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Abstract
When allocating tolerances to geometric features of machine parts, a target variation must be specified for some functional 
requirements on the assembly. Such decision, however, is usually made from experience without consideration of its effect 
on manufacturing cost. To allow such an assessment, the paper describes a method for estimating the cost of a requirement 
as a function of its variation. The estimation can be done before solving a tolerance allocation problem, at the time the vari-
ation on the requirement is chosen as an optimization constraint. A simple expression for the cost of requirements of various 
types is obtained using the extended reciprocal-power function for the cost of part tolerances, and the optimal scaling method 
for tolerance allocation. As a result, the costs of both requirement variations and part tolerances can be treated in the same 
way; this allows a hierarchical approach to tolerance allocation, which can simplify the problem when dealing with complex 
dimension chains. Furthermore, simple calculations based on the proposed method suggest general cost reduction criteria 
in the design of assemblies.

Keywords Tolerancing · Tolerance synthesis · Tolerance optimization · Cost-tolerance function

1 Introduction

Tolerance allocation is the assignment of suitable values 
to the tolerances involved in a functional requirement. In 
general, a functional requirement is a geometric character-
istic (most often a dimension) defined at assembly level, 
i.e. between features of different parts. A requirement has 
a nominal value and an allowed variation (the limits on 
its deviations), which are set as design specifications. At 
manufacturing stage, the variation of the requirement can-
not be controlled directly, but is determined by the stackup 
of tolerances on features of some parts of the assembly. For 
example, the axial clearance of a transmission is a functional 
requirement involving a chain of dimensions on some con-
nected parts (shaft, bearings, housing, covers, etc.). The tol-
erance limits on these dimensions must be chosen so that the 
clearance is neither too small, making assembly operations 
difficult, nor too large, causing malfunctioning and loss of 
quality (e.g. vibration, noise, wear).

In design practice, tolerances are often allocated with 
simple criteria. Each tolerance is given an initial value based 
on experience (e.g. depending on feature size and expected 
precision of manufacturing processes). The resulting vari-
ation on the requirement is calculated and compared to the 
specified variation; tolerances are then scaled either propor-
tionally or depending of their contribution. Although accept-
able in most situations, similar procedures do not take cost 
into account: an especially tight tolerance can require an 
excessive cost for the machining operations that will cre-
ate the corresponding part feature. For this reason, many 
research studies treat tolerance allocation as an optimization 
problem: in the most common formulation, an optimal set 
of tolerances minimizes the total cost while satisfying the 
specified variation for the requirement [1–3].

The variation on the functional requirement must be 
specified as input to any tolerance allocation method. It is 
expressed as an assembly-level tolerance, and is equivalent 
to a variation budget that will have to be allocated among 
the part features involved in the requirement. Although it 
is generally set without further explanation in most cases 
presented in literature, it may deserve some more attention. 
Specifying too large a variation could cause defects in an 
unacceptable fraction of the assemblies produced, but this 
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occurrence is not easy to predict without extensive prototype 
testing. On the other hand, too tight a variation would have 
an impact on cost, probably greater than that of a suboptimal 
allocation of tolerances.

When confronted to the above task, designers may want 
to start with a tight variation to be on the safe side, and pos-
sibly accept some compromise on it to avoid excessive costs. 
Such decision would be easier if they knew the relationship 
between the cost of a functional requirement and its speci-
fied variation. This would be similar to the cost-tolerance 
functions defined for individual part features and used in 
tolerance allocation. The cost of the requirement is the sum 
of the costs of the involved tolerances when these have opti-
mal values. This creates a difficulty in its estimation, which 
would require solving the allocation problem.

This paper proposes a method to estimate the cost-tol-
erance function of a functional requirement. The method 
avoids the prior optimization of the tolerances and allows 
an explicit evaluation of the contributions of the influenc-
ing factors related to the properties of the dimension chain. 
These include the materials of the parts and some attributes 
of part features such as shape, area and nominal dimension. 
The cost estimation procedure is based on some previous 
results, such as the extended reciprocal-power function and 
the optimal scaling method for tolerance allocation [4]. The 
paper also shows that the function can help solve alloca-
tion problems with a hierarchical approach: this consists of 
jointly optimizing part tolerances and variations of func-
tional requirements, and using the latter as inputs for lower-
level allocations.

Previous studies on the topic are recalled in Section 2. 
The proposed method is described in Section 3 along with its 
intended applications, and is demonstrated on examples in 
Section 4. The discussion in Section 5 highlights the advan-
tages and limitations of the method. Section 6 summarizes 
the contribution of the work.

2  Background

The problem of tolerance allocation has been widely studied 
in literature. Traditionally, designers have set values of part 
tolerances using simple rules for typical dimension chains, 
e.g. [5]. Many research studies over four decades have pro-
posed formal definitions and calculation procedures suitable 
for a wide variety of situations; these have helped improve 
the allocation, finding the right compromise between assem-
bly quality and part manufacturing costs. Detailed discus-
sions of the available methods can be found in the main 
reviews on the subject. The earlier ones [6, 7] define the 
general approaches (worst case, statistical) and the sim-
plest methods, applying them to classic cases of 1D and 2D 
dimension chains. At a more mature stage of research, [1, 2] 

describe various formulations of the optimization problem 
with graphical, analytical, numerical, and simulation meth-
ods. More recently, [3] provides an extensive classification 
of basic assumptions, objective functions, constraints, and 
many special cases related to the properties of assemblies 
and mechanisms.

Among the available formulations, this work adopts the 
most common one for problems with a single dimension 
chain, i.e. minimization of cost subject to a constraint on 
the variation of the functional requirement to be controlled. 
The method of Lagrange multipliers [8, 9] is widely used 
because it allows to find analytical solutions under restrictive 
assumptions on cost functions and statistical distributions of 
part dimensions. Numerical solutions can be calculated with 
deterministic methods such as nonlinear programming [10, 
11] and gradient search [12], or with stochastic methods such 
as simulated annealing [13, 14], genetic algorithms [15, 16] 
and particle swarm optimization [17]. Alternative formula-
tions use cost as a constraint in minimizing quality-related 
functions such as expected quality loss [18, 19] and noncon-
forming rate [20–23]; in those cases, the solution methods 
are mostly based on either design-of-experiments (DOE) 
techniques [24–26] or numerical optimization [27–29].

For the optimization of tolerances, most studies use 
a mathematical function that expresses the relationship 
between cost and tolerance for each dimension involved 
in a functional requirement. Available cost-tolerance func-
tions are discussed in some reviews [6, 30, 31] and compara-
tive studies [14, 32–35]. In increasing order of complex-
ity, they include the linear [36], reciprocal [10], reciprocal 
squared [8] and reciprocal-power [37] functions, as well as 
the Michael-Siddall function [38] and some combined and 
polynomial functions [39]. Simpler functions allow the ana-
lytical resolution of the allocation problem using Lagrange 
multipliers. Besides, they have fewer parameters, which can 
be evaluated without the need for large amounts of cost data. 
On the other hand, more complex functions are potentially 
more accurate.

Choosing the parameters of cost-tolerance functions is 
a non-trivial task, as discussed in a recent review [40]. The 
parameters are generally chosen without explicit reasons, 
and their values are often inconsistent among different 
sources. This is partially explained considering that differ-
ent tolerances may require different machining processes, 
and the most cited datasets [41] provide relative cost data for 
individual processes. To allow a comparison between data 
relating to different processes, some sources provide cost-
tolerance curves for combined processes, which approxi-
mate the envelope of curves relating to increasingly more 
precise processes as the tolerance decreases [7, 31, 39, 42, 
43]. The parameters of the cost-tolerance functions are esti-
mated from available cost data by linear regression, both for 
single processes [39, 44–46] and for combined processes 
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[4, 47]. Alternative methods include neural networks [48, 
49], fuzzy methods [50], and choice among process-con-
strained alternatives [51]. Other procedures use parametric 
data for elementary operations [52], codes for accessing 
company-specific databases [53], activity-based costing [54, 
55], and qualitative assessment by company experts [26]. 
By regression of machining cost estimates, [4] extends the 
reciprocal-power function into a more complex expression 
that takes into account the specifications of a feature (mate-
rial, area, type, nominal dimension). In principle, the use 
of such function can make the parameters consistent for all 
the features of a dimension chain, and for dimension chains 
related to different requirements of the same assembly. For 
this reason, it will be used to build the cost function for a 
functional requirement, which will turn out to have a similar 
expression.

Functional requirements (or assembly key characteristics) 
have been studied from various angles in the tolerancing 
literature. They are the assembly-level geometric conditions 
whose variation must be controlled within given limits; to 
do this, tolerances are specified on the parts to limit manu-
facturing errors on them. The design process that translates 
requirements into tolerances has also been called functional 
tolerancing [56, 57] or flowdown [58, 59].

An assembly generally has many functional requirements; 
some may have been predefined as product specifications, 
while others are implicit in the relational structure of the 
assembly and must be identified prior to any decision on 
part tolerances [60]. This requires a classification of the 
requirements, which has been done differently in relation to 
available tolerancing standards. In traditional practice based 
on dimensional tolerances, the requirement is essentially a 
“sum dimension” calculated as an algebraic function of a set 
of part dimensions (dimension chain); various types of sum 
dimensions have been described and compared in [42]. The 
progressive acceptance of geometric tolerancing has led to 
the requirement being defined as an assembly-level geomet-
ric control (e.g. orientation, position, runout), indicated on 
the assembly drawing with a special feature control frame 
[61]. High-level functional requirements have been classi-
fied in relation to technical functions such as clearance fit, 
sliding, sealing, etc. [62, 63]. Some classifications include 
rules for mapping requirements to appropriate types of part 
tolerances [64].

With the aim of allowing the identification and auto-
matic flowdown of requirements, some studies have pro-
posed models for their representation in computer-based 
procedures. They include virtual boundary requirements 
[65, 66], the structural–functional decomposition [67, 68], 
and a multi-level model based on hypergraphs [69]. Consist-
ently with the correspondence between requirements and 
tolerances, a widely used model for tolerance representa-
tion (technologically and topologically related surfaces, 

TTRS [64]) has been extended to represent requirements 
(pseudo-TTRS, [70]) and used for translating high-level 
requirements into explicit geometric conditions [71]. In a 
similar extension, [72, 73] represent the requirements with a 
small displacement torsor model, so as to translate them into 
functional equations on geometric errors. In [74], require-
ments are defined as assembly-level extensions of orienta-
tion and position tolerances, allowing an effective graphical 
representation to support tolerancing decisions. In [75], the 
representation of tolerances and requirements in the same 
relational structure allows a consistency check on geometric 
tolerances specified by the designer.

The automatic identification of requirements uses input 
data about the assembly, usually structured in a graph of rela-
tions between part features. Most of the proposed methods 
consider 1D chains of dimensional tolerances, and are based 
on the search for loops in the relation graph [76–78]. Other 
approaches to the same problem include data extraction from 
CAD models [79] and a technique deriving from value anal-
ysis [80, 81]. Functional equations, which express the rela-
tionship between a requirement and the involved dimensions, 
are automatically generated in [82–85] with different meth-
ods for dimension chains of various complexity and dimen-
sionality. In [86], some design rules are proposed to reduce 
the number of requirements of an assembly. The identifica-
tion of requirements by loop detection has also been done 
for geometric tolerances, with the further complexity that 
the relations must be classified according to the associated 
direction [87]. In [88], the designer adds the requirements 
to a relation graph including a preliminary specification of 
the types of geometric tolerances on mating features; if this 
creates multiple loops, the designer is advised to eliminate 
the redundant ones to avoid overconstraints.

In the context of geometric tolerances, allocation is pre-
ceded by another task called tolerance specification [60], 
which generates the datum systems and the tolerance types 
on part features. Some proposed methods, such as recent ones 
based on axiomatic design [89–91] and machine learning 
[92–94], do not explicitly consider functional requirements. 
Others include procedures for the automatic flowdown of 
requirements. In [95, 96], the relational structure of the part 
features is completed with the requirements and iteratively 
simplified by recognizing some typical patterns of relations, 
until generating a hierarchy of toleranced features on each part. 
In [97], priority scores are calculated for part features involved 
in requirements to select datums, and rules are used to choose 
tolerance types. In [98], the same task is performed with a 
procedure structured in five phases, each including a set of 
detailed rules; these cover an especially wide diversity of cases 
and can be applied directly to the geometric models of the 
parts, without the need for further input data (e.g. the sequence 
of assembly operations). In [99], the specification procedure 
is based on a theory for jointly modeling product function 
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(associated with requirements) and structure (associated with 
tolerances). With a different strategy, the method proposed in 
[100] carries out the allocation before specification, calculat-
ing bounds on linear and angular errors corresponding to the 
degrees of freedom constrained by the assembly relations.

The present study aims to combine the above mentioned 
concepts (cost-tolerance function, functional requirement) 
into a new concept that can help solving the tolerance alloca-
tion problem. This consists of a cost-tolerance function for the 
functional requirement. In allocation, the cost of a requirement 
is expressed simply as the sum of cost-tolerance functions for 
the dimensions of the associated chain. In some cases the 
expression of the sum includes a model of tolerance propaga-
tion, such as the small displacement torsor in [34]. However 
the variables of the cost function are invariably part tolerances, 
which are not known until the allocation problem is solved. 
The goal here is to obtain a cost function in only one variable, 
the allowable variation on the requirement (i.e. the assembly 
tolerance), which is an input data for the allocation. The pro-
posed function will therefore be useful to support the choice 
of the variation of the requirement, a preliminary task to the 
allocation that does not seem to have been treated previously 
in literature.

3  Methods

The functional requirement is a geometric entity Y defined 
at assembly level, i.e. a linear or angular distance between 
features of different parts. It has nominal value Y0, and must 
be controlled within a variation ± TY to ensure either the cor-
rect joining of the parts or the function of the assembly. It is 
assumed that the requirement is related by a linear (or lin-
earized) relationship to a set of n dimensions Xi of individual 
parts:

where Si is the sensitivity of Y to dimension Xi, known from 
the analysis of the dimension chain.

Each dimension has a nominal value X0i and a toler-
ance ± Ti. It is assumed that the Xi are statistically independent 
and normally distributed with means X0i and standard devia-
tions equal to Ti / 3 (or, more generally, to the same fraction 
of their tolerance). Consequently, the variation of the require-
ment is related to the tolerances by the root sum square (RSS) 
equation:

(1)Y =

n
∑

i=1

SiXi

(2)TY =

√

√

√

√

n
∑

i=1

S2
i
T2

i

In a tolerance allocation problem, TY is given and the 
unknown tolerances minimize the total cost while satisfy-
ing the variation specified for the requirement:

where Ci(Ti) is the cost-tolerance function for Xi, defined as 
the tolerance-dependent portion of the cost of machining 
the corresponding part feature. The goal discussed below is 
to directly estimate the cost C of the functional requirement 
as a function of TY without the need to explicitly solve the 
optimization problem (3).

3.1  Prior work

The expression of Ci(Ti) is based on the reciprocal-power 
cost-tolerance function [37], here limited to its variable 
part (the only one with an effect on optimal allocation):

An evaluation of the parameters in (4) has been pro-
vided in [4] by comparison with a feature-based method 
for the estimation of machining cost. According to those 
results, the exponent is set to k = 0.55, while the multipli-
cative factor is estimated as a function of nominal dimen-
sion Xi:

where:

• β = 0.4 ⋅  10–3;
• fMi and fFi are coefficients depending respectively on the 

material and on the type of feature, with values listed 
in Table 1;

• fAi is the area of the feature in  cm2.

Equations (4) and (5) define an extended reciprocal-
power function, which includes several cost-influencing 
factors beside tolerance. The same expression can then be 
used for all the features of a dimension chain by evaluating 
their coefficients separately. The function is expressed in 
machining minutes on computer numerically controlled 
(CNC) machine tools; in the following, the machining time 
will be converted into currency units CU (e.g. EUR or 
USD) assuming a suitable shop rate (60 CU/h).

(3)

minC =

n
∑

i=1

Ci

(

Ti
)

s.t.T2

Y
=

n
∑

i=1

S2
i
T2

i

(4)Ci =
bi

Tk
i

(5)bi = � ⋅ fMi ⋅ fFi ⋅ fAi ⋅ X
k∕ 3

i
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Much like (4), the extended reciprocal-power function 
can be used for the analytical solution of the optimization 
problem (3) with the method of Lagrange multipliers. 
As shown in [4], the optimal tolerances turn out to be 
proportional to a factor depending on the coefficients 
of the cost-tolerance function and on the sensitivities of 
the requirement:

where bi is calculated from (5). Such property suggests an 
“optimal scaling” procedure for tolerance allocation. The 
tolerances are set to initial values equal to Fi, and then scaled 
to the specified value of TY:

where

Equations (7) and (8) add nothing to the known analyti-
cal solution of (3), but express it in a convenient form that 
can be readily implemented in a spreadsheet. Compared 
to the common proportional scaling procedure, they guar-
antee that the initial values Fi set for the tolerances are 
optimal before being scaled to meet the stackup constraint 
(TY). Another advantage of optimal scaling is that factors 
Fi are in an explicit relationship, given by Eq. (5), with 
the nominal dimensions and with other properties of the 
parts (material, area and type of the toleranced features, 
nominal dimensions). Therefore, the designer can easily 
evaluate the sensitivity of the optimal allocation to the 
design variables. The procedure relies on the assumptions 
mentioned at the beginning of Section 3, which avoid the 
need for a numerical resolution of problem (3); this would 
not raise computational difficulties but would make it 
harder to evauate the influence of part properties on the 
allocated tolerances.

(6)Ti ∝ Fi =
(

biS
−2

i

)
1

k+2

(7)Ti = TY ⋅

Fi

FY

(8)FY =

√

√

√

√

n
∑

i=1

F2

i

3.2  Cost of a functional requirement

The proposed method uses the extended reciprocal-power 
function and the optimal scaling method to find an estimate 
of the cost CY of a functional requirement Y. By definition, 
CY is the optimal value of C in the allocation problem (3) 
when the specified variation of the requirement is TY. While 
C is a function of the decision variables Ti (part tolerances), 
CY is a function of the parameter TY (assembly-level toler-
ance). As TY decreases, CY increases because the solution 
to (3) is a set of tighter optimal tolerances Ti and results in a 
higher value of the objective function C. The cost function 
CY(TY) is subject to the assumptions described in Eqs. (1–8).

In most design situations, the requirement does not fit 
into a typical pattern and includes every time a particular 
number of features, each different in type and geometric 
configuration. In these cases, what is needed is a function 
CY(TY) with one or more numerical coefficients. The shape 
of such a function can be easily identified: from (1), the 
cost of each feature is inversely proportional to the k-th 
power of its tolerance; besides, (7) shows that the toler-
ances are all directly proportional to TY. Consequently the 
cost function is simply

where bi, Fi and FY are calculated from (5), (6), and (8), 
respectively.

For some requirements common to a wide class of toler-
ance allocation problems, the above calculations may lead 
to a more detailed expression of CY as a function of TY and 
additional design parameters:

where the parameters pj (j = 1, …, m) are appropriately cho-
sen according to the type of requirement.

An example of requirement that occurs frequently in 
mechanical assemblies is the clearance fit between a pin 
and a hole (Fig. 1). Let D and H be the nominal diameter 
and depth of the hole, assumed to be approximately equal 

(9)CY =
B

Tk
Y

, B = Fk
Y

n
∑

i=1

bi

Fk
i

(10)CY = CY

(

TY , p1,… , pm
)

Table 1  Coefficients related to 
material and feature type in the 
extended reciprocal-power cost-
tolerance function

Material fM Type of feature fF D, mm KD L/D KL

Aluminum alloy 0.3 External surface on rotational part 1 3 0.2 < 2 1
Copper alloy 0.5 Internal cylindrical or flat surface 1.25 6 0.35 3 0.8
Low-C steel 1 Flat surface on prismatic part 1.5 12 0.6 4 0.7
Cast iron, mid-C steel 1.3 Step or groove on prismatic part 6 25 1 5 0.55
Stainless steel 1.5 Hole (diameter D, depth L) 4/KDKL 50 1.5 6 0.5
Alloy steel 2
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to the corresponding dimensions of the pin. The materials 
of the two parts are given, e.g. medium carbon steel for the 
pin and cast iron for the hole. The functional requirement 
is the clearance Y = X1 − X2, where X1 and X2 denote the 
actual diameters of the hole and of the pin, respectively.

The cost of the requirement is

The factors b1 and b2 of the cost-tolerance functions are 
calculated from (5). In Table 1 it is easy to recognize that 
fM1 = fM2 = 1.3, fF1 = 1.25 and fF2 = 1, fA1 = fA2 = πDH/100. 
Hence

The proportionality factors F1 and F2 for tolerance alloca-
tion are calculated from (6), considering that |S1| =|S2|= 1, 
and dropping the common elements:

From (8) it is

The tolerances are then calculated from (7):

and Eq. (11) gives

with H, D and TY in mm. The expression can be rewritten as

(11)CY =
b1

T0.55

1

+
b2

T0.55

2

(12)
b1 = 1.25 ⋅ 1.6 ⋅ 10−5H ⋅ D1.18, b2 = 1.6 ⋅ 10−5H ⋅ D1.18

(13)F1 = 1.250.39 = 1.09, F2 = 1

(14)FY =
√

1.092 + 1 = 1.48

(15)T1 = 0.74 ⋅ TY , T2 = 0.68 ⋅ TY

(16)CY = 4.4 ⋅ 10−5
H ⋅ D1.18

T0.55

Y

(17)CY = 0.05
H

D

(

D

25

)2.18
1

T0.55

Y

highlighting the steep increase of CY as a function of diam-
eter D for a given aspect ratio H/D. The optimal allocation 
(15) and the cost function (17) can be calculated in a similar 
way for different materials of the two parts. For example, if 
the hole is machined in a rotational part made of a copper 
alloy (e.g. a bronze bushing), the corresponding results are

and

The previous expressions are also valid when geometric 
tolerances are specified on the two features. In those cases 
T1 and T2 must be replaced with equivalent tolerances, each 
calculated as half the difference between the diameters of 
the outer and inner boundaries of the feature. If TS is the 
size tolerance and TG is the geometric tolerance, it is easily 
found that the equivalent tolerance equals (TS + TG) if TG is 
specified regardless of feature size (RFS), and (3TS + TG) 
if TG is specified at maximum material condition (MMC). 
Since both TS and TG are specified on the same machined 
feature, their contributions to the cost cannot be separated. 
Therefore, the equivalent tolerance is optimized and then 
apportioned between TS and TG based on experience.

3.3  Use of the cost function

As shown before, the cost of a requirement can be estimated 
as a function of the variation allowed on it. This is equivalent 
to a generalization of the cost-tolerance function defined for 
single part features. The assembly-level cost function can 
support two main tasks:

• choosing the variation on the requirement, as input data 
to a tolerance allocation problem;

• solving a complex allocation problem with a hierarchical 
approach.

As a demonstration of the first task, the function in (17) 
can help specify the allowed variation on pin-hole clear-
ances. To this end, Fig. 2 shows the graph of CY versus TY 
for D = 40 mm and H/D = 1. As a reference, the points corre-
sponding to some IT tolerance grades on the two features are 
indicated. As the variation decreases, the cost of the require-
ment appears to increase more than linearly with respect to 
the variation. Absolute and relative values of cost are useful 
in evaluating the economic impact of the specification, with 
possible trade-offs with other performance-related consid-
erations. For example, a variation of ± 0.14 mm (IT10) is 

(18)T1 = 0.60 ⋅ TY , T2 = 0.80 ⋅ TY

(19)CY = 0.03
H

D

(

D

25

)2.18
1

T0.55

YFig. 1  Pin-hole clearance fit
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relatively narrow and may even not require finish machining 
at all. Compared to that, a choice of ± 0.03 mm (IT7) would 
cost about twice as much, with a difference of 400 CU per 
1000 units produced. Reducing variation to as little as ± 0.02 
(IT6), the cost ratio and difference would increase to about 
3 × and 800 CU per thousand units, respectively.

The second task is motivated by the fact that some 
functional requirements may depend on many part fea-
tures. In such cases, identifying the dimension chain 
requires special attention to avoid errors in the tolerance 
propagation model. This occurs especially in assemblies 
with clearance fits between cylindrical or prismatic fea-
tures of size.

For example, Fig. 3a shows the schematic layout of 
a slider-crank mechanism where the requirement to be 
controlled is the position Y of the slider relative to the 

center of the crankpin when the mechanism is at its top 
dead center. The assembly includes some cylindrical fits, 
whose clearances affect the variation of Y. Therefore the 
diameters of the pins and holes should appear explicitly 
in the dimension chain, and their sensitivities should be 
evaluated considering the misalignments between the 
centers of the mating features. By doing that, the actual 
contacts between the features would result in a chain of 
10 dimensions.

The problem can be simplified by removing the diameters 
from the dimension chain, and replacing them with the clear-
ances of the respective pin-hole fits. As shown in Fig. 3b, 
this reduces the chain to only 7 dimensions. Some of these 
(X2, X5, X7) are defined on individual parts, and therefore 
will be associated to cost-tolerance functions defined as in 
(4) and (5). Others (X1, X3, X4, X6) involve features of differ-
ent parts, and can be associated with cost functions for clear-
ance requirements as in (17). In other words, dimensions and 
requirements can be treated similarly in a tolerance alloca-
tion problem. The solution to the problem provides both 
the optimal tolerances on the dimensions and the optimal 
amounts of variation to be specified for the clearances. The 
latter can then be used as inputs to optimize the tolerances 
on the diameters of the mating features, thus completing the 
allocation with a hierarchical procedure. The same approach 
may be used when the assembly includes subassemblies, 
whose dimensions can be grouped into a single requirement 
and then optimized separately.

4  Results

The procedure for estimating the cost of a functional require-
ment is demonstrated below on two simple examples. The 
first concerns the choice of the variation on requirements 

Fig. 2  Cost of pin-hole clearance

Fig. 3  Complex dimension chain: a with mating features; b with clearances
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defined by geometric characteristics. The second is a case 
of hierarchical tolerance allocation including pin-hole 
clearances.

4.1  Specification of requirement variation

Figure 4a shows a two-axis positioning mechanism includ-
ing a table, a longitudinal slide, and a cross slide, all made 
of medium carbon steel. The two slides have translational 
motions allowed by a dovetail guide and a T-guide. The 
functional requirements Y1 and Y2 are the profile errors of 
two surfaces of the cross slide with respect to reference 
surfaces on the table, when the parts are in the positions 
shown. The part drawings in Fig. 4b specify both size and 
geometric tolerances, which are unknown and will have 
to be optimized by solving two tolerance allocation prob-
lems. Before doing this, the allowable variation on each 
of the requirements must be specified taking into account 
its impact on cost.

The first step consists in calculating the sensitivities of 
the two requirements to the involved part features. To do 
this, a dimension chain is identified for each requirement. 
For Y1 it is assumed that, due to possible vertical loads, the 

Fig. 4  Positioner: a assembly with functional requirements; b parts with tolerances

Fig. 5  Dimension chain for Y1 on the positioner

Table 2  Tolerance stackup for Y1 on the positioner

Dimension Nominal Tolerance

h1 20  ± TP1 / 2
h2 18  ± TP5 / 2
h3 22  ± TP9 / 2
h 60  ± TY1 / 2
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parts are always in actual contact on their horizontal mat-
ing planes. Furthermore, if form errors are neglected, the 
same surfaces are horizontal in the worst cases allowed by 
their tolerances. Consequently, the profile tolerance TY1 is 
equivalent to a dimensional tolerance on height h, which is 
the sum of the dimensions h1, h2 and h3 on the three parts 
(Fig. 5). Table 2 provides the tolerances on all dimensions, 
calculated based on the meaning of the geometric toler-
ances on the related features. The sum of the tolerances 
gives the following linear functional equation:

Equation (20) is the worst-case relationship between the 
part tolerances and the variation on the requirement. To 
account for the compensation of errors on random parts, it 
will have to be replaced by the corresponding RSS stackup 
equation. However, it provides the values of the sensitivities 
to be used in subsequent calculations.

The next step is the resolution of the tolerance allocation 
problem using TY1 as a parameter, in order to estimate the 
corresponding cost function. Table 3 shows the results of 
the calculation of the cost factors bi from (5), evaluating 
the coefficients fMi, fFi and fAi from Table 1. The factors Fi 
for the optimal scaling are calculated from (6) considering 
the sensitivities in (20). The ratios between the individual 

(20)TY1 = TP1 + TP5 + TP9

tolerances Ti and the variation TY are calculated from (7) and 
(8) with FY = 0.756.

Expressing all tolerances in proportion to TY and adding 
their costs calculated from (4), the resulting equation for 
the cost of Y1 is

Figure  6 shows the graph of the cost function (21). 
Although the choice of TY1 is likely to be mainly driven 
by the desired positioning accuracy, it is apparent that the 
specification can be set without a significant impact on cost 
up to about 0.1 mm, which keeps the cost within about 2000 
CU per thousand units or about two times that corresponding 
to a much wider variation (0.5 mm). The cost would double 
by reducing the variation to 0.02 mm, and it would triple at 
0.01 mm. For high production volumes, these figures should 
be carefully considered in comparison with other cost items.

The profile tolerance TY2 corresponds to an angular error 
θ over a horizontal dimension of 32 mm. This angle is the 
sum of 5 angles θ23, θ34, θ46, θ67 and θ78 (Fig. 7). Table 4 
shows the tolerances on all the angular dimensions in radi-
ans. In their expressions, the denominator is the length over 
which the relative rotation between the features occurs, 
which allows the angle of rotation in radians (approximately 
equal to its tangent) to be calculated from a linear deviation. 
The numerator is either a geometric tolerance specified at 

(21)CY1 =
0.49

T0.55

Y1

Table 3  Cost-tolerance factor 
and optimal scaling for Y1 on 
the positioner

Ti fMi fFi fAi Xi bi Si Fi Ti / TY

TP1 1.3 1.5 62 20 0.251 1 0.582 0.770
TP5 1.3 1.5 16 18 0.061 1 0.334 0.442
TP9 1.3 1.5 16 22 0.068 1 0.348 0.460

Fig. 6  Cost of Y1 on the positioner
Fig. 7  Dimension chain for Y2 on the positioner
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RFS (θ78), or the maximum value of a geometric tolerance 
specified at MMC (θ23, θ46), or the sum of equivalent toler-
ances for the mating features of a prismatic fit (θ34, θ67), 
calculated as explained in subSection 3.2 for a cylindrical fit.

The sum of the tolerances gives

where T3, T4, T6, T7 and T8 have the expressions shown in 
Table 5. Each feature is therefore associated with a single 
tolerance, which will be optimized by solving the allocation 
problem. Its value will be apportioned freely between the 
size and geometric tolerances specified on the same feature, 
since their separate contribution to the cost is not known. 
Table 5 also shows the calculation of the factors bi from the 

(22)
TY2 = 0.96 ⋅ T3 + 0.64 ⋅ T4 + 1.28 ⋅ T6 + 0.64 ⋅ T7 + 0.64 ⋅ T8

related coefficients, and the sensitivities Si from (22). The 
factors Fi are scaled on their RSS FY = 1.201.

Finally, the cost function for Y2 is

The graph in Fig. 8 shows that the cost estimates are 
higher than for Y1, due to the greater number of tolerances 
involved. The maximum variation of about 0.5 mm corre-
sponds approximately to an angular error of ± 1°, and has a 
baseline cost of approximately 2,000 CU per thousand units. 
The cost would increase by 2 or 3 times if the variation were 
reduced to 0.1 mm (± 0.2°) or 0.05 mm (± 0.1°), but would 
probably be too high with even tighter specifications.

4.2  Hierarchical tolerance allocation

Figure 9 shows a shaft carrying a gear wheel and fitted to 
two bearing bushes mounted in a housing. The shaft and 
the gear wheel are made of medium carbon steel, while the 
bushings are made of bronze and are sourced as custom parts 
(or available in a wide range of tolerance grades). The parts 
are in contact at cylindrical features, which are designed 
with size tolerances and position tolerances; the latter are 
assumed as RFS for the sake of simplicity (the case with 
MMC modifiers could be treated as described in subSec-
tion 4.1). The bushings are fitted to the housing bores with-
out clearance and with negligible geometric errors.

The functional requirement to be controlled is the eccen-
tricity Y of the outer surface of the gear wheel with respect to 
the common axis of the two bores in the housing. The vari-
ation TY on the requirement is assumed to be given, and the 
goal is to optimize the part tolerances that are related to it. 

(23)CY =
1.18

T0.55

Y2

Table 4  Tolerance stackup for 
Y2 on the positioner

Dimension Nominal Tolerance Note

θ23 0  ± (TO3 + 2TS3) / 100 maximum MMC geometric tolerance
θ34 0  ± (TO3 + 3TS3 + TF4 + 3TS4) / 50 equivalent tolerances (MMC)
θ46 π/2  ± (TO6 + 2TS6) / 50 maximum MMC geometric tolerance
θ67 0  ± (TO6 + 3TS6 + TO7 + 3TS7) / 50 equivalent tolerances (MMC)
θ78  − π/2  ± TO8 / 50 RFS geometric tolerance
θ 0  ± TY2 / 32

Table 5  Cost-tolerance factor 
and optimal scaling for Y2 on 
the positioner

Ti Expression fMi fFi fAi Xi bi Si Fi Ti / TY

T3 TO3 + 2.67TS3 1.3 6 10 18 0.153 0.96 0.495 0.412
T4 TF7 + 3TS4 1.3 6 10 18 0.153 0.64 0.680 0.566
T6 TO6 + 2.5TS6 1.3 6 16 32 0.336 1.28 0.537 0.447
T7 TO7 + 3TS7 1.3 1.5 16 32 0.084 0.64 0.537 0.447
T8 TO8 1.3 1.5 4 100 0.039 0.64 0.399 0.332

Fig. 8  Cost of Y2 on the positioner
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It can be noted that Y is a dimension involving the axis of a 
generic cylindrical surface, and does not depend on specific 
properties of the gearing. A requirement established on the 
pitch cylinder of the gear wheel would be treated similarly 
but with more complex calculations.

The problem could be solved by expressing TY as a func-
tion of the 10 tolerances TS1, TP1, TS2, TS3, TP3, TS4, TS5, 
TP5, TS6, TP7, and evaluating the cost-tolerance functions for 
the related features. Alternatively, it can be considered that 
some tolerances are involved in pin-hole clearance fits, and 
the method described in subSection 3.2 allows to associate 
clearances with cost functions. The problem can therefore 
be tackled with a hierarchical approach, expressing Y as a 
function of both clearance variations and part tolerances. 
The dimension chain turns out to be simpler, and can be set 
up without analyzing the role of each single mating feature. 
A first tolerance allocation allows to optimize the clearances. 

Once the variation on each clearance is set, lower-level allo-
cations are carried out to optimize the related part toler-
ances, again with very simple dimension chains.

The worst-case equation of the dimension chain is

where a = 100  mm and b = 150  mm are the distances 
between the midsections of the gear wheel and the two bush-
ings. In addition to the part tolerances TP1, TP3, TP5 and TP7 
defined in Fig. 8, Eq. (24) includes the variations on the 
three clearance requirements between the shaft and either 
the left-side bushing (T12), the right-side bushing (T34), and 
the gear wheel (T56).

(24)
T
Y
=

b

2(a + b)
⋅

(

TP1 + T
12

)

+
a

2(a + b)
⋅

(

TP3 + T
34

)

+
1

2
⋅

(

TP5 + T
56
+ TP7

)

Fig. 9  Gear assembly

Table 6  Cost-tolerance factor 
and optimal scaling for Y on the 
gear assembly

Ti fMi fFi fAi Xi bi Di Hi / Di Bi Si Fi Ti / TY

TP1 0.5 1.25 19 20 0.008 – – – 0.3 0.387 0.226
TP3 0.5 1.25 12 16 0.005 – – – 0.2 0.443 0.259
TP5 1.3 1 57 36 0.057 – – – 0.5 0.560 0.328
TP7 1.3 1 113 72 0.130 – – – 0.5 0.774 0.453
T12 – – – – – 20 1.5 0.030 0.3 0.650 0.380
T34 – – – – – 16 1.5 0.019 0.2 0.747 0.437
T56 – – – – – 36 1.39 0.154 0.5 0.827 0.484
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The cost functions are evaluated as shown in Table 6. For 
each part tolerance, the factor bi of the cost-tolerance func-
tion (4) is calculated from (5) from appropriate coefficients 
and nominal dimensions. For each clearance requirement, 
the cost factor B in (9) is calculated from the diameter and 
the aspect ratio of the fit: considering part materials, Eq. (19) 
is used for T12 and T34, while Eq. (17) is used for T56.

The result of the allocation is also shown in Table 6. The 
sensitivities of Y to all part tolerances and clearance vari-
ations are taken from (24). The factors Fi for the optimal 
scaling are calculated from (6) for the part tolerances, and 
from the corresponding expression

for the clearance variations. The Fi are scaled using Eqs. (7) 
and (8) with FY = 1.710. This gives the optimal values of the 
first-level specifications in proportion to TY.

Table 7 shows the second-level allocations: the varia-
tion of each clearance is optimally distributed to the related 
features. This is done using the expressions found in sub-
Section 3.2 for pin-hole clearances: considering again the 
materials of the parts, (18) is used for T12 and T34, and (15) 
for T56. All tolerances are now set in proportion to TY; the 
assembly specification could have been known from the 
beginning as input data, or chosen after estimating the cost 
function of Y at the first allocation level as in the example 
in subSection 4.1.

5  Discussion

The above examples suggest some considerations about the 
two main applications intended for the cost function of a 
requirement.

The case in subsection 4.1 demonstrates how the choice 
of the variation TY allowed for a requirement can be helped 
with an estimation of its cost CY. In practice, a precision 
specification is unlikely to be driven by cost constraints 
alone; it is equally unlikely, however, that it is completely 

(25)Fi =
(

BiS
−2

i

)
1

k+2

determined by technical constraints. Two typical situations 
can be mentioned in this regard:

• If the requirement is related to ease of assembly, the con-
dition to be satisfied usually involves only one of the two 
variation limits. For the axial clearance of a shaft, the 
lower limit must be greater than zero, but the upper limit 
can be chosen freely as long as no functional problems 
arise.

• If the requirement influences essential aspects of the 
operation of a mechanism (precise positioning, backlash, 
sealing, etc.), the choice is mainly technical but usually 
with no known rules to help setting the variation. Even 
after preliminary calculations or experimental tests, a 
designer would tend to overspecify for safety if this did 
not lead to excessive cost penalties.

In both situations, using cost estimation as a further sup-
port for design decisions seems useful. In the proposed 
approach, the cost of the requirement is expressed in machin-
ing minutes, which are readily translated into currency units 
according to an appropriate shop rate. This makes it possible 
to evaluate the impact of tolerancing decisions on both pro-
ductivity and cost.

It may be difficult to find the right trade-off between vari-
ation and cost for a requirement. From this point of view, 
a linear graph of the cost function seems effective enough 
because it clearly shows the progressive steepness of the 
curve. When possible, as in the case of a chain of two dimen-
sions such as the gap of a cylindrical fit, the visualization can 
be further improved by adding notable points such as those 
corresponding to IT tolerance grades.

The case in subsection 4.2 demonstrates a hierarchical 
approach that can be applied in principle to any tolerance 
allocation method. It consists in solving the problem by 
mixing part-related variables (tolerances) with assembly-
related variables (variations of requirements); the latter then 
become the data for further allocations at a lower level. The 
most apparent effect is that a lower number of dimensions is 
involved at each level. The benefit is of limited importance 
using optimal scaling, but other optimization methods (pos-
sibly needed under less restrictive assumptions) might reach 
convergence more quickly with fewer variables. Other poten-
tial advantages of hierarchical allocation include:

• an easier inspection of the dimension chain, which helps 
to avoid errors in the functional equation;

• a logical aggregation of features that have a combined 
effect, as in the case of cylindrical fits;

• a consistency with the well-known charting methods for 
tolerance analysis, e.g. [101], which introduce the mis-
alignment between mating features (assembly shift) in 

Table 7  Tolerance allocation for the pin-hole features on the gear 
assembly

Ti (fit) Ti / TY Tj (part) Tj / Ti Tj / TY

T12 0.380 TS1 0.60 0.228
TS2 0.80 0.304

T34 0.437 TS3 0.60 0.262
TS4 0.80 0.350

T56 0.484 TS5 0.74 0.357
TS6 0.68 0.328
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the dimension chain to avoid explicitly considering the 
involved dimensions (e.g. diameters of shafts and holes).

Beyond the two applications described, the proposed 
method might provide design support in a broader sense. 
The cost function can help estimate the relative effects of 
different design variables on the cost of a generic func-
tional requirement. For example, let Y be the sum of n 
dimensions associated to features with equal types and 
sizes on parts made of the same material. The cost of the 
requirement is

where the tolerance for all dimensions is

and the common cost factor is

where the coefficients fM, fF and fA as well as the nominal 
value X are the same for all dimensions. Substituting (27) 
and (28) into (26), it results that

The above expression shows how the tolerance-depend-
ent cost depends on the design variables associated with 
the requirement. Doubling the number n of features, the 
cost is multiplied by  20.83 = 1.77. Doubling the nominal 
dimension X, the cost is multiplied by  20.18 = 1.13. Chang-
ing materials and feature geometries so as to double fM, fF, 
or fA doubles the cost.

Similar what-if analyses can lead to cost reduction cri-
teria. For example, it is interesting to have a feel of how 
the total cost would change if the features involved in a 
requirement had very different properties (material, type 
and size). For this purpose, let Y be the sum of two dimen-
sions whose cost factors bi are in the ratio b1/b2 = q > 1. For 
consistency with the previous case, it is also b1 + b2 = 2b. 
Therefore

With unit sensitivities and dropping the common fac-
tors, Eq. (6) gives

(26)CY = n
b

T0.55

(27)T =
TY
√

n

(28)b = � ⋅ fM ⋅ fF ⋅ fA ⋅ X
0.18

(29)CY =
� ⋅ n0.83 ⋅ fM ⋅ fF ⋅ fA ⋅ X

0.18

T0.55

Y

(30)b1 =
q

q + 1
⋅ 2b, b2 =

1

q + 1
⋅ 2b

(31)F1 =

(

q

q + 1

)0.39

, F2 =

(

1

q + 1

)0.39

It is easily found from (7) and (8) that the optimal toler-
ances are

Substituting (30) and (32) in (4) and adding the costs of 
the two features, it results that

Figure 10 shows that, for a given TY, CY decreases con-
siderably as the ratio q between the cost factors increases. 
It can be generally said that, if some features have optimal 
tolerances that are very different from one another, the cost 
decreases due to the wider tolerances more than it increases 
due to the tighter tolerances.

It would also be interesting to use the cost of a require-
ment to compare alternative designs of an assembly. Such 
chance, however, is limited by the fact that the proposed 
method estimates only the fraction of the cost that depends 
on the tolerances, corresponding to the time taken by the 
finish machining operations. If the two compared designs 
have very different geometries and require different amounts 
of rough machining or raw material, the cost differences 
resulting from those factors should be estimated separately.

For all the applications described, the proposed cost 
function seems to provide an acceptable trade-off between 
convenience and accuracy. The first takes advantage of the 
explicit mathematical expression, calculated directly with-
out the need for optimization procedures. The second relies 
on the extended reciprocal power function, which accounts 

(32)T1 =
q0.39

√

1 + q0.78
TY , T2 =

1
√

1 + q0.78
TY

(33)CY =

(

1 + q0.78
)0.73

1 + q
C0, C0 =

2b

T0.55

Y

Fig. 10  Cost of a requirement involving two features with b1/b2 = q 
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for multiple design variables and was validated in [4] using 
a proven method for machining cost estimation. It cannot 
be denied, however, that the estimation uncertainty of the 
requirement cost is affected by the simplicity of the underly-
ing assumptions; the potentially most critical one is the use 
of general cost data that do not consider the actual equip-
ment available in specific manufacturing settings. From this 
point of view, better results have recently been obtained with 
a new approach to tolerance allocation, which constrains the 
optimization to the use of given resources. In [102], these 
are modeled through exponential cost-tolerance functions 
with different parameters for alternative machine tools. In 
[103, 104], the cost model is more complex and takes into 
account further activities influenced by tolerances, such as 
inspection of parts and assemblies. In both methods, the 
resources chosen for each part dimension are additional opti-
mization variables, and the conformity ratio on the assembly 
is estimated along with cost for the optimal solution. The 
process-based approach is suitable for complex assumptions 
and is likely to be more accurate as a company can use first-
hand, easy to update cost data. Furthermore, as shown in 
[103], it can highlight further limits on the allowable vari-
ation for a requirement: with given resources, an especially 
tight variation can cause excessive nonconformities, while 
an especially wider one gives no marginal cost reduction. 
On the other hand, it requires a numerical solution of the 
optimization problem, which can make it more difficult to 
integrate in the design workflow.

6  Conclusions

The paper has described a procedure for estimating the cost 
of a functional requirement as a function of the allowed vari-
ation. In a tolerance allocation problem, the variation of a 
requirement is a given specification and is generally treated 
as a constraint in the minimization of cost. The proposed 
cost function allows to predict how the minimum cost will 
be influenced by the specification without the need to solve 
the optimization problem. This is made possible by the use 
of two previously developed concepts: the extended recip-
rocal-power cost-tolerance function and the optimal scaling 
method. The first expresses the cost of tolerances homoge-
neously for different types of part features, making explicit 
the influence of some design variables (part material, feature 
shape and size). The second solves the allocation problem by 
scaling initial tolerance values in optimal proportions. The 
examples have shown that the procedure is suitable for parts 
designed with either dimensional tolerances or geometric 
tolerances with possible modifiers.

The cost of a functional requirement has a particularly 
simple expression and has three main applications:

• supports the choice of the variation of the requirement, 
which is usually specified without in-depth discussion 
but can have a relevant impact on the manufacturing cost;

• allows a hierarchical approach to tolerance allocation, 
which simplifies the dimension chain by using require-
ments as optimization variables;

• suggests design criteria for the reduction of the cost 
associated with tolerances, showing the effect of some 
choices such as the number of involved features and their 
design attributes.

Like its parent method (the optimal scaling for tolerance 
allocation), the estimation of requirement cost is suitable 
for manual calculations as it does not require numerical 
optimization procedures that can possibly be an obstacle to 
practical use in mechanical design. However, it could eas-
ily be implemented in a spreadsheet template for generic 
dimension chains. This would allow the designer to quickly 
evaluate the economic impact of alternative specifications on 
the requirement. At a more sophisticated level, the proposed 
method could be integrated into existing CAD-based appli-
cations for the automatic recognition of functional require-
ments and dimension chains.

In principle, the proposed method might be used to define 
an assembly-level allocation problem. This would consist of 
optimizing all requirements identified for an assembly before 
solving the respective allocation problems. The problem 
could be solved with a different formulation than the classi-
cal allocation of part tolerances, e.g. minimizing a quality-
based objective function (fraction of rejects, risk of func-
tional defects, quality loss on the requirement, etc.) within a 
given cost budget. The feasibility of such an approach will 
be investigated in upcoming studies.
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