overall system evolution can be aggregated as

xN pk ` 1q “ ANxN pkq `BNuN pkq, (3)
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where AN “ rAijsi,jPN and BN “ rBijsi,jPN are, respectively, the state and input-to-state
matrices of the overall system. Global state and input vectors are constrained in XN “
Ś

iPN Xi and UN “
Ś

iPN Ui, respectively. Regarding mutual interaction, wN is implicitly
included in (3).

2.1. Control objective

The control objective is to drive the system towards the origin of the state space guar-
anteeing that constraints are satisfied, and minimizing the sum of the local cost functions.
At each time instant k, the cost function of subsystem i P N is calculated based on the pre-
dicted trajectories of its states and inputs over a future window of length Np (the so-called
prediction horizon):

Ji
`

xipkq, Uipkq, Ujpkq
˘

“

Np´1
ÿ

t“0

Li

`

xipk ` tq, uipk ` tq
˘

` Fi

`

xipk `Npq
˘

, (4)

where Lip¨q is the stage cost function, and Fip¨q is the terminal cost function defined as

Li

`

xipk ` tq, uipk ` tq
˘

“ xipk ` tq
JQixipk ` tq ` uipk ` tq

JRiuipk ` tq,

Fi

`

xipk `Npq
˘

“ xipk `Npq
JPixipk `Npq,

with Qi being a semi-positive definite matrix, and Ri, Pi being positive-definite matrices.

3. Proposed Control Architecture

Highly coupled agents communicate using a network that can be modeled as the indirect
graph G “ pN ,Lq, where N is the set of agents, and L is the set of bidirectional links
L Ď LN “ tti, ju : ti, ju Ď N , i ‰ ju, i.e., a link lij P L connects agents i and j providing
a bidirectional information flow. If two agents are connected by a communication link lij,
they follow a pairwise cooperative scheme to find a consensus on their control sequences via
a multi-layer fuzzy negotiation algorithm.

The multi-layer fuzzy-based control architecture is shown in Fig. 1. The low-level control
layer uses DMPC and fuzzy techniques to deal with the pairwise-agent negotiations assuming
that interest variables that belong to other agents follow their current evolutions. Then, the
sequences resulting from the pairwise negotiations are sent to a supervisory layer, which
merges and fuzzifies them to compute the final control sequence for the whole system.

3.1. Low-level control layer

A DMPC algorithm for multiple agents is performed by the lower control layer. Specifi-
cally, fuzzy-based negotiations are made in pairs considering the couplings with their neigh-
boring subsystems, which are assumed to hold their current trajectories. To this end, it is

5



Fuzzy 

Negotiation

Fuzzy Pairwise 
Negotiation

Distributed MPC

Low-level 

control layer

Upper-level 

control layer

Figure 1: The multi-layer fuzzy-based control architecture.

used a shifted sequence of agent i, which is defined by adding Kixipk`Npq to the sequence
chosen at the previous time step Uipk ´ 1q:

U s
i pkq “

»

—

—

—

—

—

–

uipk ` 1|k ´ 1q
uipk ` 2|k ´ 1q

...
uipk `Np ´ 1|k ´ 1q
Kixipk `Np|k ´ 1q

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

usipkq
usipk ` 1q

...
usipk `Np ´ 2q
usipk `Np ´ 1q

fi

ffi

ffi

ffi

ffi

ffi

fl

. (5)

3.1.1. Distributed MPC algorithm for multiple agents

Algorithm 1 extends the DMPC scheme proposed by Maestre et al. (2011a) for N sub-
systems without combinatorial explosion.

Algorithm 1 (Stage 1): Agent Proposals.

At each time step k:

1. Firstly, agent i measures its local state x̃ipkq.

2. Agent i calculates its shifted trajectory U s
i pkq, and sends it to its neighbors.

3. Agent i minimizes its cost function considering that neighbor j P Ni applies its
shifted trajectory U s

j pkq. It is assumed that the rest of the neighboring subsystems
l P Niztju follows their current control trajectories U s

l pkq. Specifically, agent i solves

U˚i pkq “ arg min
Uipkq

Ji
`

xipkq, Uipkq, U
s
j pkq, U

s
l pkq

˘

, (6)

subject to

xipk ` t ` 1q “ Aixipk ` tq ` Biiuipk ` tq ` Bijujpk ` tq `
ÿ

lPNiztju

Bilulpk ` tq,
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xipkq “ x̃ipkq, i P N ,
xipk ` tq P Xi, t “ 0, . . . , Np ´ 1,
xipk `Npq P Ωi,
uipk ` tq P Ui, t “ 0, . . . , Np ´ 1,
ujpk ` tq “ usjpk ` tq, t “ 0, . . . , Np ´ 1,
ulpk ` tq “ uslpk ` tq, t “ 0, . . . , Np ´ 1,

where set Ωi is imposed as terminal state constraint of agent i. Details regarding
the calculation of Ωi are given in Section 4.

4. Agent i optimizes again its cost Jip¨q maintaining its optimal input sequence U˚i pkq
fixed to find the input sequence wished for its neighbor j, i.e., Uwi

j pkq. Here, it is
also assumed that subsystems l follow their current trajectories. To this end, agent
i solves

Uwi
j pkq “ arg min

Ujpkq
Ji
`

xipkq, U
˚
i pkq, Ujpkq, U

s
l pkq

˘

, (7)

subject to

xipk ` t ` 1q “ Aixipk ` tq ` Biiuipk ` tq ` Bijujpk ` tq `
ÿ

lPNiztju

Bilulpk ` tq,

xipkq “ x̃ipkq, i P N
xipk ` tq P Xi, t “ 0, . . . , Np ´ 1,
xipk `Npq P Ωi,
uipk ` tq “ u˚i pk ` tq, t “ 0, . . . , Np ´ 1,
ujpk ` tq P Uj, j P Ni t “ 0, . . . , Np ´ 1,
ulpk ` tq “ uslpk ` tq, t “ 0, . . . , Np ´ 1.

5. Finally, agent i sends Uwi
j pkq to agent j, and receives U

wj

i pkq.

3.1.2. Fuzzy pairwise negotiations

Following Stage 1 of the proposed algorithm, the idea is to apply fuzzy negotiation
to obtain a control solution that decreases the performance index and guarantees stabil-
ity. To this end, each pair of agents ti, ju has control actions tU˚i pkq, U

s
i pkq, U

wj

i pkqu and
tU˚j pkq, U

s
j pkq, U

wi
j pkqu. A fuzzy inference system for negotiation generates the final control

actions U f
i pkq and U f

j pkq, considering some operational and economic constraints. Fig. 2
depicts the fuzzy negotiation scheme (Uddin & Rahman, 1999) that will be implemented to
control the closed-loop system.

The main three steps of the negotiation process are:
1) Fuzzification: It consists of converting a numerical variable into a linguistic variable. In
this way, the imprecise process knowledge determined by the membership functions trans-
forms a crisp numerical value into fuzzy degrees of membership for each linguistic variable
(Raviraj & Sen, 1997). For example, the temperature value in a boiler can be characterized
by the degree of ‘high’ and ‘low’. If more linguistic labels are available, the temperature can
be classified by: ‘dangerous’, ‘high’, ‘medium’, and ‘low’.
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Figure 2: Scheme of the low-level control layer.

Let x be the state, input, or other algebraic variable characterizing the process (e.g.,
residence time in a water tank, energy consumption, and temperature). If only two linguistic
labels are available for describing the variable, two fuzzy sets T1 and T2 can be considered.
Their membership functions µT1pxq and µT2pxq:

µT1pxq “

$

’

&

’

%

1 for x ă a
b´ x

b´ a
for a ď x ă b

0 for b ď x

, µT2pxq “

$

’

&

’

%

0 for x ă a
a´ x

a´ b
for a ď x ă b

1 for b ď x

, (8)

are, respectively, associated with the linguistic labels ‘high’ and ‘low’, as shown in Fig. 3.

a b

x

0

0.5

1

1.5

T
1
(x

);
 

T
2
(x

)

Figure 3: Membership functions (blue solid line: µT1pxq, and magenta dashed line: µT2pxq).

The process knowledge can often allow for the definition of more than two linguistic
labels. Although the methodology presented here is for three linguistic labels, its extension
is straightforward. If three linguistic labels are considered, three fuzzy sets T3, T4, and T5
must be defined. Let y be another state, input, or algebraic variable of the process, the
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membership functions µT3pyq, µT4pyq, and µT5pyq:

µT3pyq “

$

’

&

’

%

1 for y ă a
c´ y

c´ a
for a ď y ă b

0 for c ď y

, µT4pyq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 for y ă a
y ´ a

c´ a
for a ď y ă c

b´ y

b´ c
for c ď y ă b

0 for y ą b

,

µT5pyq “

$

’

&

’

%

0 for y ă c
c´ y

c´ b
for c ď y ă b

1 for b ď y

,

(9)

are, respectively, associated with the linguistic labels ‘high’, ‘medium’, and ‘low’, as displayed
in Fig. 4.

a c b

y

0

0.5

1

1.5

T
3
(y

);
 

T
4
(y

);
 

T
5
(y

)

Figure 4: Membership functions (blue solid line: µT3
pyq, magenta dashed line: µT4

pyq, and green dashed
dotted line: µT5pyq).

2) Rule evaluation: Once the fuzzification has been performed, the next step in the fuzzy
logic negotiation is the rule evaluation, which links the imprecise value of different relevant
variables determined by the membership degrees with the suitability of control action. In
general, the more ‘good’ or ‘safe’ the relevant variables are, the better the control action
becomes. The fuzzy rules must represent all the possible combinations to provide results for
all the universe of discourse. For example, in the case of a process with only two relevant
variables for negotiation, a rule Rx can be written linguistically (Raviraj & Sen, 1997):

Rule Rx: If LA is TLA
and LB is TLB

, then output LC is TLC
,

where TLA
, TLB

, TLC
are, respectively, the fuzzy sets corresponding to some linguistic labels

for variables LA, LB, LC , with LC being the control action that is evaluated in the negotia-
tion. The use of rules with more than two antecedents or variables is straightforward, and
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it depends on the particular case of study.

3) Defuzzification: On applying the fuzzy rules, a fuzzy characterization of the control
action is generated according to each rule. In defuzzification, it is obtained a crisp number
representing the global suitability of a control action taking into account all rules. As
proposed in (Bai & Wang, 2006), there are several defuzzification methods, but Sugeno-type
fuzzy inference (Sugeno, 1985) has been used in this work.

Each rule weighs the different antecedents regarding the considered linguistic variables:

wx
r “

"

w1 if x is T1 (high)
w2 if x is T2 (low)

, wy
r “

$

&

%

w3 if y is T3 (high)
w4 if y is T4 (medium)
w5 if y is T5 (low)

.

The suitability (fitness) of a control sequence U for rule Rr is defined as

αRrpUq “ wx
r ¨ µTr1pxq ¨ w

y
r ¨ µTr2pyq, (10)

where r is the r-th rule, the variables x and y are those associated with the corresponding
U , and µTr1pxq, µTr2pyq are the fuzzy sets considered in rule r P Nr. Hence, the total fitness
of the control signal for the set of Nr rules is

TαpUq “
Nr
ÿ

r“1

αRrpUq. (11)

The last part of the procedure consists of merging all proposed control sequences to obtain
the final one. Particularly, for the proposed DMPC, the input of agent i obtained from the
m-th fuzzy negotiation is

U fm
i pkq “

U s
i pkq ¨ Tα

`

U s
i pkq

˘

` U˚i pkq ¨ Tα
`

U˚i pkq
˘

` U
wj

i pkq ¨ Tα
`

U
wj

i pkq
˘

Tα
`

U s
i pkq

˘

` Tα
`

U˚i pkq
˘

` Tα
`

U
wj

i pkq
˘ , (12)

and likewise, U fm
j pkq is calculated.

Bear in mind that control sequence U
wj

i pkq can be excluded from the fuzzification (12)
if it leads the subsystem to unfeasibility. Moreover, the feasibility of control sequences
obtained after the fuzzification process is also ensured because optimization problems (6)
and (7) are convex and, hence, U fm

i is a linear combination of feasible sequences.
The m-th fuzzy-pairwise negotiation procedure is summarized as follows.

Algorithm 1 (Stage 2): Proposals for fuzzification.

At each time step k:

1. For each agent i P N , the triplet of possible inputs is tU s
i pkq, U

wj

i pkq, U
˚
i pkqu. Since

the wished control sequence U
wj

i pkq is computed by neighbor j without considering
state constraints of agent i, it is needed to check whether state constraint satis-
faction of agent i holds after applying U

wj

i pkq. Otherwise, it is excluded from the
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fuzzification process. Afterward, fuzzy negotiation is applied to compute the final
sequence U fm

i pkq. Similarly, it is computed U fm
j pkq.

2. A resulting pairwise fuzzy negotiation sequence U fm
ij pkq “ tU

fm
i pkq, U

fm
j pkq, U

s
l pkqu

is defined based on U fm
i pkq and U fm

j pkq, assuming that the rest of subsystems l P
N zti, ju follows their pre-defined trajectories.

3. Agent i sends its cost for the fuzzy and stabilizing control inputs to its neighbors,
and vice versa. Let us define U s

ij “ tU
s
i pkq, U

s
j pkq, U

s
l pkqu; if the condition

ÿ

lPMi
Ť

Mj
Ť

ti,ju

Jl
`

xlpkq, U
fm
ij

˘

ď
ÿ

lPMi
Ť

Mj
Ť

ti,ju

Jl
`

xlpkq, U
s
ij

˘

(13)

holds, then stability is guaranteed, and thus, U fm
i pkq is sent to the upper control

layer. Otherwise, U s
i pkq is sent.

Note that there can be up to N2 ´ N negotiation problems running in parallel at each
time instant k if all subsystems were coupled with their neighbors. Nevertheless, as shown in
Fig. 5, only high-coupled subsystems with enabled communication links (dashed line) follow
the cooperative scheme proposed.

2

1

3

4

6

5

7 N…

f

12U

f

34U

f

23U

f

45U

f

56U

f

67U
Information coupling

Physical coupling

Figure 5: Example of N agents negotiating in pairs.

3.2. Overall low-level control layer scheme

The minimum number of communication steps for this cooperative scheme is five. An
outline of this scheme is shown in Fig. 6. First of all, agent i P N sends its shifted in-
put trajectory U s

i pkq to agents in Mi, and similarly, agent j sends its trajectory. Once
the information is received, agents i and j compute, respectively, the optimal sequences
U˚i pkq, U

˚
j pkq and the wished neighboring input trajectories Uwi

j pkq, U
wj

i pkq, and exchange

them. Before applying fuzzification, it is checked the feasibility of U
wj

i pkq and Uwi
j pkq.

Unless feasible, these input sequences will not be included in the set of sequences to fuzzifi-
cation. Then, agents communicate their results to each other. In the fourth step,sequences
U fm
i pkq, U

fm
j pkq resulting from the m-th fuzzy negotiation are respectively exchanged. After-

ward, it is checked whether stability condition (13) is satisfied. Otherwise, the final input
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trajectories of agents i and j will be U fm
i pkq “ U s

i pkq and U fm
j pkq “ U s

j pkq, respectively.
Finally, costs associated with these inputs are exchanged in the last step.

Agent 𝑖

Step 1

Step 2

Step 4

Fuzzy pairwise negotiation

Step 3

𝑈𝑖
s(𝑘) 𝑈𝑗

s(𝑘)

𝑈𝑖
∗ 𝑘 , 𝑈𝑗

w𝑖(𝑘)𝑈𝑗
∗ 𝑘 , 𝑈

𝑖

w𝑗(𝑘)

𝑈𝑖
s(𝑘)𝑈𝑗

s(𝑘)

𝑈𝑗
f𝑚(𝑘) 𝑈𝑖

f𝑚(𝑘)

Agent 𝑗

Stability checking

Feasibility checking

Step 5

Agent 𝑙 Agent 𝑙

𝑈𝑙
s(𝑘) 𝑈𝑙

s(𝑘)

𝑈𝑖
s(𝑘) 𝑈𝑗

s(𝑘)𝑈𝑙
s(𝑘) 𝑈𝑙

s(𝑘)

𝑈𝑖
f𝑚(𝑘) 𝑈𝑗

f𝑚(𝑘)

"Yes"/"No" "Yes"/"No""Yes"/"No"

𝑈𝑖
∗ 𝑘 , 𝑈𝑗

w𝑖(𝑘) 𝑈𝑗
∗ 𝑘 , 𝑈

𝑖

w𝑗(𝑘)

𝐽𝑙(𝑥𝑙 𝑘 , 𝑈𝑖𝑗
f𝑚(𝑘)),

𝐽𝑙(𝑥𝑙 𝑘 , 𝑈𝑖𝑗
s (𝑘))

𝐽𝑙(𝑥𝑙 𝑘 , 𝑈𝑖𝑗
fm(𝑘)),

𝐽𝑙(𝑥𝑙 𝑘 , 𝑈𝑖𝑗
s (𝑘))𝐽𝑗

f , 𝐽𝑗
s

𝐽𝑖
f, 𝐽𝑖

s

Figure 6: Outline of the communication steps involved in the m-th pairwise negotiation for the proposed
lower control layer.

Once the sequences resulting from the pairwise negotiations are obtained, they are sent
to the upper control layer.

3.3. Upper-level control layer

Given agent i coupled through inputs with its neighbors and the set of control sequences
tU f1

i pkq, U
f2
i pkq, . . . , U

fM
i pkqu obtained from M pairwise fuzzy negotiations, this supervisory

layer is responsible for applying a final fuzzification process with all these options.
The final control sequence U f

i pkq is computed as a weighted average of the control se-
quences from the m P t1, . . . ,Mu pairwise fuzzy negotiations with all of its neighbors:

U f
i pkq “

M
ř

m“1

U fm
i pkq ¨ Tα

`

U fm
i pkq

˘

M
ř

m“1

Tα
`

U fm
i pkq

˘

, (14)

where Tαp¨q is the total fitness of the control signal for the set of rules.
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For the overall system, the input sequence U f
N pkq can be obtained by aggregating all the

final sequences, i.e., U f
N pkq “

`

U f
i pkq

˘

iPN . Hence, the global cost function is

J f
N
`

xN pkq, U
f
N pkq

˘

“

Np´1
ÿ

t“0

LN
`

xN pk ` tq, uN pk ` tq
˘

` FN
`

xN pk `Npq
˘

, (15)

where LN p¨q and FN p¨q are, respectively, the global stage and terminal cost functions defined
as

LN p¨q “ xN pk ` tq
JQNxN pk ` tq ` uN pk ` tq

JRNuN pk ` tq,
FN p¨q “ xN pk `Npq

JPNxN pk `Npq,
(16)

with the weighting matrices QN “ rQisiPN and RN “ rRisiPN ; and the terminal cost matrix
PN “ rPisiPN . The overall cost-to-go must decrease over time to guarantee stability, i.e.,

J f
N
`

xN pk ` 1q, U f
N pk ` 1q

˘

ď J f
N
`

xN pkq, U
f
N pkq

˘

. (17)

Otherwise, the final control sequence U f
N pk ` 1q “ U s

N pk ` 1q will be implemented because
it decreases the overall cost, as proved later in subsection 4.3.

The steps taken by the upper control layer are summarized in Algorithm 2.

Algorithm 2: Supervisory layer

1. From M pairwise negotiations, the upper control layer receives the set of sequences
tU f1

i pkq, U
f2
i pkq, . . . , U

fM
i pkqu for each agent i.

2. Final sequence U f
i is calculated as (14) for each i P N , and, afterward, they are

aggregated to obtain a global one for the overall system, i.e., U f
N pkq “

`

U f
i pkq

˘

iPN
3. Finally, the overall cost J f

N
`

xN pk ` 1q, U f
N pk ` 1q

˘

is computed and compared with
the cost from the previous time instant k. If the cost decreases, U f

N pk`1q is applied
to the system. Otherwise, U s

N pk ` 1q is finally implemented.

Note that this layer acts as a supervisory layer, which merges all pairwise negotiations.
However, this fact is not contradictory with the proposed architecture because it is only
necessary full communication in these steps, relieving communication burden the rest of the
time. Additionally, this centralized supervisor is performed with lower computation time
than a centralized MPC, which needs to solve an overall optimization problem subject to
constraints. See (Marcos et al., 2014; Saad et al., 2018; Velarde et al., 2019) as examples of
distributed MPC approaches where a supervisor communicates with local controllers.

4. Stability and Controller Design Procedure

The outcome of the pairwise fuzzy negotiation process is a feasible sequence of inputs
for the overall system. Furthermore, the upper layer uses a convex combination of these
sequences, which are also feasible due to the problem’s convexity. This strategy is supported
by auxiliary feedback, which provides the basis for feasibility and stability guarantees of the
proposed scheme. In this section, the requirements to hold recursive feasibility and stability
are detailed. Additionally, a procedure to design the necessary feedback controllers based
on a Linear Matrix Inequality (LMI) is described.
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4.1. Stability requirements

A standard approach based on terminal regions/invariant sets Ωi is followed to obtain
stability of the closed-loop system. Note that, from each agent’s viewpoint, the coupling
with its neighbors can be considered as an unknown bounded disturbance set Wi when
computing its invariant set Ωi to simplify the problem (Maestre et al., 2011a,b).

Assumption 1. For each system (1), there is a feedback Ki that ensures that all eigenvalues
of pAi ` BiiKiq are within the unit circle. Likewise, the same holds for the corresponding
global feedback KN “ diagpKiqiPN .

Definition 1. The set Ωi is a Robust Positively Invariant (RPI) set for subsystem i if and
only if its evolution satisfies:

xipkq P Ωi ÝÑ xipk ` 1q P Ωi, @wipkq PWi, @k P N0`. (18)

Assumption 2. There exists an RPI set Ωi that, under the linear control law ui “ Kixi,
satisfies

pAi `BiiKiqΩi ‘Wi Ď Ωi, Ωi Ď Xi, KiΩi Ď Ui, (19)

with Wi being a convex set that contains the origin in its interior.

Considering Assumption 2, the RPI set of the overall system can be computed as the
Cartesian product of all Ωi, i.e.,

ΩN “
ą

iPN
Ωi. (20)

There are several methods to find a set Ωi that satisfies these constraints (see, e.g.,
(Kolmanovsky & Gilbert, 1998; Rakovic et al., 2005) for a procedure to find the maximal
and the minimal robust positive invariant, respectively). In this work, the Multi-Parametric
Toolbox (MPT) of MATLAB (Herceg et al., 2013) is employed to compute each subsystem’s
maximal RPI set.

Assumption 3. There exists a Lyapunov function VN
`

xN pkq
˘

“ xN pkq
JPNxN pkq with

PN “ diagpPiqiPN controlled by KN “ diagpKiqiPN that provides an upper bound on the
cost-to-go of the system, i.e.,

VN
`

xN pkq
˘

ě

8
ÿ

t“0

LN
`

xN pk ` tq, uN pk ` tq
˘

. (21)

4.2. Controller design

Numerous methods to design controllers such as Internal Model Control (IMC) (Wang
et al., 2001; Tan et al., 2003), Gain Scheduling (GS) (Leith & Leithead, 2000), and loop-
shaping (McFarlane & Glover, 1992; Zhu et al., 2003) can be found in the literature. Here,
matrices KN and PN for the global system are obtained by solving the following LMI such
as in (Magni et al., 2003; Lazar et al., 2009; Darivianakis et al., 2019).
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Theorem 1. Let the global matrices be AN “ rAijsi,jPN and BN “ rBijsi,jPN , and stage
cost matrices QN “ diagpQiqiPN and RN “ diagpRiqiPN . If there are matrices HN “ HJ

N “

diagpHiqiPN , where Hi P Rqiˆqi, and YN “ diagpYiqiPN , where Yi P Rriˆqi in such a way that
it is held:

»

—

—

—

–

HN HNA
J
N ` Y

J
NB

J
N HNQ

1{2
N Y JNR

1{2
N

ANHN `BNYN HN 0 0

Q
1{2
N HN 0 I 0

R
1{2
N YN 0 0 I

fi

ffi

ffi

ffi

fl

ě 0, (22)

then there exits a matrix PN “ H´1
N that satisfies (21), and a feedback control matrix KN “

YNH
´1
N that stabilizes the closed-loop system.

Proof. Following Maestre et al. (2011b), the condition (22) is derived from the recursive
application of the Schur’s complement to

pAN `BNKN q
JPN pAN `BNKN q ´ PN `QN `K

J
NRNKN ď 0. (23)

Secondly, it is proved that the closed-loop system is stable with the linear control law
uN “ KNxN . Pre- and post-multiplying (23) by xN pkq

J and xN pkq, and then by ´1, it can
be rewritten as

xN pkq
JPNxN pkq ´ xN pk ` 1qJPNxN pk ` 1q ě LN

`

xN pkq
˘

, (24)

where
xN pk ` 1q “ pAN `BNKN qxN pkq,
lN
`

xN pkq
˘

“ xN pkq
JQNxN pkq ` xN pkq

JKJ
NRNKNxN pkq.

Hence, VN
`

xN pkq
˘

“ xN pkq
JPNxN pkq is a Lyapunov function and stability is guaranteed.

Moreover, it can be checked that (21) holds by telescope summation.

The LMI (22) is solved maximizing the trace of HN to design the controller for the
overall system. This fact leads to the minimization of the trace of PN “ H´1

N , and, therefore,
minimizing the cost-to-go. The resulting feedback matrix KN “ YNH

´1
N is the gain of the

controller.

4.3. Stability of the MPC controller

In the previous section, the system’s stability with the corresponding KN has been
proved. Here, it also proved stability guarantees when the MPC controller is used.

Assumption 4. There is a feasible overall control sequence at time instant k “ 0.

Theorem 2. Given matrices KN , PN computed by maximizing the trace of HN subject to
LMI (22), and let Assumption 4 hold, the MPC controller can ensure recursive feasibility
and closed-loop system stability.
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Proof. Given a feasible control sequence at time step k:

UN pkq “ ruN pkq, uN pk ` 1q, . . . , uN pk `Np ´ 1qs, (25)

the constraints xN pkq P XN , uN pkq P UN , and xN pk ` Npq P ΩN are satisfied. A feasible
shifted sequence can then be formed with the tail extension of (25) at time instant k ` 1:

U s
N pk ` 1q “ rusN pk ` 1q, usN pk ` 2q, . . . , usN pk `Npqs

“ ruN pk ` 1q, uN pk ` 2q, . . . , KxN pk `Npqs.
(26)

Since xN pk `Npq P ΩN , the following equation holds at k ` 1:

pAN `BNKN qxN pk `Npq P ΩN .

Hence, under Assumption 4, and applying this procedure recursively, feasibility is held for
all k.

Furthermore, it is proved that the global cost decreases in time when using U s
N as a

backup control sequence. To this end, the overall cost decreases from time step k to k ` 1
if it holds that

JN
`

xN pk ` 1q, U s
N pk ` 1q

˘

ď JN
`

xN pkq, UN pkq
˘

. (27)

Substituting (15) in (27), and considering definitions (25) and (26), we get

Np
ř

t“1

LN
`

xN pk ` tq, u
s
N pk ` tq

˘

` FN
`

xN pk `Np ` 1q
˘

ď

Np´1
ř

t“0

LN
`

xN pk ` tq, uN pk ` tq
˘

` FN
`

xN pk `Npq
˘

.

(28)

Removing terms in common and rearranging, we have

LN
`

xN pk `Npq, u
s
N pk `Npq

˘

` FN
`

xN pk `Np ` 1q
˘

´ FN
`

xN pk `Npq
˘

ď LN
`

xN pkq, uN pkq
(29)

Note that the left side hand of (29) is lower than or equal to zero because it is imposed
by design (24), and the right side hand is greater than or equal to zero since the stage
cost is positive definite. Thus it is proved that (27) is satisfied using the shifted control
sequence, and, consequently, the global cost decreases in time. Finally, note that the control
algorithm includes condition (17) to ensure stability. If it is not satisfied with the fuzzified
control action obtained in the negotiation, the shifted control signal is implemented, which
has been proved to decrease the overall cost. Hence, the feedback controller can be seen
as a backup control strategy to provide the proposed scheme with feasibility and stability
guarantees.

In a nutshell, stability holds in a straight forward manner when U s
N is applied, which

is formed using a linear feedback conveniently designed using an LMI-based procedure.
At each time instant, a convex combination of feasible sequences is also formed by using
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fuzzy inference and then its performance is compared with that of the stabilizing sequence
U s
N . If the fuzzy sequence U f

N results in a decrease of the cost of the system, then it is
adopted and implemented; otherwise U s

N is kept and applied. In either case, there is a
feasible sequence available at the next time step that can be shifted to form the new U s

N
guaranteeing both feasibility and stability. Hence, the feedback provides us with a back-
up strategy that guarantees stability while the fuzzy proposal created at each time step
can introduce improvements in the control sequence that optimize the system evolution
according to the fuzzy tuning parameters

5. Case Study

This section describes the eight-coupled tanks plant based on the quadruple tank pro-
cess (Johansson, 2000) and specifies the non-linear model and the parameters used in the
simulations. Furthermore, the fuzzy negotiation criteria are detailed, bearing in mind the
goal and constraints of the problem.

5.1. Plant description

The eight-coupled tanks plant is composed of eight interconnected tanks as depicted in
Fig. 7. There are four upper tanks (3, 4, 7, and 8) that discharge flows into the lower ones
(1, 2, 5, and 6), and these, in turn, into sinking tanks. Four pumps control the plant, and
there are also six three-way valves γv, with v P t1, 2, . . . , 6u manually operated that divide
the input flows into two ways.

The system is divided into N “ 4 subsystems: tanks 1 and 3 belong to subsystem 1;
tanks 2 and 4 form subsystem 2; tanks 5 and 7 take part in subsystem 3; and the remaining
tanks form subsystem 4. The control goal is to reach some target levels considering the
operational cost and satisfying operational constraints. Hence, it is a multi-variable control
problem with four outputs (h1, h2, h5, and h6) and four inputs (qa, qb, qc, and qd).

?3·qb

1 2

3 4

5 6

7 8

h1 h2

h4
h3

h5

h7 h8

h6

qa qb qc qd

(1- ?1)·qa

(1-?2-?3)·qb

(1-?5)·qd

(1-?4-?6)·qc?6·qc

?1·qa ?2·qb ?4·qc ?5·qd

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Figure 7: Schematic diagram of the eight-coupled tanks plant with the proposed subsystems.
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5.2. Plant and control model

The non-linear model of the plant can be obtained by applying mass balances and
Bernoulli’s law. The following differential equations describe the system:

S1
dh1
dt

“ a3
a

2gh3 ´ a1
a

2gh1 ` γ1
qa

3600
,

S2
dh2
dt

“ a4
a

2gh4 ´ a2
a

2gh2 ` γ2
qb

3600
,

S3
dh3
dt

“ ´a3
a

2gh3 ` p1´ γ2 ´ γ3q
qb

3600
,

S4
dh4
dt

“ ´a4
a

2gh4 ` p1´ γ1q
qa

3600
` γ6

qc
3600

,

S5
dh5
dt

“ a7
a

2gh7 ´ a5
a

2gh5 ` γ4
qc

3600
,

S6
dh6
dt

“ a8
a

2gh8 ´ a6
a

2gh6 ` γ5
qd

3600
,

S7
dh7
dt

“ ´a7
a

2gh7 ` p1´ γ5q
qd

3600
` γ3

qb
3600

,

S8
dh8
dt

“ ´a8
a

2gh8 ` p1´ γ4 ´ γ6q
qc

3600
,

(30)

where hn is the water level of tank n P t1, 2, . . . , 8u, Sn “ 13.89¨10´3 m2 is the corresponding
cross-section (equal for all tanks), and an “ 50.265 ¨ 10´6 m2 is the cross-section of all outlet
pipes. The parameter γv P r0, 1s with v P t1, 2, . . . , 6u refers to the opening of the six three-
way valves (γ1, γ4=0.3, γ2, γ5=0.4, and γ3, γ6=0.1); g “ 9.8 m{s2 is the gravity constant;
and qm corresponds to the flow given by pump m P ta, b, c, du.

Let us define the operating point of tank level h0n for n P t1, 2, . . . , 8u as h01 “ 0.10, h02 “
0.15, h03 “ 0.07, h04 “ 0.03, h05 “ 0.10, h06 “ 0.15, h07 “ 0.025, and h08 “ 0.10
(units: meters), and the operating point of pumps’ flow rate q0m for m P ta, b, c, du as
q0a “ 0.142, q0b “ 0.421, q0c “ 0.424, and q0d “ 0.140 (units: m3{h). The linear discrete-time
state-space model is

x̄N pk ` 1q “ AN x̄N pkq `BN ūN pkq, (31)

where the state vector becomes x̄N “ rh1pkq ´ h01, . . . , h8pkq ´ h08s
J; the input vector

ūN “ rqapkq ´ q0a, . . . , qdpkq ´ q0ds
J; and AN , BN are the corresponding matrices of the

global system. Similarly, the dynamics of each subsystem i P t1, 2, 3, 4u are

x̄ipk ` 1q “ Aix̄ipkq `Biiūipkq ` w̄ipkq,
w̄ipkq “

ř

jPNi

Bijūjpkq, (32)
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where w̄ipkq represents the coupling with its neighbours j P Ni, and the corresponding
matrices of subsystems are:

A1 “

„

0.8810 0.1325
0 0.8587



, B11 “

„

0.0282
0



, B12 “

„

0.0035
0.0464



,

A2 “

„

0.9017 0.1922
0 0.7973



, B21 “

„

0.0071
0.0626



, B22 “

„

0.0380
0



, B23 “

„

0.0010
0.0089



,

A3 “

„

0.8810 0.2104
0 0.7753



, B32 “

„

0.0011
0.0088



, B33 “

„

0.0282
0



, B34 “

„

0.0067
0.0530



,

A4 “

„

0.9017 0.1126
0 0.8814



, B43 “

„

0.0035
0.0564



, B44 “

„

0.0380
0



,

Aij “

„

0 0
0 0



, i ‰ j @i, j P N .

Moreover, states and inputs are constrained by

´h0n ă x̄npkq ď 0.08, ´q0m ă ūnpkq ď 0.4,
@n P t1, 2, . . . , 8u, @m P ta, b, c, du.

Matrices QN “ diagpQiqiPN and RN “ diagpRiqiPN are, respectively, the corresponding
constant weighting matrices with:

Qi “

„

1 0
0 0



, @i P t1, 2, 3, 4u,

R1 “

„

0.002 0
0 0.2



, 1 R2, R3 “

»

–

0.2 0 0
0 0.2 0
0 0 0.2

fi

fl , R4 “

„

0.02 0
0 0.2



.

Furthermore, local feedback gain Ki, and weighting matrix of the terminal cost Pi, which

1The weighting parameter R11 “ 0.002 is intentionally different to have one controller out of tune and
assess its impact on the proposed scheme.
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have been calculated maximizing the trace of HN with Theorem 1, are

KJ
1 “

„

´0.0567
0.0913



, P1 “

„

4.6685 2.3288
2.3288 2.4292



,

KJ
2 “

„

´0.2863
´0.2331



, P2 “

„

5.1779 3.0510
3.0510 3.0250



,

KJ
3 “

„

´0.0575
´0.0922



, P3 “

„

4.7185 2.8848
2.8848 3.0013



,

KJ
4 “

„

´0.2319
´0.1585



, P4 “

„

5.2133 2.4217
2.4217 2.3883



.

A standard approach has been implemented with MPT of MATLAB (Herceg et al., 2013)
to compute each agent’s RPI set. The corresponding invariant sets Ωi of all subsystems are
depicted in Fig. 8.

Figure 8: Invariant sets of the four subsystems.

5.3. Fuzzy negotiation specifications

This section details the fuzzy negotiation criteria in the eight-coupled tanks system,
taking into account the process constraints and operational costs.

1) Fuzzification: Three performance indicators have been considered for the fuzzy negoti-
ation procedure: the residence time for water stored in the lower tanks, the current water
level, and the pumping energy. They represent typical constraints for the plant, and, in
this case, act as fuzzy criteria similarly to soft constraints.

20



i. Residence Time (RT ) is the time that water spends at each tank. At each time
instant k, the RT for tank n P t1, 2, 5, 6u is evaluated with level hn at the end of the
prediction horizon Np as

RT npkq “
Sn

an
a

2ghnpk `Npq
. (33)

This criterion is particularly interesting if some chemical reactions take place in the
tanks. Thus, a minimum residence time has to be imposed at each tank to fulfill
the requirements for reactions. To this end, two fuzzy sets representing constraint
satisfaction and violation are defined by the limits presented in Table 1.

ii. Current water level (h) is essential to prevent overflow or excess of product storage.
Although a hard constraint is also added to the DMPC to avoid spilling, the water
height hn is considered in the fuzzy negotiation to improve process safety. Due to the
plant setup and the distributed control framework, only lower-tank levels (h1, h2, h5,
and h6) are evaluated because the upper ones are only influenced by their neighbors’
control actions. Three linguistic variables (‘low’, ‘medium’, and ‘high’) are consid-
ered for water levels.

iii. Pumping Energy (PE) is defined for each pump m P ta, b, c, du as the average PE
over the prediction horizon, and it is assumed to be proportional to the water flows
provided by pumps, i.e.,

PEmpkq “
0.04

3600Np

Np
ÿ

t“1

qmpk ` tq. (34)

Note that the definition includes absolute flow values instead of flow increments.
Finally, the total pumping energy is computed as

PEpkq “ PEapkq ` PEbpkq ` PEcpkq ` PEdpkq, (35)

and the fuzzy sets for the three criteria are determined by the values of Table 1,
representing the limits and vertices of triangles that define the membership functions.

Table 1: Summary of fuzzy sets limits for the three performance indicators.

Performance indicators

Limits
PEm

(kWh)
hn

(m)
RTn

(s)

a 1 ¨ 10´5{Np 0.15 26
b 5 ¨ 10´5{Np 0.20 32
c 10 ¨ 10´5{Np 0.25 ´
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2) Rule evaluation: A set of fuzzy rules has been defined according to the process. In this
plant, only three negotiation problems between subsystems t1, 2u, t2, 3u, and t3, 4u are
performed in the lower layer due to their physical distribution. A generic rule to assign
the fitness for control signal qm can be expressed as

Rri: If RTnpk `Npq is Tr1, PEmpkq is Tr2, and hnpk `Npq is Tr3, then output qm is
Tr4,

where Rri represents the r-th rule of subsystem i P t1, 2, 3, 4u, Tr1 = {‘high’, ‘low’},
Tr2 = {‘high’, ‘medium’, ‘low’}, Tr3= {‘high’, ‘medium’, ‘low’}, and Tr4 = {‘good’,
‘acceptable’, ‘bad’} are the linguistic variables that characterize the criteria RTn, PEm,
hn, and qm, respectively. Here are some examples:

R1i: If (RTn is ‘high’), (PEm is ‘low’), and (hn is ‘medium’), then (qm is ‘good’),
R2i: If (RTn is ‘low’), (PEm is ‘high’), and (hn is ‘high’), then (qm is ‘bad’).

Since the number of antecedents in each rule is 3, a full set of rules comprises Nr “ 18
rules.

3) Defuzzification: It provides the fitness of a control sequence for each rule Rri, which is
given by

αRri
pqmq “ wRTn

r ¨ µTr1pRTnq ¨ w
PEm
r ¨ µTr2pPEmq ¨ w

hn
r ¨ µTr3phnq, (36)

where µTr1pRTnq, µTr2pPEmq, and µTr3phnq are the fuzzy sets for each criterion considered
in rule r; and wRTn

r , wPEm
r , and whn

r are the considered weights that depend on the
linguistic variables included in the rule. In this work, the weights, whose values only
depend on their associated fuzzy sets, are independent of the rule and the subsystem
where they are applied. Specifically, weights wRT , wPE, and wh are

wRT “

"

w1 if RT is T1 (high)
w2 if RT is T2 (low)

, wPE “

$

&

%

w3 if PE is T3 (high)
w4 if PE is T4 (medium)
w5 if PE is T5 (low)

,

wh “

$

&

%

w6 if h is T6 (high)
w7 if h is T7 (medium)
w8 if h is T8 (low)

.

Finally, the total fitness of the control signal qm for the full set of Nr rules is

Tαpqmq “
Nr
ÿ

r“1

αRri
pqmq. (37)

The specific weights of each linguistic label are defined in the results section.
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6. Results

Results of the proposed DMPC with fuzzy negotiation are here presented. The sampling
time used in simulations is Ts “ 5 s, and the MPC controllers consider a prediction horizon
Np “ 20. To show the benefits of the proposed Fuzzy DMPC, it is compared with the
centralized MPC and DMPC using a cooperative game (Maestre et al., 2011a), considering
the same tuning parameters for local controllers. The influence of the fuzzy rules is also
evaluated. The weights considered for each performance indicator in the fuzzy rules are
shown in Table 2.

Table 2: Weights of the three performance indicators for several criteria.

Weights

Alternative Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

RTn
Low (w1) 0.01 1 0.01 0.01 0.01 0.01
High (w2) 1 0.01 1 1 1 1

hm

Low (w3) 0.01 0.01 1 0.02 1 1
Medium (w4) 0.5 0.5 0.5 0.5 0.5 0.5

High (w5) 1 1 0.02 1 0.02 0.02

PEm

Low (w6) 1 1 1 1 0.02 0.9
Medium (w7) 0.5 0.5 0.5 0.5 0.5 0.5

High (w8) 0.01 0.01 0.01 0.01 0.9 0.02
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(a) Fuzzy DMPC (Case 5).
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(b) Fuzzy DMPC (Case 6).

Figure 9: Comparison of tanks level evolution (solid line: Centralized MPC, dashed line: Fuzzy DMPC, and
dotted line: DMPC cooperative game).
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(a) Fuzzy DMPC (Case 5).
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(b) Fuzzy DMPC (Case 6).

Figure 10: Comparison of pumps flow rates (solid line: Centralized MPC, dashed line: Fuzzy DMPC, and
dotted line: DMPC cooperative game).

Table 3: Comparison of ISE and PE for the considered control techniques.

Control techniques

Fuzzy DMPC
(Case 5)

Fuzzy DMPC
(Case 6)

DMPC
Coop. Game

Centralized
MPC

Total ISE 0.7913 0.7335 0.7867 0.6171
Total PE 1.605 ¨ 10´2 1.597 ¨ 10´2 1.600 ¨ 10´2 1.601 ¨ 10´2

As displayed in Table 3, Fig. 9, and Fig. 10, centralized MPC is always the controller with
the smallest Integral Squared Error (ISE) for tracking due to the availability of full plant
information for prediction. On the other hand, fuzzy DMPC (Case 5) presents a higher ISE
than DMPC with the cooperative game because the fuzzy rules favor high pumping energies
(see Fig. 9 (a) and Fig. 10 (a)). On the contrary, fuzzy DMPC (Case 6) presents smaller
ISE and PE than DMPC with the cooperative game because the fuzzy weights favor small
PE, but still higher than centralized MPC (see Fig. 9 (b) and Fig. 10 (b)). Although the
pumping energy is considered in absolute value in these simulations, increments could also
be included as a performance indicator for the fuzzy negotiation. The conclusion is that
fuzzy DMPC performance depends strongly on the weights of the considered fuzzy rules,
giving the control system designer freedom to promote different behaviors. In this regard,
the flexibility of the fuzzy approach simplifies the controller’s tuning to attain better Key
Performance Indicators (KPIs). As for the standard MPC approaches, tuning parameters
(typically Qi, Ri, and Np) are indirectly related to these KPIs, and hence, complicating the
controller setup. In the rest of this section, the standard MPC controllers will remain fixed
to assess the tuning of the fuzzy rules in our approach.
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Table 4: Comparison of ISE and PE for the considered cases.

Weights

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Total ISE 0.7456 0.7308 0.7364 0.7456 0.7913 0.7335
Total PE 1.603 ¨ 10´2 1.596 ¨ 10´2 1.597 ¨ 10´2 1.603 ¨ 10´2 1.605 ¨ 10´2 1.597 ¨ 10´2

In the following set of results, the influence of fuzzy rules is evaluated (Table 4). In
Fig. 11, the RT in lower tanks are presented for two cases (Case 1 and Case 2) with different
fuzzy-rule weights. In Figs. 12 and 13, the tank levels and pump flow rates are presented for
this comparison. Case 1 gives more importance to high RT because w2 is much larger than
w1, resulting in higher values, particularly in the transients due to step reference changes.

Table 4 displays ISE and PE results and the noticeable effect of weights. For example,
Case 6 produces lower PE than Case 5 because the weight of the fuzzy set corresponding
to low pumping energies is higher than in Case 5. Regarding Fig. 14 (a), it is obtained
lower levels of h1, h2, h5, h6 in Case 3 than in Case 4 because the weight for the fuzzy set
representing low levels is the highest. Since the bounds of the fuzzy sets for the water level
are around 0.20 m (see Table 1), this is particularly noticeable in h2, which is maintained
around this value.
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Figure 11: Residence time comparison for Case 1 (dashed line) and Case 2 (solid line).
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Figure 12: Water levels comparison for Case 1 (dashed line) and Case 2 (solid line).
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Figure 13: Flow rates comparison for Case 1 (dashed line) and Case 2 (solid line).
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(a) Lower-tank water levels
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Figure 14: Results comparison for Case 3 (solid line) and Case 4 (dashed line).

Finally, the performed experiments show that the cost of centralized MPC is the lowest
in all cases, acting as a lower bound of DMPC approaches. Moreover, the evolution of the
system cost decreases as water levels are stabilized towards their set-points. It is caused by
the inclusion of stability conditions in the fuzzy negotiation. In Fig. 15, the values of the
overall Lyapunov function are presented for Case 5 and Case 6.
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Figure 15: Overall Lyapunov function for Case 5 (solid line) and Case 6 (dashed line).

7. Conclusions

A distributed MPC with fuzzy cooperative negotiations has been developed based on
a two-layer control architecture. The results achieved are satisfactory, obtaining reference
tracking with similar performance to centralized MPC and outperforming DMPC without
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fuzzy negotiation. Fuzzy negotiation presents a remarkable advantage over other methods
since the computation of the final input do not require many communication steps, but just
merging all the inputs proposed by the involved agents. Moreover, it also preserves privacy
of the internal state and model of the agents, which is also an interesting property for some
systems. The proposed method can then be extended to other complex plants with many
agents because the lower layer negotiation avoids a combinatorial explosion. Furthermore,
it is provided a more intuitive controller’s tuning to achieve target values regarding the
considered performance indicators.

Finally, a linear feedback controller is considered as backup controller to ensure stability
when the fuzzy inference increases the cost. Moreover, the performed simulations show that
the control action provided by fuzzy inference is mostly used in both layers, showing the
usefulness of the methodology.

Future work will deal with the application of the assessment of this method for nonlinear
systems, for few schemes are available in the literature for such problem setting.
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Samuel Solórzano Foundation [project FS/20-2019], and the Spanish Ministry of Science,
Innovation, and Universities [grant number FPU18{04476].

References
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