
Automatica 153 (2023) 111053

a

b

c

c
w
s
d
e
l

s
a
g
f
b
b
o
M
c
a

p
p
(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Robust coalitionalmodel predictive control with plug-and-play
capabilities✩

Eva Masero a,∗, Pablo R. Baldivieso-Monasterios b, José M. Maestre a,c, Paul A. Trodden b

Departament of Ingeniería de Sistemas y Automática, Universidad de Sevilla, Av. Camino de los Descubrimientos s/n, 41092 Sevilla, Spain
Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, S1 3JD Sheffield, UK
Department of Systems Science, Graduate School of Informatics, Kyoto University, Japan

a r t i c l e i n f o

Article history:
Received 1 October 2022
Received in revised form 23 February 2023
Accepted 13 March 2023
Available online xxxx

Keywords:
Distributed networked systems
Model predictive control
Control by clustering
Plug-and-play events
Tubes

a b s t r a c t

This article presents a distributed implementation of a model predictive controller with information
exchange to manage a distributed networked system of coupled dynamic subsystems. We propose a
coalitional control method, where local controllers coalesce into clusters to improve performance, as
a tool to solve plug-and-play problems. Our main contribution is a tube-based coalitional approach
that employs online optimized invariant sets. These sets are instrumental in guaranteeing recursive
feasibility and stability when faced with plug-and-play operations, i.e., subsystems joining or leaving
the network. We also explore the inherent robustness properties to absorb disturbances not covered by
the tubes without the need to group local controllers. Finally, the simulation results show the benefits
of our proposed control method.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Networked systems are composed of numerous physically
oupled distributed subsystems. Controlling the overall system
hile satisfying constraints and guaranteeing stability is not
traightforward. For that reason, many studies have focused on
istributed model predictive control (MPC) schemes (Christofides
t al., 2013; Maestre & Negenborn, 2014), in which these chal-
enging issues can be successfully handled.

The idea behind distributed control schemes is that each sub-
ystem is managed by a local controller that forms the so-called
gent (see Fig. 1), which can exchange information to improve
lobal performance. Typically, the control network follows a
ixed topology with prearranged enabled communication links
etween agents, where the cooperation effort sets a trade-off
etween conservatism and performance. Exploiting this trade-
ff by changing the control topology is the essence of coalitional
PC strategies (Chanfreut et al., 2021; Fele et al., 2017). Ac-
ording to how clusters of agents —the so-called coalitions—
re selected, coalitional control schemes can be sorted into:
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(i) top-down architectures, if a supervisory controller decides
the control topology (Barreiro-Gomez & Zhu, 2022; Jain et al.,
2018; Núñez et al., 2015), and (ii) bottom-up structures, if the
formation of coalitions is chosen at the agent level without global
knowledge (Baldivieso-Monasterios & Trodden, 2021; Maxim &
Caruntu, 2021; Mi et al., 2019). In the current work, we follow a
top-down control architecture.

One of the key challenges in coalitional control, and indeed
distributed control, is handling the disturbances that each agent
experiences owing to the dynamic coupling between subsystems.
Robust control techniques have been used to address this chal-
lenge. A first approach when designing local controllers is to
consider couplings as bounded additive uncertainties to ensure
stability and a suitable global performance (Richards & How,
2007). The most conservative way to model the presence of
uncertainties is the Min–Max MPC (Scokaert & Mayne, 1998),
which optimizes the control input for worst-case disturbances.
The idea of rigid tubes proposed by Langson et al. (2004) has
also become popular to guarantee robust stability for constrained
linear systems (Mayne et al., 2005; Trodden & Richards, 2010).
However, a significant drawback is induced by the tightening of
local constraint sets by margins that may conservatively outer-
bound the disturbances a local subsystem will experience. Further
methods have been developed to minimize the conservatism
of tube-based methods; e.g., Riverso and Ferrari-Trecate (2012)
propose applying tube-based control twice to exploit the region
of attraction of the subsystem for the planned state trajecto-
ries of neighbors. Lucia et al. (2015) present a contract-based
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Coalitional control scheme of a networked system composed by N agents,
hich can cluster into coalitions: {c1, c2, . . . , cC }.

istributed MPC strategy with recursive feasibility and input-to-
tate stability, where subsystems communicate to their neighbors
he sequence of future values of coupling variables. Raković et al.
2012) introduce homothetic tubes in which the diameters of
he state and control tubes are optimized online. In Trodden and
aestre (2017), coupling disturbances are rejected via optimized

ubes, which are reconfigured online in order to more accurately
uter-bound the disturbance set a subsystem experiences. A sim-
lar idea to the latter is the one pursued in the current work but
xpanded to a coalitional scheme.
Another major challenge of controlling distributed networked

ystems is that they are subject to changes in instrumentation
e.g., sensors, and actuators) and subsystems that can be added
r removed. Most control approaches lack flexibility to handle
hese changes and may require a redesign of the entire control
ystem, which might not be feasible due to the costs of shutdown
nd start-up processes. In this context, the term Plug-and-Play
PnP) control is defined as a way to automatically reconfigure
he controller after plug-in or plug-out of the system components.
everal interpretations of PnP control have emerged in the lit-
rature over the last decades. For example, both Bendtsen et al.
2011) and Stoustrup (2009) explore a gradual reconfiguration of
he control system after identifying the new hardware. Regarding
ault-tolerant control, Bodenburg et al. (2014), Patton et al. (2007)
nd Riverso et al. (2016) employ PnP operations to automatically
ecover the control objective after process failures. In the field
f microgrid applications (Dörfler et al., 2014; Lou et al., 2016),
he PnP capability of the controller allows one to handle un-
nown and variable network conditions. Another interpretation
ade by Bodenburg et al. (2016), Lucia et al. (2015), and Riverso
t al. (2014) proposes the design of distributed control schemes
apable of dealing with plug-in and plug-out subsystems, guaran-
eeing global performance and stability. These schemes involve
nformation transmission for the adaptation of local controllers
ffected by the PnP operation. Additionally, any PnP operations
hat negatively impact the feasibility and stability of the entire
ystem are rejected.
Unlike the previously mentioned approaches, this article ad-

resses the formation of clusters to avoid rejection of PnP oper-
tions. We also investigate the inherent subsystems’ robustness
ot to redesign the controllers affected by PnP events. In par-
icular, we cover this gap by proposing a tube-based coalitional
PC method with plug-and-play features for distributed lin-
ar networked systems. The subsystems, which are physically
oupled, present constraints sets that can be scaled down by
ach agent, similar to what is proposed by Trodden and Maestre
2017) but with the difference that the agents here employ two
caling factors to build an inherent robust margin in order to
bsorb additional disturbances arisen from the PnP operations.
n contrast to earlier studies where trajectories are exchanged
mong agents, our methodology allows sharing scaling factors
mong neighbors to reconfigure the disturbance sets. Stability
2

guarantees for closed-loop control of the system are also pro-
vided by a terminal constraint formulation with positively invari-
ant sets. Whereas previous studies proposed offline PnP opera-
tions (Riverso et al., 2014), we consider that they are performed in
real time, and switching dynamics can be introduced. Therefore,
the control topology can be reconfigured online in response to
physical changes in the system. The main contributions of our
work are:

• A tube-based coalitional MPC scheme in which agents can
group in coalitions to find a trade-off between performance
and communication costs. Moreover, coalitions are formed
if agents cannot tolerate their local disturbances and dis-
banded when the feasibility is not spoiled and cost benefits
are obtained.

• The introduction of plug-and-play operations by adding and
removing subsystems in real time, while the controllers are
automatically reconfigured to adapt to new characteristics
of the network.

• The use of public and private scaling factors for constraint
sets. Public information is broadcast in the system, while
private information is individual and confidential for each
subsystem. The rationale for these separate factors is to
explore the inherent robustness properties to accommodate
disturbances not covered by the tubes (e.g., plug-and-play
events) without the need for grouping local controllers.

Index of contents: Section 2 defines the problem settings. Sec-
tion 3 formulates the tube-based MPC approach for the system
in a distributed coalition setting. Section 4 details the coalitional
control algorithm. Section 5 presents plug-and-play operations.
Section 6 analyzes the recursive feasibility and stability. Section 7
illustrates the simulation results. Section 8 summarizes the main
findings.

Notation. N0+ and N+ are the sets of non-negative and positive
integers. Rn refers to an n-dimension set of real numbers. I
denotes the identity matrix. For sets X ,Y ⊆ Rn, the Minkowski
sum is X ⊕Y ≜ {x+ y : x ∈ X , y ∈ Y}; the Pontryagin difference
is X ⊖ Y ≜ {z ∈ Rn

: Y ⊕ {z} ⊆ X } for Y ⊆ X ; the subtraction
operation is X \Y = {x ∈ X : x ̸∈ Y}; and the Cartesian product is
X ×Y ≜ {(x, y) : x ∈ X , y ∈ Y}. If {Xi}i∈N is a finite family of sets
indexed by N = {1, . . . ,N}, then the Cartesian product

∏
i∈N Xi

is defined as X1 × · · · × XN = {(x1, . . . , xN ) : x1 ∈ X1, . . . , xN ∈

XN}. The image of a set X ⊆ Rn under a linear mapping A : Rn
↦→

Rm is given by AX ≜ {Ax : x ∈ X }, and the diameter of the set
is denoted as diam(X ) = sup{|x − y| : x, y ∈ X }. The la-norm of
the vector x ∈ Rn with a ∈ N+ is ∥x∥a, and ∥x∥2

Q = x⊤Qx with Q
being a weighting matrix. The cardinality of A is denoted by |A|;
∅ denotes the empty set. A polytope P is a bounded intersection
of a finite set of half-spaces defined as P = {x ∈ Rn

: Gx ⩽ g}

with G ∈ Rm×n and g ∈ Rm. A set Ω ∈ Rn is a robust positively
invariant (RPI) set for system x+

= f (x, w) with constraints X
and W if ∀x ∈ Ω ⊂ X and ∀w ∈ W , the system evolution fulfills
x+

∈ Ω . A set Ω is robust control invariant (RCI) for dynamics
x+

= Ax + Bu + w with constraint sets (X ,U,W) if for any
x ∈ Ω ⊆ X , there exists a control law u = µ(x) ∈ U such that
x+

∈ Ω , for all w ∈ W; the control law µ(·) is said to induce
invariance over the set Ω . A function α :R → R is K continuous,
if it is non-decreasing, and α(0) = 0; it is K∞ if it is also a radially
unbounded function.

2. Problem formulation

This section describes the dynamics and constraints of the
system, subsystems, and coalitions. We also describe how the
information is exchanged amongst members of the network and
the control objective.
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.1. System dynamics and constraints

Let us define a linear time-invariant (LTI) networked system:
+

N = AN xN + BNuN + we
N , (1)

where xN ∈ Rq is the current state and x+

N its successor, uN ∈ Rr

is the control input, and we
N is the external disturbance. The

system can be decomposed into a set of dynamically coupled
subsystems N = {1, 2, . . . ,N}, whose dynamics are

x+

i = Aiixi + Biiui + wi,

wi =

∑
j∈Mi

(Aijxj + Bijuj) + we
i ,

(2)

where xi ∈ Rqi and ui ∈ Rri are the state and control input of
ubsystem i ∈ N , and wi ∈ Rqi is the sum of the coupling through
tates and inputs with its neighbors j ∈ Mi ≜ {j ∈ N \ {i} :

Aij Bij] ̸= 0} plus the external uncertainty we
i , which is assumed

o be bounded by We
i .

ssumption 1 (Controllability). The pair (Aii, Bii) is controllable
or each i ∈ N .

Each subsystem i ∈ N has restricted its states xi ∈ Xi and
nputs ui ∈ Ui.

ssumption 2 (Constraints Sets). The sets Xi ⊂ Rqi , Ui ⊂ Rri , and
e
i ⊂ Rqi are compact convex sets that contain the origin in their
on-empty interiors.

.2. Coalition dynamics and constraints

The approach of this work is to let subsystems cluster in
he so-called coalitions to improve performance and deal with
nexpected disturbances, such as plug-and-play operations.

efinition 1 (Cooperation Topology). A cooperation topology Λ
rganizes the set of subsystems N = {1, . . . ,N} into a set of
oalitions C = {c1, . . . , cC } with C ⩽ N , satisfying:

• A coalition c ∈ C is a non-empty cluster of subsystems with
c ⊆ N , i.e., it can range from a subsystem c = {i} to the
grand coalition c = N .

• Coalitions are non-overlapping: c ∩ d = ∅ for all c ̸= d and
c, d ∈ C.

• C defines a covering of N , i.e.,
⋃

c∈C c = N .

The discrete-time dynamics of coalition c ∈ C is

x+
c = Accxc + Bccuc + wc,

wc =
∑

d∈Mc
(Acdxd + Bcdud) + we

c ,
(3)

here xc = (xi)i∈c and uc = (ui)i∈c are the aggregate state and
ontrol input of the subsystems within the coalition c , which
re, respectively, constrained by the sets Xc and Uc . The state
nd input matrices are Acc = [Aij]i,j∈c and Bcc = [Bij]i,j∈c , and
wc ∈ Wc is the disturbance term due to the coupling with other
coalitions plus external noise. The set of neighbors of coalition c
s Mc ≜ {d ∈ C \ {c} : [Acd Bcd] ̸= 0}.

ssumption 3. The constraints sets of coalition c are Xc =
∏

i∈c Xi
nd Uc =

∏
i∈c Ui.

.3. Control network

Let us define a cooperation control network described by an
ndirected graph G = (N ,L), where N is the set of agents and
⊆ N × N is the set of links. Each enabled link lij = lji ∈ L

onnecting agents i and j is assumed to provide a bidirectional
3

Table 1
Relationship between the cooperation topologies and their sets of
coalitions for a networked system N = {1, 2, 3, 4}.
T l12 l23 l34 C

Λ1 0 0 0 {{1}, {2}, {3}, {4}}
Λ2 0 0 1 {{1}, {2}, {3, 4}}
Λ3 0 1 0 {{1}, {2, 3}, {4}}
Λ4 0 1 1 {{1}, {2, 3, 4}}
Λ5 1 0 0 {{1, 2}, {3}, {4}}
Λ6 1 0 1 {{1, 2}, {3, 4}}
Λ7 1 1 0 {{1, 2, 3}, {4}}
Λ8 1 1 1 {{1, 2, 3, 4}}

Fig. 2. The partially ordered set of cooperation topologies for a networked
system N = {1, 2, 3, 4}.

information flow that involves a fixed cooperation cost clink ∈

R0+. The set of active links in the control network defines the
controller cooperation topology Λ. Thus, the cardinality of the
topology, i.e., |Λ|, denotes the number of active links. Note that
if clink = 0, there will be no incentive to adopt a different
topology from the centralized one because it provides the best
performance from a control point of view.

Given the total number of links |L|, there are 2|L| differ-
ent cooperation topologies, which are grouped into a set T =

{Λ1,Λ2, . . . ,Λ2|L|}. For convenience, Λ1 = Λdec represents
the decentralized topology (all links are disabled), and Λ2|L| =

Λcen denotes the centralized topology (full cooperation). As an
example, Table 1 shows the relationship between the topologies
and their coalitional structures for a networked system N =

{1, 2, 3, 4}. The set T is a partially ordered set of cooperation
topologies regarding active cooperation links, as shown in Fig. 2.

Assumption 4 (Controllability of Coalitions). For any Λ ∈ T , each
pair (Acc, Bcc) is controllable for any c ∈ C.

Note that there could exist systems that satisfy Assumption 1
but not Assumption 4. If there are topologies that do not meet
Assumption 4, they can be removed from the set of topologies
we consider.

2.4. Optimal control problem

The control objective of MPC is to regulate the state of the
networked system to its origin while satisfying all constraints and
minimizing the following system-wide cost function in a finite
prediction horizon Np:

JN (xN , uN ,Λ) =

Np∑
ℓ
(
xN (k), uN (k)

)
+ g(Λ),
k=0
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here ℓ(·) measures the distance to the origin and g(Λ) =

link|Λ| penalizes the amount of communication needed in the
ooperation topology Λ ∈ T .

3. Tube-based coalitional MPC

In this section, we formulate the tube-based MPC approach
for the system in a distributed coalition setting. First, we define
the notion of time-varying constraint and disturbance sets based
on the scaling factors that reduce the conservatism of the tube
approaches. Second, we explain the coalitional MPC problem.
Finally, we detail the ingredients of the tube approach.

3.1. Time-varying sets

For a topology Λ with coalitional structure C, by Definition 1,
the constraint sets for each c ∈ C can be scaled by αc, βc ∈ R0+:

Xc(αc) = αcXc, Uc(βc) = βcUc, (4)

where the sets of hard constraints are given by Xc = Xc(1)
and Uc = Uc(1). Clearly, any state and control pair satisfying
(xc, uc) ∈ Xc(αc) × Uc(βc) satisfies the hard constraints if αc ∈

[0, 1] and βc ∈ [0, 1]. Taking into account the dynamics (3) and
the constraints (4) of coalition c , the disturbance wc is bounded
by the set:

Wc(α, β) =
( ⨁
d∈Mc

AcdXd(αd) ⊕ BcdUd(βd)
)
⊕ We

c , (5)

where the external disturbances are also assumed to be bounded
by We

c . The set Wc(α, β) depends on all of c ’s neighbors, i.e.,
αd, βd) for all d ∈ Mc ; the notation Wc(α, β) makes this depen-
ency explicit and aims to simplify the notational burden. Given
ny compact set Wc ⊂ Rqc , the triplet (Xc(αc),Uc(βc),Wc) defines

an RCI set Ωc(Wc), if it exists, such that Ωc(Wc) ⊆ Xc(αc) and⋃
xc∈Ωc (Wc ) µ(xc) ⊆ Uc(βc). The set Ωc(·) can be parameterized

by the disturbance set that affects the dynamics.
In our context, the existence of invariant sets determines

a measure of robustness against the disturbances arising from
the coupling; this is evident in a tube MPC setting, where the
constraints are tightened according to their invariant sets. In
our setting, we aim to use scaling factors to reduce conser-
vative behaviors arising from aggressive constraint tightening
to improve performance. However, this improvement of perfor-
mance requires a starting point, and for this reason, we invoke
the following assumption for each subsystem (current and fu-
ture plug-in subsystems) to guarantee the existence of a family
of RCI sets corresponding to the original constraints and the
decentralized topology.

Assumption 5. There exists an RCI set Ωc(Wc(1, 1)) ⊂ Xc(1)
with 1 = (1, . . . , 1) ∈ R|Mc | for all c ∈ C for the decentralized
cooperation topology Λdec.

3.2. Coalitional MPC problem

A tube-based approach has two main components: a nominal,
i.e., disturbance-free dynamics z+

c = Acczc + Bccvc regulated
by an MPC controller with tightened constraints; and the error
dynamics e+

c = Accec+Bccµ(ec)+wc where ec = xc−zc is confined
to an invariant set that, in our case, is the RCI set Ωc(Wc(α, β)).
The nominal constraint sets are functions of this invariant set
such that
Zc(αc) ≜ Xc(αc) ⊖Ωc(Wc(α, β)),( ) (6)

Vc(βc) ≜ Uc(βc) ⊖ µ Ωc(Wc(α, β)) . e

4

Let us define V o
c = {voc (0), . . . , v

o
c (Np − 1)} and Zo

c = {zoc (0), . . . ,
zoc (Np)}, respectively, as the optimal control and state sequences
on a prediction horizon Np. The control objective of coalition c is
to regulate the nominal state zc to the origin whilst minimizing
the Np-horizon cost Jc(Zc, Vc), defined in the next section, subject
to constraints:1

V o
c = argmin

Vc
Jc
(
Zc, Vc

)
,

s.t. zc(0) = z̃c,
zc(t + 1) = Acczc(t) + Bccvc(t),
zc(t) ∈ Zc(αc), vc(t) ∈ Vc(βc),
zc(Np) ∈ Ω f

c,

(7)

where t = 0, . . . ,Np − 1, z̃c is the current value of the nominal
state, and αc, βc are the coalition scaling factors for state and
input constraint sets, respectively. From Assumption 3 and the
properties of the Cartesian product, the coalition scaling factors
are the corresponding values to be fulfilled: αcXc =

∏
i∈c αiXi,

and βcUc =
∏

i∈c βiUi. When a coalition is disbanded, αcXc =∏
i∈c αcXi, which implies that individual scaling factors αi = αc

for all i ∈ c . A similar observation holds for the input scaling
factor βc . Moreover, the set Ω f

c is a terminal set that depends on
the scaling factors and is assumed to satisfy the following.

Assumption 6. The terminal set Ω f
c is positively invariant (PI) for

the nominal dynamics z+
c = Acczc+Bccvc , that is, (Acc+BccK f

c)Ω
f
c ⊆

Ω f
c with Ω f

c ⊆ Zc(αc) and K f
cΩ

f
c ⊆ Vc(βc) under a control law

vc = K f
c zc .

Note that although the terminal set is considered to be merely
PI and not RPI, we can selectΩ f

c = 0 if needs be in order to reduce
computation efforts in high-order dynamics.

3.3. Coalition cost function

The arguments of the finite-horizon cost Jc
(
·, ·

)
for each c ∈

C are the Np–sequence of control actions Vc , and the Np + 1–
sequence of states Zc . This cost function is defined as:

Jc
(
Zc, Vc

)
=

Np−1∑
t=0

(
ℓc

(
zc(t), vc(t)

))
+ fc

(
zc(Np)

)
, (8)

where ℓc(zc, vc) ≜ ∥zc∥2
Qc

+ ∥vc∥
2
Rc is the stage cost, which

penalizes nominal state zc and input vc weighted by matrices
Qc ≻ 0 and Rc ≻ 0. The function fc(zc) = ∥zc∥2

Pc with Pc ≻ 0 is the
terminal cost designed such that z⊤

c Pczc − z+
c

⊤Pcz+
c ⩾ ℓc(zc, K f

czc).
Therefore, z⊤

c Pczc is a control Lyapunov function, and the local
stability of coalition c is guaranteed around the origin.

3.4. Outer bounding of RCI sets

The explicit computation of RCI sets is computationally costly
and increases as the size of the coalition grows. Since the RCI
sets tighten the constraint sets as (6), we can employ an outer
bound of the RCI set with the idea of reducing the computa-
tional burden and making the approach suitable for high-order
dynamics (Baldivieso-Monasterios & Trodden, 2021). One can rely
on the implicit existence of an RCI set to guarantee closed-loop
feasibility and stability.

1 The control problem of each coalition can be solved by a local controller
hat works as a leader or distributed among the agents in the coalition (Franzè
t al., 2018).
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As proposed by Raković et al. (2007), we can formulate a linear
programming (LP) problem to find an RCI set Ωc as:

min{ϵ : φ ∈ Φ}, (9)

where φ = (MHc , ac, bc, ϵ) and Φ = {φ : MHc ∈ MHc , Ωc ⊆

cXc, µc
(
Ωc

)
⊆ bcUc, (ac, bc) ∈ [0, 1] × [0, 1], qxac + qubc ⩽ ϵ}

ith weights qx and qu to provide the constants (ac, bc) that
cale the state and input constraint sets, and matrices MHc =

M0, . . . ,MHc−1), with Ml ∈ Rqc×rc and l = 1, . . . ,Hc − 1,
haracterizing the optimized RCI set for a system x+

c = Accxc +

ccuc + wc constrained in (Xc,Uc,Wc) as

c =

Hc−1⨁
h=0

Dh(MHc )Wc, and µc
(
Ωc

)
=

Hc−1⨁
h=0

MhWc .

he set of control inputs that induce invariance µc
(
Ωc

)
is defined

as µc
(
Ωc

)
≜ {uc ∈ Uc : x+

c ∈ Ωc,∀wc ∈ Wc}. For h = 0, . . . ,Hc ,
matrices Dh(MHc ) are defined as

Dh(MHc ) =

⎧⎪⎨⎪⎩
I if h = 0,

Ah
cc +

h−1∑
l=0

Ah−1−l
cc BccMl if h ⩾ 1,

such that DH (MHc ) = 0 provided that Hc is greater than or equal
to the controllability index of (Acc, Bcc). The set of matrices that
meet these criteria is MHc ≜ {MHc : DHc (MHc ) = 0}. Constraint
satisfaction is guaranteed if Ωc ⊆ acXc and µc

(
Ωc

)
⊆ bcUc .

Consequently, the constraint sets (6) can be replaced with

Zc(αc, ac) = Xc(αc) ⊖ acXc(αc) = (1 − ac)Xc(αc),
Vc(βc, bc) = Uc(βc) ⊖ bcUc(βc) = (1 − bc)Uc(βc),

(10)

which implies that, in (7), terminal set Ω f
c also depends on

αc, βc, ac, bc , that is, Ω f
c(αc, βc, ac, bc).

3.5. Tube-based approach

We propose an MPC strategy based on optimized tubes to
control the coalition dynamics (3) through the control law:

uc = voc (zc) + µc(xc − zc), (11)

where voc is the first element in the optimized input sequence
(i.e., V o

c (1)), and µc(xc − zc) is the RCI control law. Moreover, each
coalition c has constraint sets that can be scaled down by its con-
troller. Our approach goes a step further than that of Trodden and
Maestre (2017) by separating the scaling factors for constraint
sets into two types: public and private. The core idea behind this
segregation of factors is to create an extra robustness margin to
handle uncertainties not covered by the tubes, such as PnP events.
This approach allows for the accommodation of uncertainty lo-
cally, without requiring any significant reconfiguration of the
control system. Conversely, the method that uses a single scaling
factor (Trodden & Maestre, 2017) may require full cooperation
to address disturbances caused by PnP events, or these events
may even cause infeasibility of the controllers/optimal control
problems.

The rationale of two scaling factors is that agents maintain
and optimize private scaling factors that tightly bound their pre-
dicted trajectories but communicate larger public scaling fac-
tors to neighbors; thus, the gap between private and public
values allows agents to absorb locally disturbances. In particu-
lar, sets (Xc,Zc,Uc,Vc,Wc,Ωc,Ω

f
c) are parameterized by time-

varying public scaling factors (αpub
c , β

pub
c ), and private scaling

factors (αpriv
, β

priv) are added as optimization variables to the
c c

5

following nominal problem, which replaces (7):

JoN,c(zc) = min
Vc , α

priv
c , β

priv
c

Jc
(
Zc, Vc

)
+ τα α

priv
c + τβ β

priv
c ,

s.t. (αpriv
c , βpriv

c ) ∈ [0, 1]2, zc(0) = z̃c,
zc(t + 1) = Acczc(t) + Bccvc(t), t = 0, . . . ,Np − 1,

zc(t) ∈ αpriv
c Zc(αpub

c , ac), t = 1, . . . ,Np − 1,

vc(t) ∈ βpriv
c Vc(βpub

c , bc), t = 0, . . . ,Np − 1,

zc(Np) ∈ Ω f
c(α

pub
c , βpub

c , ac, bc),

(12)

where JoN,c(zc) is the value function and weights τα, τβ ∈ R+.
As a consequence of allowing the constraints sets to shrink,

the dynamics of public scaling factors arise naturally, as detailed
in the next lemma.

Lemma 1. Given topology Λ, each coalition c ∈ C has public scaling
factors (αpub

c , β
pub
c ) at time instant k, which parameterize constraint

sets
(
Xc(α

pub
c ), Uc(β

pub
c )

)
and evolve as:

α
pub
c

+

= α
pub
c

(
ac + α

priv
c (1 − ac)

)
,

β
pub
c

+

= β
pub
c

(
bc + β

priv
c (1 − bc)

)
.

(13)

Proof. By solving problem (12), the successor state x+
c = z+

c + e+
c

depends on the nominal state z+
c ∈ α

priv
c Zc(α

pub
c , ac) and the state

mismatch e+
c ∈ acXc(α

pub
c ). Taking into account (10):

x+
c ∈

(
α
priv
c (1 − ac)Xc(α

pub
c )

)
⊕ acXc(α

pub
c )

∈
(
α
priv
c (1 − ac) + ac

)
α
pub
c Xc

∈ α
pub
c

+

Xc .

Therefore, the state constraint set Xc at instant k + 1 is scaled
by a parameter αpub

c
+

= α
pub
c

(
ac + α

priv
c (1 − ac)

)
. In a similar

way, the successor control input: u+
c = voc (0) + µc(e+

c ), where
voc ∈ β

priv
c Vc(β

pub
c , bc) and µc(e+

c ) ∈ bcUc(β
pub
c ), satisfies u+

c ∈

β
pub
c

+

Uc . □

The significance of Lemma 1 is that since 0 < ac < 1,
(ac +α

priv
c (1− ac)) is a number less than one whenever αpriv

c < 1,
thus public scaling factors are reduced at a rate given by αpriv

c . If
α
priv
c = 1, then the public scaling factor will remain constant.

4. Top-down control algorithm

We implement a top-down coalitional MPC algorithm, which
is divided into an upper and a lower control layer.

4.1. Upper control layer

Every Tup ∈ N+ time steps, a central supervisor executes Alg. 1
to select the best cooperation topology that ensures recursive fea-
sibility. Since the number of topologies increases combinatorially
with the number of subsystems, we consider a suitable subset of
T to reduce this potential bottleneck.

Definition 2 (Set of Potential Successor Topologies). Let Λcur be
the current topology, we define the set of the potential successor
topologies Tnew ⊆ T based on the Hamming distance between
two topologies:

Tnew ≜ {Λ ∈ T : dist(Λcur,Λ) ⩽ 1}. (14)

For example, if Λcur = Λ5, the set of potential successor
topologies whose distance is less than or equal to 1 is Tnew =

{Λ1,Λ5,Λ6,Λ7}, as shown in Fig. 2.
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Alg. 1: Upper control layer

Initial data: Xi,Ui,Hi, K f
i , ∀i ∈ N , Tup, Np, τα, τβ , clink.

Start: zi(0) = xi(0); Λcur = Λcen; α
pub
i , α

priv
i , β

pub
i , β

priv
i =

1, ∀i ∈ N .
Inputs: Λcur, α

pub
i , β

pub
i ,∀i ∈ N . Output: Λnew

1: Given Λcur, measure the current values of states x̃c and
z̃c,∀c ∈ C.

2: Calculate Tnew as (14).
3: for each Λnew ∈ Tnew do:
4: Compute Wc as (5), Ωc by (9), and Ω f

c,∀c ∈ C.
5: if ∄Ωc for any c then:
6: Mark this Λnew as infeasible, and go to Step 3.
7: end if
8: for each c ∈ C do:
9: Solve (12) setting τα, τβ = 0 and αpriv

c , β
priv
c = 1

to obtain the control sequence Uc via (11).
10: Gauge Γc ≜

∑Np
t=1

(
ℓc(xc(t), uc(t)) + clink|Λc |

)
.

11: end for
12: Compute the cost ΓΛ =

∑
c∈C Γc for Λnew.

13: end for
14: if all Λnew ∈ Tnew are marked as infeasible then:
15: Any c with ∄Ωc clusters with the neighbor d ∈ Mc

with the largest diameter of Wd, and update Λcur.
16: Go to Step 2.
17: else
18: Select topology Λnew ∈ Tnew with the lowest cost ΓΛ.
19: Send Λnew to the lower layer (Alg. 2).
20: end if

4.2. Lower control layer

Each time instant k, each coalition c ∈ C execute Algorithm 2
ccording to the current public scaling factors and topology Λcur:

Alg. 2: Lower control layer

Initial data: Xc,Uc, K f
c , Np, Hc , τα, τβ , σc = 0.

Inputs: Λcur, xc, α
pub
c , β

pub
c , ∀c ∈ C

Outputs: αpub
c

+

, β
pub
c

+

, x+
c

1: Calculate Wc as (5), Ωc by (9), and Ω f
c .

2: Solve (12) to obtain V o
c , α

priv
c , and βpriv

c .
3: Apply voc = V o

c (1) to attain z+
c , and uc to obtain x+

c .
4: Get αpub

c
+

and βpub
c

+

as (13), and share them with Mc .
5: Compute W+

c and then Ω+
c .

6: if Ω+
c do not exist or x+

c − z+
c /∈ Ω+

c , for any c ∈ C then:
7: Active a flag σc = 1 and share it to the network.
8: end if
9: if any σc is active in the network then:

10: Set αpub
c

+

and βpub
c

+

with the current scaling values.
11: end if

5. Plug-and-play operations

Adding (removing) subsystems to (from) the system changes
he physical configuration of the network. Consequently, it may
orce the redesign of the cooperation control topology for stability
nd performance reasons. We consider the following:

(a) Instants k−

plug and k+

plug are, respectively, infinitesimal instants
before and after a plug-and-play operation.
 o

6

(b) Plug-in and plug-out are allowed: N (k)2 can grow or shrink
and, correspondingly, each Mi(k) can grow or shrink owing
to the addition or removal of subsystems.

(c) Plug-and-play operations in which the subsystems are par-
tially disconnected (connected) from (to) the network,
e.g., N (k−

plug) = N (k+

plug) but Mi(k−

plug) ̸= Mi(k+

plug) for some
i ∈ N (k−

plug), are not permitted.
(d) The PnP operations are executed sequentially and requested

to the supervisor, which triggers the execution of the upper
layer and may adapt the cooperation topology to the new
system scenario for stability and performance reasons. If
there were several PnP operation requests at k−

plug, these may
be queued and executed in a FIFO fashion. Furthermore, one
could let agents form a coalition to, for example, connect to
the system altogether at once.

.1. Adding subsystems

The current cooperation topology Λ for system N has a coali-
ional structure CΛ. Consider a new subsystem N +1 dynamically
efined by its corresponding state and input matrices, constraint
ets (XN+1,UN+1) and K f

N+1 that is plugged into the system, which
ields the following set of dynamically coupled subsystems:

(k) =

{
{1, 2, . . . ,N} if k < kplug,

{1, 2, . . . ,N,N + 1} if k ⩾ kplug.

herefore, the new topology Λ̃ for N ∪ {N + 1} has a coalitional
tructure CΛ̃ = CΛ ∪ {N + 1}. The PnP operation changes the
ynamics of the overall system, and also the set of possible
ooperation topologies from T to T̃ . Due to the couplings, the
isturbances of its neighbors MN+1 grow and the recursive fea-
ibility may be lost. To prevent that from happening, at k+

plug, we
llow the cooperation topology to change according to Alg. 1.

ssumption 7. The new subsystem N + 1, with neighbors MN+1
N and constraint sets (αpub

N+1XN+1, β
pub
N+1UN+1) with (αpub

N+1, β
pub
N+1)

(0, 1)2, joins the system at time kplug > 0, i.e., N (k) =

∪ {N + 1}. Moreover, there exists an RCI set ΩN+1
(
WN+1

αpub, βpub)
)
for the new element, and its initial state xN+1 is

easible.

.2. Removing subsystems

Let us assume that a subsystem i is unplugged from the system
t the instant kunplug:

N (k) =

{
{1, 2, . . . , i, . . . ,N} if k < kunplug,

{1, 2, . . . , i − 1, i + 1, . . . ,N} if k ⩾ kunplug.

his PnP operation changes the dynamics of the overall sys-
em, the graph from G to G̃, and the set of potential successor
opologies from T to T̃ . Since the disturbances of their neighbors
∈ Mi(k) decrease, the recursive feasibility and stability are
ot endangered. We could then execute Alg. 1 to select another
opology that improves performance or maintains the current
ooperation setting, which is computationally less expensive.

. Feasibility and stability

In this section, we describe the properties of recursive fea-
ibility and stability of the proposed algorithm. First, we focus
n the recursive feasibility side of the problem. We highlight
he potential issues that may arise and how the operations of

2 Henceforth, explicit time-dependent notation will be employed in the case
f ambiguity.
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dding and removing elements of the network affect the overall
easibility. Then, leveraging the feasibility results, we study the
tability of the closed-loop system with respect to a compact
eighborhood of the equilibrium.

.1. Feasibility sets

Our feasibility analysis of the closed-loop system begins with a
haracterization of the feasible sets of optimization problem (12)
or each coalition c associated with a topology Λ. The feasible
input set of (12) contains all control sequences {vc(0), . . . , vc(Np−

)} and scaling factors (αpriv
c , β

priv
c ) that can be parameterized by

he initial nominal state, i.e., VN
c (zc) ⊂ VN

c × [0, 1]2. The feasible
tate set for coalition c is therefore ZN

c (α
pub, βpub) = {zc ∈

Zc(α
pub
c , ac) : VN

c (zc) ̸= ∅}; since the public scaling factors are
not necessarily constant, the feasible set varies over time. The
feasible state set for the true dynamics of coalition c ∈ C is
simply XN

c = ZN
c (α

pub, βpub) ⊕ Ωc(Wc(αpub, βpub)). A state xc =

zc + ec ∈ XN
c is said to be recursively feasible if VN

c (z
+
c ) ̸= ∅ and

+
c ∈ Ωc(Wc(αpub+

, βpub+)) where z+
c , e+

c , α
pub
c

+

, and βpub
c

+

are,
espectively, the successor nominal state, the error, and the state
nd input scaling factors. In the case of constant scaling factors,
e recover the traditional definition of recursive feasibility. In the

ollowing, we study the nuances of the recursive feasibility of our
roposed scheme.

.2. Recursive feasibility for unchanging coalitions

Parameterization of constraints by scaling factors results in
hanges in the RCI sets used by the tube-based controller. In the
ext lemma, we explore the relationship between these scaling
actors and the RCI sets.

emma 2 (Smaller Wc Implies Smaller Ωc(Wc)). Suppose that
Ωc(γcWc) is RCI w.r.t. the constraint sets (αcXc, βcUc) and dis-
turbance γcWc where Wc is a compact and convex set and γc
is the smallest positive number such that γcWc ⊇ Wc(α, β) =(⨁

d∈Mc
AcdαdXd ⊕BcdβdUd

)
⊕We

c . Suppose, in addition, that α+
c ⩽

αc and β+
c ⩽ βc for all c ∈ C, then γ+

c ⩽ γc and Wc(α+, β+) ⊆

Wc(α, β) with γ+
c a scaling factor associated with α+ and β+.

Furthermore, Ωc(γ+
c Wc) ⊆ Ωc(γcWc) is the RCI with disturbance

set γ+
c Wc and constraint sets (α+

c Xc, β
+
c Uc).

Proof. The smallest outer scaling γc is the tightest scaling factor
such that γc = arg inf{λ(ξWc \ Wc(α, β)) where λ(·) is the
Lebesgue measure in Rqc . Since α+

c ⩽ αc and β+
c ⩽ βc for all

coalitions, then it is straightforward to show that Wc(α+, β+) ⊆

c(α, β). The optimality of γ+
c implies that λ(γ+

c Wc \ Wc
(α+, β+)) ⩽ λ(ξWc \Wc(α+, β+)) for all ξ > 0; in particular, this
elation holds for ξ = γc . The standard properties of the Lebesgue
easure imply λ(ξWc \ Wc(α+, β+)) = λ(ξWc) − λ(Wc(α+, β+))
nd λ(ξWc) = ξ qcλ(Wc). Using these properties with λ(Wc) > 0

implies γ+
c ⩽ ξ ; in particular, ξ = γc . The RCI condition of Ωc(Sc)

holds for all Sc ⊆ γcWc , especially for Sc = γ+
c Wc . □

Lemma 2 guarantees that the RCI set Ωc(Wc(αpub, βpub)) re-
mains an RCI set when the disturbances seen by coalition c ∈ C
shrink as a result of optimization (12). The following ancillary re-
sult is a key element of the feasibility properties of our proposed
controller.

Lemma 3. Suppose Assumption 2 holds. Consider ac, bc, α
pub
c , β

pub
c

∈ [0, 1] for all c ∈ C with dynamics (13). The following holds:

(i) a+
c ⩽ ac ⇐⇒ α

priv
c Z(αpub

c , ac) ⊆ Z(αpub
c

+

, a+
c ),

(ii) b+ ⩽ b ⇐⇒ β
privV(βpub

, b ) ⊆ V(βpub+

, b+).
c c c c c c c

7

Proof. if: Taking into account definition (10), the inclusion αpriv
c

α
pub
c (1 − ac)Xc ⊆ α

pub
c

+

(1 − a+
c )Xc holds if and only if αpub

c
+

(1 −

a+
c ) − α

priv
c α

pub
c (1 − ac) ⩾ 0. We now prove the above inequality.

From (13),

α
pub
c

+

(1 − a+
c ) − α

priv
c α

pub
c (1 − ac) =

α
pub
c

(
1 − (1 − ac)(1 − α

priv
c )

)
(1 − a+

c ) − α
priv
c α

pub
c (1 − ac),

further manipulation and our hypothesis, a+
c ⩽ ac , yield

α
pub
c

+

(1 − a+
c ) − α

priv
c α

pub
c (1 − ac) ⩾

α
pub
c (1 − ac)

(
1 − (1 − ac)(1 − α

priv
c ) − α

priv
c

)
⩾

α
pub
c ac(1 − ac)(1 − α

priv
c ) ⩾ 0.

nly if: We prove it using properties of the Lebesgue measure

λ
(
Zc(α

pub
c

+

, ac+) \ Zc(α
pub
c , ac)

)
=

λ
(
Zc(α

pub
c

+

, ac+)
)
− λ

(
Zc(α

pub
c , ac)

)
=

(αpub
c

+

(1 − a+
c ))

qcλ(Xc) − (αpriv
c α

pub
c (1 − ac))qcλ(Xc) ⩾ 0,

hat is,
pub
c

+
(1 − a+

c ) ⩾ α
priv
c αpub

c (1 − ac).

ince αpub
c ⩾ α

pub
c

+

, we have: 1 − a+
c − α

priv
c + α

priv
c ac ⩾ 0 for all

priv
c ⩽ 1. Taking the limit as αpriv

c → 1 yields a+
c ⩽ ac . The proof

f the input set follows mutatis mutandis. □

The above lemma has profound implications; it gives us a way
o assess how the nominal sets change when the RCI sets are
pdated or when the disturbances created by coupling dimin-
sh as the state evolves. We are now in a position to establish
ur first result concerning recursive feasibility under unchanging
oalitions.

roposition 1 (Feasibility of the Tail). Suppose (αpub
c , β

pub
c ) ∈

0, 1]2, and V o
c = {voc (0), . . . , v

o
c (Np − 1)} is feasible for xc =

c + ec ∈ XN
c (α

pub, βpub). Consider αpub
c

+

⩽ α
pub
c and βpub

c
+

⩽ β
pub
c

y Lemma 1. If a+
c ⩽ ac and e+

c ∈ Ωc(Wc(αpub+
, βpub+)), then

˜ +
c = {voc (1), . . . , v

o
c (Np − 1), K f

czc(Np)} is feasible for x+
c .

roof. Fix (αpub
c , β

pub
c ) ∈ [0, 1]2 for all c ∈ C. Given a feasible

tate xc , the successor nominal state and error satisfy z+
c ∈

c(α
pub
c , ac) and e+

c ∈ Ωc(Wc(αpub, βpub)), respectively. The fea-
ibility of the tail relies on the fact that z+

c ∈ Zc(α
pub
c

+

, a+
c )

y Lemma 3, and the hypothesis e+
c ∈ Ωc(Wc(αpub+

, βpub+)).
e note that the set Ω f

c(α
pub
c , β

pub
c , ac, bc) remains an invari-

nt set that satisfies Assumption 6 for the successor constraint
airs (Zc(α

pub
c

+

, a+
c ),Vc(β

pub
c

+

, b+
c )). This leads to the tail being a

easible solution for z+
c . □

Following Proposition 1, we always meet the assumption
+
c ∈ Ωc(Wc(αpub+

, βpub+)) because of Step 6 of Alg. 2 which
hecks x+

c − z+
c ∈ Ωc(Wc(αpub+

, βpub+)) before updating αpub
c

+

,
pub
c

+

, ∀c ∈ C. In this way, we obtain the recursive feasibil-
ty for the case of unchanging coalitions. These results are the
ornerstone of the results concerning a change of coalitions or
hen plug-and-play operations occur. Another consequence of
roposition 1 is that for each topology Λ that admits a family of
CI sets {Ωc}c∈C , the value function of (12), i.e., JoN,c(·) for all c ∈ C,
s a Lyapunov function for the nominal dynamics as summarized
n the next corollary.

orollary 1. Suppose Assumptions 1, 2, and 6 hold, for all c ∈ C for
fixed topology Λ with J (·, ·) continuously differentiable, positive
c
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efinite, and strictly convex in its arguments. Then, for all zc ∈
N
c (α

pub, βpub),

JoN,c(zc) ⩾ η1,c(|zc |), (15a)

JoN,c(zc) ⩽ η2,c(|zc |), (15b)
o
N,c(z

+

c ) ⩽ JoN,c(zc) − η1,c(|zc |), (15c)

where η1,c(·) and η2,c(·) are K∞.

Proposition 1 and Corollary 1 for constant scaling factors re-
over the traditional notions of recursive feasibility and stability
f MPC controllers. In fact, given an initial state xΛ(0) ∈ XN

Λ(1, 1),
ny point in its time evolution xΛ(k) ∈ XN

Λ(α
pub(k), βpub(k)) is

lso feasible for the initial time. This observation serves as the
ornerstone of future analysis.

.3. Recursive feasibility for changing coalitions

Given a topology Λ with coalitions C = {c1, . . . , cC }, the
verall Np–step feasible set is given by the product of individual
easible sets XN

Λ =
∏

c∈C XN
c . To ensure the recursive feasibility

f our proposed strategy, it is enough to guarantee that for a
iven topology Λ, and feasible state xΛ = (xc1 , . . . , xcC ) ∈ XN

Λ,
the successor state satisfies x+

Λ ∈ XN
Λ+ where Λ+ is the succes-

sor topology. However, as mentioned in Baldivieso-Monasterios
et al. (2019), the feasible sets corresponding to two different
topologies Λ1 and Λ2 do not have a direct relationship between
them. In fact, there exist feasible points for a topology that are
infeasible for a different one. To characterize recursive feasibility
for the case of changing coalitions, we rely on the concepts of
feasibility and the strong feasibility of a state xΛ, introduced
in Baldivieso-Monasterios and Trodden (2021). A state xΛ is said
to be recursively feasible if xΛ ∈ XN

Λ, and it is strongly recursively
feasible if xΛ ∈

∏
c∈C ZN

c (α
pub, βpub). Proposition 5.5 in Baldivieso-

Monasterios and Trodden (2021) states that feasibility becomes
a strong feasibility if the coupling between coalitions is suffi-
ciently weak. The concept of strong feasibility coupled with the
monotonicity of the scaling factor dynamics (13) will help us
characterize feasible topology switches.

On the other hand, following Alg. 1, the topologies contained
in Tnew differ by a maximum of one communication link from
the current topology, i.e., dist(Λ,Λ′) ⩽ 1 for Λ′

∈ Tnew. This
implies that for Λ with CΛ = {c1, . . . , ck, ck+1, . . . , cC }, the
new topologies Λ′ can have either {c1, . . . , {ck, ck+1}, . . . , cC } or
c1, . . . , ck′ , ck′′ , ck+1, . . . , cC } as coalition structures. This obser-
ation motivates the following definition:

efinition 3. Given two topologies Λ1,Λ2 ∈ T , Λ1 refines Λ2
or Λ2 coarsens Λ1) if every member of Λ1 is contained in some
member of Λ2.

For refinement, coalition ck of Λ1 has been split into ck′ and
ck′′ inΛ2. Without loss of generality, we can assume that only one
subsystem separates from the coalition i.e., ck = {ik}∪ck′ . We note
that the state and control input of coalition ck are, respectively,
ck ∈ Rqck and uck ∈ Rrck , where qck = qik + qck′ and rck = rik +

ck′ . The disturbance sets satisfy:3 Wik = (
⨁

e∈Mck∪{ck′ }
AikeXe ⊕

BikeUe) ⊕ We
ik

and Wck′ = (
⨁

e∈Mck∪{ik}
Ack′ eXe ⊕ Bck′ eUe) ⊕ We

ck′
.

Following the properties of the Minkowski sum and the Cartesian

3 In the following, we drop the dependency on the scaling factors to ease
he notational burden, e.g., W = W (αpub, βpub).
c c

8

product, the disturbance set for finer coalitions W̃ck is:

W̃ck = Wik × Wck′

= (
⨁

e∈Mik

AikeXe ⊕ BikeUe) × (
⨁

e∈Mck′

Ack′ eXe ⊕ Bck′ eUe)

⊕ (Aikck′ Xck′ ⊕ Bikck′ Uck′ ) × (Ack′ ikXik ⊕ Bck′ ikUik )
⊕ We

ck = Wck ⊕ Wck′ ik ⊇ Wck .

herefore, W̃ck has extra terms of the form Wck′ ik for each of the
issing interconnections, and the prediction model changes from

Acc, Bcc) to (AD
cc, B

D
cc) = (diag(Aikik , Ack′ ck′ ), diag(Bik ik , Bck′ ck′ )). The

verall disturbance sets for the system for both topologies satisfy
Λ1 =

∏
c∈CΛ1

Wc ⊆
∏

d∈CΛ2
Wd = WΛ2 . As a result, topology

efinement introduces a counter-nesting of disturbance sets and
CI sets. The latter follows from the observation: Wck ⊆ Wik ×

ck′ implies Ωck (Wck ) ⊆ Ωck (Wck′ × Wik ). Using the definition of
n RCI set, it is straightforward to see that Ωck (Wck′ ×Wik ) is also
n RCI for coalition ck′ ∪ ik.
Our study of the recursive feasibility of the system in closed

oop with Algorithms 1 and 2 hinges on the idea that state
onstraint sets shrink as public scaling factors decrease. The fol-
owing theorem tackles the problem of recursive feasibility when
he topology of the system is allowed to change according to
lg. 1. In this theorem, we focus mainly on the case where the
ublic scaling factors strictly decrease i.e., αpub

c
+

< α
pub
c ; the

ase of equality has been addressed in Baldivieso-Monasterios
nd Trodden (2021, Proposition 5.5, 5.6).

heorem 1 (Recursive Feasibility). Suppose Assumptions 1, 2, 5,
nd 6 hold. In addition, suppose that for all c ∈ C, Jc(·, ·) is
ontinuously differentiable, positive definite and strictly convex in
ts arguments. Given a topology Λ, if the state pair (zΛ, eΛ) satisfies
zΛ, eΛ) ∈

∏
c∈CΛ ZN

c (α
pub, βpub) × Ωc(Wc(αpub, βpub)) for some

pub
Λ = (αpub

c1 , . . . , α
pub
cC ) and βpub

Λ = (βpub
c1 , . . . , β

pub
cC ). Considering

pub
c

+

< α
pub
c by Lemma 1, there exists a time k > 0 for which the

tate pair satisfies
(
zΛ(k), eΛ(k)

)
∈

∏
c∈CΛ(k)

ZN
c

(
αpub(k), βpub(k)

)
×

c
(
Wc

(
αpub(k), βpub(k)

))
with the successor topologyΛ(k) selected

ccording Algorithm 1.

roof. Given an initial feasible state xΛ = zΛ + eΛ ∈ XN
Λ(α

pub,
pub) with zΛ ∈ ZN

Λ(α
pub, βpub) and eΛ ∈ ΩΛ(WΛ(αpub, βpub)),

he successor state satisfies x+

Λ ∈ XN
Λ(α

pub+
, βpub+) ⊂ α

pub
Λ

+

X .
Furthermore, by hypothesis, the state enters the interior of the
feasible set at a rate γ = min{α

pub
Λ − α

pub
Λ

+

}; in fact, the solution
of (13) yields αpub

c (h) = α
pub
c (1 − (1 − α

priv
c )(1 − ac))h where

α
pub
c is the initial value of the public scaling factor. On the other
and, the feasible state xΛ ∈ XN

Λ(α
pub, βpub) becomes strongly

easible after a time h∗ > 0 such that xΛ ∈ ZN
Λ(α

pub, βpub)
with h∗

= inf{h > 0 : ac ⩽ maxc∈CΛ α
pub
c (h) − α

pub
c }. Follow-

ing Baldivieso-Monasterios and Trodden (2021, Proposition 5.2),
strong feasibility implies feasibility under topology coarsening.

Under refinement of the topologies, we have that ΩΛ

(WΛ(αpub, βpub)) ⊆ ΩΛ′ (WΛ′ (αpub, βpub)) for Λ′
∈ Tnew. Since

feasible regions for each topology are compact sets, we have
that there exists δ ∈ (0, 1) such that δZN

Λ(α
pub(g), βpub(g)) ⊂

ZN
Λ′ (αpub, βpub). Now, there exists, similarly to the previous case,

g∗
= inf{g > 0 : δ ⩽ maxc∈CΛ α

pub
c (g) − α

pub
c }. After g∗

samples, the state satisfies xΛ(g∗) ∈ δX and, by the recursive
feasibility of topology Λ, xΛ(g∗) ∈ XN

Λ(α
pub, βpub). The choice of

g∗ implies xΛ(g∗) ∈ XN
Λ′ (αpub(g∗), βpub(g∗)). Therefore, the state

xΛ is recursively feasible after k = min{h∗, g∗
}. □

Remark 1. Despite changes in cooperation topology and plug-
and-play operations, which alter the size of disturbance sets



E. Masero, P.R. Baldivieso-Monasterios, J.M. Maestre, P.A. Trodden Automatica 153 (2023) 111053

W
T
t
t

C
S
a
l

p
α
t
w
c

x

c , the recursive feasibility is maintained taking into account
heorem 1. In general, unplugged operations compromise neither
he feasibility and stability of the system nor the satisfaction of
he constraints.

orollary 2 (Recursive Feasibility with Plug-and-Play Operations).
uppose the assumptions of Theorem 1 and Assumption 7 hold. When
new subsystem N + 1 is added to the system, for all its neighbors
∈ MN+1, there exists γl ∈ (0, 1) such that:

Wl(αpub, βpub) ⊕ Al(N+1)α
pub
N+1XN+1 ⊕ Bl(N+1)β

pub
N+1UN+1

⊂ γlWl(αh, βh),

for some (αh, βh) ∈ (0, 1)|N | and γl < diam(Wl(1, 1)), and thus the
new system N (k) is recursively feasible.

Proof. The dynamics of l ∈ MN+1 and N + 1 can be described,
respectively, as

x+

l = Allxl + Bllul + wl + wl(N+1),

x+

N+1 = A(N+1)(N+1)xN+1 + B(N+1)(N+1)uN+1 + wN+1,

where wl(N+1) = Al(N+1)xN+1 + Bl(N+1)uN+1 and wN+1 =∑
j∈MN+1

A(N+1)jxj + B(N+1)juj. We note that the disturbance seen
by l satisfies wl + wl(N+1) ∈ Wl(αpub, βpub) ⊕ Al(N+1)α

pub
N+1XN+1 ⊕

Bl(N+1)β
pub
N+1UN+1. By assumption, for l ∈ MN+1, the setΩl(Wl(αpub,

βpub)) is non-empty and we note, following Theorem 1, that for a
time h < k there exist αpub

l < αl,h < 1 and βpub
l < βl,h < 1 with

Wl(αpub, βpub) ⊂ Wl(αh, βh) and Ωl(Wl(αh, βh)) invariant. The
existence of γl ∈ (0, 1) that upper bounds Wl(αpub, βpub)⊕Wl(N+1)
implies the invariance of Ωl(γlWl(αh, βh)) by Lemma 2.

By assumption, the set ΩN+1(WN+1(αpub, βpub)) is invariant.
Then the setΩN+1(WN+1)×

∏
c∈CΛ Ωc(γcWc(αh, βh)) is the RCI for

the system with topology Λ̃. These invariance conditions, coupled
with the feasibility of xN+1, allow us to conclude that the state
(xN , xN+1) is feasible at the time of connection of N + 1. The
recursive feasibility follows from Theorem 1. □

In the above corollary, the recursive feasibility of our approach
hinges on the idea of robustness. The initial tube is given by
the diameter of Ωc(Wc(1, 1)). The public scaling factors decrease
as time evolves if there are no plug-in operations and enough
time has elapsed, as seen in the proof of Theorem 1. Corollary 2
establishes that a plug-in operation can only occur when two
events happen: assuming that the plug-in takes place at a given
instant k > 0, the states of the system lie within the interior of
the feasible set; and the size of the perturbation generated by
the new subsystem is bounded and can be contained in the initial
tubes of its neighbors. With these two conditions, we allow Alg. 1
to find the most suitable topology Λ̃ ∈ T̃ for the system.

6.4. Stability analysis

In this section, we study the stability properties of the system
in closed-loop with Alg. 1 and Alg. 2. Traditionally, tube-based
MPC methods attack the stability analysis by establishing stability
conditions on the nominal system by interpreting the value cost
function as a Lyapunov function, i.e., similar to Corollary 1. More-
over, the error between the nominal and true systems remains
bounded within an invariant set, resulting in a notion of stability
with respect to a neighborhood of the origin. Our case, however,
is different in two aspects. First, the structure of the nominal
system is allowed to change every time the controller selects a
new operating topology. Second, the scaling factors used in our
framework lead to shrinking state constraints. Our analysis relies
on this last fact to establish a stronger notion of convergence to
the equilibrium point. A preliminary result towards our goal is
the following lemma, which allows us to quantify, in a functional

way, the effect of a changing RCI set.

9

Lemma 4. Suppose Assumptions 1 and 2 hold, the disturbance set
satisfies Wc = GcBdc ,∞ +pc for some matrix Gc ∈ Rqc×dc and vector
pc ∈ Rqc where Bdc ,∞ is the infinite ball in Rdc . For a topology Λ
admitting a family of RCI sets {Ωc}c∈C , for all c ∈ C the function
Ψc : Ωc → R+, where Ψc(x) = inf{λ > 0 : x ∈ λΩ∗

c } and
Ω∗

c = {ξ : ξ⊤x ⩽ 1 for all x ∈ Ωc}, satisfies, along the trajectories
of error dynamics e+

c = Accec + Bccµc(ec) + wc ,

Ψc(e+

c ) − Ψc(ec) ⩽ −ψc(ec) + ϕc(αpub
c )

with ψc(·) is K∞ and ϕc(·) is positive definite and continuous.

Proof. Using the standard properties of the polar set, we obtain
that Ψc(ec) = sup{e⊤

c r : r ∈ Ωc} for some ec ∈ Rqc is the support
function of the RCI set. Since, by construction, this set can be
expressed as a Minkowski sum of linear transformations of the
set Wc , then

Ψc(ec) =

Hc−1∑
h=0

sup{e⊤

c Dh(MHc )wc :wc ∈ Wc}.

Given that Wc = GcBdc ,∞ + pc , where we can assume without
loss of generality pc = 0, the support function of the zonotope
Wc is hWc (ec) = ∥e⊤

c Gc∥1. Using this fact, together with norm
equivalence4 yields

Ψc(ec) =

Hc−1∑
h=0

∥e⊤

c Dh(MHc )Gc∥1 ⩾

Hc−1∑
h=0

∥G⊤

c Dh(MHc )
⊤ec∥2.

On the other hand, the RCI control law µc(ec) ensures e+
c ∈ Ωc ⊂

acXc(α
pub
c ). However, by (4), the constraint set can be written as

Xc = α
pub
c Xc giving ∥e+

c ∥2 ⩽ α
pub
c ac diam(Xc )

2 . The desired result
follows from the bound with ψc(ec) =

∑Hc−1
h=0 ∥G⊤

c Dh(MHc )
⊤ec∥2

and ϕc(α
pub
c ) = α

pub
c ac diam(Xc )

2 , i.e.,

Ψc(e+

c )−Ψc(ec) ⩽ −

Hc−1∑
h=0

∥G⊤

c Dh(MHc )
⊤ec∥2+α

pub
c ac

diam(Xc)
2

. □

Theorem 2 (Monotonic Shrinking of Constraint Sets). Suppose As-
sumptions 1, 2, 5 and 6 hold. For all c ∈ C, Jc(·, ·) is continuously dif-
ferentiable, positive definite and strictly convex in its arguments. For
all i ∈ N , the sequence of public scaling factors {(αpub

i , β
pub
i )(k)}k∈N

with (αpub
i , β

pub
i )(0) = (1, 1) is monotonic, but in a finite number of

points. Furthermore, the sequence of sets {Xi(α
pub
i (k))}k∈N converges

to a compact and convex set Ω̄N ⊆
∏

i∈N Xi.

Proof. By construction and fixing a topology Λ ∈ T , each
constraint set is scaled at time step k as Xc(k) = α

pub
c (k)Xc and

Uc(k) = β
pub
c (k)Uc . These constraints induce disturbance and RCI

sets according to Lemma 2 for each coalition in Λ, i.e.,

Wc(k) =
( ⨁
d∈Mc

AcdXd(k) ⊕ BcdUd(k)
)
⊕ We

c ⊆ γcWc(1, 1)

for some γc ∈ (0, 1) and Ωc(Wc(k)) ⊂ acXc(k). These sets
lead to the definitions of the nominal tightened constraints of
(10); the solution of the optimal control problem (12) for a
nominal state zc(k) yields an optimal sequence V o

c (k) and two
rivate scaling factors (αpriv

c , β
priv
c )(k) that force zc(k + 1) ∈

priv
c (k)Zc(α

pub
c (k), ac(k)). Following Corollary 1, the value func-

ion of the nominal system behaves as a Lyapunov function,
hich implies that zc(·) converges towards its equilibrium if the
oalition does not change. Furthermore,

c(k + 1) ∈ αpriv
c (k)(1 − ac(k))αpub

c (k)Xc ⊕ ac(k)αpub
c (k)Xc

4 Let x ∈ Rn , α, β > 0 and a, b ⩾ 1, then β∥x∥ ⩽ ∥x∥ ⩽ α∥x∥ .
a b a
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ince ec(k + 1) ∈ ac(k)α
pub
c (k)Xc by invariance of Ωc(Wc(k)). The

uccessor state then satisfies:

c(k + 1) ∈ αpub
c (k + 1)Xc,

here αpub
c (k+1) = α

pub
c (k)

(
ac(k)+α

priv
c (k)(1−ac(k))

)
, and forms

a decreasing sequence only if αpriv
c ∈ (0, 1) and ac decreases.

We note here that the sequence of {ac(k)}k∈N does not need to
converge toward zero because of exogenous disturbances We

c ; we
claim that there exists a lower bound aec on each ac(k) based on
the exogenous disturbance We

c . In fact, the RCI set Ωc(We
c ) ⊆

aecXc , following Lemma 2, is a minimal element in the RCI sets
with respect to the set inclusion since We

c ⊆ Wc(k) for all k ⩾ 0.
The implication of this is that ac(k) ⩾ aec for all k > 0 and
there exists a converging subsequence {ac(kj)}kj . This, together
with the fact that {(αpriv

c , β
priv
c )(k)}k∈N lies in the interior of [0, 1],

implies that {(αpub
c , β

pub
c )(k)}k∈N has at least an accumulation

point (ᾱpub
c , β̄

pub
c ) ∈ (0, 1)2 since by definition all elements of

the sequence are less than 1. Therefore, the state constraints
satisfy Xc(k) → ᾱ

pub
c Xc following the standard arguments of

the set convergence theory (see Rockafellar & Wets, 1998). As
a consequence of Theorem 1, a change of topology implies that
the region of convergence is given by the union over all possible
topologies, i.e., Ω̄N =

⋃
Λ∈T

∏
c∈CΛ ᾱ

pub
c Xc . □

The set where the constraint sets converge to an invariant set
is composed of two parts: the first one given by the exogenous
disturbance

∏
i∈N We

i and the second one
⋃
Λ∈T

∏
c∈CΛ

⨁
d∈Mc

ᾱ
pub
d AcdXd ⊕ β̄

pub
d BcdUd that captures the effect of using a dis-

tributed controller, i.e., the disturbance arising from exchanging
information between a coalition and its neighbors. The private
scaling factors do not necessarily need to converge; the only
requirement is for them to lie in the interior of the unit interval
to allow the convergence of the public factors. The fact that there
exists a subsequence of the scaling factors that converges implies
that we can allow these sequences to increase or stagnate for
a finite number of steps before returning to a monotonic one.
This fact follows from our recursive feasibility results, which
guarantee that Alg. 1 can find suitable topologies to cope with
the addition of new subsystems that may increase the size of the
disturbance sets.

Corollary 3 (Stability of a Neighborhood of the Origin). Suppose the
assumptions of Theorem 2 hold. The state for the system xN (·) is
asymptotically stable with respect to the set

⋃
Λ∈T

∏
c∈CΛ Ωc(We

c ).

Proof. Given a feasible initial state xN (0), Theorem 1 guaran-
tees that the state evolution is contained within the feasible set⋃
Λ∈T

∏
c∈CΛ Xc(1) for all forward times. In addition, Theorem 2

ensures that these feasible sets monotonically converge towards
a compact set Ω̄N . These two facts together imply that there
exists a time k0 for which xN (k0) ∈ Ω̄N ⊕ Bq,2(ε) where Bq,2(ε)
is the 2−ball with radius ε > 0. For all k < k0, the state satisfies
∥xc(k)∥2 ⩽ diam(Xc(α

pub
c (k))) for all c ∈ CΛ for some Λ ∈ T ; the

right-hand side of the inequality is a decreasing function of the
scaling factors, which implies d(xN , Ω̄N ) → 0. Fixing a topology
Λ, using Corollary 1 and Lemma 4, the candidate for the overall
Lyapunov function within Bq,2(ε)⊕

∏
c∈CΛ ᾱcXc for the composite

system (xN , zN ) is ΥΛ(xc, zc) =
∑

c∈CΛ JoN,c(zc) + Ψc(xc − zc),
which is an Input-to-State stable Lyapunov function. Further-
more, applying LaSalle’s invariance principle, we can conclude the
asymptotic stability of a neighborhood of equilibrium point. □

7. Illustrative example

We consider the coupled-truck system presented in Trodden
and Maestre (2017), where trucks are coupled by dampers and
springs with their immediate neighbors, as shown in Fig. 3.
10
Fig. 3. System compound of an array of four coupled trucks. At time step kplug ,
fifth truck is plugged into the system.

Table 2
Damping factors [N · s/m], spring constants [N/m], and masses [kg].

Damping [N · s/m] Spring [N/m] Mass [kg]

h12 = 0.3 k12 = 0.5 m1,m3 = 3
h23 = 0.4 k23 = 0.7 m2,m4 = 2
h34 = 0.3 k34 = 0.6

Case 1: h45 = 1 k45 = 1.5 m5 = 6
Case 2: h45 = 0.1 k45 = 0.08 m5 = 2

Each truck i is modeled by second-order dynamics:[
ṙi
v̇i

]


ẋi

=

⎡⎣ 0 1

−
1
mi

∑
j∈Mi

kij −
1
mi

∑
j∈Mi

hij

⎤⎦
  

Aii

[
ri
vi

]


xi

+

[
0

100

]
  

Bii

ui

+

∑
j∈Mi

⎡⎣ 0 0
1
mi

∑
j∈Mi

kij
1
mi

∑
j∈Mi

hij

⎤⎦
  

Aij

[
rj
vj

]
+ we

i ,

here the state xi of each truck i is composed of its displacement
rom the equilibrium position ri and its velocity vi. Each agent
an apply a horizontal force Fi = Biiui with ui being the control
nput. Moreover, we consider a bounded exogenous disturbance
we

i | ⩽ [0.0025, 0.0025]⊤ for all agents. Table 2 displays the
odel parameters used in the simulations that will be performed

or two case studies. A discrete-time model with sample time
s = 0.2 s that approximates the continuous-time model is
mployed to simulate and control each subsystem.
The control problem is to lead the subsystems from their initial

tates: x1(0) = [1.5, 0]⊤, x2(0) = [−0.5, 0]⊤, x3(0) = [1, 0]⊤,
4(0) = [−1, 0]⊤, and x5(kplug) = [1, 0]⊤ to the origin, while
atisfying constraints |ri| ⩽ 2m, |vi| ⩽ 1m/s, |ui| ⩽ 1N/kg and
andling a plugged subsystem. Therefore, the system is formed by
= 4 trucks for k < kplug and composed of N = 5 for k ⩾ kplug. At

irst, the maximum number of cooperation links is |L| = 3 and
here are eight cooperation topologies T = {Λ1, . . . ,Λ8}; after
he plug-in: |L| = 4 and T = {Λ1, . . . ,Λ16}.

The weighting matrices for the state and input for all i ∈

N are, respectively, Qi = I and Ri = 100, and aggregated
s Qc = diag(Qi)i∈c and Rc = diag(Ri)i∈c . The LQR terminal
ontroller K f

c = diag(K f
i )i∈c , where K f

1 = [−0.0365,−0.0460],
f
2 = [−0.0334,−0.0443], K f

3 = [−0.0345,−0.0450], K f
4 =

−0.0341,−0.0446], K f
5 = [−0.0370,−0.0462], and the terminal

weight matrix Pc = diag(Pi)i∈c , where

P1 =

[
4.3327 −2.7765

−2.7765 3.9817

]
, P2 =

[
4.2137 −2.7240

−2.7240 3.9148

]
,

P3 =

[
4.2571 −2.7424

−2.7424 3.9393

]
, P4 =

[
4.2411 −2.7359

−2.7359 3.9293

]
,

P5 =

[
4.3527 −2.7859

]
.

−2.7859 3.9931
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Fig. 4. Formation of coalitions in the two case studies.

.1. Simulation results

Two simulations of length Nsim = 40 have been performed
sing Matlab

®
on Windows with a PC Intel

®
Core™ i7-8700 CPU

at 3.20GHz and 16GB RAM. We have also used YALMIP (Lof-
berg, 2004) with quadprog solver, the MPT 3.0 (Herceg et al.,
2013), and the PnPMPC toolbox (Riverso et al., 2013). The MPC
methods consider a prediction horizon Np = 10, the upper-
layer period Tup = 5, the parameter τα = 5 · 10−5, and the
cost per active cooperation link clink = 0.1. Since we consider
external disturbances, our proposed tube-based coalitional MPC
algorithm is compared with two other tube-based methods that
do not employ scaling factors: centralized MPC (full cooperation
between agents) and decentralized MPC (without communication
between local agents).

Fig. 4 presents the evolution of the cooperation topology with
the coalitional MPC strategy in two case studies starting with the
great coalition c = {{1, 2, 3, 4}}. Every Tup = 5 time step from

= 1, the supervisor decides the cooperation topology. In both
ases, for k < 6, there are two coalitions c1 = {1} and c2 =

2, 3, 4}, and three coalitions c1 = {1}, c2 = {2, 3}, and c3 = {4}
or 6 ⩽ k < 11. Afterwards, in Case 1 (Fig. 4(a)), all agents work
ecentralized until a new subsystem i = 5 is connected to the
ystem in kplug = 16. Since agent i = 4 cannot deal with its new
isturbances, it forms a coalition with agent i = 5 until the end
f the simulation. Conversely, in Case 2 (Fig. 4(b)), the coupling
etween agents i = 4 and i = 5 is lower, thus agent i = 4
an handle the increase in disturbances caused by the plug-in
ubsystem without collaborating with its neighbors.
The sequence of the outer bounds of RCI sets, the scaling fac-

ors, the volume of sets
(
α
pub
i Xi and α

priv
i Zi(α

pub
i , ai)

)
for Case 1

re depicted in Fig. 5. The outer bounds of the RCI sets are
alculated by solving the LP problem (9) with weights qx = 10
nd qu = 1. As shown, the volume of set αpub

i Xi monotonically
ecreases for all i ∈ N despite changes in the scaling factors. The
alues of ai and α

pub
i shown in Fig. 5a do not exactly converge

o zero due to the exogenous disturbances we
i , but to very small

alues; at k = 40:⎡⎢⎢⎢⎣
a1
a2
a3
a4
a5

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.061
0.018
0.027
0.092
0.092

⎤⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎣
α
pub
1
α
pub
2
α
pub
3
α
pub
4
α
pub
5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.023
0.033
0.030
0.027
0.184

⎤⎥⎥⎥⎦ .
hese variables directly affect the RCI sets (i.e., the cross sections
f tubes), which represent the admissible disturbance set around
 |

11
Table 3
Numerical results comparison for the two case studies.
(a) Costs in Case 1

Tube methods t̄c [s] Jperf Jcoop Jtotal Jtotal [%]

Cen. MPC 1.13 28.49 14.5 43.99 –
Coal. MPC 0.94 28.94 4 32.94 23.39%
Dec. MPC – – – – –

(b) Costs in Case 2

Tube methods t̄c [s] Jperf Jcoop Jtotal Jtotal [%]

Cen. MPC 1.19 28.57 15 43.57 –
Coal. MPC 0.89 28.93 1.5 30.43 30.16%
Dec. MPC 0.51 29.13 0 29.13 33.16%

the nominal trajectories and are defined as aiXi(α
pub
i ) (recall (10)).

As observed in Fig. 6, the tubes shrink and grow due to the coali-
tion breakups and changes in the scaling factors αpub

i ,∀i ∈ N (k).5
hen a coalition is disbanded or a new subsystem is plugged,

he agents involved or the neighbors are, respectively, subject
o further disturbances and, therefore, at that time instant, their
ubes can grow to cope with more uncertainty. For example, in
ig. 6, the tubes of agents i = 2 and i = 3 grow at k = 11 due to
ts coalition breakdown. At the end of the simulation, the tubes
re as small as possible to cover the external disturbances we

i that
ffect each subsystem locally.
Fig. 7 depicts the evolution of position and velocity, and the

ontrol inputs of the five trucks for coalitional MPC and central-
zed MPC in Case 1. As shown, the local states xi = [ri, vi]⊤ reach
heir origin despite the disturbances caused by the plug-in, the
oupling and the external noise.
Finally, Table 3 shows a comparison of the numerical results

btained with all the MPC methods for the two case studies.
The total cost Jtotal is the sum of the accumulated performance

ost during the simulation:

perf =

Nsim∑
k=1

(
∥xN (k)∥2

QN
+ ∥uN (k)∥2

RN

)
,

nd the accumulated cooperation cost, which penalizes the num-
er of links of Λ at the instant k:

coop =

Nsim∑
k=1

clink |Λ(k)|.

he average computing time per coalition, t̄c [s], is calculated as
ollows:

c̄ =

∑Nsim
k=1

(∑
c∈CΛ tc(k) / |CΛ|

)
Nsim

,

where tc and |CΛ| denote, respectively, the time per coalition
and the total number of coalitions in topology Λ at time step k.
The average computation times of the supervisory layer (Alg. 2)
in the coalitional method for Case 1 and Case 2 are 43.2 s and
58.9 s, respectively. Note that faster implementations would re-
quire more computing power and more efficient programming
languages than Matlab

®
, such as C and C++ programming. Fur-

thermore, the proposed coalitional method brings several other
potential advantages compared to a fully centralized implemen-
tation (e.g., the removal of a single point of failure, and enhanced
privacy/security) that warrant the additional time spent on a
supervisory layer. In any case, a full comparison of the three
methods is more complex and nuanced, as computation time

5 The tube cross section of any agent within a coalition whose cardinality is
c| ⩾ 2 will be in R⩾4 , so we have projected it in R2 to be able to represent it.
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Fig. 5. Results with the coalitional strategy for Case 1 (kplug = 16).

Fig. 6. Tube evolution of each agent for Case 1 (kplug = 16).

Fig. 7. State and input trajectory of each truck for Case 1 (kplug = 16).
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nd closed-loop performance are just two of several aspects to
onsider.
As shown in Table 3, our approach achieves close control per-

ormance over centralized MPC, which provides the best. Adding
he cooperation costs, the coalitional MPC algorithm outperforms
he centralized MPC with a total cost reduction of 23.39% in
ase 1 (see Table 3a) and a 30.16% in Case 2 (see Table 3b). Note
hat the decentralized approach is the most convenient option in
erms of cooperation and computation payload, but may result in
ower performance or even infeasibility due to the difficulty in
anaging interactions (e.g., dynamic couplings between subsys-

ems and PnP operations) while ensuring constraint satisfaction.
s shown in the numerical results, the decentralized MPC only
utperforms the other methods in Case 2, where the dynamic
oupling —and especially that between the plugged-in agent and
ts neighbor— is weak. However, decentralized control cannot be
mplemented in Case 1 because it becomes infeasible due to the
ncrease in disturbances caused by the plug-in event. This fact
einforces the need for coalitional strategies to control networked
ystems with subsystems joining and leaving the network.

. Conclusions

We propose a robust coalitional MPC based on optimized
ubes that can handle plug-and-play events. Our approach allows
gents to exchange information about their public scaled con-
traint sets —which shrink as long as the system comes close to
he origin— and to cluster into coalitions to reject disturbances
nd improve performance. Scaling factors for constraint sets are
eparated into public and private values to create an inherent
obustness margin that allows controllers to locally absorb dis-
urbances without a redesign of the control system. Furthermore,
lug-and-play operations are successfully performed in real time
hile maintaining the recursive feasibility and stability of the
ystem. Another finding is the possibility of plug-in and plug-out
oalitions of agents.
Future research lines are the fully distributed implementation

f the proposed strategy and its application to potential real
ystems, such as vehicle platoons and microgrids.
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