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253, Bragança, Portugal 
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A B S T R A C T   

Aspergillus carbonarius (Bainier) Thom. is an important pathogen and ochratoxin A (OTA) producer in grapes that 
can be controlled by adopting sustainable approaches. Here we evaluate the application of natural plant extracts 
as an alternative to synthetic fungicides to reduce OTA contamination and to prevent infection of grapes by two 
isolates of A. carbonarius. In a preliminary screening, natural extracts of chestnut flower, cistus, eucalyptus, 
fennel, and orange peel were evaluated for their antifungal and anti-mycotoxigenic efficiency in a grape-based 
medium at concentrations of 10 and 20 mg/mL. Cistus and orange peel extracts demonstrated the best anti-
fungal activity at both concentrations. Although the eucalyptus extract demonstrated no significant effect on 
Aspergillus vegetative growth, it significantly reduced OTA by up to 85.75 % at 10 mg/mL compared to the 
control. Chestnut flower, cistus, eucalyptus, and orange peel extracts were then tested at the lowest concen-
tration (10 mg/mL) for their antifungal activity in artificially inoculated grape berries. The cistus and orange peel 
extracts demonstrated the greatest antifungal activity and significantly reduced mold symptoms in grapes. 
Moreover, all tested natural extracts were able to reduce OTA content in grape berries (17.7 ± 8.3 % - 82.3 ±
3.85 % inhibition), although not always significantly. Eucalyptus extract was particularly efficient, inhibiting 
OTA production by both strains of A. carbonarius by up to >80 % with no effects on fungal growth. The use of 
natural eucalyptus extract represents a feasible strategy to reduce OTA formation without disrupting fungal 
growth, apparently maintaining the natural microbial balance, while cistus and orange peel extracts appear 
promising as inhibitors of A. carbonarius mycelial growth. Our findings suggest that plant extracts may be useful 
sources of bioactive chemicals for preventing A. carbonarius contamination and OTA production. Nonetheless, it 
will be necessary to evaluate their effect on the organoleptic properties of the grapes.   

1. Introduction 

Ochratoxin A (OTA) is ranked among the five most common and 
harmful mycotoxins in agriculture (Malir et al., 2016). Aspergillus and 
Penicillium species are the main producers of OTA (Wang et al., 2016) 
and contaminate a number of foodstuffs including grapes and their de-
rivatives (Gil-Serna et al., 2018; Mondani et al., 2020; Ortiz-Villeda 
et al., 2021; Zimmerli and Dick, 1996). Grapes contribute significantly 
to human nutrition and are valued for their sensory properties as well as 
for the vitamins and bioactive compounds (e.g., flavonoids) they contain 
(FAO-OIV, 2016; Sabra et al., 2021). However, wine and grape juice are 
ranked after cereals as the second greatest sources of dietary exposure to 

OTA (Kizis et al., 2021; Li et al., 2021). 
Mycotoxin contamination of grapes typically begins in the vineyard 

(Tini et al., 2020). Aspergillus carbonarius (Bainier) Thom. (and Asper-
gillus niger Tiegh., which produces less OTA) is a major source of OTA 
contamination in grapes grown in Mediterranean countries due to the 
ability to grow effectively and to produce significant quantities of toxins 
at high temperatures (Battilani et al., 2006; Bellí et al., 2006; Cabañes 
et al., 2002; Lasram et al., 2007). In the current context of climate 
change, it is predicted that OTA contamination in grapes will increase 
due to the interaction between temperature and high levels of atmo-
spheric CO2 (Cervini et al., 2021). 

OTA exposure is a major health concern (Bui-Klimke and Wu, 2015; 
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Stoev, 2022). Data from the European Food Safety Authority (EFSA) 
most recent risk assessment indicated OTA as a cause of kidney cancer 
and damage to DNA (Panel on Contaminants in the Food Chain et al., 
2020). Based on toxicological and exposure data, the European Com-
mission has set maximum thresholds for the presence of OTA in wine, 
fruit wine, grape juice, nectar, and must for human consumption (2 μg/ 
kg), and in dried vine fruits (10 μg/kg) (European Commission, 2006). 

Fungicides have long been used to reduce fungal proliferation and 
mycotoxin production, and viticulture is one of the agricultural systems 
that most frequently uses spraying (Bouagga et al., 2019; Komárek et al., 
2010). However, the European Commission is increasing the restrictions 
on the number of pesticide applications (European Commission, 2009), 
and on the maximum amount of copper-based fungicides in organic 
farming (European Commission, 2018). In this context, there is an ur-
gent need for sustainable approaches to manage toxigenic fungi at pre- 
and postharvest phases that can replace or supplement synthetic fun-
gicides (Ponsone et al., 2012). 

Plant extracts are a promising tool for controlling fungal contami-
nation in food commodities (Chen et al., 2019; Makhuvele et al., 2020). 
In addition to being naturally abundant, they are easily biodegradable 
and have no negative environmental impacts (da Cruz Cabral et al., 
2013). Unlike pure molecules, plant extracts include a wide variety of 
phenolic compounds and terpenes with distinct modes of action that 
may trigger a synergistic or additive effect (Badr et al., 2022; Chtioui 
et al., 2022). Another advantage of plant extracts is that a blend of active 
compounds with diverse physiological targets can prevent fungal resis-
tance to treatment (Fuentefria et al., 2018; Vaou et al., 2021). 

Mediterranean flora provides a rich source of secondary metabolites, 
especially terpenoids and phenylpropanoids with antibacterial, anti-
fungal and antioxidant characteristics (Alonso-Esteban et al., 2022; 
Barros et al., 2009; Xavier et al., 2021; Zalegh et al., 2021). For the last 
20 years, a comprehensive chemical characterization of the Mediterra-
nean flora, in particular from the northeastern region of Portugal, Trás- 
os-Montes, has been developed (http://sites.esa.ipb.pt/biochemcore/in 
dex.php/list-plants, accessed 17 september 2023). Numerous plant ex-
tracts have been tested and explored for their potential against human, 
animal and agricultural diseases, as well as for their potential as food 
additives. As a result of the enormous amount of data obtained, several 
plants or plant organs have been highlighted for their richness in 
bioactive compounds as well as for their availability as bioresidues from 
agriculture or food industries. Among these, European chestnut (Casta-
nea sativa Mill.) male flowers, eucalyptus (Eucalyptus globulus Labill.) 
leaves, orange (Citrus aurantium var. sinensis L.) peels, rockrose (Cistus 
ladanifer L.) and fennel (Foeniculum vulgare Mill.) leaves have been 
selected for further studies based on their particularly high contents in 
bioactive compounds such as flavonoids, phenolic acids, tannins and 
organic acids, as well as their high antibacterial and antifungal potential 
as determined by in vitro assays (e.g. Alaya et al., 2021; Barros et al., 
2013a, 2013b; Carocho et al., 2014; Caleja et al., 2015, 2019; Fernandes 
et al., 2022; Gomes et al., 2018; Martins et al., 2015; Pinho et al., 2014). 
Moreover, all these plants or plant parts are widely available in the re-
gion as bioresidues or as natural or cultivated plants, and their incor-
poration in the value chain is of high significance for the region from 
both an environmental and an economic point of view. 

The goal of this study was to explore the properties of aqueous ex-
tracts from a range of selected Mediterranean plants when used as bio- 
fungicides and OTA inhibitors. Extracts of chestnut flowers, cistus, 
eucalyptus, fennel, and orange peel were prepared at ambient temper-
ature using an inexpensive and eco-friendly extraction procedure. This 
work was strongly motivated by concerns related to the environment 
and circular economy. 

2. Methodology 

2.1. Biological material 

2.1.1. Plant material and preparation of extracts 
This study used five natural sources from wild and farmed plants, 

namely: male flowers of European chestnut, rockflower, orange peel, 
eucalyptus, and fennel. The origin and botanical data of the plant species 
used are summarized in Fig. 1 and Table 1. 

All the selected matrices were previously characterized by our 
research group and chosen based on their chemical composition, namely 
the richness in bioactive compounds with strong antimicrobial proper-
ties: i) E. globulus leaves are sources of phenolic compounds (173 ± 4 
mg/g extract, dry weight), highlighting the presence of digalloyl- 
glucoside (30.5 ± 1.2 mg/g extract), 5-O-caffeoylquinic acid (22.3 ±
0.3 mg/g extract), trigalloyl-glucoside (12 ± 1 mg/g extract), and 
eucaglobulin/Globulusin B (13.9 ± 0.4 mg/g extract) (Gomes et al., 
2018); ii) C. sativa male flowers are also rich in phenolic compounds 
(68.10 ± 1.52 mg/g), namely trigalloyl-HHDP-glucose (28.73 ± 1.34 
mg/g), pedunculagin isomer (bis-HHDP-glucose) (7.68 ± 0.11 mg/g) 
(Carocho et al., 2014); iii) C. sinensis peels, is a bioresidue with high 
contents in citric acid (64 ± 2 mg/g) (Fernandes et al., 2022); iv) 
F. vulgare leaves are sources of phenolics (29.76 ± 0.73 mg/g), being 
quercetin-3-O-glucuronide, 1,5-Di-O-caffeoylquinic acid, malonyl di-O- 
caffeoylquinic acid, and 5-O-caffeolyquinic acid the major compounds 
(8.81 ± 0.07, 3.84 ± 0.08, 2.48 ± 0.14, 4.54 ± 0.15 mg/g, respectively) 
(Caleja et a., 2015); v) C. ladanifer leaves present punicalagins as the 
major compounds in the phenolic extract: punicalagin isomer 1, puni-
calagin gallate 1, punicalagin isomer 2, punicalagin gallate 2 (5.90 ±
0.15, 7.89 ± 0.29, 7.90 ± 0.19, 8.10 ± 0.31 mg/g, respectively) (Barros 
et al., 2013b). 

Aqueous extracts were prepared from the various plant materials. 
Plants were collected or purchased fresh, and shade-dried at room 
temperature. They were powdered using a kitchen mill (Moulinex). The 
powder from each plant material (1 g) was extracted by swirling with 30 
mL of distilled water at 150 rpm for 1 h at room temperature. Subse-
quently, it was filtered through Whatman no. 4 filter paper. Then, 30 mL 
of water was added to re-extract the residue. The final extracts were 
frozen and lyophilized (FreeZone 4.5, Labconco, Kansas City, MO, USA; 
collector chamber at − 50 ◦C and 0.012 Torr). 

Aqueous extracts were prepared at concentrations of 10 mg/mL and 
20 mg/mL for subsequent assays by dissolving the lyophilized extracts in 
5 % of dimethyl sulfoxide (DMSO) (Merck KGaA, Germany), followed by 
dilution in water to obtain the final concentration. Test concentrations 
were established after a preliminary microdilution susceptibility test 
(Svobodova et al., 2017) against A. carbonarius MUM 04.46 and MUM 
04.52 (see below). Aspergillus fumigatus Fresen. (ATCC 204305) and 
Aspergillus brasiliensis Varga, Frisvad & Samson (ATCC 16404) were used 
as reference fungi (data not shown). 

2.1.2. Fungal isolates 
Two strains of A. carbonarius, MUM 04.46 and MUM 04.52, respec-

tively coded Ac46 and Ac52 in this study, were provided by the fungal 
culture collection “Micoteca da Universidade do Minho (MUM)”, Braga, 
Portugal. These were originally isolated from Portuguese grapes and 
confirmed as OTA producers (Serra et al., 2003). The fungi were kept at 
− 20 ◦C in 20 % glycerol and cultivated on potato dextrose agar (PDA; 
Biolife, Italy). Whenever needed, the isolates were cultivated in PDA for 
5 to 7 d at 25 ◦C in the dark. Immediately before the assays, spore sus-
pensions of each strain were obtained by scraping the top of a 5- to 7- 
day-old fungal culture, then diluted in 3 mL of sterile water contain-
ing 0.05 % Tween 80. The spore concentrations were adjusted as needed 
using a Neubauer counting chamber. 
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2.2. Screening the in vitro effect of the extracts on A. carbonarius growth 
and OTA production in a grape-based medium 

2.2.1. Preparation of the grape-based medium 
To simulate the grape matrix, a grape-based medium was prepared 

from cv. Touriga Franca (red wine cultivar) berries from an orchard in 
Vila Real, northern Portugal. The medium was created by rinsing berries 
with 1 % sodium hypochlorite for 1 min, washing them twice with 
distilled water, and then blending at a low speed to obtain a homoge-
neous juice. Next, the pH was adjusted to 3.5 with 10 % tartaric acid to 
ensure proper solidification, and agar was added to achieve a final 
concentration of 2 %. The medium was autoclaved at 121 ◦C for 15 min. 
The cooled medium was then combined with an equal volume of the 
autoclaved (10 min, 110 ◦C) aqueous plant extracts (final grape con-
centration: 50 %, v/v) to obtain two final concentrations: 10 mg/mL and 
20 mg/mL. Grape juice amended with sterile water was used as a 
negative control. Additionally, a fungicide control consisted of a mixture 
containing the commercial formulate Teldor® (active substance fen-
hexamid, 50 % a.i. (w/w); Bayer CropScience, Portugal), which is 
generally applied as a field fungicide to grapevine at the recommended 
concentration of 1.5 g/L (fenhexamid 0.75 g/L). The fungicide was 
added to the medium at the concentration of 0.75 mg/mL of a.i., to 
reproduce the concentrations recommended in field applications. 

The mixtures were then homogenized, and 3 mL of each mixture was 
pipetted into 12-well plates, in triplicate. 

2.2.2. Inoculation and incubation 
Spore suspensions of Ac46 and Ac52 at 105 spores/mL were used as 

inoculum. Two μL of inoculum were pipetted into the center of each well 
containing the different media, and the plates were then incubated in the 

dark at 25 ◦C. The fungal colonies were examined after 5 and 10 d of 
growth to assess the efficiency of each treatment. Three replicates of 
each treatment were evaluated. 

2.2.3. Observation of growth 
This assay evaluated fungal growth qualitatively according to inhi-

bition activity (++ = high inhibiting activity, + = inhibiting activity, −
= no inhibiting activity) after incubation for 5 and 10 d, compared with 
the negative control (grape medium without plant extracts). 

2.2.4. OTA analysis 
After 10 d of incubation, OTA extraction was performed on all cul-

tures. Fungal mycelium and grape medium from the three replications of 
each treatment were removed from the wells and weighed. OTA was 
extracted with methanol for 60 min in the dark by mixing every 15 min. 
The extract was cleaned using an OTA Immunoaffinity column (IAC; 
Ochratest™, VICAM, Milford, USA) following the manufacturer’s in-
structions, and filtered with a 0.22 μm polytetra-fluorethylene (PTFE) 
membrane (FiltraTech, Saint Jean de Braye, France). OTA was quanti-
fied using the HPLC methodology described below. 

2.3. Effect of selected extracts on fungal growth in 9 cm petri dishes 

Quantitative growth assessment assays were carried out in 9 cm Petri 
dishes containing 20 mL of grape-based medium prepared as described 
above. For this assay, only the four extracts and extract concentrations 
that showed the best results in the in vitro screening assay were selected 
and tested. Thus, the plant extracts of chestnut flower, eucalyptus, cis-
tus, and orange peel were tested at a concentration of 10 mg/mL. 
Similarly, fenhexamid (0.75 mg/mL) was used as a positive control, 
while Petri dishes containing a water-added medium were used as a 
negative control. Subsequently, 2 μL of 105 spores/mL of conidial sus-
pension of Ac46 and Ac52 was deposited in the center of each Petri dish 
and incubated in the dark at 25 ◦C. All tests were run in triplicate. The 
colony diameter was measured daily in two perpendicular directions to 
determine the maximum growth rate (μm, in cm of radius/day), which 
was obtained as the slope of the line of the linear regression of colony 
radii plotted against the incubation time. 

2.4. Effects of the selected extracts on fungal growth and OTA production 
in grapes 

2.4.1. Preparation of grape berries 
Healthy mature grapes (cv. Touriga Franca) of similar size and 

showing no signs of mechanical or fungal damage were selected. Berries 
were surface disinfected with 1 % sodium hypochlorite for 1 min, rinsed 
twice with sterile distilled water, and air-dried on a laminar flow bench. 
Subsequently, a single wound (3 mm deep) was made using a sterile 
needle in the equatorial region of each berry. Thereafter, berries were 

Fig. 1. Sampling area of the plants used in the study: 1) Bragança (chestnut flower, cistus, eucalyptus, and orange); 2) Vila Nova de Gaia (fennel).  

Table 1 
Plant material used.  

Scientific name 
(Family) 

English common 
name 

Source Plant 
organ 

Castanea sativa Mill. 
(cv. Judia) 
(Fagaceae) 

Sweet chestnut or 
European 
chestnut 

Samil, Bragança Male 
flowers 

Cistus ladanifer L. 
(Cistaceae) 

Gum rockrose, 
laudanum, 
labdanum 

Orchards, Bragança Leaves 

Citrus aurantium var. 
sinensis L. 
(Rutaceae) 

Orange Local market, Bragança Peel 

Eucalyptus globulus 
Labill. 
(Myrtaceae) 

Eucalyptus or 
Tasmanian blue 
gum 

Campus of the 
Polytechnic Institute of 
Bragança 

Leaves 

Foeniculum vulgare 
Mill. 

Fennel Company “Cantinho das 
Aromáticas”, Vila Nova 
de Gaia 

Leaves  
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immersed for 3 min in the selected extracts: chestnut flower, cistus, 
eucalyptus, and orange peel extracts (10 mg/mL), and in fenhexamid 
(0.75 mg/mL) as a control. The four extracts and the concentration used 
in this assay were selected based on the best results obtained in the in 
vitro screening. 

After 2 h, the wound on each berry was inoculated with 10 μL of 
spore suspension (105 spores/mL) of each A. carbonarius strain. 
Wounded berries immersed in sterile water and inoculated after 2 h with 
a conidial suspension of A. carbonarius were used as negative controls. 
Each treatment consisted of 10 berries, and each experiment was 
repeated three times. Berries were air-dried and then placed in plastic 
holders (60 cm × 40 cm × 15 cm, one layer), wrapped in transparent 
polyethylene foil to avoid evaporation, and incubated for 10 days at 
25 ◦C in the dark. 

2.4.2. Fungal growth and disease symptoms in grape berries 
Following incubation, fungal growth, and fruit rot were evaluated for 

each berry by estimating the percentage of its surface area presenting 
signs of fungus growth and symptoms of spoilage. A score from 0 to 4 
was assigned to the percentage of berry area presenting symptoms: 0 =
0 % with symptoms, 1 = 1–25 %, 2 = 26–50 %, 3 = 51–75 %, and 4 =
76–100 %. Subsequently, the infection severity index (McKinney’s 
index), which incorporates the incidence and the severity of the disease, 
was calculated according to the following formula: 

I = [Σ (d × f)/(N × D)] × 100. 
where d is the category of the disease intensity scored for the grape 

bunches, f is the disease frequency, N is the total number of berries 
examined, and D is the highest category of disease intensity that 
occurred on the empirical scale (McKinney, 1923). 

2.4.3. Quantification of OTA production in grape berries 
OTA was extracted from grapes according to Serra et al. (2004). After 

10 days of fungal growth, 10 g of previously homogenized berry tissue 
from each treatment was transferred into a 50 mL Falcon tube and 
brought up to 30 mL using a solution of 5 % NaHCO3 and 1 % PEG 8000. 
The mixture was vortexed every 15 min for 1 h and then centrifuged at 
8500 rpm for 10 min at 4 ◦C. The supernatant was filtered through a 
glass microfiber filter (1.5 μm pore size, Whatman), and 10 mL of this 
filtrate was passed through the Ochratest IAC for cleaning. OTA was 
then eluted with methanol and passed through a 0.22 μm PTFE syringe 
filter before HPLC analysis. 

2.5. OTA analysis by HPLC 

OTA was analyzed using a High-Performance Liquid Chromatog-
raphy (HPLC) Smartline Pump 1000 (Knauer, Berlin, Germany) coupled 
with a fluorescence detector FP-2020 (Jasco, USA). A C18 reverse-phase 
column PLRP-S 300 Å (250 × 4.6 mm, 8 μm, Polymer Laboratories, 
Church Stretton, UK) was used at 35 ◦C. The mobile phase consisted of 
water: acetonitrile: acetic acid (29.5:70:0.5), and was pumped in an 
isocratic mode at 0.8 mL/min. The injection volume was 20 μL. OTA was 
detected at 330 nm (excitation) and 463 nm (emission), with a run time 
of 15 min. The limit of detection (LOD) and the limit of quantification 
(LOQ) were calculated as follows: 

LOD = 3 × (sa/b). 
LOQ = 10 × (sa/b). 
where sa is the standard deviation of the regression line obtained 

from the calibration curve and b is the slope of the line (Taverniers et al., 
2004). The LOD and LOQ were 3 and 9 ng/mL, respectively. 

2.6. Statistical analysis 

Data were analyzed using R software (R Core Team, 2020). The 
investigated dependent variables (fungal growth, OTA production, 
McKinney index) were analyzed using the linear regression model 
below: 

Yij = μ+ Ti+ Fj+ eij.
where μ is the overall mean, Ti is the fixed effect of the treatment, Fj 

is the fixed effect of the fungi and eij is the random residual/error. 
The results obtained from OTA production, fungal growth and the 

McKinney index were tested for normality using the Shapiro test. Since 
all dependent variables were not normally distributed, a non-parametric 
Kruskal- Wallis and a post hoc Dunn test were also performed. Statistical 
significance was declared when p ≤ 0.05. 

3. Results 

3.1. Screening the in vitro effect of plant extracts on A. carbonarius 
growth and OTA production in the grape-based medium 

The five natural extracts (i.e., chestnut male flower, cistus, euca-
lyptus, fennel, and orange peel) were tested at concentrations of 10 and 
20 mg/mL for their antifungal activity in a grape-based medium. Fig. 2 
shows fungal growth for Ac52 as affected by the antifungal preparations. 

After 5–10 d of incubation, neither chestnut flower nor eucalyptus or 
fennel inhibited mycelial growth for either A. carbonarius strain when 
compared to the untreated control. On the other hand, orange peel and 
cistus extracts at both 10 and 20 mg/mL inhibited mycelial growth 
compared to the untreated control. When the extract concentration was 
increased, little to no variability was observed in rates of mycelial 
growth inhibition. Fenhexamid (0.75 mg/mL) also inhibited fungal 
growth after 5 days of growth, but not at day 10. 

The amendment of the grape-based medium with the different ex-
tracts caused a macroscopic change in the A. carbonarius morphology 
when compared to the control. The extracts that inhibited radial growth 
also resulted in lower sporulation. Moreover, a difference in mycelial 
pattern was observed between Ac46 and Ac52 for the chestnut flower, 
cistus, eucalyptus, and fennel extracts. 

3.2. Effects of selected extracts on OTA production in the grape-based 
medium 

The two tested A. carbonarius strains differed significantly in their 
ability to produce OTA (Table 2). For Ac46, OTA was reduced signifi-
cantly from 71.9 ± 9.2 ng/mL of medium (control) to 10.3 ± 2.7 ng/mL 
(86 % reduction) when the grape medium was amended with eucalyptus 
at 10 mg/mL and to 14.8 ± 1.0 ng/mL (80 % reduction) when the grape 
medium was amended with eucalyptus at 20 mg/mL. Similarly, 
amendment of the medium with 10 mg/mL of chestnut flower signifi-
cantly reduced OTA to 13.0 ± 3.8 ng/mL (82 % reduction). In contrast, 
the addition of cistus and orange peel extracts at 20 mg/mL activated 
OTA accumulation for Ac46 compared to the non-treated control 
(Table 2). 

Regarding Ac52, of the natural plant extracts, cistus and eucalyptus 
reduced the OTA rate by up to 57.58 % when used at 10 mg/mL and up 
to 62 % at 20 mg/mL. However, the reduction in OTA was not significant 
in either case. In contrast, fennel (10 mg/mL and 20 mg/mL) treatments 
and orange peel (20 mg/mL) significantly activated OTA accumulation 
in the grape medium. 

3.3. Growth assessment 

Fig. 3 shows the effect of the different treatments (plant extracts at 
10 mg/mL and fenhexamid at 0.75 mg/mL) on Ac46 and Ac52 with 
regard to growth assessment, compared to the control (water). Con-
cerning the growth rate (μm), the natural extracts of cistus, and orange 
peel significantly slowed both Ac46 and Ac52 values. Similarly, fen-
hexamid significantly reduced μm, whereas no significant effects on 
fungal growth were observed for chestnut flower and eucalyptus 
extracts. 
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3.4. Effect of plant extracts on fungal growth in grapes 

Based on the in vitro results, the natural extracts of chestnut flower, 
cistus, eucalyptus, and orange peel were selected for evaluation of their 
ability to modulate Aspergillus symptoms in grape berries. In this assay, 
all plant extracts were tested at 10 mg/mL. 

The relative levels of rot severity of the berries treated with the 
different plant extracts and with the fungicide, as determined by the 
McKinney index, are shown in Fig. 4, and expressed as percentages in 
comparison to the non-treated control. The McKinney index of the 
negative control was 69 % ± 1 % for Ac46 and 68 % ± 9 % for Ac52. No 
significant difference was detected between the two MUM strains. The 
orange peel and cistus treatments significantly reduced rot symptoms for 
Ac46 and Ac52 compared to the untreated grapes, with inhibition levels 
that ranged between 24 % and 33 %. Chestnut flower extract reduced 
Aspergillus in grape berries significantly (by 33 %) when applied for 
Ac52 but had no significant effect on Ac46. Eucalyptus extract had no 
significant effect on berry infection by Ac46 or Ac52 (Fig. 4). 

3.5. Effect of plant extracts on OTA production in grape berries 

After 10 days of incubation, no significant difference was found be-
tween the two A. carbonarius strains grown on artificially inoculated 
berries (p = 0.1) and OTA contamination observed on the non-treated 
grape berries (117.3 ± 60.4 ng/g for Ac46 and 63.5 ± 19.5 ng/g for 
Ac52). 

All treatments reduced the OTA production for both Aspergillus 
strains. Eucalyptus, orange peel, and cistus extracts caused a significant 
decrease in OTA for Ac46, with inhibition percentages that ranged from 
67.7 % to 82.3 %. In contrast, no natural treatment had a statistically 

significant effect on OTA production by Ac52, and no significant dif-
ference was found between treatments (p = 0.3). Eucalyptus was found 
to give the highest inhibition rate for both Aspergillus strains (Fig. 5). 

4. Discussion 

Plant extracts, essential oils, and phenolic compounds are of interest 
to researchers as possible control agents against a variety of fungi. The 
aim of this study was to evaluate the potential of natural plant extracts to 
reduce OTA contamination and Aspergillus infection in grapes using an 
environmentally friendly extraction procedure. 

A grape-based culture medium was used for the in vitro screening 
assay to simulate the growth and OTA production of two strains of 
A. carbonarius in grapes. Culture media prepared from food matrices 
have been reported as good model systems for the in vitro evaluation of 
fungal growth and mycotoxin production (Pardo et al., 2005), and they 
have been frequently used in studies involving major OTA-producing 
species, such as A. niger (Astoreca et al., 2009), A. carbonarius (Cervini 
et al., 2021), Aspergillus ochraceus G. Wilh. (Pardo et al., 2005), Asper-
gillus westerdijkiae Frisvad & Samson (Álvarez et al., 2023; Meftah et al., 
2018; Vipotnik et al., 2017), and Penicillium nordicum Dragoni & Marino 
(Meftah et al., 2018; Vipotnik et al., 2017). 

When tested in vitro, both orange peel and cistus extracts showed an 
antifungal effect on A. carbonarius at both 10 and 20 mg/mL, but when 
tested in the fruit at 10 mg/mL, orange peel was the most promising 
extract for its capacity to inhibit A. carbonarius growth. The antifungal or 
antibacterial activity of extracts obtained from citrus plants has been 
frequently highlighted. Viuda-Martos et al. (2008) found that lemon, 
orange, mandarin, and grapefruit essential oils, obtained by cold- 
pressing the peel, reduced the growth of A. niger and Aspergillus flavus 

Fig. 2. Morphological aspect of A. carbonarius MUM 04.52 in the grape-based medium at 25 ◦C after 5 (top) and 10 (bottom) days of growth: (A) control; (B) 
fenhexamid (0.75 mg/mL), (C) male chestnut flower, 10 mg/mL; (D) male chestnut flower, 20 mg/mL; (E) orange peel, 10 mg/mL; (F) orange peel, 20 mg/mL; (G) 
cistus, 10 mg/mL; (H) cistus, 20 mg/mL; (I) fennel extract, 10 mg/mL; (J) fennel, 20 mg/mL; (K) eucalyptus, 10 mg/mL; (L) eucalyptus, 20 mg/mL. 
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Link. Of these, orange essential oil was found to be the most effective 
inhibitor of A. niger, and mandarin was the most effective inhibitor of 
A. flavus. Here we report for the first time the antifungal activity of or-
ange peel extract against A. carbonarius. Velázquez-Nuñez et al. (2013) 
attributed the antifungal properties of Citrus sinensis peel essential oil 
against A. flavus to the presence of limonene as the most important 
compound (96.62 %) of orange peel, followed by other molecules such 
as β-pinene, β-myrcene, α-pinene, and citral (Z and E). Limonene in the 
monoterpene form was also observed to have antifungal activities 

against A. niger (Jing et al., 2014). The antifungal activity of orange 
polyphenolic extracts was also reported on Monilinia fructicola (G. 
Winter) Honey, Botrytis cinerea Pers. and Alternaria alternata (Fr.) Keissl. 
At a concentration of 1.5 mg/mL, orange extracts totally inhibited the 
mycelial growth and conidial germination of these fungi (Hernández 
et al., 2021). 

Among the extracts studied in the present work, cistus was highly 
effective in vitro at 10 mg/mL and also reduced fungal growth in vivo. 
Our results agree well with the existing literature on cistus. Kalli et al. 
(2018) reported that the hydro-methanolic extract of cistus inhibited the 
growth of Aspergillus parasiticus Speare. by 46 % when applied at a 
concentration of 0.2 mg/mL. Barros et al. (2013b) described the anti-
fungal activity of cistus phenolic extract against Candida species when 
used at 0.625 mg/mL; they attributed this activity to the presence of 
phenolic acids and derivatives, ellagic acid derivatives, and flavonoids, 
specially catechins, flavonols, and flavones. 

Overall, aqueous plant extracts can be powerful antifungals against 
several molds, as reported in literature. For example, aqueous extracts 
prepared from chestnut flowers have been studied for their capacity to 
inhibit the growth of A. parasiticus in a nutraceutical formulation, due to 
the presence of phenolic compounds, namely hydrolisable tannins 
(Fernandes et al., 2020). The same was recorded for methanolic extracts 
of fennel seeds, observed to inhibit Candida albicans (C.P. Robin) 
Berkhout. and Aspergillus clavatus Desm. at 25 μg/mL (Agarwal et al., 
2017). Eucalyptus hydromethanolic extracts were described as being 
powerful antifungal agents against Candida species at minimum inhib-
itory concentrations (MICs) ranging from MIC50 = 0.1875 mg/mL to 1.5 
mg/mL (Martins et al., 2015). However, plant extracts can have a var-
iable effect, depending on the matrix, fungal species and the extraction 
solvent (Akullo et al., 2022; García-Díaz et al., 2020; Lira-De León et al., 
2014). It is also important to note that factors such as harvesting time, 
storage, and modification processes, among others, may have a sub-
stantial impact on the phytochemical content of plant extracts and, as a 
result, on their antifungal activity (Ali et al., 2018; EINaker et al., 2021; 
Mandim et al., 2021; Shao et al., 2022). 

With regard to OTA production, while conditions were the same for 
both A. carbonarius strains, Ac52 produced higher levels of mycotoxin in 
vitro than Ac46. The difference in mycotoxin production between 
different strains of the same fungal species grown in similar conditions is 
inherent to Aspergillus species and has been observed by other studies 
(Astoreca et al., 2009; Freire et al., 2018; Vipotnik et al., 2017). 

The natural extracts showed a strain-dependent effect on OTA pro-
duction: eucalyptus at 10 mg/mL was highly effective in controlling 

Table 2 
Ochratoxin A production by A. carbonarius MUM 04.46 and A. carbonarius MUM 
04.52 in grape medium supplemented with natural extracts (chestnut flower, 
cistus, eucalyptus, fennel, and orange peel) and fenhexamid, expressed as a 
percentage compared with the control (mean ± standard deviation, n = 3).  

Treatment A. carbonarius MUM 04.46 A. carbonarius MUM 04.52 

OTA 
concentration 
(ng/mL) 

OTA 
variation 
(%) 

OTA 
concentration 
(ng/mL) 

OTA 
variation 
(%) 

Control 
(water) 

71.9 ± 9.2  790.9 ± 56.2  

Chestnut 
flower     

10 mg/mL 13.0 ± 3.8 − 82 % ** 810.6 ± 14.1 +9.1 % 
20 mg/mL 64.6 ± 32.6 − 10 % 1056.5 ± 122.7 +33.6 % 
Cistus     
10 mg/mL 77.6 ± 6.9 +7.8 % 1024.6 ± 100.4 +29.6 % 
20 mg/mL 141.1 ± 13.5 +96.2 % 300.2 ± 14.0 − 62.0 % 
Eucalyptus     

10 mg/mL 10.3 ± 2.7 
− 85.7 % 
** 469.1 ± 169.2 − 40.7 % 

20 mg/mL 14.8 ± 1.0 − 79.5 % * 741.4 ± 156.1 − 16.1 % 
Fennel     

10 mg/mL 190.6 ± 6.1 +165.1 % 1907.0 ± 185.6 +141.1 % 
* 

20 mg/mL 949.6 ± 88.7 +1220.2 
% 

2015.2 ± 407.6 +154.8 % 
* 

Orange peel     
10 mg/mL 79.6 ± 2.5 − 10.7 % 1238.5 ± 301.3 +56.6 % 

20 mg/mL 3977.8 ± 326.3 
+5430.2 
% 

2422.6 ± 353.8 
+206.3 % 
* 

Fenhexamid 
(0.75 mg/ 
mL) 

15.2 ± 1.2 − 78.9 % 128.3 ± 5.3 
− 95.4 % 
± 3 % 

Significance (Kruskal-Wallis + post hoc Dunn test), significant differences with 
respect to the control were declared as following *(p ≤ 0.05), **(p ≤ 0.01), ***(p 
≤ 0.001). 
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Fig. 3. Maximum growth rate (μm, cm/day) of A. carbonarius MUM 04.46 and A. carbonarius MUM 04.52 grown for 6 days at 25 ◦C in a grape-based agar medium 
with the addition of different natural extracts (chestnut flower, cistus, eucalyptus, and orange peel) at 10 mg/mL, and a commercial antifungal preparation (fen-
hexamid) at 0.75 mg/mL (mean of three replicas, error bars represent standard deviation). Statistical differences between the non-treated control and treatments are 
indicated as following *(p ≤ 0.05), **(p ≤ 0.01), ***(p ≤ 0.001). 
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OTA for Ac46, followed in order of decreasing effectiveness by chestnut 
flower, at both tested concentrations, whereas the most effective ex-
tracts for Ac52 were cistus, followed by eucalyptus. 

The extracts obtained in the present study with inhibitory capacity 
against A. carbonarius are rich in phenolic compounds, which have been 
reported as the main bioactive agents in the obtained extracts acting 
through different mechanisms. For instance, phenolic compounds are 
able to enter the microbial membrane and get into the cell, causing a 
significant decrease in the synthesis of essential components such as 
ergosterol (the main component present in fungal membranes), 
glucosamine (a growth indicator), proteins, chitin, among others (Brul 

and Klis, 1999). There are several mechanisms of action attributed to 
natural agents depending on their chemical class/chemical structure 
and include: i) the inhibition of cell wall formation or disruption of cell 
wall structures, both by inhibiting the synthesis of chitin, glucans or 
ergosterol; ii) interference in the mitochondria electron transport 
causing reduction in the membrane potential; iii) inhibiting the syn-
thesis of RNA/DNA synthesis; iv) inhibition of efflux pumps (Lagrouh 
et al., 2017). The most solid mechanism of action attributed to phenolic 
compounds is effectively through the disruption of the fungal cell 
membrane in a concentration-dependent manner (Tian et al., 2012; Wu 
et al., 2008). 
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Fig. 4. Rot severity (McKinney Index) caused by Aspergillus carbonarius MUM 04.46 and A. carbonarius MUM 04.52 in grape berries (cv. Touriga Franca) immersed in 
natural extracts (chestnut flower, cistus, eucalyptus, and orange peel) at 10 mg/mL, and in a synthetic fungicide (fenhexamid 0.75 mg/mL), expressed as percentage 
compared to the control (mean of three replicas, error bars represent standard deviation). Statistical differences between the non-treated control and treatments are 
indicated as following *(p ≤ 0.05), **(p ≤ 0.01), ***(p ≤ 0.001). 

Fig. 5. OTA production by Aspergillus carbonarius MUM 04.46 and A. carbonarius MUM 04.52 in grape berries (cv. Touriga Franca) immersed in natural extracts 
(chestnut flower, cistus, eucalyptus, and orange peel) at 10 mg/mL and in a synthetic fungicide (fenhexamid 0.75 mg/mL), expressed as a percentage compared to the 
control (mean of three replicas, error bars represent standard deviation). Statistical differences between the non-treated control and treatments are indicated as 
following *(p ≤ 0.05), **(p ≤ 0.01), ***(p ≤ 0.001). 
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The capacity of plant extracts to modulate mycotoxin synthesis in 
vitro has long been documented. Ahmed et al. (2015) found that fenu-
greek seed extract inhibited OTA production significantly in grapes by 
A. carbonarius. Similarly, El EL Khoury et al. (2017) used Salvia officinalis 
L. and Melissa officinalis L. at 5 μL/mL (essential oil) against 
A. carbonarius in a grape-based medium, and observed OTA reductions 
of 25 % and 80 %, respectively. However, despite evidence of the po-
tential effectiveness of plant extracts in reducing OTA rate, the in vitro 
effect of natural extracts on mycotoxin accumulation appears largely 
dependent on the fungal strain, even within the same species. 

For example, cistus, fennel, and orange peel extracts activated OTA 
production by Ac46 in our in vitro experiments, while chestnut flower, 
fennel, and orange peel extracts activated OTA production by Ac52. 
Several studies and review papers have reported that, under certain 
conditions and at specific concentrations, phenolic compounds (Boon-
mee et al., 2020; Chtioui et al., 2022; Etzerodt et al., 2015; Gauthier 
et al., 2016; Ponts et al., 2011), essential oils (Dammak et al., 2019; 
Lorán et al., 2022; Prakash et al., 2010) or even plant extracts (Garcia 
et al., 2011) can activate mycotoxin production. 

However, in our study this was observed only in the in vitro trial, 
while all the extracts reduced mycotoxin production in grape berries, 
regardless of the strain. Although synthetic media are considered a good 
representation of food matrices (Pardo et al., 2005), they present a 
uniform distribution of nutrients that makes them easily accessible to 
fungi. Consequently, the interaction of the fungus with the synthetic 
media may differ from its behavior in grape berries. The differences in 
nutrient distribution and water availability between in vivo and in vitro 
conditions may also cause differences in mycotoxin production by 
Aspergillus (Maor et al., 2021). What may be an even more important 
factor is that fresh fruits continue their physiological activity after 
harvest, so post-harvest treatments can still activate fruit defense 
mechanisms to combat infection, namely by increasing defense-related 
enzymes and metabolites (Li et al., 2019; Li et al., 2022; Zixun et al., 
2020). This might mean that in vitro models are less representative of the 
in vivo conditions for fresh fruits than for other types of food products, 
especially processed products. 

Our findings demonstrate that all extracts reduced OTA production 
in grapes when applied at 10 mg/mL, with eucalyptus being particularly 
efficient. The reduction of OTA by orange peel extract may be correlated 
to the reduction of mycelial growth in grape berries. On the contrary, the 
eucalyptus extracts reduced OTA production by up to 82.3 % without 
significantly affecting fungal growth, which suggests that the mecha-
nism of OTA inhibition could be distinct from that of mycelial inhibition. 
Similar results were reported by Bluma et al. (2008), who found that 
eucalyptus essential oil had no effects on mycelial growth or on spore 
germination in Aspergillus section Flavi, although it significantly reduced 
aflatoxin production. Our results are also in line with the study of Vilela 
et al. (2009), who reported an anti-aflatoxigenic effect of eucalyptus on 
A. flavus and A. parasiticus. However, to the best of our knowledge, ours 
is the first report demonstrating the anti-OTA activity of E. globulus 
extract on A. carbonarius in grapes and in a grape-based medium. 

Teixeira et al. (2019) characterized the phenolic composition of 
eucalyptus aqueous extract collected from the same sampling area in 
Bragança, Portugal. They identified seven flavonoids (quercetin, iso-
rhamnetin, and myricetin derivatives), three phenolic acids (chloro-
genic acid and ellagic acid derivatives), and eight gallotannin 
derivatives. While quercetin is a powerful antimicrobial reported to 
alleviate OTA toxicity (Yang et al., 2020), chlorogenic acid is involved in 
the mechanism of cereal resistance to Fusarium and its deoxynivalenol 
detoxification (Atanasova-Penichon et al., 2012; Gauthier et al., 2016), 
and ellagic acid, together with ascorbic acid and α-tocopherol, is 
regarded as a major antioxidant molecule in plants (Ratnam et al., 2006; 
Sharifi-Rad et al., 2022). However, regardless of the plant extract and 
phenolic compound, the precise mechanisms behind ochratoxin inhibi-
tion are not fully unveiled. One hypothesis is that inhibition is linked to 
the disruption of the fungal membrane via a modification in its charge, 

hydrophobicity or porosity. Another hypothesis is that the antioxidant 
activity of the extract and its phenolic compounds reduces oxidative 
stress and therefore OTA production. Finally, plant extract and phenolic 
compounds might induce a downregulation in the key genes involved in 
OTA biosynthesis (Boonmee et al., 2020). 

Our main findings are that orange peel and cistus can be efficient 
antifungals against A. carbonarius strains, given their contents in organic 
acids (citric acid) and phenolic compounds (punicalagins) described in 
these matrices. Their ability to modulate fungal growth is of environ-
mental interest. Orange peel is considered an agricultural waste (Farhat 
et al., 2011) and cistus is a Mediterranean shrub highly tolerant to 
drought and to poor soils (Zalegh et al., 2021). Their reuse as a natural 
fungicide could promote a circular economy and sustainability. 

On the other hand, eucalyptus is an efficient botanical extract to use 
for OTA reduction. This is extremely important for preventing OTA 
contamination in vineyards and in harvested grapes. Therefore, the use 
of eucalyptus extract could provide a low-cost and environmentally 
friendly means of limiting OTA formation without disrupting fungal 
growth, apparently preserving the natural fungal balance. 

It is, however, possible that using eucalyptus on wine grapes may 
affect their organoleptic properties. To this regard, a winery-scale study 
by González-Rompinelli et al. (2013) tested eucalyptus as an alternative 
to sulfur dioxide for use during the aging of white wines in oak barrels, 
and found that the addition of eucalyptus phenolic extracts had no effect 
on the wine’s organoleptic properties. Also, the use of chestnut flowers 
has been patented as a natural substitute of sulfites in wines (Patent No. 
WO2017212351A1). According to the results of their study, chestnut 
flowers had no negative effect on the wine’s organoleptic properties, but 
actually increased the wine’s flavor, which is usually affected by the 
presence of sulfites (Ferreira et al., 2016). 

Nonetheless, further research will be required to investigate whether 
the selected plant extracts have any effect on the organoleptic properties 
of grapes. 

5. Conclusions 

The current study represents progress toward the production of 
environmentally acceptable plant-based fungicides to control 
A. carbonarius and OTA contamination in vineyards. Orange peel and 
cistus showed high efficiency as antifungals against A. carbonarius 
growth, while eucalyptus was the botanical extract with higher potential 
for OTA reduction. This is extremely important for preventing OTA 
contamination in vineyards and in harvested grapes. In particular, the 
use of eucalyptus extract could provide a low-cost and environmentally 
friendly means of limiting OTA formation without disrupting fungal 
growth, thereby preserving the beneficial mycoflora. More and more 
readily available natural bioresidues capable of being produced as 
marketable formulation are being sought as alternatives to current 
synthetic fungicides, and aqueous eucalyptus extract showed to be a 
strong candidate. 

Further research will elucidate the identity of the active compounds 
responsible for the reported antifungal and anti-mycotoxin effects of 
these extracts and produce a better understanding of their mode of ac-
tion. This should enable the enhancement of the plant extracts’ efficacy. 
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