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Abstract
Autonomous relative navigation nearby uncooperative space objects represents a hot spot within the space
engineering community. One common solution to the problem of determining a spacecraft’s pose is to use
vision-based navigation techniques. This paper explores the potential benefits of using filtering methods
downstream of a vision-based pose determination pipeline to improve its accuracy. Specifically, we adopt a
loosely coupled approach that utilizes two distinct filters; one for relative rotational dynamics and another
for translational dynamics. The primary objective of this work is to evaluate the most suitable filtering
schemes to complement image processing algorithms. To achieve this, we compare the performance of
a traditional Extended Kalman Filter against an H∞ filter that leverages the Yamanaka-Ankersen state
transition matrix for relative position estimation. In terms of relative attitude estimation, we compare
a nonlinear filter and an observer on the Special Orthogonal group with the well-known multiplicative
Extended Kalman Filter. Through a simulation study, we assess and compare the different approaches
using direct image processing output as measurements for the filters.

1. Introduction

Missions involving close approaches with uncooperative space objects have become more frequent. These missions
encompass tasks such as active debris removal, on-orbit monitoring, and close proximity approaches to small celestial
bodies. For instance, the ESA e.Inspector project, currently in phase-B, aims at developing a CubeSat mission to inspect
a debris in preparation for its removal.24 As a result of these advancements, there is an increasing demand for robust
and dependable algorithms to estimate the relative state between a spacecraft and a target object directly on-board.27

Over the past few decades, considerable research has focused on determining the absolute position and attitude (pose),
leading to the development of several algorithms. By leveraging Global Navigation Satellite System (GNSS), Inertial
Measurement Unit (IMU), and star sensor observations, precise determination of absolute pose can be achieved.10

However, when it comes to estimating the relative pose with respect to an uncooperative object, these measurements
are typically unavailable. In such scenarios, the inertia properties of the target object may not be fully known, and its
angular rate can only be roughly estimated using optical-flow techniques. These inherent challenges have a significant
impact on the accuracy of the estimates, necessitating the adoption of alternative navigation strategies. In recent years,
a wide range of vision-based navigation algorithms for relative pose estimation has been extensively investigated.17

These approaches can be classified into two primary categories: tightly coupled methods and loosely coupled ones.
In a tightly coupled navigation scheme, the image feature points are directly processed within the navigation filter,
which incorporates both translational and rotational dynamics into its state.21 Among these approaches, Simultaneous
Localization and Mapping (SLAM) techniques have been thoroughly researched.26 Conversely, when there is at least
a rough geometric model of the target object, model-matching Image Processing (IP) algorithms are preferable. These
techniques leverage the knowledge of the target object’s 3D geometry to estimate the relative pose by optimizing the
matches between keypoints in an image and the topological features of the target object23,4 . However, the direct output
of IP algorithms may not provide highly accurate results, which can introduce significant errors and error drift in the
estimation of the relative pose. Therefore, it is crucial to incorporate a filtering block downstream of the IP stage to
address these challenges. In space applications, the Kalman Filter (KF) and Extended Kalman Filter (EKF) are the
standard approaches utilized to mitigate these issues. These algorithms have been widely employed with different
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sensor architectures,9 hoewever their performance decrease with non-nominal tuning and non-Gaussianly distributed
measurement noise. Consequently, it is essential to assess the performance of these algorithms when dealing with
realistic IP output and explore alternative filtering solutions that do not rely on such restrictive assumptions. In the
work of by Pesce et al.,18 a comparison of filtering techniques for relative attitude estimation is presented. However,
the nonlinear estimators are tested against synthetically generated Gaussian measurements, rather than direct IP output,
thus restricting the validity of the presented results to an ideal scenario. Our work takes a significant step towards the
implementation of an end-to-end relative navigation system by utilizing the direct output of the IP algorithm to evaluate
the performance of various filtering schemes. To ensure broad applicability, this work does not delve into a detailed
description of the vision-based algorithm but instead presents a concise overview. It is worth underlying that the
developed IP chain outputs relative pose measurements in terms of a relative tranlsation vector and a relative rotation
matrix, which are then processed by the two filtering blocks. The main contribution and advancements of this work
are:

• Formulation of a visual-based navigation chain for relative pose estimation.

• Adaptation of classical and recent filtering techniques for relative pose estimation.

• Investigation of the robustness of the proposed filtering techniques against non-ideal measurements.

The remainder of the paper is organized as follows. Sec. 2 briefly introduces the vision-based navigation chain which
is used to generate measurements. Sec. 3 presents the models and the filters for relative position estimation, while
the relative attitude estimation task is described sec. 4. In sec. 5 the simulation scenario is illustrated along with all
the different test cases analyzed. Qualitative and quantitative analyses are reported. In sec. 6 conclusions are drawn,
together with some suggestion for future improvements.

2. Relative navigation architecture

Even though this paper is mainly concerned with the performances of the filtering algorithms, a brief overview of the
IP chain is here provided. The IP workflow is depicted in 1

Figure 1: Relative navigation architecture: block diagram

An initial relative pose estimate is assumed to be available, which can be obtained as explained in the work of Bechini
et. al.1 exploiting a coarse model of the target object. Features are then extracted for each image and matched across
a consecutive image pair. The correspondences between feature points are then employed to recover the relative pose
between two adjacent camera frames, for example solving the Perspective-n-Point Problem (PnP).8 However, in our
test case scenarios, the relative translation vector obtained through the solution of the PnP problem was too inaccurate.
Therefore, the relative translation vector expressed in the chaser’s camera frame is directly computed from the region
of interest (ROI) extracted in the image. To obtain the relative translation vector in the Local Vertical Local Horizon
(LVLH) frame, a rotation is performed, accounting for uncertainties in the absolute orbital determination. In particular,
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the associated noise level is described by a Gaussian distribution with standard deviation σpos = 1e − 02 km and
σvel = 1e − 04 km/s. As for the rotation measurements, the PnP outputs the relative pose between two consecutive
frames, and thus the relative chaser-target rotation matrix can be obtained as:

Rk = Rk−1Arel (1)

where Arel is the relative rotation matrix between two consecutive frames, k and k − 1 represent two consecutive
iteration steps of the navigation filter. Finally, an optimization step is performed to refine the coarse pose estimated.
Please notice that in this way, only the relative rotation measurements are correlated with the previous estimate, while
the relative translational ones are totally uncorrelated from one another and from the relative rotation estimate.

3. Relative translation

This section is concerned with the models and filters adopted for the description of the relative position. First, the
coordinate system adopted in the work is described, and then the two filtering algorithms are presented.

3.1 Coordinate system

The relative position between a chaser spacecraft and an uncooperative target is described with respect to a local-
vertical local-horizontal (LVLH) frame attached to the chaser; with x being a unitary norm vector the chaser’s radial
direction, z is the component in the direction of the chaser’s orbital angular momentum, and y is the component along
the direction completing the right-handed orthogonal triad.

3.2 Extended Kalman Filter

Considering a generic non-linear system
ẋ = f (x, t) +G(x)w
y = h(X, t) + v (2)

Where f is a non-linear function, w is a zero-mean, Gaussian process noise with known covariance Q and G is a noise
mapping function. The system output is linked to the current state x by a generic function h, while v is a zero-mean,
Gaussian process noise with known standard deviation. The EKF routine is summarized in Table 1, in which Q is the
process covariance matrix, R is the measurement covariance matrix and F, H are the jacobian matrices of f (x, t) and
h(x, t), respectively. The only exception to the traditional EKF scheme is the posterior covariance update, which is
computed following the Joseph’s Formula for stability reasons.20

Algorithm 1 Extended Kalman Filter

Initialization:

x̂(t0) = x(t0)

P(t0) = P0

Filtering:

x̂−k =
∫ tk

tk−1
f (x(τ))dτ

P−k = Φ(tk, tk−1)P+k−1Φ
T (tk, tk−1) +GQGT∆t

Kk = P−k HT
k (HkP−k HT

k + Rk)−1

x̂+k = x̂−k + Kk(yk − h(x̂−k ))

P+k = (I − KkHk)P−k (I − KkHk)T + KkRKT
k

Where Φ is the state transition matrix, that can be approximated with a series expansion:

Φ(t, t0) = I + Ft∆t + F2
t
∆t2

2
+ F3

t
∆t3

3!
+ · · · (3)
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Our EKF adopts an unperturbed non-linear relative translational model. The free-evolving trajectory of the target in
the chaser’s LVLH reference frame is described by the following set of differential equations:22

ẍ − 2θ̇C ẏ − θ̈Cy − θ̇2C x =
µ(rC + x)

[(rC + x)2 + y2 + z2]3/2 +
µ

r2
C

ÿ + 2θ̇C ẋ + θ̈C x − θ̇2Cy =
µy

[(rC + x)2 + y2 + z2]3/2

z̈ =
µz

[(rC + x)2 + y2 + z2]3/2

(4)

In which [x, y, z] is the relative position vector in the LVLH frame, rC is the chaser orbital position magnitude, θC
is the chaser true anomaly and µ is the Earth’s gravitational constant. An unperturbed motion model is considered
mainly because of the short duration of vision-based proximity operations. Please note that in our case, there is no
need to compute the measurement Jacobian, as the IP pipeline directly provides the relative position, which is linearly
connected to the state vector.

3.3 H∞ Filter

The standard Kalman filter is an optimal estimator for linear systems with zero-mean Gaussian process and measure-
ment noise. However, when dealing with the output of an image processing chain that may contain nonlinearities and
outliers, the assumptions of the Kalman filter may not be met. A robust counterpart of the KF is the H∞ filter, which
minimizes the∞-norm of the estimation error without relying on restrictive assumptions regarding the statistics of the
process and measurement noise.25 Let’s consider a linear time-invariant system:

xk+1 = Fxk +Gwk

yk = Hxk + vk
(5)

with xk being the state vector, wk and vk the process and measurement noise respectively with associated covariance
matrices Q and R, similarly to the EKF. The routine of the H∞ is similar to the EKF one , with the main difference being
the computation of the gain matrix Kk. In particular, Kk is chosen such that ∥x − x̂∥∞ < 1

γ
, where x and x̂ represent

the true and predicted state, respectively and γ is the tuning parameter. The complete formulation of the H∞ filter is
reported in Table 2.

Algorithm 2 H∞ filter

Initialization:

x̂(t0) = x(t0)

P(t0) = P0

Filtering:

Kk = Pk[I − γPk + HT
k R−1

k HkPk]−1HT
k R−1

k

x̂k+1 = Fkx̂k + FkKk(yk − Hkx̂k)

Pk+1 = FkPk(I − γPk + HT
k R−1

k HkPk)−1FT
k + Qk

The H∞ requires the adoption of a linear motion formulation. In our work, we use the model developed by Yamanaka
and Ankersen,28 which is a linearised formulation for arbitrary elliptical orbits. A brief description of the model is
presented hereafter. First, a set of modified coordinates is obtained from the relative position r and velocity v vectors
expressed in the LVLH frame:

r̃ = ρr
ṽ = e sin θr + (1/k2ρ)v (6)

Then, a set of pseudoinitial conditions for the propagation of the in-plane components can be computed from the
modified coordinates as: 

x̄0
ȳ0
˙̄x0
˙̄y0

 = 1
1 − e2


−3s( 1

ρ
+ e2

ρ2 ) 0 c − 2e −s(1 + 1
ρ
)

−3es( 1
ρ
+ 1
ρ2 ) 1 − e2 ec − 2 −es(1 + 1

ρ
)

−1 + e2 + 3ρ 0 es ρ2

3( c
ρ
+ e) 0 s c(1 + 1

ρ
) + e



x̃
ỹ
˙̃x
˙̃y

 (7)
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Once the pseudoinitial values have been obtained, the relative in-plane components can be calculated as follows:
˙̃x
˙̃y
¨̃x
¨̃y

 =


s 0 (2 − 3esJ) −c
c(1 + 1

ρ
) 1 −3ρ2J s(1 + 1

ρ
)

s′ 0 −3e(s′J + s
ρ2 ) −c′

−2s 0 −3(1 − 2esJ) 2c − e


θ


x̄0
ȳ0
˙̄x0
˙̄y0

 (8)

while the relative state for the out-of-plane component can be obtained as:[
˙̃z
¨̃z

]
=

1
ρθ−θ0

[
c s
−s c

]
θ−θ0

[
z̃
˙̃z

]
(9)

where
ρ = 1 + e cos θ
s = ρ cos θ
c = ρ sin θ
s′ = cos θ + e cos 2θ
c′ = −(sin θ + e sin 2θ)
J = k2(t − t0)

k2 = h/p2

(10)

with e being the chaser’s eccentricity, θ, chaser’s true anomaly and |θ meaning evaluated at the true anomaly θ at the
current time step. It is worth underlying that the YA motion model may be sensitive to errors in the absolute orbital
determination, and thus is it important to evaluate such effects within our test case scenarios.

4. Relative rotation

The following section is concerned with the description of the models and the filters for relative attitude estimation.

4.1 Coordinate system and attitude kinematics

The attitude of a rigid body naturally evolves on the Special Orthogonal Group SO(3), that is the set of 3×3 orthonormal
matrices. The Lie algebra of SO(3) is represented by the set of 3×3 skew-symmetric matrices and it is generally denoted
as so(3). The relative attitude kinematics between two rigid bodies can be written as:

Ṙ = R(ω)×, R(0) = R0 (11)

where R(t) ∈ SO(3) is the relative rotation matrix which represents the attitude of the target object with respect to
the chaser spacecraft, expressed in the chaser body frame and ω is the relative angular velocity expressed in the
chaser frame. Attitude kinematics can also be expressed using the quaternion representation of the attitude. The unit
quaternion is a four-dimensional vector, which can be defined in terms of Euler axis e and rotation angle θ as follows:

q =
[
ρ
q4

]
(12)

where
ρ =

[
q1 q2 q3

]
= e sin(θ/2) (13)

and
q4 = cos(θ/2) (14)

The quaternion always obeys the unit-norm constraint. In this work, we adopt q to represent the relative attitude. The
kinematics of the quaternion reads:

q̇ =
1
2
Ω(ω)q =

1
2
Ξ(q)ω (15)

where

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (16)

Where ω is again the relative angular velocity expressed in the chaser body frame. The relative attitude dynamics is
not here presented, since all the proposed algorithms are kinematics-only filters.
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4.1.1 Augmented Multiplicative Extended Kalman Filter (AMEKF)

The Multiplicative Extended Kalman Filter (MEKF), which is based on a local linearization of the attitude around the
current state estimate, has been widely employed for on-board attitude estimation. The MEKF uses the quaternion as a
global attitude representation and it uses a three-component state vector for the local representation of attitude errors.
Our implementation differs from classical one11 due to the fact that the angular acceleration of the target is not known.
Thus, the relative angular velocity has been added to the state vector, and it is assumed to be constant5 up to a process
disturbance Bw:

ω̇ = 0 + Bw (17)

where w is a zero-mean Gaussian noise process with given covariance Q. This is a reasonable assumption if no prior
information about the angular rates of the target object is available and if the relative angular rate is small enough to be
approximated as constant the integration time step of the navigation filter. The measurement equation is given by:

y = h(q) + Dv (18)

where h(q) is the noise-free vector of measurements, and v is a vector of zero-mean Gaussian noise processes with
covariance R. Since our IP chain directly estimates the relative rotation matrix, the measurement function is written as:

h(q) =
[
A(q)r̄1
A(q)r̄2

]
(19)

in which A(q) is the relative attitude matrix, r̄1 and r̄2 are two mutually orthogonal reference directions. The AMEKF
is summarized in Table 3.

Algorithm 3 Augmented Multiplicative Extendend Kalman Filter

Initialization:
q̂(t0) = q̂0

ω̂(t0) = ω̂0

P(t0) = P0

Prediction:
˙̂q = 1

2Ω(ω̂)q̂
˙̂ω = 0
P−k = Φ(tk, tk−1)P+k−1Φ

T (tk, tk−1) + BQBT∆t
where

F(t) =

−ω̂× I3×3

03×3 03×3


Φ = I + F∆t
G =

[
03×3 I3×3

]T

Q = σ2
wI3×3

Correction
Kk = P−k HT

k (HkP−k HT
k + Rk)−1

R = σ2
v I3×3

P+k = (I − KkHk)P−k (I − KkHk)T + KkRKT
k

q̂+k = q̂−k +
1
2Ξ(q̂−k )Kk[yk − h(q̂−k )]

4.1.2 Second Order Minimum Energy Filter on SO(3)

Minimum Energy Filtering represents a deterministc alternative to the stochastic MEKF. It was first introduced by
Mortensen13 and later applied to attitude estimation on SO(3) by Zamani.29 The first application of the Second Order
Minimum Energy Filter for relative attitude estimation can be found in the work of Pesce,19 in which this novel
estimator outperforms the classical MEKF. Building on these results, we employ a formulation which is solely based on
the kinematic model, which does not require knowledge of the target’s inertia matrix. Although a filter that incorporates
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relative attitude dynamics may outperform it, the mentioned model is still valuable as it can handle partially unknown
objects. This capability is particularly desirable when dealing with derelict targets like space debris. In particular:

Ṙ = R(ω(t))× (20)

While the relative angular velocity is assumed to be constant up to white noise, as previously done for the AMEKF:

ω̇ = Bw (21)

Equations 20 and 21 already represent the evolution of the relative rotation matrix and relative angular velocity, re-
spectively, and they do not rely on the dynamics equations. The complete formulation of the kinematic second-order
minimun energy filter is summarized below in Table 4, assuming the same measurement input as the AMEKF.

Algorithm 4 Second Order Kinematic Minimum Energy Filter on SO(3)

Initialization:

ˆR(t0) = R̂0

ˆω(t0) = ω̂0

K(t0) = K0

Main Filtering Step:
˙̂R = R̂

(
ˆω(t) + K11rR + K12rω

)
×

˙̂ω = K21rR + K22rω

K̇(t) = −αK + AK + KAT − KEK + BR−1BT −WK − KWT

where

rt =

rR

rω

 =
u1(r̂1 × r1 − u2 r̂2 × r2)

0


ui = b2/d2

i

r̂i = R̂T r̄i, ri = RT r̄i + diϵ

In which K is the six-by-six gain matrix, b and di model the process and measurement noise, respectively and α is a
forgetting factor for the integration of the matrix riccati equation of the gain. It is worth mentioning that the full state
of the second order minimum energy filter is a 48-by-1 vector, and thus it may be computationally demanding for an
on-board implementation.

4.1.3 Equivariant Observer on SE(3)

The Lie-group SE(3) is usually considered a model for rigid-body transformations of the Euclidean space. It has been
recently shown15 that this group can also be used to model a symmetry of the second-order velocity kinematics for
attitude. In their recent work, Ng et. al.14 demonstrate that the second order kinematics are equivariant, and then derive
a second-order observer on the SE(3) group. We propose and adaptation of their observer to the case of relative attitude
estimation, in which measurements of the relative angular velocity are not available. The complete derivation of the
observer is here omitted for brevity, and only the key concepts are reported. A generic element of the Special Euclidean
group SE(3) can be written as follows:

S E(3) = {(Q, q)|Q ∈ S O(3), q ∈ R3} (22)

It is then necessary to define the product manifold:

M = S O(3) × so(3) (23)

and a group action Φ : S E(3) ×M →M is defined as:

Φ((Q, q), (R, ω×)) = (RQ, (QT (ω + q))×) (24)
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Let (R0, ω0) be a constant reference state inM and let X̂ = (Q̂, q̂) ∈ S E(3), with arbitrary initial conditions ˆX(0) =
(Q̂(0), q̂(0)). The observer state can be obtained as:

(Q̂, q̂) = Φ
(
((R̂, ω̂), (R0, ω0))

)
(25)

In which R̂, ω̂ represent the relative rotation and relative angular velocity estimates. The formulation of the second-
order equivariant observer is reported in Table 5. The same measurement model as before is employed, and the input
angular acceleration is assumed to be null.

Algorithm 5 Second Order Equivariant Observer

Initialisation:
ˆQ(t0) = Q̂0

ˆq(t0) = q̂0

Main Filtering Step:
˙̂Q = (ω0 + q̂)×Q̂ + (Q̂π̂)×Q̂
˙̂q = (Q̂π̂)×(ω0 + q̂) + Q̂θ̂

where

π̂ = k1(r1 × Q̂T RT
0 r̄1 + r2 × Q̂T RT

0 r̄2)

θ̂ = k2(r1 × Q̂T RT
0 r̄1 + r2 × Q̂T RT

0 r̄2)

ri = RT r̄i + diϵ

With k1, k2 being two scalar gains. In our formulation we set R0, ω0 to be a random orthonormal matrix and a random
three-by-one vector. It is important to highlight that while a fixed-gain observer is not an optimal estimator, it has
the advantage of being immune to the instabilities commonly associated with the numerical integration of the matrix
Riccati equation. Additionally, the computational burden of a fixed-gain observer is significantly lighter compared to
the Second Order Minimum Energy filter, as the latter necessitates the integration of the six-by-six gain matrix during
each observation step.

5. Simulations and results

In this section, the numerical simulation environment to test the different filtering formulations is described. The IP
chain is briefly illustrated and the different simulation scenarios are presented. An overview of the results is provided,
with a critical discussion of the filtering schemes’ performances.

5.1 Simulation Scenario Description

The relative navigation architecture is preliminarily tested on synthetically generated images of the Tango spacecraft,2

adopting the same camera properties as the one employed for SPEED datasets16.6 The reference orbital and attitude
dynamics for the two spacecrafts are integrated directly in the Earth Centered Inertial (ECI) frame, accounting for the
Earth oblateness effect, solar radiation pressure and drag perturbations. It is worth noticing that the chaser’s attitude is
controlled in order to keep the target in the camera’s field of View (FOV). The target orbital parameters are reported in
table 1.

Table 1: Scenario orbital parameters

Parameter Value
a [km] 7120.9
e [-] 4.2e-03
i [deg] 98.2
Ω [deg] 45
ω [deg] 70

8
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The target inertia properties have been derived considering a uniform mass distribution and assuming that the target
body frame coincides with the principal axis of inertia. The resulting inertia matrix is thus:

Itango =

2.38 0 0
0 2.13 0
0 0 3.86

 kgm2 (26)

The generated relative trajectory is used both to evaluate the relative navigation algorithm performances and to provide
input to the image generation tool. The details of the image rendering tool used in this work can be found in a previous
work of the author3 and thus they will not be discussed further. The main driver for the different scenarios is represented
by the target’s angular velocity. In fact, it is directly linked to the performances of the relative rotation filters and to
the effectiveness of the IP chain. For this reason, different cases are introduced, with the angular rate of the target
that ranges from a low value up to an almost tumbling motion. Further, two different orbital scenarios are considered,
according to the relative distance w.r.t. the target object. In the first case, the object occupies a large percentage of the
camera FOV (Figure 2a), while in the second case, the target object only occupies a small part of the FOV (Figure 2b),
thus representing a higher challenge for the IP. The specifications of the different test cases are summarized in Table. 2.

Table 2: Specifications of the test cases.

Cases Number of runs
Inital attitude
error [deg]

Initial position
error [m]

Target’s angular
velocity [deg/s]

Relative range
[m]

A1 100
α, β, γ
∈ [-8, 8]

x, y, z
∈ [-1.2, 1.2] [-0.8, 0.5, 0.2] 6

A2 100
α, β, γ
∈ [-8, 8]

x, y, z
∈ [-1.2, 1.2] [-1.8, 2.5, 1.2] 6

A3 100
α, β, γ
∈ [-8, 8]

x, y, z
∈ [-1.2, 1.2] [-1.8, 3.5, 2.2] 6

B1 100
α, β, γ
∈ [-8, 8]

x, y, z
∈ [-3.5, 3.5] [-0.8, 0.5, 0.2] 16.5

B2 100
α, β, γ
∈ [-8, 8]

x, y, z
∈ [-3.5, 3.5] [-1.8, 2.5, 1.2] 16.5

B3 100
α, β, γ
∈ [-8, 8]

x, y, z
∈ [-3.5, 3.5] [-1.8, 3.5, 2.2] 16.5

Concerning the filters’ initialisation, the initial attitude is constructed considering a deviation from the true attitude that
is uniformly drawn from ([-8, 8] deg) on each axis; while the translational filters are initialized with a uniform error
distribution up to 20% of the true inter-satellite distance and 2% of the relative velocity. The filters are run at 1Hz,
which is compatible with the execution time of the IP algorithms.

(a) Small inter-satellite distance (b) High inter-satellite distance

Figure 2: Source images for the vision-based navigation chain

The EKF and H∞ are set with Qpos = (1e − 03)2, Qvel = (1e − 04)2 to model the position and velocity process noise,
respectively. The measurement covariance matrix is instead R = (0.5e−02)2I3 for the test case A and R = (1.5e−02)2I3
for the test case B. The AMEKF is tuned with Q = (1e − 02)2I3 , and R = (3.e − 02)2I3 , respectively. The second
order kinematic filter is tuned with K = 5I6, α = 1e − 03; while the observer gains are set to k1 = 0.8, k2 = 0.008
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respectively. It is important to stress the fact that these tuning parameters were found to give good performances in
terms of stability and steady-state performance across different scenarios; while it would be necessary to carry out a
specific tuning campaign to find the best tuning parameters for each test case scenario.

5.2 Results

The relative position error is defined as:

eρ =
√

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (27)

where x̂, ŷ, ẑ are the position components estimates. The relative attitude error is computed following the approach of
Markley et. al:12

eR = arccos
(
1 −

tr(I − RT R̂)
2

)
(28)

with R̂ being the estimated rotation matrix. Figure 3 illustrates the relative attitude and position errors, calculated using
Equations (27) and (28), for both the minimum energy filter and H∞ filter. The results are averaged over 100 runs for
test case A1, alongside the performance of the IP chain. Similarly, fig. 4 presents the results for test case B1, utilizing
the EKF and the equivariant observer. From these analyses, several qualitative observations can be made. Firstly, it
is crucial to highlight the benefits of incorporating the filter after the IP block, especially concerning the translational
part. The estimation error is generally reduced when the filter is integrated, and it prevents the accumulation and drift
of errors over time. Error peaks are noticeable in the relative attitude estimation when the IP block produces highly
inaccurate results. In such cases, all the rotational filters struggle to mitigate measurement outliers. The sudden increase
in measurement error towards the end of test case A1 is attributed to the illumination conditions of the target object,
which significantly affects the performance of the whole IP chain. In terms of relative rotation, the filter cannot reduce
significantly the input measurements error. This may be due to the fact that the measurements are correlated with
one another and that due to the rotation matrix concatenation, the error tends to accumulate. For a more quantitative
analysis, Table 3 provides the Root Mean Square Error (RMSE) for all cases. Notably, the AMEKF consistently
exhibits the highest estimation error, likely due to the non-Gaussian distribution of measurements. This high error
renders it unsuitable for practical applications, emphasizing the need for a more robust alternative. Comparatively, the
minimum energy filter and the equivariant observer demonstrate similar performances in terms accuracy, with the latter
consistently yielding lower estimation errors. However, it is important to stress the fact that the fixed-gain observer
is more sensitive to measurement outliers. As expected, higher relative angular velocity leads to increased attitude
estimation error for all rotational filters. This is attributed to the fact that the filter’s sample time (1 second) may be too
large to accurately approximate the angular velocity as constant. Strategies such as decreasing the filter’s sample time
or obtaining a reliable estimate of the angular velocity (e.g., using a multiple model filter7) can be employed to address
this issue. Regarding relative translation results, a higher angular rate proves beneficial for both the IP chain and the
filters, resulting in reduced estimation error. Concerning the relative translation, it can be noticed that the estimation
error is worse in the small inter-satellite distance case, being around 5% of the relative range, while in the test case B
the error remains below the 3%. Finally, it is worth noting that the EKF and H∞ filter consistently demonstrate similar
performance. This can be attributed to the relatively small inter-satellite distance compared to the chaser’s orbital
radius, allowing the linearized motion model to sufficiently describe the relative position over time.
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(a) Relative position error (b) Relative attitude error

Figure 3: Average estimation errors for test case A1 using H∞ and minimum energy filter.

(a) Relative position error (b) Relative attitude error

Figure 4: Average estimation errors for test case B1 using EKF and Minimum energy filter.

Table 3: Filters RMSE results.

Cases RMSE - position [m] RMSE - attitude [deg]
H∞ EKF AMEKF Observer Min. Energy Filter

A1 0.162 0.158 2.135 1.541 1.579
A2 0.168 0.164 2.851 1.903 2.152
A3 0.196 0.166 3.582 3.192 3.410
B1 0.235 0.267 1.876 1.215 1.267
B2 0.445 0.436 2.781 1.975 2.186
B3 0.744 1.071 3.671 3.618 3.778

5.3 Robustness to large initialization error

To assess the robustness of the selected filtering techniques, we replicated test case scenario B1 with additional vari-
ations. In this case, we introduced an initial attitude estimation error uniformly distributed within ([-25, 25] deg) for
each axis and an initial position error up to 50% of the true inter-satellite distance. The purpose of this analysis is to
evaluate the effectiveness of the proposed navigation solution under non-ideal conditions, such as when a significant
pose initialization error is present. Figure 5 illustrates the average estimation errors over 50 runs. The AMEKF was
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excluded from this analysis due to its consistently poor performance across all test cases. The filter settings remained
the same as in the previous test cases. The results depicted in Figure 5 indicate that the minimum energy filter exhibits
an oscillatory behavior during the transient phase, which corresponds to the convergence of the gain vector towards its
steady-state value. As anticipated, this behavior is not observed in the observer, which demonstrates faster convergence
to the steady state. However, the observer appears to be more sensitive to measurement outliers compared to the min-
imum energy filter, due to its fixed gain. Regarding the relative translational component, the H∞ and the EKF display
a similar transient behaviour. Nevertheless, both the H∞ filter achieve better steady-state performance, especially in
terms of robustness with respect to IP outliers. These results suggest that a robust estimator paired with a linearized
motion model can be as effective as a more complex algorithm such as the EKF.

(a) Relative position error (b) Relative attitude error

Figure 5: Average estimation errors for large initialization errors.

6. Conclusions

The problem of estimating the relative pose for proximity operations with uncooperative targets has been analyzed, and
various filtering techniques have been tested for this specific application. Two filtering algorithms, namely the EKF
and the H∞ filter, have been considered for relative position estimation. A comparison was made between the AMEKF,
a kinematic second-order filter, and an equivariant observer. A simulation campaign was conducted to evaluate the
performance of these filters when using real IP output as measurements. The study also examined the influence of
initialization errors and the angular rate of the target on the filter performance. Based on the presented results, it can
be concluded that the AMEKF is not robust enough to handle non-Gaussian distributed measurements with significant
outliers. Hence, more robust alternatives should be favoured. Both the equivariant observer and the minimum energy
filter showed promise, with the former offering computational efficiency. Further, the minimum energy filter exhib-
ited oscillatory behaviour during the transient phase, which may negatively impact the performance of a closed-loop
navigation system. The equivariant observer, instead, showed faster convergence to the steady state. Additionally, it
was observed that the relative attitude estimation performance of kinematic filters is strongly influenced by the angular
velocity of the target. Lastly, it is important to stress the fact that for future development it would be preferable to
avoid estimating the relative pose between two adjacent frames since it leads to error accumulation in the rotational
states. Regarding relative translation estimation, it can be concluded that for small inter-satellite distances, adopting
a linearized motion model can be as effective as using a non-linear model, especially when combined with a robust
estimator like the H∞ filter. Overall, these findings highlight the need for robust estimators to handle non-Gaussian
measurements and large initialization errors. The equivariant observer and the minimum energy filter offer promising
alternatives, while the H∞ filter demonstrates robustness and efficiency in relative translation estimation.
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