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A B S T R A C T

The digital twin concept represents an appealing opportunity to advance condition-based and
predictive maintenance paradigms for civil engineering systems, thus allowing reduced lifecycle
costs, increased system safety, and increased system availability. This work proposes a predictive
digital twin approach to the health monitoring, maintenance, and management planning of
civil engineering structures. The asset-twin coupled dynamical system is encoded employing
a probabilistic graphical model, which allows all relevant sources of uncertainty to be taken
into account. In particular, the time-repeating observations-to-decisions flow is modeled using a
dynamic Bayesian network. Real-time structural health diagnostics are provided by assimilating
sensed data with deep learning models. The digital twin state is continually updated in a
sequential Bayesian inference fashion. This is then exploited to inform the optimal planning
of maintenance and management actions within a dynamic decision-making framework. A
preliminary offline phase involves the population of training datasets through a reduced-order
numerical model and the computation of a health-dependent control policy. The strategy is
assessed on two synthetic case studies, involving a cantilever beam and a railway bridge,
demonstrating the dynamic decision-making capabilities of health-aware digital twins.

. Introduction

The optimal management of deteriorating structural systems is an important challenge in modern engineering. In particular, the
ailure or non-optimized maintenance planning of civil structures may entail high safety, economic, and social costs. Within this
ontext, enabling a digital twin (DT) perspective for structural systems that are critical for either safety or operative reasons, is
rucial to allow for condition-based or predictive maintenance practices, in place of customarily employed time-based ones. Indeed,
aving an up-to-date digital replica of the physical asset of interest can yield several benefits spanning its entire lifecycle, including
erformance and health monitoring, as well as maintenance, inspection, and management planning [1].

The DT concept [2–6] has been recently applied to several fields for operational monitoring, control, and decision support,
ncluding structural health monitoring (SHM) and predictive maintenance [7,8], additive manufacturing [9], smart cities [10],
rban sustainability [11], and railway systems management [12]. It allows for a personalized characterization of a physical asset,
n the form of computational models and parameters of interest, that evolves over time and is kept synchronized with its physical
ounterpart by means of data-collecting devices. Within a civil SHM framework, such a twinning perspective can be enabled by
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Fig. 1. Predictive digital twin framework for civil engineering structures: graphical abstraction of the end-to-end information flow enabled by the probabilistic
graphical model.

the assimilation of data through data-driven structural health diagnostics (from physical to digital), possibly accommodating the
quantification and propagation of relevant uncertainties related to, e.g., measurement noise, modeling assumptions, environmental
and operational variabilities [13–17]. The resulting updated digital state should then enable prediction of the physical system
evolution, as well as inform optimal planning of maintenance and management actions (from digital to physical).

In this work, we propose a DT framework for civil engineering structures. The overall computational strategy is based upon a
probabilistic graphical model (PGM) inspired by the foundational model proposed in [18], which provides a general framework to
carry out data assimilation, state estimation, prediction, planning, and learning. Formally, such a PGM is a dynamic Bayesian network
with the addition of decision nodes, i.e., a dynamic decision network [19,20]. This is employed to encode the end-to-end information
flow, from physical to digital through assimilation and inference, and back to the physical asset in the form of informed control
actions. A graphical abstraction of the proposed DT strategy is depicted in Fig. 1. The figure shows a physical-to-digital information
flow and a digital-to-physical information flow. These bi-directional information flows repeat indefinitely over time. In particular,
we have:

• From physical to digital. Structural response data are gathered from the physical system and assimilated with deep learning (DL)
models, see e.g., [21,22], to estimate the current structural health in terms of presence, location, and severity of structural
damage. To solve this inverse problem, we refer to vibration-based SHM techniques, see e.g., [23–26], which exploit the
aforementioned collected data, such as displacement or acceleration time histories. This first estimate of the digital state is
then employed to estimate an updated digital state, according to control-dependent transition dynamics models describing
how the structural health is expected to evolve.

• From digital to physical. The updated digital state is exploited to predict the future evolution of the physical system and the
associated uncertainty, thereby enabling predictive decision-making about maintenance and management actions feeding back
to the physical system.

• Offline learning phase. The DT setup considered in this work takes advantage of a preliminary offline learning phase. This phase
involves the training of the DL models underlying the structural health identification, and learning the control policy to be
applied at each time step of the online phase. The DL models are trained in a supervised fashion, with labeled data pertaining to
specific damage conditions generated by exploiting physics-based numerical models. To efficiently assemble a training dataset
representative of potential damage and operational conditions the structure might undergo during its lifetime, we exploit a
reduced-order modeling strategy for parametrized systems relying on the reduced basis method [27]. The health-dependent
2
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Fig. 2. Dynamic decision network encoding the asset-twin coupled dynamical system. Circle nodes denote random variables, square nodes denote actions, and
diamond nodes denote the objective function. Bold outlines denote observed quantities, while thin outlines denote estimated quantities. Directed solid edges
represent the variables’ dependencies encoded via conditional probability distributions, while directed dashed edges represent the variables’ dependencies encoded
via deterministic functions.

control policy is also computed offline, by maximizing the expected future rewards for the planning problem induced by the
PGM.

The elements of novelty that characterize this work are the following: (i) the adaptation of the PGM digital twinning framework
o the health monitoring, maintenance, and management planning of civil engineering structures; (ii) the assimilation of vibration
esponse data is carried out by exploiting DL models, which allow automated selection and extraction of optimized damage-
ensitive features and real-time assessment of the structural state. This work shows how to incorporate in the DT framework
igh-dimensional multivariate time series describing the sensor measurements, while tracking the associated uncertainties. The
roposed computational framework is made available in the public repository digital-twin-SHM [28]. The code implements

the PGM framework as a dynamic decision network. This enables us to easily specify the graph topology from a few time slices, and
then unroll it for any number of time steps in the future.

The remainder of this paper is organized as follows. In Section 2, we describe the proposed DT framework. In Section 3, the
computational procedure is assessed on two test cases, respectively related to a cantilever beam and a railway bridge. Conclusions
and future developments are drawn in Section 4.

2. Predictive digital twins using physics-based models and machine learning

In this section, we describe the methodology characterizing our DT framework in terms of the PGM encoding the asset-
twin coupled dynamical system in Section 2.1; the population of training datasets exploiting physics-based numerical models in
Section 2.2; and the DL models underlying the structural health identification in Section 2.3.

2.1. Probabilistic graphical model for predictive digital twins

The digital twin assimilates vibration recordings shaped as multivariate time series 𝐔(𝝁) = [𝐮1(𝝁),… ,𝐮𝑁𝑢 (𝝁)] ∈ R𝐿×𝑁𝑢 , consisting
of 𝑁𝑢 time series made of 𝐿 sensor measurements equally spaced in time, for instance in terms of accelerations or displacements.
The vector 𝝁 ∈ R𝑁par comprises the parameters representing the operational, damage, and (possibly) environmental conditions.
Each recording refers to a time interval (0, 𝑇 ), within which measurements are recorded with a sampling rate 𝑓s. For the problem
settings we consider, the interval (0, 𝑇 ) is short enough for the operational, environmental, and damage conditions to be considered
time-invariant, yet long enough not to compromise the identification of the structural behavior.

The PGM that defines the elements comprising the asset-twin coupled dynamical system, and mathematically describes the
relevant interactions via observed data and control inputs, is the dynamic decision network sketched in Fig. 2. Circle nodes in the
graph denote random variables at discrete times, square nodes denote actions, and diamond nodes denote the objective function.
Bold outlines denote observed quantities, while thin outlines denote estimated quantities. The directed acyclic structure of the PGM
encodes the assumed conditional dependencies. Edges in the graph represent dependencies between random variables. Solid edges
represent the variables’ dependencies encoded via conditional probability distributions, while dashed edges represent the variables’
dependencies encoded via deterministic functions.

We consider a non-dimensional time discretization, and denote discrete time steps by 𝑡. The physical time duration between
successive time steps may vary depending on the application, and is governed by the update frequency of the DT via data
assimilation, so that the DT is updated once per time step. Thanks to the modeled conditional dependencies between random
3

variables, the graph topology is specified from the first two time steps, and can then be unrolled for any number of time steps.
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The physical state 𝑆𝑡 ∼ 𝑝(𝑠𝑡), with 𝑠𝑡 denoting the realization of the random variable 𝑆𝑡 at time 𝑡, encapsulates the variability in
the health state of the asset, which is usually only partially observable. The probability distribution encoding the relative likelihood
that 𝑆𝑡 = 𝑠𝑡, for any possible 𝑠𝑡, is denoted with 𝑝(𝑠𝑡). The digital state 𝐷𝑡 ∼ 𝑝(𝑑𝑡) is characterized by those parameters employed to
apture the variability of the physical asset by means of the computational models comprising the DT. In our framework, the digital
tate is given as a vector of length two, describing the presence/location and magnitude of damage in the asset. The physical-to-
igital information flow is governed by the observed data 𝑂𝑡 = 𝑜𝑡, which are assimilated by the DT to update the digital state. The
ssimilation is carried out using the DL models described in Section 2.3, providing a first estimate of the digital state 𝐷NN

𝑡 ∼ 𝑝(𝑑NN
𝑡 ).

his estimation is then used in a Bayesian inference formulation, together with the prior belief 𝐷𝑡−1 from the previous time step, to
stimate an updated digital state 𝐷𝑡 according to a control-dependent transition dynamics model describing how the digital state
s expected to evolve. The updated digital state can thus be exploited to compute quantities of interest 𝑄𝑡 ∼ 𝑝(𝑞𝑡), such as modal
uantities or other response features, through the computational models comprising the DT. For instance, quantities of interest
an be useful to perform posterior predictive checks on the tracking capabilities of the DT to assess how it matches the reality,
y comparing sensor measurements with the corresponding posterior estimates. However, we point out that this capability is not
xploited in the present work, and that the 𝑄𝑡 node is kept in the graph in agreement with the foundational model proposed in [18].
evertheless, the updated digital state 𝐷𝑡 is eventually exploited to inform the digital-to-physical information flow, in the form of
ontrol inputs; in Fig. 2, 𝑈𝑡 ∼ 𝑝(𝑢𝑡) and 𝑈𝐴

𝑡 = 𝑢𝐴𝑡 denote the belief about what action to take and the control input effectively
nacted on the asset, respectively. At each time step, 𝑈𝑡 is estimated according to a health-dependent control policy, that maps the
elief over the digital state onto the control actions feeding back to the physical asset. Finally, the reward 𝑅𝑡 ∼ 𝑝(𝑟𝑡) quantifies the
erformance of the asset for the time step and can be equivalently perceived as a negative cost to be maximized.

The key assumptions behind our PGM are that the physical state is only observable indirectly via the sensed structural response,
nd the physical and digital states evolve according to a Markovian process. This implies that the conditional probabilities associated
ith the random variables at one time step depend only on the random variables at the previous time step, and are independent of
ll past states. The resulting graph topology encodes a conditional independence structure that allows us to conveniently cast the
sset tracking within a sequential Bayesian inference framework. Indeed, by exploiting conditional independence and Bayes rule,
he joint distributions over variables can be factorized up to the current time step 𝑡𝑐 , as follows:

𝑝(𝐷NN
0 ,… , 𝐷NN

𝑡𝑐
, 𝐷0,… , 𝐷𝑡𝑐 , 𝑄0,… , 𝑄𝑡𝑐 , 𝑅0,… , 𝑅𝑡𝑐 , 𝑈0,… , 𝑈𝑡𝑐 |𝑜0,… , 𝑜𝑡𝑐 , 𝑢

𝐴
0 ,… , 𝑢𝐴𝑡𝑐 )

∝
𝑡𝑐
∏

𝑡=0

[

𝜙data
𝑡 𝜙history

𝑡 𝜙NN
𝑡 𝜙QoI

𝑡 𝜙control
𝑡 𝜙reward

𝑡

]

, (1)

with factors:

𝜙data
𝑡 = 𝑝(𝑂𝑡 = 𝑜𝑡|𝐷

NN
𝑡 ), (2)

𝜙history
𝑡 = 𝑝(𝐷𝑡|𝐷𝑡−1, 𝑈

𝐴
𝑡−1 = 𝑢𝐴𝑡−1), (3)

𝜙NN
𝑡 = 𝑝(𝐷𝑡|𝐷

NN
𝑡 ), (4)

𝜙QoI
𝑡 = 𝑝(𝑄𝑡|𝐷𝑡), (5)

𝜙control
𝑡 = 𝑝(𝑈𝑡|𝐷𝑡), (6)

𝜙reward
𝑡 = 𝑝(𝑅𝑡|𝐷𝑡, 𝑈

𝐴
𝑡 = 𝑢𝐴𝑡 ). (7)

Herein, 𝜙data
𝑡 encodes the assimilation of observed data through the DL models underlying the identification of the structural health.

𝜙history
𝑡 and 𝜙NN

𝑡 factorize the belief about the digital state 𝐷𝑡, conditioned on the digital state at the previous time step 𝐷𝑡−1, the
last enacted control input 𝑈𝐴

𝑡−1 = 𝑢𝐴𝑡−1, and the data assimilation outcome 𝐷NN
𝑡 . In our PGM, the spaces of the digital states and

control inputs are discrete, thus the relevant causal relationships are modeled by means of conditional probability tables (CPTs).
In particular, 𝜙history

𝑡 plays the role of a predictor forward in time, parametrized by means of a control-dependent CPT describing
how the digital state is expected to evolve. Such a CPT should embody any a priori knowledge that the DT designer has with
respect to the asset and the relevant operational conditions. 𝜙history

𝑡 can be estimated offline from historical data, see e.g., [29,30],
or learned online from experience. On the other hand, 𝜙NN

𝑡 updates the digital state estimate to account for data assimilation. This
is encoded by means of a CPT mapping the estimate 𝐷NN

𝑡 provided by the DL models, onto a belief about 𝐷𝑡. Such a CPT is a
confusion matrix measuring the offline (expected) performance of the DL models in correctly identifying the digital state among all
the possible outcomes of 𝐷𝑡. 𝜙

QoI
𝑡 and 𝜙reward

𝑡 respectively encapsulate the evaluation of the computational models comprising the
DT to estimate quantities of interest, and the computation of the reward function quantifying the performance of the asset. Finally,
the control factor 𝜙control

𝑡 is encoded by means of a health-dependent control policy 𝜋(𝐷𝑡) computed as described in the following.
Since the spaces of the unobserved variables are discrete, we can propagate and update the relative belief exactly with a single pass
of the sum–product message-passing algorithm [19].

The control policy 𝜋(𝐷𝑡) is computed offline under the simplifying assumption of sufficient sensing capability to provide an
accurate estimate of the structural health, allowing us to decouple the sensing and control problems. This involves solving the
planning problem induced by the expected evolution of the structural health, maximizing the expected reward over the planning
horizon. Considering an infinite planning horizon, this can be stated as the optimization problem:

𝜋(𝐷𝑡) = arg max
+∞
∑

𝛾 𝑡E[𝑅𝑡], (8)
4

𝜋 𝑡=0
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Fig. 3. Dynamic decision network employed to predict the future evolution of the digital state and the associated uncertainty. Circle nodes denote random
variables, and diamond nodes denote the objective function. Directed solid edges represent the variables’ dependencies encoded via conditional probability
distributions, while directed dashed edges represent the dependencies encoded via deterministic functions.

where 𝛾 ∈ [0, 1] is the discount factor. Here, this is solved using the dynamic-programming value iteration algorithm [31]. The
reward function to be optimized is chosen as:

𝑅𝑡(𝑈𝑡, 𝐷𝑡) = 𝑅control
𝑡 (𝑈𝑡) + 𝛼𝑅health

𝑡 (𝐷𝑡). (9)

Herein, 𝑅control
𝑡 (𝑈𝑡) and 𝑅health

𝑡 (𝐷𝑡) quantify the rewards relative to control inputs and health state, respectively, and 𝛼 ∈ R is a
weighting factor, useful to tune the trade-off between risk-averse and risk-seeking behavior. After learning 𝜋(𝐷𝑡), 𝑈𝐴

𝑡 is selected as
the best point estimate of 𝑈𝑡.

Starting from the updated digital state 𝐷𝑡𝑐 at the current time step 𝑡𝑐 , future prediction is achieved by unrolling until a prediction
time 𝑡𝑝 the portion of PGM relative to 𝐷𝑡, 𝑄𝑡, 𝑅𝑡, and 𝑈𝑡 (see Fig. 3). All other nodes are removed from the prediction graph, as neither
data assimilation nor actions are performed on the asset while forecasting its evolution. The factorization in Eq. (1) can be extended
over the prediction horizon as:

𝑝(𝐷NN
0 ,… , 𝐷NN

𝑡𝑐
, 𝐷0,… , 𝐷𝑡𝑝 , 𝑄0,… , 𝑄𝑡𝑝 , 𝑅0,… , 𝑅𝑡𝑝 , 𝑈0,… , 𝑈𝑡𝑝 |𝑜0,… , 𝑜𝑡𝑐 , 𝑢

𝐴
0 ,… , 𝑢𝐴𝑡𝑐 )

∝
𝑡𝑝
∏

𝑡=0

[

𝜙history
𝑡 𝜙QoI

𝑡 𝜙control
𝑡 𝜙reward

𝑡

]

𝑡𝑐
∏

𝑡=0

[

𝜙data
𝑡 𝜙NN

𝑡

]

. (10)

The algorithmic description of the online phase of the proposed digital twinning framework is reported in Algorithm 1. The
operations repeat each time new observational data are provided. Note that the considered PGM digital twinning framework is
general, and can easily be adapted to deal with physical assets other than civil engineering structures by reorganizing the topology
of the graph, if necessary.

Algorithm 1 Online phase – algorithmic description
Input: observational data 𝑂𝑡 = 𝑜𝑡

1: assimilate 𝑜𝑡 with the DL models to provide 𝐷NN
𝑡 = 𝑑NN

𝑡 . ⊳ (𝑂𝑡) → (𝐷NN
𝑡 )

2: infer 𝐷𝑡 and 𝑈𝑡 by updating 𝑑𝑡−1, given 𝑢𝐴𝑡−1, 𝑑
NN
𝑡 , and the CPTs encoding 𝜙history

𝑡 , 𝜙NN
𝑡 and 𝜙control

𝑡 .⊳ (𝐷𝑡−1, 𝐷NN
𝑡 , 𝑈𝐴

𝑡−1, ) → (𝐷𝑡, 𝑈𝑡)
3: infer the future evolution of 𝐷𝑡 and 𝑈𝑡, given the updated 𝑑𝑡, and the CPTs encoding 𝜙history

𝑡 and 𝜙control
𝑡 . ⊳ (𝐷𝑡𝑐 ) → (𝐷𝑡𝑝 , 𝑈𝑡𝑝 )

4: select 𝑈𝐴
𝑡 = 𝑢𝐴𝑡 as the best point estimate of 𝑈𝑡 = 𝑢𝑡. ⊳ (𝑈𝑡) → (𝑈𝐴

𝑡 )
5: return control input to be enacted 𝑢𝐴𝑡 , expected evolution of 𝐷𝑡 and 𝑈𝑡.

2.2. Numerical models for simulation-based damage identification

As anticipated in the previous section, the assimilation of structural response data to identify the structural state is carried out
hrough DL models. A simulation-based strategy is exploited to train the DL models on the basis of vibration responses. The training
ata are numerically generated by simulating physics-based models so that the effect of damage on the structural response can be
ystematically reproduced [32]. In particular, the structure to be monitored is modeled as a linear-elastic continuum, discretized
n space through finite elements. Its dynamic response to the applied loadings, under the assumption of linearized kinematics, is
escribed by the following semi-discretized form of the elasto-dynamic problem:

⎧

⎪

⎨

⎪

𝐌�̈�(𝑡) + 𝐂(𝝁)�̇�(𝑡) +𝐊(𝝁)𝐱(𝑡) = 𝐟 (𝑡,𝝁), 𝑡 ∈ (0, 𝑇 )
𝐱(0) = 𝐱0,
�̇�(0) = �̇� ,

(11)
5
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which is referred to as the full-order model (FOM). Here 𝑡 ∈ (0, 𝑇 ) denotes time; 𝐱(𝑡), �̇�(𝑡), �̈�(𝑡) ∈ R𝑁FE are the vectors of nodal
isplacements, velocities and accelerations, respectively; 𝑁FE is the number of degrees of freedom (dofs); 𝐌 ∈ R𝑁FE×𝑁FE is the mass
atrix; 𝐂(𝝁) ∈ R𝑁FE×𝑁FE is the damping matrix, assembled according to the Rayleigh’s model; 𝐊(𝝁) ∈ R𝑁FE×𝑁FE is the stiffness
atrix; 𝐟 (𝑡,𝝁) ∈ R𝑁FE is the vector of nodal forces induced by the external loadings; and 𝐱0 and �̇�0 are the initial conditions (at
= 0), in terms of nodal displacements and velocities, respectively. The mass matrix 𝐌 is not a function of 𝝁 because the mass
roperties of the structure are unaffected by the employed damage description or by the operational conditions. The solution of
roblem (11) is advanced in time using the Newmark integration scheme (constant average acceleration method) [33], to provide
𝑙, �̇�𝑙 and �̈�𝑙, for 𝑙 = 1,… , 𝐿, with 𝐱𝑙 being the vector of nodal displacements at time 𝑙.

With reference to civil structures, we focus on the early detection of damage patterns characterized by a small evolution rate,
hose prompt identification can reduce lifecycle costs and increase the safety and availability of the structure. In this context, a

ocalized reduction of the material stiffness stands as the simplest damage mechanism resulting from a time scale separation between
amage growth and damage assessment, see e.g., [34–36]. Here, local stiffness reduction is obtained by parametrizing the stiffness
atrix via two variables 𝑦 ∈ N and 𝛿 ∈ R, included in the parameter vector 𝝁, respectively describing the location and magnitude

f the applied stiffness reduction, similarly to [37–39]. In particular, 𝑦 ∈ {0,… , 𝑁𝑦} labels the specific damage region, among a set
f predefined 𝑁𝑦 damage locations, where 𝑦 = 0 identifies the damage-free baseline. The parameter 𝛿 ∈ R describes the magnitude
f the stiffness reduction taking place within the predesignated region associated with 𝑦.

As 𝑁FE increases, the computational cost associated with the solution of the FOM for any sampled 𝝁 also grows, and the
eneration of synthetic datasets becomes prohibitive. To address this challenge, a projection-based reduced-order model (ROM)
s exploited in place of the FOM to speed up the offline dataset population phase, similarly to [38,39]. The ROM is obtained by a
roper orthogonal decomposition (POD)-Galerkin reduced basis method [27,40–42]. This reduced-order modeling strategy is chosen
ecause POD has been investigated and validated in the context of structural dynamics [43,44] and structural analysis [45,46], its
ppealing offline–online decoupling, and the availability of efficient criteria for the selection of POD basis functions. It is worth
oting that alternative reduced-order modeling approaches can also be employed to alleviate the computational burden during
he offline dataset generation. For instance, one could use spectral POD [47–49], or Grassmannian diffusion maps [50], as viable
lternatives to the reduced basis method.

The ROM approximation to the solution of Problem (11) is obtained by linearly combining 𝑁RB ≪ 𝑁FE POD basis functions
𝑘 ∈ R𝑁FE , 𝑘 = 1,… , 𝑁RB, as 𝐱(𝑡,𝝁) ≈ 𝐖�̂�(𝑡,𝝁), where 𝐖 = [𝐰1,… ,𝐰𝑁RB ] ∈ R𝑁FE×𝑁RB is the basis matrix collecting the POD basis

unctions and �̂�(𝑡,𝝁) ∈ R𝑁RB is the vector of unknown POD coefficients. By enforcing the orthogonality between the residual and
he subspace spanned by the first 𝑁RB POD modes through a Galerkin projection, the following 𝑁RB-dimensional semi-discretized
orm is obtained:

⎧

⎪

⎨

⎪

⎩

𝐌𝑟
̈̂𝐱(𝑡) + 𝐂𝑟(𝝁) ̇̂𝐱(𝑡) +𝐊𝑟(𝝁)�̂�(𝑡) = 𝐟𝑟(𝑡,𝝁), 𝑡 ∈ (0, 𝑇 )

�̂�(0) = 𝐖⊤𝐱0,
̇̂𝐱(0) = 𝐖⊤�̇�0.

(12)

The solution of this reduced-order system is advanced in time using the same strategy employed for the FOM model, and then
projected onto the original FOM space as 𝐱(𝑡,𝝁) ≈ 𝐖�̂�(𝑡,𝝁). Here, reduced matrices 𝐌𝑟, 𝐂𝑟, and 𝐊𝑟, and the reduced vector 𝐟𝑟 play
the same role as their high-fidelity counterparts, yet with dimension 𝑁RB ×𝑁RB instead of 𝑁FE ×𝑁FE, according to the following
relationships:

𝐌𝑟 ≡ 𝐖⊤𝐌𝐖, 𝐂𝑟(𝝁) ≡ 𝐖⊤𝐂(𝝁)𝐖,
𝐊𝑟(𝝁) ≡ 𝐖⊤𝐊(𝝁)𝐖, 𝐟𝑟(𝑡,𝝁) ≡ 𝐖⊤𝐟 (𝑡,𝝁). (13)

The basis matrix 𝐖 is obtained by POD, exploiting the so-called method of snapshots as follows. First, a snapshot matrix
𝐒 = [𝐱1,… , 𝐱𝑁S ] ∈ R𝑁FE×𝑁S is assembled from 𝑁S solution snapshots, computed by integrating in time the FOM solution for
different values of parameters 𝝁. The computation of an optimal reduced basis is then carried out by factorizing 𝐒 through a singular
value decomposition. We use a standard energy-based criterion to set the order 𝑁RB of the approximation. For further details see,
e.g., [21,23,27,42].

To populate the training dataset , the parametric space of vector 𝝁 is taken as uniformly distributed, and then sampled via the
Latin hypercube rule. The number of samples is equal to the number 𝐼 of instances collected in  as:

 = {(𝐔𝑖, 𝑦𝑖, 𝛿𝑖)}𝐼𝑖=1, (14)

where the vibration recordings 𝐔𝑖 associated with the 𝑖–th sampling of 𝝁, with 𝑖 = 1,… , 𝐼 , are labeled by the corresponding values
of 𝑦𝑖 and 𝛿𝑖, and are obtained as follows. With reference to displacement recordings, nodal values in (0, 𝑇 ) are first collected as
𝐕𝑖 = [𝐖�̂�1,… ,𝐖�̂�𝐿]𝑖 ∈ R𝑁FE×𝐿 by solving Problem (12). The relevant vibration recordings 𝐔𝑖 are then obtained as:

𝐔𝑖 = (𝐓𝐕𝑖)⊤, (15)

where 𝐓 ∈ R𝑁𝑢×𝑁FE is a Boolean matrix whose (𝑛, 𝑚)–th entry is equal to 1 only if the 𝑛–th sensor output coincides with the 𝑚–th
dof. In order to mimic the measurement noise, each vibration recording in  is corrupted by adding an independent, identically
distributed Gaussian noise, whose statistical properties depend on the target accuracy of the sensors. In the following, the index 𝑖
6

will be dropped for ease of notation, unless necessary.



Computer Methods in Applied Mechanics and Engineering 418 (2024) 116584M. Torzoni et al.

t
u

̂

2.3. Data assimilation via artificial neural networks

The 𝜙data
𝑡 factor in our PGM encodes the assimilation of observed data through the DL models underlying the identification of

he structural health. In this section, we describe the adopted DL models, the aspects related to their training, and how they are
sed to assimilate observational data to detect, locate, and quantify the presence of structural damage.

Every time new observational data 𝐔 are acquired, they are first processed with a classification model NNCL to address damage
detection/localization. Classification involves the prediction of an output class to categorize a given input. Here, the classes are
those described through the 𝑦 parameter. Whenever a damage is identified in the 𝑗–th region, 𝑗 = 1,… , 𝑁𝑦, the observational data
𝐔 are further processed with regression models NN𝑗

RG, one for each damageable region, to quantify the associated amount of damage
𝛿.

The aforementioned classification and regression tasks are addressed by means of DL models. The use of DL models for SHM
purposes has the advantage of automating the feature engineering stage characterizing the pattern recognition paradigm for
SHM [35,51]. Indeed, a DL model is trained to select and extract optimized damage-sensitive features from raw sensor recordings
through an end-to-end learning process. Moreover, since the DL model is learned offline, the structural state can be next assessed
in real-time regardless of considering continuous or discrete variables, which would be difficult to achieve with other optimization
techniques, such as nonlinear programming, stochastic optimization, and metaheuristic methods.

The model NNCL addresses the multi-class classification task underlying the damage detection/localization problem, namely
NNCL ∶ 𝐔 → 𝒃 ∈ R𝑁𝑦+1. The target label 𝒃 categorizes one of the 𝑁𝑦 + 1 predefined damage scenarios described through parameter
𝑦. In particular, 𝒃 is a one-hot encoding 𝒃 = [𝑏0,… , 𝑏𝑁𝑦 ]⊤, with entries 𝑏𝑚 equal to 1 if the target class 𝑦 is 𝑚 and 0 otherwise, with
𝑚 = 0,… , 𝑁𝑦. This is needed because DL models cannot operate on nominal data directly. They require all input variables and output
variables to be numeric. The one-hot encoding converts the nominal feature described by the 𝑦 parameter into a multidimensional
binary vector. The number of dimensions corresponds to the number of categories, and each category gets its dimension. Each
category is encoded by mapping it to a vector in which the entry corresponding to the category’s dimension is 1, and the rest are 0.

The estimated counterpart of 𝒃 is obtained as �̂� = NNCL(𝐔). By employing a Softmax activation function for the output layer of
NNCL, the entries of �̂� = (�̂�0,… , �̂�𝑁𝑦 )⊤ ∈ R𝑁𝑦+1 are interpreted as the confidence levels �̂�𝑚 by which 𝐔 is assigned to the 𝑚–th damage
class, with 𝑚 = 0,… , 𝑁𝑦. In particular, the Softmax activation function converts the real-valued vector 𝒂 = (𝑎0,… , 𝑎𝑁𝑦 )⊤ ∈ R𝑁𝑦+1,
provided by the output layer of NNCL, into a discrete probability distribution as:

�̂� = Softmax(𝒂), with �̂�𝑚(𝒂) =
exp(𝑎𝑚)

∑𝑁𝑦
𝑘=0 exp(𝑎𝑘)

, 𝑚 = 0,… , 𝑁𝑦. (16)

When NNCL is exploited for prediction, the most likely class is selected as the one that best categorizes the processed measurements
𝐔.

The model NN𝑗
RG addresses the regression task underlying the damage quantification problem, namely NN𝑗

RG ∶ 𝐔 → 𝛿 ∈ R, with
𝑗 = 1,… , 𝑁𝑦. The estimated counterpart of 𝛿 is obtained as 𝛿 = NN𝑗

RG(𝐔). Hence, the regression models, one for each damageable
region, map the vibration recordings 𝐔 associated with the 𝑗–th damage region, onto the estimated magnitude of the stiffness
reduction taking place within the relative damage region. Since all NN𝑗

RG models are learned following the same procedure, the
index 𝑗 will be dropped in the following for ease of notation.

Since the space of digital states in the PGM is discrete, the outcomes of NNCL and NNRG are accommodated within the PGM by
discretizing the range in which the damage level 𝛿 can take values in 𝑁𝛿 uniform intervals, thus resulting in 𝑁𝑑 = 1+𝑁𝛿𝑁𝑦 possible
states. The same reasoning is followed to compute the confusion matrix encoding the 𝜙NN

𝑡 factor. In particular, 𝜙NN
𝑡 measures the

offline performance of NNCL and NNRG in assimilating noisy FOM data to classify the digital state, among the 𝑁𝑑 possible outcomes
of 𝐷𝑡.

The models NNCL and NNRG are trained separately. The datasets dedicated to the training of NNCL and NNRG are derived from
dataset  in Eq. (14) as follows. The dataset used to learn NNCL is obtained from Eq. (14), as

CL = {(𝐔𝑖, 𝒃𝑖)}𝐼𝑖=1. (17)

The dataset used to learn NNRG is derived from Eq. (14), as

RG = {(𝐔𝑖RG , 𝛿𝑖RG )}
𝐼RG
𝑖RG=1

, (18)

where 𝐼RG is the number of training instances in RG, all characterized by a structural damage within the same predefined region.
The set of weights and biases parametrizing NNCL is denoted as 𝜣CL. This is optimized minimizing the probabilistic categorical

cross-entropy [37,52] CL between the predicted and target class labels over CL:

CL(𝜣CL,CL) = − 1
𝐼

𝐼
∑

𝑖=1

𝑁𝑦
∑

𝑚=0
𝑏𝑚𝑖 log(�̂�𝑚𝑖 ), (19)

which provides a measure of the distance between the discrete probability distribution describing 𝒃, and its estimated counterpart
𝒃 = NNCL(𝐔).

The set of weights and biases 𝜣RG parametrizing NNRG is learned through the minimization of the following mean squared error
loss function:

RG(𝜣RG,RG) =
1
𝐼

𝐼RG
∑

(𝛿𝑖RG − 𝛿𝑖RG )
2, (20)
7
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Fig. 4. L-shaped cantilever beam: details of synthetic recordings related to displacements 𝑢1(𝑡),… , 𝑢8(𝑡), loading condition, and predefined damage regions
𝛺1 ,… , 𝛺7.

which provides a measure of the distance between the target magnitude of the stiffness reduction 𝛿, and its approximated counterpart
𝛿 = NNRG(𝐔).

The algorithmic description of the procedures and computations characterizing the preliminary offline phase of the proposed
digital twinning framework is reported in Algorithm 2. The implementation details of the deep learning models are reported in the
Appendix.

Algorithm 2 Preliminary offline phase – algorithmic description
Input: parametrization of the operational and damage conditions

PGM implementing the prediction graph
1: set up the physics-based numerical model of the structure to be monitored.
2: assemble the snapshot matrix of the structural response via FOM analyses.
3: compute the POD basis functions via singular value decomposition of the snapshots matrix.
4: use the ROM to populate the training dataset  with vibration recordings at sensor location.
5: use the recordings and labels in  to derive CL and RG.
6: train the classification model NNCL on CL and the regression models NNRG on RG.
7: test the generalization capabilities of NNCL and NNRG on noisy FOM data.
8: compute the confusion matrix encoding the 𝜙NN

𝑡 factor.
9: compute the control policy 𝜋(𝐷𝑡) by solving the planning problem induced by the PGM.

10: return trained DL models, 𝜙NN
𝑡 factor, control policy 𝜋(𝐷𝑡).

3. Numerical experiments

This section demonstrates the proposed methodology for two test cases: an L-shaped cantilever beam and a railway bridge.
The FOM and ROM in Problem (11) and Problem (12) are implemented in the Matlab environment, using the redbKIT

library [53]. The PGM framework for predictive digital twins is implemented in Python, using the pgmpy library [54]. All
computations have been carried out on a PC featuring an AMD RyzenTM 9 5950X CPU @ 3.4 GHz and 128 GB RAM. The NN
architectures are implemented through the Tensorflow-based Keras API [55], and trained on a single Nvidia GeForce RTXTM
3080 GPU card.

3.1. L-shaped cantilever beam

The first test case deals with the L-shaped cantilever beam depicted in Fig. 4. The structure is made of two arms, each one having
a length of 4 m, a width of 0.3 m, and a height of 0.4 m. The assumed mechanical properties are those of concrete: Young’s modulus
𝐸 = 30 GPa, Poisson’s ratio 𝜈 = 0.2, density 𝜌 = 2500 kg/m3. The structure is excited by a distributed vertical load 𝑞(𝑡), acting on an
area of (0.3×0.3) m2 close to its tip. The load varies in time according to 𝑞(𝑡) = 𝑄 sin (2𝜋𝑓𝑡), with 𝑄 ∈ [40, 80] kPa and 𝑓 ∈ [10, 60] Hz,
respectively being the load amplitude and frequency. Following the setup described in Section 2, these parameters have a uniform
distribution within their respective ranges.
8
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Fig. 5. L-shaped cantilever beam - Confusion matrix measuring the offline performance of the DL models in correctly categorizing the digital state. Results are
reported in terms of classification accuracy, measuring how observational data are classified with respect to the ground truth digital state. Digital states are
ordered first for damage location and then for damage level.

3.1.1. Dataset assembly
Synthetic displacement time histories 𝐔 are obtained in relation to 𝑁𝑢 = 8 dofs along the bottom surface of the structure, to

mimic the monitoring system depicted in Fig. 4. Each recording is provided for a time interval (0, 𝑇 = 1 s) with an acquisition
frequency 𝑓s = 200 Hz. Recordings are corrupted with an additive Gaussian noise yielding a signal-to-noise ratio of 100.

In addition to the damage-free baseline condition, damage is simulated by considering 𝑁𝑦 = 7 possible damage classes, each
referring to a reduction of the material stiffness within a subdomain 𝛺𝑗 , with 𝑗 = 1,… , 𝑁𝑦, as depicted in Fig. 4. The stiffness
reduction can occur with a magnitude 𝛿 ∈ [30%, 80%], and is held constant within the considered time interval.

The FOM is obtained with a finite element discretization using linear tetrahedral elements and resulting in 𝑁FE = 4659 dofs. The
basis matrix 𝐖 is obtained from a snapshot matrix 𝐒, assembled through 400 evaluations of the FOM, at varying values of the input
parameters 𝝁 = (𝑄, 𝑓 , 𝑦, 𝛿)⊤ sampled via Latin hypercube rule. By prescribing a tolerance 𝜖 = 10−3 on the fraction of energy content
to be disregarded in the approximation, the order of the ROM approximation turns out to be 𝑁RB = 56.

The dataset  is built with 𝐼 = 10,000 instances collected using the ROM. This is then employed to train NNCL and NNRG, as
described in the previous section. In the absence of experimental data, the testing phase of NNCL and of NNRG is carried out through
noise-corrupted FOM solutions. In particular, the asset is monitored by processing batches of 𝑁obs = 10 noisy observations, relative
to the same damage location 𝑦 and damage magnitude 𝛿, yet featuring varying operational conditions set by 𝑄 and 𝑓 . As the health
of the asset evolves over time, the DT assimilates a batch of noisy observations {𝐔𝑘}

𝑁obs
𝑘=1 at each time step, to dynamically estimate

the variation in the structural health parameters underlying the digital state.

3.1.2. Digital twin framework
The two structural health parameters within the digital state are 𝒅 = (𝑦, 𝛿)⊤. In order to accommodate the outcome of the DL

models within the PGM and to compute the CPT encoding the 𝜙NN
𝑡 factor, the range in which the damage level 𝛿 can take values

is discretized in 𝑁𝛿 = 6 intervals {[30%, 35%], [35%, 45%], [45%, 55%], [55%, 65%], [65%, 75%], [75%, 80%]}, thus resulting in 𝑁𝑑 = 43
possible digital states. The number of 𝛿 intervals and the width of each interval are chosen arbitrarily, and there are no restrictions
in this respect. The resulting digital states are then sorted to follow the lexicographic order.

The confusion matrix reported in Fig. 5 measures the offline performance of NNCL and NNRG in assimilating noisy FOM data to
classify the digital state, among the 𝑁𝑑 possible outcomes of 𝐷𝑡. The (unknown) ground truth digital state is detected by the DL
models with an overall classification accuracy of 93.61%. Moreover, it can be argued from the confusion matrix that most of the
misclassifications are due to the damage scenarios related to a stiffness reduction within 𝛺6 or within 𝛺7. This is a quite expected
outcome since measurements closer to the clamped side are only marginally affected by the presence of damage close to the free
end of the beam, thus yielding a smaller sensitivity of sensor recordings to damage. This confusion matrix then serves as the CPT
encoding the 𝜙NN

𝑡 factor.
For the present case, we consider four possible control inputs, each provided with a CPT modeling the transition probability

𝑝(𝐷𝑡+1|𝐷𝑡, 𝑈𝐴
𝑡 = 𝑢𝐴𝑡 ) from 𝐷𝑡 to 𝐷𝑡+1 after taking the action 𝑢𝐴𝑡 , and collectively encoding the 𝜙history

𝑡 factor. These internal models
of how structural health is expected to evolve do not reflect the prescribed ground truth evolution, which is unknown to the DT.
The considered control inputs are the following:

• Do nothing (DN) action. There is no maintenance action planned in this case and the physical state will evolve according to
a stochastic deterioration process.
9
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• Minor imperfect maintenance (MI) action. A maintenance action is performed and the asset may be restored from its current
condition to a healthier damage state. This can be traced back to, e.g., patching and sealing cracked surfaces, rectifying and
replacing expansion joints, or tightening/replacing loose/missing knot bolts for steel members.

• Major imperfect maintenance (MA) action. A maintenance action is performed and the asset may be restored from its current
condition to a healthier damage state, with a higher probability of improvements than in the previous case. This can be traced
back to, e.g., repairing heavily damaged slabs, piers, and steel members, and retrofitting compromised structural elements.

• Perfect maintenance (PM) action. A maintenance action is performed and the asset is restored from its current condition to
the damage-free state. This can be traced back to the replacement of excessively compromised structural elements.

3.1.3. Results: two available actions
We first illustrate the DT capabilities to assimilate observational data and track the structural health evolution, by restricting

he available actions to DN and PM. The (unknown) ground truth evolution of structural health varies depending on the most
ecently applied control input, which can be either DN or PM. In the absence of maintenance, the physical state evolves following
deterioration process. We prescribe a (simulated) stochastic degradation process that monotonically deteriorates the structural

ealth. The degradation process features a probability of damage inception (𝑦 ≠ 0) equal to 0.5. Damage may develop in any of
the predefined regions with 𝛿 = 30%, and then propagate with 𝛿 increments sampled from a Gaussian probability density function
(pdf) centered at 1.5% and featuring a standard deviation equal to 1% (negative increments are rounded to zero). The effect of
a PM action is simulated by restoring the physical state to its undamaged configuration. At each time step during the operation,
new observational data are simulated according to the (unknown) ground truth structural health and the most recently enacted
control input. The DT assimilates the data and estimates the digital state, eventually suggesting the next control input to enact.
Note that the prescribed trajectory of the structural health parameters is arbitrarily chosen to fully display the capabilities of the
DT. Nevertheless, the DT would be equally capable of tracking the structural health evolution also considering either more or less
aggressive degradation processes.

The state transition model encoding 𝜙history
𝑡 is conditioned on the most recently issued control input. The transition probability

𝑝(𝐷𝑡+1|𝐷𝑡, 𝑈𝐴
𝑡 = 𝑢𝐴𝑡 ) from 𝐷𝑡 to 𝐷𝑡+1 associated with the DN action assumes that damage may start in any subdomain 𝛺𝑗 , with

𝑗 = 1,… , 𝑁𝑦, with probability 0.05, and then grow to the next 𝛿 interval with the same probability. The transition model assumed
for the PM action instead maps the 𝐷𝑡 belief to a belief 𝐷𝑡+1 associated with a damage-free condition, independently of the current
condition. The corresponding CPTs are transition matrices, where the diagonal entries represent the probability of staying in the
same state. The lower-left and upper-right triangles are associated with the probabilities of the system of deteriorating and improving
its condition, respectively. Therefore, the DN transition matrix is a lower-left triangular matrix, with the highest probability assigned
to remaining in the same state, consistent with what is expected for the deterioration of civil structures. The transition to the next 𝛿
interval is the second most likely transition, while improvements have a zero probability. Once the structure has reached the last 𝛿
interval, it remains in this condition with a probability equal to 1. In contrast, the PM transition matrix is an upper-right triangular
matrix with probabilities equal to 1 in the first row.

At each time step, the DT selects a control input 𝑢𝐴𝑡 ∈ {DN, PM} to be enacted on the asset. Taking a DN action yields a positive
reward, but also gives the chance of worsening the asset’s structural health. On the other hand, the PM action responds to the
degrading structural health, yet yields a negative reward. The computation of the costs associated with the health state and control
inputs encapsulates the evaluation of the 𝜙reward

𝑡 factor quantifying the performance of the asset. In particular, the two reward
functions in Eq. (9) are defined as:

𝑅control
𝑡 (𝑢𝐴𝑡 ) =

{

+12, if 𝑢𝐴𝑡 = DN,
−20, if 𝑢𝐴𝑡 = PM,

𝑅health
𝑡 (𝑑𝑡) =

⎧

⎪

⎨

⎪

⎩

+0.1, if 𝑦 = 0,

−exp(6𝛿∕5), if 𝑦 ∈ {1, 2, 3, 4},

−exp(𝛿), if 𝑦 ∈ {5, 6, 7},

(21)

where 𝑅control
𝑡 targets the cost assigned to each control input and 𝑅health

𝑡 measures the cost associated with the structural health
state. These non-dimensional rewards represent indicative values the decision-maker is charged due to the condition of the structure.
Although these values are not based on real data, actual values are not usually hard to find. State agencies and companies provide
lists with services and costs [56]. The three cases in 𝑅health

𝑡 distinguish between the absence of damage, the presence of damage
within the harm closed to the clamped side, and the presence of damage far from the clamp, respectively. Note how these penalize
the progressive deterioration of the structural health as a function of 𝛿. 𝑅health

𝑡 can resemble a variety of aspects, like reduction in
the level of service due to deterioration, working accidents, structural reliability, and structural failure probability [56].

During the offline phase, we solve the planning problem induced by the PGM to compute the control policy 𝜋(𝐷𝑡), which maps
the digital state belief to actions and encodes the control factor 𝜙control

𝑡 . The optimization of 𝑅𝑡(𝑈𝑡, 𝐷𝑡) is carried out as described
n Section 2.1, assuming a discount factor 𝛾 = 0.95 and a weighting factor 𝛼 = 2. The computed control policy recommends that

the asset operates until when 𝛿 ∈ [65%, 75%] and 𝛿 ∈ [75%, 80%], respectively if 𝑦 ∈ {1, 2, 3, 4} and if 𝑦 ∈ {5, 6, 7}, at which point it
should be repaired.

Fig. 6 depicts a simulated online phase of the DT up to time step 𝑡𝑐 = 50. Results are reported in terms of the (unknown) ground
truth digital state, and the corresponding DT estimate after assimilating the observational data. The graphs report the evolution
of the digital state only for the damaged regions, nevertheless, damage can potentially affect all 𝛺1,… , 𝛺7 predefined damageable
regions. The DT proves capable of accurately tracking the digital state evolution with relatively low uncertainty. The corresponding
estimation of the control inputs is reported in the bottom part of the figure, demonstrating that the DT is able to promptly suggest
10
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Fig. 6. L-shaped cantilever beam - Online phase of the digital twin framework with two possible actions: DN (do nothing), and PM (perfect maintenance).
Probabilistic and best point estimates of: (top) digital state evolution against the ground truth digital state; (bottom) control inputs informed by the digital twin,
against the optimal control input under ground truth. In the top panels the background color corresponds to 𝑝(𝐷𝑡|𝐷𝑡−1 , 𝐷NN

𝑡 , 𝑈𝐴
𝑡−1 = 𝑢𝐴𝑡−1). In the bottom panel it

corresponds to 𝑝(𝑈𝑡|𝐷𝑡).

Fig. 7. L-shaped cantilever beam - Digital twin future predictions with two possible actions: DN (do nothing), and PM (perfect maintenance). The starting time
is 𝑡𝑐 = 50. In the top panel the probability 𝑝(𝐷𝑡|𝐷𝑡−1 , 𝑈𝑡−1) relates to the amount of damage in 𝛺6. In the bottom panel it corresponds to 𝑝(𝑈𝑡|𝐷𝑡).

Fig. 7 depicts the predicted evolution of the digital state and of the corresponding informed control inputs, starting from 𝑡𝑐 = 50.
The prediction horizon is extended over 20 time steps in the future so that 𝑡𝑝 = 𝑡𝑐 + 20. The DT prediction engine informs about the
expected future degradation of the structural health, allowing to plan future interventions.

3.1.4. Results: four available actions
We now consider all four possible control inputs. We prescribe a stochastic degradation process with a probability of damage

inception (𝑦 ≠ 0) equal to 0.5. Damage may develop in any of the predefined regions with damage level sampled from a uniform
distribution 𝛿 ∈ [30%, 70%], and then propagate as in the previous case. This more aggressive degradation process is used to spot in
a few time steps the effectiveness of the decision-making capabilities of the DT. The effect of the MI and MA actions on the asset is
simulated according with stochastic repair processes, for which the structural health is forced to improve. The effect of a MI action
is simulated with 𝛿 decrements sampled from a Gaussian pdf centered at −12.5% and featuring a standard deviation equal to 1%,
11
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Fig. 8. L-shaped cantilever beam - Online phase of the digital twin framework with four possible actions: DN (do nothing), PM (perfect maintenance), MI (minor
imperfect maintenance), and MA (major imperfect maintenance). Probabilistic and best point estimates of: (top) digital state evolution against the ground truth
digital state; (bottom) control inputs informed by the digital twin, against the optimal control input under ground truth. In the top panels the background color
corresponds to 𝑝(𝐷𝑡|𝐷𝑡−1 , 𝐷NN

𝑡 , 𝑈𝐴
𝑡−1 = 𝑢𝐴𝑡−1). In the bottom panel it corresponds to 𝑝(𝑈𝑡|𝐷𝑡).

while the effect of a MA action is modeled with 𝛿 decrements sampled from a Gaussian pdf centered at −17.5% and featuring a
standard deviation equal to 1%. In both cases, the damage-free condition is assumed to be recovered if the resulting structural state
features 𝛿 < 30%.

The transition model 𝑝(𝐷𝑡+1|𝐷𝑡, 𝑈𝐴
𝑡 = 𝑢𝐴𝑡 ) associated with the MI action assumes no improvement in the structural health with

probability 0.1, improvement of one 𝛿 interval with probability 0.75, and improvement of two 𝛿 intervals with probability 0.15. The
resulting CPT is an upper-right triangular transition matrix, as deterioration from any state upon a repair action is assumed to have
zero probability. The highest probability is assigned to improvements of one 𝛿 interval, followed by improvements of two 𝛿 intervals.
There is also a lower probability of remaining in the same deteriorated state, which reflects a failed maintenance. Similarly, the MA
action assumes no improvement with probability 0.05, improvement of one 𝛿 interval with probability 0.3, improvement of two 𝛿
intervals with probability 0.4, and improvement of three 𝛿 intervals with probability 0.25. In this case, the highest probability is
assigned to improvements of two 𝛿 intervals, followed by improvements of one 𝛿 intervals, three 𝛿 intervals, and finally, the lowest
probability is associated with the possibility of a failed maintenance.

The two reward functions in Eq. (9) are chosen as:

𝑅control
𝑡 (𝑢𝐴𝑡 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+12, if 𝑢𝐴𝑡 = DN,
−20, if 𝑢𝐴𝑡 = PM,
−8, if 𝑢𝐴𝑡 = MI,
−15, if 𝑢𝐴𝑡 = MA,

𝑅health
𝑡 (𝑑𝑡) =

⎧

⎪

⎨

⎪

⎩

+0.1, if 𝑦 = 0,

−exp(5𝛿), if 𝑦 ∈ {1, 2, 3, 4},

−exp(4𝛿), if 𝑦 ∈ {5, 6, 7}.

(22)

We assume a discount factor 𝛾 = 0.95, and a weighting factor 𝛼 = 2.5. The resulting control policy 𝜋(𝐷𝑡) recommends that the asset
should operate until when 𝛿 ∈ [30%, 35%], after which: if 𝑦 ∈ {1, 2, 3, 4}, a MI action should be performed when 𝛿 ∈ [35%, 45%], and
a PM action should be performed when 𝛿 > 45%; while, if 𝑦 ∈ {5, 6, 7}, the MI and MA actions should be performed, respectively
when 𝛿 ∈ [35%, 55%] and when 𝛿 ∈ [55%, 75%], and a PM action should be performed when 𝛿 > 75%.
12
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Fig. 9. L-shaped cantilever beam - Digital twin future predictions with four possible actions: DN (do nothing), PM (perfect maintenance), MI (minor imperfect
maintenance), and MA (major imperfect maintenance). The starting time is 𝑡𝑐 = 21. In the top panel the probability 𝑝(𝐷𝑡|𝐷𝑡−1 , 𝑈𝑡−1) relates to the amount of
damage in 𝛺5. In the bottom panel it corresponds to 𝑝(𝑈𝑡|𝐷𝑡).

Fig. 8 depicts a simulated online phase of the DT up to 𝑡𝑐 = 50. The DT accurately tracks the digital state evolution and timely
suggests the appropriate control inputs most of the time. In particular, the DT proposes the optimal control input, except for the
time steps 𝑡 = 43 and 𝑡 = 50 featuring a sub-optimal action. In both cases, a MI action is proposed in place of a DN, because the
DT estimates a 𝛿 ∈ [35%, 45%] instead of a 𝛿 ∈ [30%, 35%] related to a stiffness reduction within 𝛺7. This is in line with what was
observed in the confusion matrix of Fig. 5, due to the limited sensitivity of recordings to damage scenarios affecting the terminal
region of the beam. This peculiar type of misclassification turns out to be the most pathological in the confusion matrix and is
therefore capable of potentially spoiling the assimilation of observational data. Nevertheless, the DT reverts to correctly tracking
the structural health of the asset within one time step.

Fig. 9 depicts the predicted evolution of the digital state and control inputs, from 𝑡𝑐 = 21 and over 20 time steps in the future.
The DT prediction correctly suggests taking with high probability a MA action, followed by two MI actions, and accordingly predicts
the corresponding evolution of the structural health. Comparing the DT prediction with what is effectively experienced during the
online phase (see Fig. 8), note how the DT prediction closely resembles the actual evolution of the digital state and control inputs.
This is a remarkable result in terms of DT prediction capabilities, since the DT is not aware of the future values of the structural
health parameters, and the relative transition models do not match their real (stochastic) evolution.

3.2. Railway bridge

The second case study concerns the railway bridge depicted in Fig. 10. It is an integral concrete portal frame bridge located
along the Bothnia line in the Swedish suburbs of Hörnefors. It features a span of 15.7 m, a free height of 4.7 m, and a width of
5.9 m (edge beams excluded). The thickness of the structural elements is 0.5 m for the deck, 0.7 m for the frame walls, and 0.8 m
for the wing walls. The bridge is founded on two plates connected by stay beams and supported by pile groups. The concrete is
of class C35/45, whose mechanical properties are: 𝐸 = 34 GPa, 𝜈 = 0.2, 𝜌 = 2500 kg/m3. The superstructure consists of a single
track with sleepers spaced 0.65 m apart, resting on a ballast layer 0.6 m deep, 4.3 m wide and featuring a density 𝜌𝐵 = 1800 kg/m3.
The geometrical and mechanical modeling data have been adapted from former research activities on the relevant soil–structure
interaction, see [57,58].

The bridge is subjected to the transit of Gröna Tåget trains type, at a speed 𝜐 ∈ [160, 215] km/h. Only trains composed of two
wagons are considered, thus characterized by 8 axles, each one carrying a mass 𝜓 ∈ [16, 22] ton. The corresponding load model is
described in [38], and consists of 25 equivalent distributed forces transmitted by the sleepers to the deck through the ballast layer
with a slope 4:1, according with Eurocode 1 [59].

3.2.1. Dataset assembly
Synthetic displacement time histories 𝐔 are obtained from 𝑁𝑢 = 10 sensors deployed as depicted in Fig. 11. Each recording is

provided for a time interval (0, 𝑇 = 1.5 s) with an acquisition frequency 𝑓s = 400 Hz. This setting allows to record train passages
at the lowest speed of 160 km/h, and properly catches the structural response at the maximum speed of 215 km/h. Recordings are
corrupted with an additive Gaussian noise yielding a signal-to-noise ratio of 120.

In addition to the undamaged condition, the presence of damage in the structure is accounted for using a localized stiffness
reduction that can take place within 𝑁𝑦 = 6 predefined subdomains 𝛺𝑗 , with 𝑗 = 1,… , 𝑁𝑦, as depicted in Fig. 11. The stiffness
reduction can occur with a magnitude 𝛿 ∈ [30%, 80%], and is kept fixed while a train travels across the bridge.
13
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Fig. 10. Hörnefors railway bridge.

Fig. 11. Railway bridge: details of synthetic recordings related to displacements 𝑢1(𝑡),… , 𝑢10(𝑡), and predefined damage regions 𝛺1 ,… , 𝛺6.

The FOM features 𝑁FE = 17,292 dofs, resulting from a finite element discretization with an element size of 0.80 m and a reduced
size of 0.15 m for the deck, to enable a smooth propagation of the traveling load. The presence of the ballast layer is accounted for
through an increased density for the deck and for the edge beams. The embankments are accounted for through distributed springs,
modeled as a Robin mixed boundary condition (with elastic coefficient 𝑘robin = 108 N/m3) applied on the surfaces facing the ground.
The structural dissipation is modeled by means of a Rayleigh’s damping matrix, assembled to account for a 5% damping ratio on
the first two structural modes.

The ROM is obtained from a snapshot matrix 𝐒, assembled through 400 evaluations of the FOM for different values of parameters
𝝁 = (𝜐, 𝜓, 𝑦, 𝛿)⊤. By setting the error tolerance to 𝜖 = 10−3, 𝑁RB = 133 POD modes are to be considered.

The training dataset  is built with 𝐼 = 10,000 instances collected using the ROM. Also in this case, the testing phase of NNCL
and of NNRG is carried out considering noisy FOM solutions. The monitoring of the asset is then simulated by assimilating 𝑁obs = 1
noisy observations at each time step. As the structural health of the bridge evolves over time, the DT estimates the variation in the
structural health parameters every time a train travels across the bridge.

3.2.2. Digital twin framework
As in the previous case, the two structural health parameters within the digital state are 𝒅 = (𝑦, 𝛿)⊤. The range in which the

damage level 𝛿 can take values is discretized in 𝑁𝛿 = 6 intervals. The resulting 𝑁𝑑 = 37 possible digital states are sorted first for
damage location and then for damage level.

The confusion matrix measuring the offline performance of NNCL and of NNRG in correctly categorizing the digital state is reported
in Fig. 12. The ground truth digital state is detected with an overall classification accuracy of 91.39%. In this case, the majority of
misclassifications are due to confusing adjacent digital states relative to the same damage location, thus yielding a tridiagonal band
matrix.

For the present case, we consider the following three possible control inputs:

• Do nothing (DN) action. There is no maintenance action planned in this case and the physical state will evolve according to
a stochastic deterioration process.
14
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Fig. 12. Railway bridge - Confusion matrix measuring the offline performance of the DL models in correctly categorizing the digital state. Results are reported
in terms of classification accuracy, measuring how observational data are classified with respect to the ground truth digital state. Digital states are ordered first
for damage location and then for damage level.

• Perfect maintenance (PM) action. A maintenance action is performed and the asset is restored from its current condition to
the damage-free state.

• Restrict operational conditions (RE) action. The operational conditions of the bridge are restricted by allowing only lightweight
trains, carrying less than 18 ton per axle, to travel across the bridge. Such a restriction results in a lower deterioration rate,
but also yields a lower revenue generated by the infrastructure.

In the cases where the most recently issued control input is either DN or RE, the physical state undergoes a degradation process
that monotonically deteriorates the structural health. When operational conditions are not restricted, we prescribe a stochastic
degradation process featuring a probability of damage inception (𝑦 ≠ 0) equal to 0.5. Damage may develop in any of the predefined
regions with damage level sampled from a uniform distribution 𝛿 ∈ [30%, 35%], and then propagate with 𝛿 increments sampled from
a Gaussian pdf centered at 1.5% and featuring a standard deviation equal to 1% (negative increments are rounded to zero). When
the operations are restricted and only lightweight trains are allowed to travel across the bridge, we instead assume a probability of
damage inception equal to 0.25. In this eventuality, damage may develop with damage level sampled from a uniform distribution
𝛿 ∈ [30%, 35%], and then propagate with 𝛿 increments sampled from a Gaussian pdf centered at 0.95% and featuring a standard
deviation equal to 0.5%. The resulting trajectory of the structural health parameters is intended to represent periods of gradual
degradation in the structural health, as well as sudden changes due to discrete damage events. Also in this case, the effect of a PM
action is simulated by restoring the physical state to its undamaged configuration

The transition model 𝑝(𝐷𝑡+1|𝐷𝑡, 𝑈𝐴
𝑡 = 𝑢𝐴𝑡 ) associated with the DN action assumes that damage may start in any subdomain 𝛺𝑗 ,

with 𝑗 = 1,… , 𝑁𝑦, with probability 0.1, and then grow to the next 𝛿 interval with the same probability. For the transition model
associated with the RE action, this probability is assumed to decrease to 0.03. The CPTs associated with the DN and RE actions
are therefore lower-left triangular transition matrices. The highest probability is assigned to remaining in the same state, followed
by the transition to the next 𝛿 interval, with zero probability of improvements. The transition model assumed for the PM action
instead maps the 𝐷𝑡 belief to a belief 𝐷𝑡+1 associated with a damage-free condition, independently of the current condition. The
CPT associated with the PM action is therefore an upper-right triangular transition matrix with probabilities equal to 1 in the first
row.

In this case, the two reward functions in Eq. (9) are chosen as:

𝑅control
𝑡 (𝑢𝐴𝑡 ) =

⎧

⎪

⎨

⎪

⎩

+30, if 𝑢𝐴𝑡 = DN,
−250, if 𝑢𝐴𝑡 = PM,
+27, if 𝑢𝐴𝑡 = RE,

𝑅health
𝑡 (𝑑𝑡) =

⎧

⎪

⎨

⎪

⎩

+0, if 𝑦 = 0,

−exp(5𝛿) + 4, if 𝑦 ≠ 0,
−250, if 𝛿 ≥ 79%,

(23)

where the last contribution in 𝑅health
𝑡 penalizes excessively compromised structural states with a significantly negative reward.

3.2.3. Results
During the offline phase, we solve the planning problem in Eq. (8) by assuming a discount factor 𝛾 = 0.90, and a weighting factor

𝛼 = 1. The resulting control policy 𝜋(𝐷𝑡) recommends that the asset operates in ordinary conditions until when 𝛿 ∈ [30%, 35%], after
which point it should fall back to the more conservative RE regime in order to minimize further degradation. Once reached 𝛿 ≥ 65%,
15
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Fig. 13. Railway bridge - Online phase of the digital twin framework with three possible actions: DN (do nothing), PM (perfect maintenance), and RE
(restrict operational conditions). Probabilistic and best point estimates of: (top) digital state evolution against the ground truth digital state; (bottom)
control inputs informed by the digital twin, against the optimal control input under ground truth. In the top panels the background color corresponds to
𝑝(𝐷𝑡|𝐷𝑡−1 , 𝐷NN

𝑡 , 𝑈𝐴
𝑡−1 = 𝑢𝐴𝑡−1). In the bottom panel it corresponds to 𝑝(𝑈𝑡|𝐷𝑡).

Fig. 14. Railway bridge - Digital twin future predictions with three possible actions: DN (do nothing), PM (perfect maintenance), and RE (restrict operational
conditions). The starting time is 𝑡𝑐 = 5. In the top panel the probability 𝑝(𝐷𝑡|𝐷𝑡−1 , 𝑈𝑡−1) relates to the amount of damage in 𝛺5. In the bottom panel it corresponds
to 𝑝(𝑈𝑡|𝐷𝑡).

Fig. 13 reports a sample simulation of the DT online phase up to time step 𝑡𝑐 = 60. The DT correctly tracks the digital state with
relatively low uncertainty. Damage initially develops within 𝛺5, and the DT follows its evolution with a limited delay of at most
two time steps, with respect to the ground truth, due to the need of updating the relative prior belief from the previous time steps.
The RE action is suggested as soon as the DT estimates a 𝛿 ∈ [35%, 65%], after which point the DT keeps on tracking the structural
health parameters evolving with a lower deterioration rate. A PM action is finally suggested due to an excessively compromised
structural state. A similar behavior can be observed for the following damage scenario affecting 𝛺6.

Fig. 14 reports the predicted evolution of the digital state and control inputs, from 𝑡𝑐 = 5 and over 20 time steps in the future.
The DT predicts the expected degradation of the structural health according to the transition model associated with the DN action,
before predicting to take a RE action with relatively high probability after a few time steps. The DT prediction is close to what is
effectively experienced online (see Fig. 13). However, besides having the estimated digital state two time steps behind the ground
16
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truth value, the prediction is also too optimistic in terms of deterioration rate, which suggests the use of a more refined transition
model.

4. Conclusions

In this work we have proposed a predictive digital twin approach to the health monitoring, maintenance, and management
lanning of civil structures, to advance condition-based and predictive maintenance practices. The presented strategy relies upon
probabilistic graphical model inspired by [18]. This framework is used to encode the asset-twin coupled dynamical system, the

elevant end-to-end information flow via observational data (physical to digital) and control inputs (digital to physical), and its
volution over time, all with quantified uncertainty. The assimilation of observational data is carried out with deep learning models,
everaging the capabilities of convolutional layers to automatically select and extract damage-sensitive features from raw vibration
ecordings. The structural health parameters comprising the digital state are used to capture the variability of the physical asset.
hey are continually updated in a sequential Bayesian inference fashion, according to control-dependent transition dynamics models
escribing how the structural health is expected to evolve. The updated digital state is eventually exploited to predict the future
volution of the physical system and the associated uncertainty. This enables predictive decision-making about maintenance and
anagement actions.

The computational procedure takes advantage of a preliminary offline phase which involves: (i) using physics-based numerical
odels and reduced order modeling, to overcome the lack of experimental data for civil applications under varying damage and

perational conditions while populating the datasets for training the deep learning models; (ii) learning the health-dependent control
olicy to be applied at each time step of the online phase, to map the belief over the digital state onto actions feeding back to the
hysical asset.

The proposed strategy has been assessed against the simulated monitoring of an L-shaped cantilever beam and a railway bridge.
n the absence of experimental data, the tests have been carried out considering high-fidelity simulation data, corrupted with an
dditive Gaussian noise. The obtained results have proved the digital twin capabilities of accurately tracking the digital state
volution under varying operational conditions, with relatively low uncertainty. The framework is also able to promptly suggest
he appropriate control input, within at most two time steps of when the (unknown) ground truth structural health demands it.

Although the capabilities of health-aware digital twins are showcased in the specific context of monitoring the structural integrity
f civil structures to advance predictive maintenance practices, the applicability of the presented framework is general. Indeed, the
roposed framework can be adapted for various types of structures and engineering systems by adjusting the components within
he dynamic Bayesian network to align with the specific characteristics of the problem at hand. The solution to the inverse problem
if any) can be estimated by assimilating available observational data using methods other than deep neural networks, for instance
hrough Markov chain Monte Carlo sampling algorithms. Similarly, the state transition models are closely tied to the employed
arametrization of the digital state and the availability of historical data. The same applies to the available control inputs, which
re likely to vary for different structures, such as those in mechanical or aerospace systems, and the method chosen for solving the
ssociated planning problem. Additionally, the graph topology can be easily reorganized to adapt to situations where observational
ata are not acquired after issuing a control input, or when control inputs are issued with a different frequency than that governing
he digital twin update.

Future research lines will investigate the ability of the digital twin to update the transition dynamics models by learning from
revious data. As suggested by the railway bridge case study, this will allow for a more accurate prediction of the expected evolution
f the digital state, thus enabling predictive decision-making better tailored to the monitored asset. Another aspect of interest
oncerns solving the planning problem induced by the probabilistic model using reinforcement learning algorithms, capable of
aking into account a finite planning horizon representing the design lifetime of the asset.
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The implementation code used for the experiments presented in Section 3 is available in the public repository digital-
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ppendix. Implementation details

In this Appendix, we discuss the implementation details of the DL models described in Section 2.3. The architectures, as well as
he relevant hyperparameters and training options, have been chosen through a preliminary study, aimed at minimizing CL and
RG, while retaining the generalization capabilities of NNCL and of NN𝑗

RG, with 𝑗 = 1,… , 𝑁𝑦. Since all NN𝑗
RG models share the same

architecture, the index 𝑗 will be dropped in the following for ease of notation.
In the present work, NNCL and NNRG are set as 12-layers DL models, whose architecture is outlined in Table A.1a and in

Table A.2a, respectively. NNCL and NNRG feature a damage-sensitive feature extractor required to be insensitive to transformations
in the input not related to damage. This is implemented through the composition of three one-dimensional (1D) convolutional units.
Convolutional layers naturally embed good relational inductive biases such as locality and translation equivariance [52,60], which
prove highly effective to detect time correlations within and across time series. The resulting sparse connectivity and parameter
sharing also make them computationally efficient. Each convolutional unit consists of a convolutional layer, followed by a Tanh
activation function, max pooling, and dropout. The extracted features are expected to be sensitive to the presence of damage, but
insensitive to measurement noise and operational variability. The extracted features are then reshaped through a flatten layer and run
through a stack of three fully-connected layers: the first two are Tanh-activated, while the output layer of NNCL is Softmax-activated,
and the output layer of NNRG has no activation function.

Table A.1
NNCL - (a) employed architecture, and (b) selected hyperparameters and training options.

(a) (b)

Layer Output shape Activation Input

0 - Input (𝐵CL , 𝐿,𝑁𝑢) None – Convolution kernel size: 25, 13, 7
1 - Conv1D (𝐵CL , 𝐿, 32) Tanh 0 Dropout rate: 5%
2 - MaxPooling1D (𝐵CL , 𝐿∕2, 32) None 1 Weight initializer: Xavier
3 - Dropout (𝐵CL , 𝐿∕2, 32) None 2 𝐿2 regularization rate: 𝜆CL = 10−3

4 - Conv1D (𝐵CL , 𝐿∕2, 64) Tanh 3 Optimizer: Adam
5 - MaxPooling1D (𝐵CL , 𝐿∕4, 64) None 4 Batch size: 𝐵CL = 32
6 - Dropout (𝐵CL , 𝐿∕4, 64) None 5 Initial learning rate: 𝜂CL = {10−3 , 10−4}
7 - Conv1D (𝐵CL , 𝐿∕4, 32) Tanh 6 Allowed epochs: 250
8 - MaxPooling1D (𝐵CL , 𝐿∕8, 32) None 7 Learning schedule: 4

5
cosine decay

9 - Dropout (𝐵CL , 𝐿∕8, 32) None 8 Weight decay: 0.05
10 - Flatten (𝐵CL , 4𝐿) None 9 Early stop patience: 15 epochs
11 - Dense (𝐵CL , 64) Tanh 10 Train-val split: 80 ∶ 20
12 - Dense (𝐵CL , 16) Tanh 11
13 - Dense (𝐵CL , 𝑁𝑦 + 1) Softmax 12

Table A.2
NNRG - (a) employed architecture, and (b) selected hyperparameters and training options.

(a) (b)

Layer Output shape Activation Input

0 - Input (𝐵RG , 𝐿,𝑁𝑢) None – Convolution kernel size: 25, 13, 7
1 - Conv1D (𝐵RG , 𝐿, 32) Tanh 0 Dropout rate: 10%
2 - MaxPooling1D (𝐵RG , 𝐿∕2, 32) None 1 Weight initializer: Xavier
3 - Dropout (𝐵RG , 𝐿∕2, 32) None 2 𝐿2 regularization rate: 𝜆RG = 10−3

4 - Conv1D (𝐵RG , 𝐿∕2, 64) Tanh 3 Optimizer: Adam
5 - MaxPooling1D (𝐵RG , 𝐿∕4, 64) None 4 Batch size: 𝐵RG = 32
6 - Dropout (𝐵RG , 𝐿∕4, 64) None 5 Initial learning rate: 𝜂RG = {10−3 , 10−4}
7 - Conv1D (𝐵RG , 𝐿∕4, 32) Tanh 6 Allowed epochs: 250
8 - MaxPooling1D (𝐵RG , 𝐿∕8, 32) None 7 Learning schedule: 4

5
cosine decay

9 - Dropout (𝐵RG , 𝐿∕8, 32) None 8 Weight decay: 0.05
10 - Flatten (𝐵RG , 4𝐿) None 9 Early stop patience: 15 epochs
11 - Dense (𝐵RG , 64) Tanh 10 Train-val split: 80 ∶ 20
12 - Dense (𝐵RG , 16) Tanh 11
13 - Dense (𝐵RG , 1) None 12
18
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Using the Xavier’s weight initialization [61], NNCL and NNRG are trained by minimizing the following loss functions, respectively:

𝑅CL(𝜣CL,CL) = CL(𝜣CL,CL) + 𝜆CL‖𝜣CL‖
2
2, (A.1)

𝑅RG(𝜣RG,RG) = RG(𝜣RG,RG) + 𝜆RG‖𝜣RG‖
2
2, (A.2)

where 𝜆CL and 𝜆RG denote the 𝐿2 regularization rate over the relative model parameters 𝜣CL and 𝜣RG. The loss functions 𝑅CL and
𝑅RG are minimized using the first-order stochastic gradient descent optimizer Adam [62], for a maximum of 250 allowed epochs.
The corresponding learning rates 𝜂CL and 𝜂RG are initially set to {10−3, 10−4}, and decreased for 4∕5 of the allowed training steps
using a cosine decay schedule with weight decay equal to 0.05. The optimization is carried out considering an 80:20 splitting ratio
of the dataset for training and validation purposes, with 20% of the data randomly taken and set aside to monitor the learning
process. We use an early stopping strategy to interrupt learning, whenever the loss function value attained on the validation set
does not decrease for a prescribed number of patience epochs in a row. The hyperparameters and training options for NNCL and for
NNRG are reported in Table A.1b and in Table A.2b, respectively.
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