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Dual adversarial deconfounding 
autoencoder for joint batch‑effects 
removal from multi‑center 
and multi‑scanner radiomics data
Lara Cavinato 1,6*, Michela Carlotta Massi 2,6, Martina Sollini 3,4, Margarita Kirienko 5 & 
Francesca Ieva 1,2

Medical imaging represents the primary tool for investigating and monitoring several diseases, 
including cancer. The advances in quantitative image analysis have developed towards the extraction 
of biomarkers able to support clinical decisions. To produce robust results, multi‑center studies are 
often set up. However, the imaging information must be denoised from confounding factors—known 
as batch‑effect—like scanner‑specific and center‑specific influences. Moreover, in non‑solid cancers, 
like lymphomas, effective biomarkers require an imaging‑based representation of the disease that 
accounts for its multi‑site spreading over the patient’s body. In this work, we address the dual‑factor 
deconfusion problem and we propose a deconfusion algorithm to harmonize the imaging information 
of patients affected by Hodgkin Lymphoma in a multi‑center setting. We show that the proposed 
model successfully denoises data from domain‑specific variability (p‑value < 0.001) while it coherently 
preserves the spatial relationship between imaging descriptions of peer lesions (p‑value = 0), which 
is a strong prognostic biomarker for tumor heterogeneity assessment. This harmonization step 
allows to significantly improve the performance in prognostic models with respect to state‑of‑the‑art 
methods, enabling building exhaustive patient representations and delivering more accurate analyses 
(p‑values < 0.001 in training, p‑values < 0.05 in testing). This work lays the groundwork for performing 
large‑scale and reproducible analyses on multi‑center data that are urgently needed to convey the 
translation of imaging‑based biomarkers into the clinical practice as effective prognostic tools. The 
code is available on GitHub at this https:// github. com/ LaraC avina to/ Dual‑ ADAE.

Hodgkin Lymphoma (HL) is a type of cancer that affects the lymphatic system, where lymphocytes proliferate 
uncontrollably in multiple lymph nodes and eventually in extranodal sites (e.g. spleen, bone, etc.). It is acknowl-
edged as a curable disease thanks to its high rate of response to chemotherapy, often combined with radiotherapy. 
Still, a considerable percentage of patients do not respond to first-line treatments and the latest research has been 
devoting its efforts to discovering alternative and more efficient therapies, such as immunotherapy. Immuno-
therapy has indeed been approved for relapsing cases and has since represented a huge stride for patients, who 
are on average very  young1.

As the number of available therapies increases, treatment planning becomes more and more crucial, and 
personalized medicine is catching on in every aspect of medical practice to devise the optimal treatment for 
each patient. Nevertheless, such a tailored approach requires quantitative and informative data to input into 
powerful and transferrable models on which to rely decisions. On purpose, Positron Emission Tomography/
Computed Tomography (PET/CT) radiomic analysis has been shown to be an insightful, non-invasive tool for 
histological prediction, prognostic assessment, and bone marrow involvement definition in  lymphoma2. In 
brief, the radiomics framework entails the extraction of a high-dimensional vector description of the spatial 
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gray levels’ distribution of an image, the so-called radiomic  features3,4. Each of such features thus describes a 
statistical property of the image heterogeneity at different scales, which can inform several downstream analyses 
and modeling efforts.

As HL is a rare disease, studies performed at a single institution usually do not account for sufficient informa-
tion to build powerful enough models and derive general knowledge. Therefore, oftentimes multi-center cohorts 
need to be set up and large-scale studies have to be conducted, collecting data coming from different  sources5. 
This raises a relevant issue, as radiomics features are known to be highly influenced by the image acquisition 
settings, the segmentation procedures, and the reconstruction parameters, jeopardizing the transferability and 
scalability of the  results6–8. Typical exogenous confounding factors include both scanner characteristics, protocols 
and more general center-specific variabilities. These two factors must therefore be accounted for together when 
performing any type of analysis on multi-center data.

Moreover, the latest trend in radiomics is developing towards the extraction of more and more features, 
including first-order statistics, second- and higher-order statistics, and wavelet/frequency-derived indices. As 
the number of features rises, their pairwise correlation increases accordingly, and it becomes harder and harder 
to build effective models and disentangle the true signals of interest from technical artifacts, noise, and unin-
teresting biological variables. Here comes the need to properly reduce the dimensionality of radiomics vectors, 
transforming the features into low-dimensional vectors that keep the true informative signals while discarding 
domain-specific confounders.

While the above holds for many multi-center radiomics studies of (rare) diseases, when analyzing a hema-
tological (like HL) or metastatic cancer, an additional level of complexity is added to the task of deconfounding 
and reducing radiomics features. In fact, different lesions can be found throughout the body of the patients. 
Despite the current approach for imaging-based quantitative assessment of most cancers, including HL, relies 
on the inspection of the bigger or hotter lesion, Sollini et al.9 have demonstrated how lesions are radiologically 
heterogeneous within patients in terms of radiomics description and how a prognostic classifier performs bet-
ter when all tracer-avid lesions are considered. These findings align with the latest discoveries in the biological 
underpinnings of lymphomas. Some studies on solid cancers have previously described how both proximal and 
distant lesions deriving from the same primary tumors exhibit divergent patterns of both morphological and 
genetic  heterogeneity10. Similarly, Tabanelli et al.11 reported the same evolutionary crossroad between morpho-
logical heterogeneity and intra-clonal evolution in a case of high-grade B-cell lymphoma. Thus, morphological 
heterogeneity behaves as a surrogate of genetic heterogeneity, responsible for treatment inefficacies. It follows 
that all lesions’ morphology must be taken into account, to exhaustively represent the disease in the prediction of 
cancer progression, therapy efficacy, and disease-free survival  outcomes12,13. This implies that any postprocessing 
(i.e. dimensionality reduction and/or deconfusion process) aimed at preparing radiomics features for patients’ 
representations needs to keep the inter-lesion relationships within patients consistent, as here is where informa-
tion of tumor morphological heterogeneity  lies9,14.

In light of the above, a robust post-image-acquisition method aimed to harmonize multi-lesion radiomics 
data from multi-center studies requires (i) to properly remove both scanner and center confounding effects, (ii) 
to treat features’ collinearity and allow for simpler statistical modeling via proper dimensionality reduction, and 
(iii) to keep intra-patient heterogeneity consistent throughout the transformation. All this should be achieved 
while retaining all truly informative signals in the data, so as not to affect—and possibly improve—any potential 
downstream analysis.

Different strategies have been proposed in recent literature to minimize the batch-effects of radiomics vari-
ability, ranging from imaging-based to feature-based  approaches15–17. Most of them aim to perform batch-specific 
standardization of images to disentangle the true signal from environment-related noise. Among these, the 
ComBat method was shown to be superior to other techniques, attracting attention in the radiomics  field15,18,19. 
Starting from its first conception, ComBat was improved over time by different independent researchers. One 
for all, Adamer et al. proposed a regularized solution of ComBat, namely ReComBat, computationally more 
efficient to facilitate the large-scale harmonization of  data20. However, it must be noted that ComBat and most 
of its derivative algorithms were developed in the computational biology domain, where usually only one main 
confounder (i.e. sequencing batch effect) needs to be removed. Indeed, to remove multiple confounders, they 
must be applied repeatedly, one factor at a time. As the context of radiomics studies oftentimes implies mul-
tiple confounders, Nested  ComBat21 and its improved evolution from the same authors, OPNested  Combat22, 
were recently proposed specifically to tackle multi-factor deconfusion. The latter applies ComBat iteratively on 
confounder-associated subsets of features, identifying the optimal order of factors to correct for. Notably, irre-
spective of the number of confounders removed from the data, ComBat-based methods rely on the hypothesis 
of normality of the features’ errors, which might be unrealistic for radiomics  data22. Moreover, none of the above 
methods perform dimensionality reduction and are thus typically followed by Principal Component Analy-
sis (PCA) before the analysis. Additionally, to the best of our knowledge, none of them has neither explicitly 
addressed the problem of preserving inter-lesion relationships within patients, nor has been evaluated in their 
capability to improve prediction by exploiting heterogeneity information after deconfusion.

In this work, we propose a multi-factor deconfusion algorithm better suitable for the downstream analysis 
of multi-lesion/metastatic patients in multi-center studies, described in Fig. 1. The algorithm builds upon the 
work of Dincer et al.23, which, in the context of gene expression analysis, proposes an adversarial deconfound-
ing autoencoder (AD-AE) model that requires no assumption on features’ distribution and jointly performs 
dimensionality reduction and cleaning of the embeddings, enhancing the signal-to-noise ratio. Here, we exploit 
the rationale of this model for the context of multi-center PET/CT radiomics analysis, developing a Dual factor 
AD-AE (in the following, Dual AD-AE) model for the simultaneous removal of both center and scanner con-
founding effects (Fig. 1). We evaluate the proposed model in terms of (1) its deconfusion power, (2) its ability to 
keep invariance of intra-lesion relationship with respect to original data—despite dimensionality reduction—(3) 
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and its prognostic power. In experiments (1) and (3) we compare the results of Dual AD-AE to those of state-
of-the-art ComBat-based approaches. In experiment (2), we propose a statistical test to access the consistency 
of the data transformation. We evaluate our proposed models on a multi-center dataset of HL patients in order 
to predict response to first-line chemotherapy, demonstrating that Dual AD-AE enables building exhaustive 
patient representations and delivering more accurate analyses, especially when trying to exploit the predictive 
power of intra-tumor heterogeneity.

Results
Data collection
Two centers were involved in the study; inclusion criteria were age ≥ 16 years old, newly diagnosed stage I–IV 
HL and baseline  [18F]FDG-PET/CT availability, and exclusion criteria were missing clinical/imaging/follow-up 
data; 128 HL patients were recruited and treated at IRCCS Humanitas Research Hospital (Institution 1), 78 at 
Fondazione IRCCS Istituto Nazionale dei Tumori (Institution 2). Personal information and clinical data were 
annotated for each patient in both hospitals and  [18F]FDG PET/CT imaging was inspected by experienced 
nuclear medicine physicians. Descriptive statistics of patients are available in Supplementary Tables S1 and S2 

Figure 1.  Graphical schema of multi-lesion multi-center radiomics studies confounding issues and Dual 
AD-AE solution: (1) In multi-lesion and/or metastatic tumor settings such as HL, patients can be modelled 
as clouds of points, where each point (L) is defined by the radiomic vector of a lesion (radiomic features can 
be semantically divided into histogram-derived, shape-derived, GLCM-derived, GLRLM-derived, GLZLM-
derived and NGLDM-derived features). Among others, cloud heterogeneity is a valuable predictor of patients’ 
outcome. (2) The radiomics features computed for the same patient (Patient A) can be highly affected by the 
center that collects the images and the scanner used, which are the two primary confounding factors. In turn, 
this affects the patient’s cloud representation, biasing heterogeneity-based prediction and making patients with 
different center-scanner combinations hardly comparable. (3) To harmonize data from multi-center studies 
(matrix R of confounded radiomics features), Dual AD-AE embeds lesion into a lower dimensional space 
(Embedding Space) where exogenous confounding factors are removed and patients’ clouds keep the predictive 
information—as opposed to directly performing PCA on the combined dataset, which results in biased patients’ 
representations (Panel 3 top). To do that, the encoder of the Dual AD-AE ( φ ) is trained to transform the 
radiomics matrix R into the embedding matrix e by maximizing the reconstruction (from embeddings to the 
reconstructed version of the input R̂ ) and simultaneously minimizing the prediction on both center and scanner 
confounding factors (Panel 3 right).



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18857  | https://doi.org/10.1038/s41598-023-45983-7

www.nature.com/scientificreports/

for Institution 1 and Supplementary Tables S3 and S4 for Institution 2. Of note, number of relapsing patients 
was 21 over 128 (16%) in Institution 1 dataset and 17 over 78 (22%) in Institution 2 dataset. All  [18F]FDG-avid 
lesions bigger than 64 voxels were segmented in each patient and radiomic features were extracted from each 
lesion using LIFEx software (www. lifex soft. org24). A total of 1340 and 794 lesions were collected at Institution 
1 and Institution 2, respectively. Information about scanners’ specification and acquisition settings is summa-
rized in Supplementary Tables S5 and S6, while Imaging Biomarker Standardization Initiative (ISBI)-compliant 
standardization and data harmonization have been published  elsewhere9. The study was approved by the local 
ethics committees at Institution 1 (n. 2595 on Jun16, 2020) and Institution 2 (code INT 212/20 on Sep28, 2020); 
given the observational retrospective design of the study, the signature of a specific informed consent was waived.

Experimental outline
As displayed in Fig. 2 and further explained in the “Methods”, the proposed Dual AD-AE consists of (i) an autoen-
coder with multiple hidden layers and (ii) two adversary branches that predict the source of data, i.e., the center 
and the scanner. The rationale of this method is that penalizing the prediction performance of the adversaries 
while jointly maximizing the reconstruction accuracy of the autoencoder will result in lesion embeddings that 

Figure 2.  Architecture of the dual adversarial deconfounding autoencoder (AD-AE) model: the model is made 
of three parts: an autoencoder (encoder: φ , decoder: ψ ), an adversary branch network predicting the center 
confounder (ν1) and a parallel adversary branch network predicting the scanner confounder (ν2) . The network 
is trained by optimizing the input reconstruction task (autoencoder loss) and the deconfusion task (adversary 
losses) as in Eq. (1) of “Methods”. The adversaries unlearn to predict the confounding factors, i.e. the center and 
the scanner.

http://www.lifexsoft.org
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keep as much as possible of the original signal while discarding solely the noise introduced exogenously by the 
two confounders.

As mentioned in the “Introduction”, to identify a robust post-image-acquisition method to harmonize multi-
lesion radiomics data from multi-center studies, one needs to consider several aspects. Indeed, to propose Dual 
AD-AE as better suited to the task, we performed a series of experiments on different harmonization strategies 
(in the following, modalities).

We recall that the center confounding factor relates to the hospital’s imaging facility, the clinical guidelines, 
and the personnel who segments and carries out the acquisition. On the other hand, the scanner confounding 
factor supplies information on the scanners’ specifications and reconstruction parameters. The scanner variable 
may ve intrinsically subordinated to the center variable, as usually different scanners are found in different cent-
ers. They may thus entail some extent of nesting nature and partially overlap in their confounding information.

For the sake of comparison with state-of-the-art approaches, we tested three major ComBat implementations, 
namely  Combat18,  ReComBat20 and OPNested  Combat22, comparing the results to quantify the improvements 
of our solution. Specifically, single-factor ComBat was applied twice in cascade (in both confounders’ orders). 
These two ComBat-based models are namely ComBat-center-scanner and ComBat-scanner-center depending 
on the order of the batch-effects. The very same approach has been followed for ReComBat. OPNested Combat 
was instead applied once on center and scanner effects at the same time, as it was specifically developed for 
multi-factor effect removal.

On these models and ours, we performed three different quantitative experiments. We tested the deconfusion 
power of the different modalities, comparing the proposed method to the state-of-the-art models (Experiment 1). 
Furthermore, considering that the Dual AD-AE encompasses dimensionality reduction as part of the deconfusion 
process, leading to a potentially detrimental transformation of intra-lesion relationships, we developed a novel 
test to assess this impact quantitatively (Experiment 2). Finally, we tested and compared all modalities on their 
ability to keep predictive information intact. We transformed the deconfounded features of each modality into 
different all-lesions patients’ representations, to be fed into prognostic models and evaluated the performance 
of prognostic models (Experiment 3).

Experiment 1: checking deconfusion power
To evaluate the strength of the confounders’ effect, one can verify the predictability of the confounding variables 
(i.e. the center and the scanner) from the data. A high prediction performance denotes the presence of a strong 
confounder-related signal. Therefore, in order to quantify the effect of the deconfusion process, we compared 
the predictive power of cross-validated Logistic Regression models fed with the radiomics features before and 
after the application of the different modalities. Details on the analysis are provided in the “Methods” section. 
Accuracy was annotated for performance comparison through statistical tests. Table 1 shows the results for the 
Dual AD-AE, the two ComBat models, the two ReComBat models, and OPNested ComBat.

While radiomics, as expected, scored very high in predicting both the center and the scanner (as assessed 
by the univariate analysis in Supplementary Table 7), our embeddings showed evidence of deconfusion, com-
parable to state-of-the-art benchmarks. Both the Dual AD-AE and all the Combat-based modalities aligned to 
the same performance, outperforming the non-deconfounded radiomic vectors. Indeed, values highlighted in 
bold in Table 1 correspond to non-significantly different, yet lower than radiomics, performances. All modalities 
were thus equally powerful at the deconfusion task. Of note, the OPNested algorithm selected scanner-center 
as the optimal order, thus the two models are expected to perform similarly. Additionally, the proposed Dual 

Table 1.  Experiment 1 results: comparison between the performance of the Logistic Regression models for 
predicting the two confounding factors: the center and the scanners. The modalities that have been evaluated 
are raw radiomic data, Dual AD-AE embedding, ComBat-standardized data (both with center-scanner order 
and with scanner-center order), ReComBat-standardized data (both with center-scanner order and with 
scanner-center order) and OPNested-standardized data (with scanner-center order). The Logistics Regression 
models are fitted on each of these modalities, in a cross-validated fashion. Values are annotated as mean ± 
standard deviation. The models evaluate (1) the binary prediction of the center labels, and (2) the multi-class 
prediction of the scanner labels. The performances of the radiomics-based models are taken as reference, 
while the performances of the other modalities are analyzed in terms of decrease compared to the baseline 
models’ performance. Statistical tests have been performed and the models that are significantly different from 
radiomics are highlighted in bold.

Accuracy CENTER Accuracy SCANNER

Baseline Radiomics 0.8559 ± 0.0117 0.8617 ± 0.0104

Embedding Dual AD-AE 0.6251 ± 0.0131 0.3308 ± 0.0146

ComBat
ComBat-center-scanner 0.6220 ± 0.0137 0.2968 ± 0.0278

ComBat-scanner-center 0.6236 ± 0.0134 0.3006 ± 0.0307

ReComBat
ReComBat-center-scanner 0.6228 ± 0.0150 0.3009 ± 0.0362

ReComBat-scanner-center 0.6276 ± 0.0124 0.2997 ± 0.0359

Opnested Opnested (scanner-center) 0.6239 ± 0.0118 0.2967 ± 0.0349
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AD-AE model showed a smaller standard deviation of the accuracy in predicting scanner type, supporting the 
robustness of the model.

Experiment 2: cloud‑shape invariance test
In multi-lesion and/or metastatic tumor settings such as HL, patients can be modeled as clouds of  points14, where 
each point is defined by the radiomic vector—whether original, reduced, or deconfounded—of a lesion, and the 
shape of the cloud determines intra-patient tumor heterogeneity as the pairwise relationship between  lesions25. 
To ensure that the predictive information of the clouds’ shape has been preserved, Dual AD-AE embeddings must 
keep invariance with respect to the relative positions of lesions, despite the reduced dimensionality of the result-
ing vectors. That is, patient-wise lesions’ rankings and pairwise lesions’ distances should hold after deconfusion, 
under the hypothesis that they are not independently impacted by exogenous noise. Given this assumption, to test 
for the cloud shape-invariance of the feature transformations, we developed a quantitative method, introducing 
novel metrics called Point Cloud Semantic Drift (PCSD). As further detailed in the “Methods” section, PCSD 
quantifies the extent of the change in peer lesions’ distance rank order within a patient. Furthermore, to define 
a quantitative test of hypothesis for PCSD, we estimated an empirical null distribution of the PCSD values when 
point clouds are randomly transformed, inducing random neighbor swaps by injecting repeatedly Gaussian noise 
in subsets of the embeddings. The empirical p-value of the Dual ADAE transformation was then obtained from 
the Empirical Cumulative Distribution Function (ECDF) of this null PCSD distribution.

Figure 3 shows the results of the proposed method. The population distribution of PDSC from Dual AD-AE 
transformation is displayed alongside the Empirical Distribution Function (EDF) of 100 random transformations. 
From the visual inspection of the plots, the model produced PCSD values skewed toward zero, suggesting the 
shape-invariance of the clouds. Moreover, the empirical p-value was equal to zero, thus we can further sustain 
that Dual AD-AE successfully kept cloud-shape invariance and that the change in inter-lesion distance, which 
occurred during deconfusion, was significantly far from being random.

Experiment 3: checking prognostic power
Despite its unsupervised nature, the proposed approach aims to enable the design of exhaustive patient rep-
resentations to deliver accurate analyses for treatment planning on multi-center datasets. Here we provide an 
example of downstream analysis where to quantify the improvement in predicting the first-line chemotherapy 
outcome of patients affected by HL after correcting for confounding factors. To do this, we resorted to the use of 
three patients’ representations, encompassing both separately and jointly the location and the shape of the point 
clouds. In particular, we represented each patient as a point cloud and defined (1) a mean vector of all lesions 
of each patient (i.e. the centroid of the cloud), (2) a set of topological indexes describing the structure/shape of 
the clouds (i.e. the mean and the standard deviation of the pairwise distances between lesions and the mean and 
the standard deviation of the distances between lesions and the cloud centroid) and (3) a representation includ-
ing both the centroid vector and the cloud describing indexes. Further details are provided in the “Methods” 
section. These three representations were constructed from original radiomics features and their deconfounded 
versions with all the considered modalities (Dual AD-AE embeddings; ComBat-, ReComBat- and OPNested 
ComBat-transformed radiomics). Each of them was fed into a Cox proportional hazard  model26 to predict the 
time-varying response to therapy. Of note, vectors derived from the state-of-the-art algorithms needed to be 
reduced by PCA prior to being input into any model. The significance of the prognostic power of imaging infor-
mation was assessed in terms of the Concordance Index  (CI27). Performances on both the training and testing 
phases were produced by repeated sampling of 20 independent data splits. Supplementary Table S7 reports the 
means and standard deviations of the trials. For visual reference, Figure 4 displays the boxplots of the distribu-
tions of the performance indexes of the modalities, grouped by patients’ representation strategy and deconfusion 
approach. Pairwise tests were performed between settings to be compared and can be appreciated in Table 2.

Figure 3.  Results of patient-wise tests on PCSD for dual AD-AE embedding: (A) The density plot displays the 
overall distribution of PCSDs in the population. (B) The density plot shows the score of the Dual AD-AE results 
over a bootstrap random distribution. Fiducial values of the distribution are marked with vertical lines in the left 
plot and our model performances are displayed with a vertical red line in the right plot.
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As displayed in Table 2, the model performance of the Dual AD-AE modality was significantly higher than 
radiomics’, suggesting how the deconfusion step does also benefit the prediction and the signal-to-noise ratio. 
Of note, the patient representations including cloud topology descriptors (i.e. when using heterogeneity as a 
predictor) always achieved better performance than the benchmarks, being the most predictive and generaliz-
able (i.e. test set performance) overall. From what centroid representation is concerned, ComBat-center-scanner, 
ReComBat-center-scanner, ReComBat-scanner-center, and OPNested ComBat scored similarly yet worse with 
respect to Dual AD-AE. We remind that the OPNested algorithm implemented the same sequence of ComBat-
scanner-center, however, this latter model had lower performance, being significantly outperformed by our 
model.

Figure 4.  Experiment 3 results: the boxplots of the distributions of algorithms’ performances. The three 
different patients’ representation strategies are considered per modality and one representation is displayed per 
plot. The top row plots show training results while the bottom row plots show testing performances. All plots 
report on the y-axis the CIs of ComBat-center-scanner radiomics (light green, ComBat1 for short), ComBat-
scanner-center radiomics (dark green, ComBat2 for short), ReComBat-center-scanner radiomics (dark yellow, 
reComBat1 for short), ReComBat-scanner-center radiomics (light yellow, reComBat2 for short), and OPNested 
ComBat radiomics (fuchsia), dual AD-AE embeddings (blue) and original radiomics (grey). The red dots 
highlight the mean CIs, which are also reported on the right of each respective boxplot.

Table 2.  Experiment 3 results: p-values of the tests comparing different survival models. The Dual AD-AE 
model is considered according to its three different patient representations: (1) the patient is described by 
the centroid of their point cloud, (2) the patient is described by the topological characteristics of their point 
cloud and (3) the patient is described by both the centroid and the topological characteristics of their point 
cloud. These are compared with the radiomics-based models, the ComBat-based models, the ReComBat-based 
models, and with the OPNested-based models. Comparisons are made upon the same patient representation: 
for instance, the Dual AD-AE model fed with centroid representation is compared to the other modalities 
which were fed with centroid representation as well, and so on. Significant values are highlighted in bold.

Comparison wrt

Centroid Cloud description Centroid + cloud description

P-value (train) P-value (test) P-value (train) P-value (test) P-value (train) P-value (test)

Radiomics model << 0.001 << 0.001 << 0.001 0.0001 << 0.001 << 0.001

ComBat-center-scanner model << 0.001 0.1065 << 0.001 0.0003 << 0.001 0.0230

ComBat-scanner-center model << 0.001 0.0473 << 0.001 0.0002 << 0.001 0.0160

ReComBat-center-scanner model << 0.001 0.1381 << 0.001 0.0005 << 0.001 0.0368

ReComBat-scanner-center model << 0.001 0.0676 << 0.001 0.0003 << 0.001 0.0274

OPNested ComBat model << 0.001 0.0676 << 0.001 0.0003 << 0.001 0.0274
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Alternative to deconfusion: frailty Cox proportional hazards model
Deconfusion methods ultimately allow the effective modeling of patients’ representations across scanners and 
centers. However, instead of removing the confounding factor, an alternative yet well-established approach to 
model multi-source samples (i.e. multi-center/multi-scanner data, where we have dependence within groups) is 
the explicit modeling of the group-specific variability within the prediction model. For time-to-event data, this 
can be done via the frailty Cox proportional hazards  model28, which estimates center and/or scanner random 
effects together with the baseline hazard function. To verify whether this approach would make the deconfusion 
step irrelevant, the centroid representation derived from the raw radiomics features was reduced by PCA and 
fed into a frailty Cox proportional hazard model with center-specific and scanner-specific random intercepts. 
Unfortunately, this test dramatically failed due to a lack of model convergence. This result is motivated by the 
small sample size of the data at hand, combined with the high dimensionality of the radiomic variable (even after 
PCA) and the large number of censored patients, which did not allow the model to properly estimate the effects’ 
parameters neither on the training sets, on the testing sets, nor on the dataset as a whole.

Discussion
In this work, we developed a deconfusion algorithm to harmonize multi-center imaging data, with a particular 
focus on multi-lesion/metastatic cancers, like Hodgkin Lymphoma. The Dual AD-AE model performed dimen-
sionality reduction of radiomic features while removing center- and scanner-related information simultane-
ously. The proposed approach was trained on a dataset of Hodgkin Lymphoma patients from two centers and 
outperformed the state-of-the-art methods in the task of radiomic features harmonization, leading to higher 
prediction of response to first-line chemotherapy.

Three experiments were performed to evaluate the model’s properties, raising some major points of discus-
sion. First, the deconfounding power of the Dual AD-AE was granted. In fact, the accuracy of Logistic Regression 
models predicting the scanner and the center target variable sensibly decreased after deconfusion. The Dual 
AD-AE demonstrated a comparable deconfusion power with respect to ComBat-based models, showing no 
statistical differences in cross-validation. However, removing both confounding factors at the same time may 
uncover and discard inter-confounder relationships which may contribute to undesirable noise in the signal. 
Interestingly, the standard deviation of the accuracy of the Dual AD-AE model in predicting the scanner type 
was lower than other models, suggesting the robustness and stability of the proposed model. The ComBat (and 
ReComBat) algorithm applied twice showed variable results when changing the order of application. This incon-
sistency is not surprising, as it motivated the development of OPNested ComBat in the first  place21,22. In fact, 
despite the slight algorithmic differences between ComBat and OPNested, OPNested performed very similarly 
to ComBat-scanner-center.

Additionally, as the context of multi-lesion/metastatic data may benefit from the exploitation of intra-tumor 
heterogeneity as predictive information, we designed a novel metric (i.e. PCSD) and an associated empiri-
cal test to quantify the impact of the Dual AD-AE deconfusion and dimensionality reduction on intra-lesion 
relationships shaping the spatial conformation of patients’ point clouds. Overall, the Dual AD-AE resulted in 
a significantly low PCSD value, rejecting the null hypothesis of no correlation between the original (raw) and 
the deconfounded clouds of lesions. On one hand, this was expected and desired as lesions of one patient share 
both the same center and scanner variability. That is, noise can be considered constant within a single patient 
and the relationship among peer lesions should in principle not be spoiled by center and scanner deconfusion. 
On the other hand, it might be possible that minor shifts could be appreciated in specific lesions, especially 
where massive non-linear transformations were needed to properly clear the data. This might be true for some 
patients lying on the far-right tail of the PCSD distribution. As proved by the test, such results do not translate 
into a detrimental data transformation, rather they show that a trade-off between deconfusion and cloud-shape 
invariance has to be tuned and rigorously assessed. On purpose, the PCSD metric can be exploited to highlight 
the presence of such additional sources of latent and interactive noise, that once removed would release the true 
predictive power of intra-lesion heterogeneity.

This point was further validated in the third experiment presented in this work, where we assessed the increase 
in the prognostic power of the deconfounded representation of patients in terms of response to therapy, against 
ComBat-based alternative approaches. In principle, a proper deconfusion allows the shape and location of the 
point clouds coming from different sources to be meaningfully compared. Thus, one can expect that predictive 
models built on these clouds’ representation, that is lesions’ characteristics and intra-tumor heterogeneity, benefit 
from the deconfusion process. In fact, Dual AD-AE embeddings showed significant improvements with respect 
to the baseline and the benchmarks, even though the gap between training performance and testing performance 
remains large and would necessitate some prevention strategies to overfitting. The results however testify how the 
proposed model can identify and remove the complex and potentially non-linear portion of confounders’ noise 
that the competitors ignore. Moreover, it demonstrates the relevance of removing all confounders simultaneously 
when in presence of multiple factors of variability in the data.

A further particularly relevant result was the difference in performance when using heterogeneity (i.e. cloud 
describing indexes) as a predictor. While this cloud shape representation was merely a simple proof-of-concept 
example, Dual AD-AE embedding was seen to allow for a much better prediction than the baseline model and 
competitors. Conversely, ComBat-based and ReComBat-based benchmarks seemed to corrupt the heterogeneity 
signal to the point of achieving lower CI than the original radiomics features during training, and they grant just 
a very limited performance increase during testing. Additionally, to the best of our knowledge, none of the previ-
ous studies comparing deconfusion algorithms for radiomics  data15–17 evaluated their impact on the predictive 
power of groups of lesions. Here, our proposed approach was the only deconfounding algorithm truly releasing 
the predictive power of heterogeneity, which became the most generalizable predictor.
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This finding leads to two relevant considerations. Clinically speaking, it supports the hypothesis that intra-
lesion heterogeneity does carry predictive information, once properly corrected for linear and non-linear con-
founders. Technically, it endorses the use of a more complex non-linear model like the AD-AE, that can uncover 
and remove explicit and latent types of noise effectively. Although not explicitly enforcing inter-lesion relation-
ships consistency in the model we propose, so that it could be in principle applied as-is to single-lesion data, this 
result testifies in favor of its application (as opposed to the state-of-the-art) to contexts in which heterogeneity 
information is crucial for prediction.

Of course, training complex, non-linear, and heavily parametrized models such as the Dual AD-AE has higher 
computational, time, and memory demands compared to the simpler ComBat-based methods. Nevertheless, 
the latter algorithms rely on Gaussian distribution assumptions for estimating the parametric definitions of the 
statistical moments across batches (i.e. the mean and the variance across centers or scanners), prior to standardi-
zation. However, this strong hypothesis of underlying data structure may not always be appropriate for radiomics 
data, leading to underpowered and biased transformations. Conversely, we proposed a non-parametric algorithm 
removing linear and non-linear confounder-induced noise without any prior assumption. Furthermore, the 
Dual AD-AE was the only method that dealt with two confounders simultaneously. This permitted to reduce the 
risk of ignoring the portion of noise induced by center and scanner interactions (for instance, if one center uses 
way more frequently a set of parameters for a specific scanner, compared to other centers). Moreover, thanks 
to its modular nature, one could easily extend the model to adversarially predict—that is, unlearn—more than 
two confounders. In fact, additional branches could be added, and the overall loss might be updated with the 
maximization of the corresponding accuracies. Further, the weighting parameters �i (with i being the number of 
adversary branches) enable defining the impact of each confounder, rebalancing the expected (or measured) rela-
tive effect of noising factors on the data. Both these aspects could hardly be integrated into the ComBat approach. 
Finally, as opposed to ComBat-based methods, Dual AD-AE performs dimensionality reduction together with 
cleaning of the embeddings. While this may affect the interpretability of the deconfounded data, we argue that 
radiomics features are not easily interpretable per se, and they usually need a dimensionality reduction (such as 
PCA) before modeling, as they are highly collinear.

As a final remark, disregarding the deconfounding algorithm employed, the two-step pipeline of removing 
confounding effects and then analyzing the corrected data has raised several  critiques29,30. Oppositely, the most 
sponsored solution when the confounder information is available is including it within the final prediction model. 
Nevertheless, we have shown in our last tentative experiment how a frailty CoxPH model (even if with only one 
confounder) does not converge when the sample size is small and the number of censored patients is high. This 
is quite common in multi-center studies of rare diseases.

A limitation of the present study is the lack of further data to test our proposed approach. However, no 
additional comparable data was available to the authors at the time of writing. Nevertheless, we believe that the 
comprehensive tests and benchmark studies performed on these cohorts represent a valuable proof-of-concept of 
the method’s potential. Moreover, data provenance may behave as a bias in our experiments. Yet, despite the data 
originated from two geographically close hospitals with standardized procedures and consistent image acquisition 
and feature extraction protocols, inherent heterogeneity and discrepancies in data values persisted, supporting 
the objective of implementing a feature-level  harmonization31. This emphasizes the need for a comprehensive 
approach that combines image standardization, post-processing, and harmonization models to eliminate batch 
effects and achieve data consistency.

In conclusion, we provided a modular and effective approach for harmonizing imaging data coming from 
different sources. We proved that our approach could efficiently correct for multiple batch-related differences so 
that data appear as if they were acquired under a common set of conditions. This translates to higher prognostic 
performances, above all for what regards intra-tumor heterogeneity of multi-lesions/metastatic cancers. As it is 
well known that NN models such as the Dual AD-AE can benefit from Transfer  Learning32 to aid the problem of 
suboptimal and/or overfitting parameters when training data is limited, we provide a tutorial to apply our method 
to new data, available on GitHub (https:// github. com/ LaraC avina to/ Dual- ADAE). We currently share the weights 
of our pre-trained network on this study’s cohorts. Researchers might thus decide to use such weights to pre-train 
their Dual AD-AE model, “borrowing” information from additional samples without privacy concerns. This 
model-sharing framework could be pushed forward with the contribution of the scientific community sharing 
their fine-tuned parameters, paving the way for a virtuous cycle of open science. Insightful knowledge could be 
thus derived from more exhaustive models to optimally impact the clinical practice.

Methods
Dual adversarial deconfounding autoencoders
Dual adversarial deconfounding autoencoder (Dual AD-AE) jointly tackles the denoising from both center- and 
scanner-related information. The architecture of the Dual AD-AE is described in Fig. 2. The network consists 
of two parts: one autoencoder and adversary branches. The autoencoder takes as input the radiomic vector 
associated with a lesion and performs the dimensionality reduction. It is made of one input layer (number of 
input nodes: [1× 45] ) two hidden layers (number of first hidden layer nodes: [1× 32] , number of second hidden 
layer nodes: [1× 16] ), and one output layer (number of output nodes: [1× 45] ). The autoencoder represents the 
backbone of the model and, from its deepest layer, two adversary networks branch out for center and scanner 
predictions. Both adversary networks are made of two hidden layers (dimensions of the first hidden layer and 
the second hidden layer are [1× 50] and [1× 50] respectively) and one output layer ( [1× 2] for center prediction 
and [1× 5] for the branch predicting the scanners).

The loss is then made of three terms, where the reconstruction error, the accuracy of the center classification, 
and the accuracy of the scanner classification sum up as in Eq. (1):

https://github.com/LaraCavinato/Dual-ADAE
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where ν1 is the center adversary branch, ν2 is the scanner adversary branch, �1 and �2 are weighting parameters 
and c and s are the true labels for center and scanner respectively. Of note, weighting parameters can be tuned 
to tailor the importance of the tasks to be optimized. For instance, one could prioritize one confounding factor 
rather than the other, having a priori information about the latent variability of the specific case study data.

In our setting, hyperparameters were tuned according to grid search. The number of layers, the number of 
nodes, and weighting parameters were optimized based on the reconstruction error. The number of epochs was 
optimized according to early stopping  strategy33, i.e., iterations were stopped when no relevant improvements 
of the validation loss were recorded. The batch size was set to 128 and �1 = �2 = 1.

Benchmark state‑of‑the‑art methods
Among the methods proposed in the literature for imaging harmonization, ComBat has been repeatedly elected 
as the best approach such that different implementations and further improvements have been proposed in the 
last years.

ComBat was originally proposed by Johnson and  Rabinovic18 for removing the batch-effect seen in genetics 
microarray analysis. The harmonization method consists of standardizing each batch according to its mean and 
variance. Specifically, the correction takes place at a specific location and scale (L/S), wherein the batch-related 
error is supposed to be present. L/S model states that the value Y for feature f from a sample j in a batch i follows 
the following formulation:

where af  is the feature value, behaving as intercept; X is the design matrix and βf  is the features coefficients such 
that Xβf  is the observed variability; γif  and δif  are the additive and multiplicative batch effects respectively and 
εijf  the standard error. Accordingly, γif  and δif  can be estimated (either in parametric and non-parametric ways) 
from data, and Yijf  can be corrected as:

One of the main advantages of ComBat is being effective even with small batch sizes. Being A = X̃T X̃ positive-
definite, the optimization problem is strictly convex. However, when A happens to be singular the regression 
estimation does not exist and, if the system is underdetermined, ComBat is not guaranteed to bring out a unique 
solution. For this reason, Adamer et al.20 proposed a regularized solution of ComBat (ReComBat) computation-
ally more efficient to facilitate the large-scale harmonization of data.

As to compare our method with the state of the art, we applied both ComBat and ReComBat models to our 
case study. We employed different pipelines to test their performance from different perspectives. ComBat was 
used for deconfounding the imaging data from the center and scanner information. The two ComBat models 
were applied in cascade to the data: (1) one label was used as a batch effect to be removed and (2) the obtained 
denoised vector was further deconfounded by the effect of the other label. We followed two different orders, 
namely ComBat-center-scanner and ComBat-scanner-center. The very same procedure was investigated by 
employing ReComBat implementation. Two different pipelines were thus derived, namely ReComBat-center-
scanner and ReComBat-scanner-center.

As a matter of fact, applying ComBat or ReComBat in cascade to capture and remove the linear variability 
from more than one confounding factor may cause instabilities depending on the specific order of the harmoni-
zation steps. Very recently, Horng et al.21,22 proposed an optimized procedure for sequentially harmonizing data 
from multiple batch effects, namely OPNested ComBat. Besides ComBat and ReComBat, we included OPNested 
as a benchmark model, to be tested in both deconfusion and predictive powers. On one hand, OPNested can 
show a more effective standardization procedure to compensate for the heterogeneity of diverse data sources, 
improving the generalization abilities of imaging data. On the other hand, higher harmonization performance 
might not imply higher predictive performance as it yet remains to be investigated whether and which latent 
factors have to be removed or smoothed.

Evaluating point‑cloud shape consistency
We defined and implemented a novel approach to test the point-cloud shape consistency across transformation: 
the Point Cloud Semantic Drift (PCSD).

Before defining PCSD, let us introduce some necessary notation. Let Mi(1) . . .Mi(K) be the scores associ-
ated with the ordered list Li , where Mi(1) is the best score, Mi(2) is the second best, and so on. The best score 
can be the largest or the smallest depending on the context. Let rLi(A) be the rank of A in the list Li if element A 
is within the top k elements, and be it equal to k + 1 otherwise; rδ(A) is defined likewise for a different list δ . The 
Spearman’s footrule distance between Li and any ordered list δ can be defined as:

Equation (4) is the sum of the absolute differences between the ranks of all the unique elements of the union 
of the two ordered lists. The smaller the value of the metric, the more similar the lists. To compute the Point 

(1)min
T

(φ,ψ , ν)E[|x − gψ(fφ(x))|
2
2 − �1L(hν1(x), c)− �2L(hν2(x), s)]

(2)Yijf = af + Xβf + γif + δif εijf

(3)Y∗
ijf =

Yijf − âf − Xβ̂f − γ̂i f

δif
+ âf + Xβ̂f

(4)S(δ, Li) =
∑

t∈Li∪δ

|rδ(t)− rLi (t)|.
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Semantic Drift (PSD) for an arbitrary point t, we exploit a weighted version of S. We estimate the PSD as the 
weighted change in neighbor rankings, according to Eq. (5).

PSD is the sum of penalties for moving an arbitrary element (data point) t of the list Li from a position rδ(t) 
to another position rLi (t) within the same list (second term of the product) adjusted by the difference in scores 
between the two positions (first term). M(rδ(t)) and M(rLi (t)) are the normalized distances between t and all 
other points in the cloud, respectively after and prior to any transformation. This weighting scheme penalizes 
more the changes in the positions of very distant points, than the neighboring shifts of observations lying close 
in the original cloud. That is, higher weights are assigned to swaps between close-by and far-distant points, 
compared to changes among close neighbors. Such information can deeply inform the deconfusion-invariance 
trade-off.

Once computed the PSD for each point in the cloud C, the Point Cloud Semantic Drift is estimated as the 
average PSDk of the K points in C:

where K is the number of lesions in the patient under consideration.
In our setting, Li corresponds to the set of lesions of patient i as described by the raw radiomic features 

(original set); δ corresponds to the set of lesions described by the transformed features after deconfusion (e.g. 
Dual AD-AE mode). PCSD thus accesses and quantifies the invariance of each cloud (patient) to the data trans-
formation process.

Given that PCSD can take on values ranging from 0 to infinity, we need to establish a suitable test to assess 
the significance of the results obtained from our deconfounded point clouds. To accomplish this, we can build a 
null distribution of PCSD values (PCSDnull ) which serves as an upper bound for the drift. That is, it represents 
the change in the cloud’s shape that would occur if an arbitrary embedding function was employed, completely 
disregarding the initial data structure. Operationally, we randomly transform the original cloud by adding a 
random Gaussian noise with mean µ = 0 and variance σ = 3 to a different subset of the lesions’ vectors. We do 
this iteratively 100 times, computing the PCSD each time. Upon these values, we build the Empirical Cumula-
tive Distribution Function. If the true PCSD value obtained from our deconfounded embeddings falls within 
the limits of the left tail of this empirical null distribution, significant evidence is obtained on the ability of 
our algorithm to maintain the original cloud structure. The empirical p-value is computed from the Empirical 
Cumulative Distribution Function by computing the ratio between the number of trials where the PCSD is lower 
than the computed real value and the total number of trials (100).

Experiments’ implementation details
Three tests have been implemented to test for (1) deconfusion power, (2) transformation consistency, and (3) 
predictive power of the proposed algorithm compared to current literature models.

The deconfusion power has been tested by predicting the confounder(s) using the features under analysis. 
We employed a cross-validated Logistic Regression model, with 100 trials and replacement. Testing accuracy 
was annotated in each trial to compute the mean trend and the standard deviation of the performance of each 
modality. Additionally, to compare the performance of the models, given the normality of the data, we used a 
two-sided parametric t-test for paired samples and evaluated the improvements of the different harmonization 
strategies with respect to the pure radiomics description.

The point cloud shape consistency between radiomics data and transformed data was evaluated as described 
above. The PCSD was computed for each patient and a population test for testing the transformation consistency 
was carried out in the context of the Dual AD-AE.

Lastly, the predictive power of the imaging features has been evaluated with Cox proportional hazard survival 
models in a cross-validation fashion. Three patient representation strategies were implemented to summarize 
multi-lesion information in a single vector object to be properly fed into the models. First, the centroid of each 
patient’s point cloud was computed as the mean profile of peer lesions belonging to them (“centroid representa-
tion”). Then, as a second patient representation, only the distribution of the lesions over the space was described 
and used as model input. For each patient, we computed the pairwise distances between all lesions in the patient 
and we calculated the mean and the standard deviation as an index for lesions’ variability. Moreover, we took the 
distances between every lesion of the patient and their centroid and kept the average and the standard deviation of 
these distances to quantify the lesions’ spreading from their center. Thus, the four indexes were exploited as “point 
cloud description representation” to be fed into the survival model. Finally, the two above mentioned representa-
tions were merged in a “complete representation” of the patient encompassing both the mean disease profile of 
patients and the variability of their lesions. For each of the modalities under testing, the three representations 
were computed and fed into Cox models. Additionally, raw radiomic, ComBat- and ReComBat-based standard-
ized radiomic features were reduced using PCA. To result in a dimensionality comparable to the embeddings, 
we kept the first sixteen principal components, accounting for at least 90% of the variability. Training and testing 
sets are repeatedly split multiple times (20 splits) and c-index scores were reported to assess the improvements 
that the harmonization step brings in terms of prognostic power. To do this, given the normality of the data, 
one-sided parametric t-tests for paired samples were employed to establish the optimal harmonization strategy. 

(5)PSD(δ, Li) =
∑

t∈Li∪δ

|M(rδ(t))−M(rLi (t))| × |rδ(t)− rLi (t)|.

(6)PCSD =
1

K

K∑

k=1

PSDk
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Specifically, the Dual AD-AE embeddings’ performance was compared to ComBat-center-scanner, ComBat-
scanner-center, ReComBat-center-scanner, ReComBat-scanner-center, and OPNested ComBat.

Data availability
The data that support the findings of this study are available from IRCCS Humanitas Research Hospital and 
Fondazione IRCCS Istituto Nazionale dei Tumori but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly available. Data are however available from 
the authors upon reasonable request and with permission of both IRCCS Humanitas Research Hospital and 
Fondazione IRCCS Istituto Nazionale dei Tumori. Code is available at this link https:// github. com/ LaraC avina 
to/ Dual- ADAE.
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