
Computer Physics Communications 295 (2024) 108993

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Domain-specific implementation of high-order Discontinuous Galerkin

methods in spherical geometry ✩

Kalman Szenes a, Niccolò Discacciati b, Luca Bonaventura c, William Sawyer d,∗

a Swiss Federal Institute of Technology Zurich, Raemistrasse 101, 8092, Zurich, Switzerland
b Swiss Federal Institute of Technology Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
c Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
d Swiss National Supercomputing Centre, Via Trevano 131, 6900, Lugano, Switzerland

A R T I C L E I N F O A B S T R A C T

Keywords:

Domain-specific languages

GPU programming

Discontinuous Galerkin methods

In recent years, domain-specific languages (DSLs) have achieved significant success in large-scale efforts to
reimplement existing meteorological models in a performance portable manner. The dynamical cores of these
models are based on finite difference and finite volume schemes, and existing DSLs are generally limited to
supporting only these numerical methods. In the meantime, there have been numerous attempts to use high-

order Discontinuous Galerkin (DG) methods for atmospheric dynamics, which are currently largely unsupported
in main-stream DSLs. In order to link these developments, we present two domain-specific languages which
extend the existing GridTools (GT) ecosystem to high-order DG discretization. The first is a C++-based DSL
called G4GT, which, despite being no longer supported, gave us the impetus to implement extensions to the
subsequent Python-based production DSL called GT4Py to support the operations needed for DG solvers. As
a proof of concept, the shallow water equations in spherical geometry are implemented in both DSLs, thus
providing a blueprint for the application of domain-specific languages to the development of global atmospheric
models. We believe this is the first GPU-capable DSL implementation of DG in spherical geometry. The results
demonstrate that a DSL designed for finite difference/volume methods can be successfully extended to implement
a DG solver, while preserving the performance-portability of the DSL.
1. Introduction

It has always been challenging for numerical mathematicians to im-

plement new algorithms in a way that can attain the best possible per-

formance of the underlying computing platform. This task has become
even more difficult with the emergence of new hardware architectures,
such as Graphics Processing Units (GPUs) or Field-programmable Gate
Arrays (FPGAs), whose use often forces domain scientists to learn com-

puting concepts well beyond their field of expertise.

Domain-specific languages (DSLs) [14] represent an attempt to sep-

arate the concerns of the domain scientist from the complexities of
the underlying computing hardware. The efficacy of DSLs to make do-

main scientists, in particular atmospheric scientists, more productive
has been illustrated in a number of papers, e.g., [7,17,29]. In the case
of atmospheric dynamics, the method developer formulates her problem

✩ The review of this paper was arranged by David W. Walker.

* Corresponding author.

E-mail addresses: kszenes@ethz.ch (K. Szenes), niccolo.discacciati@alumni.epfl.ch (N. Discacciati), luca.bonaventura@polimi.it (L. Bonaventura),

in terms of numerical operations, including time-stepping algorithms,
linear algebra operations, or Partial Differential Equation (PDE) formu-

lations, while a “backend” takes care of generating highly optimized
code for the target architecture. This is extremely beneficial, as achiev-

ing peak performance on emerging parallel architectures remains a
challenging task.

This approach contrasts with the standard development cycle, in
which an initial serial algorithm has to be redesigned for parallel pro-

cessing. For this an appropriate programming model needs to be chosen,
which often comprises a combination of strategically placed compiler
directives or routines written in low-level hardware-specific language
extensions (such as CUDA or HIP), all while attempting to limit the
memory transfers between the various processing units. Even after
the initial parallel implementation has been validated, labor-intensive
performance tuning is needed to fully exploit the capabilities of the
Available online 28 October 2023
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access

william.sawyer@cscs.ch (W. Sawyer).

https://doi.org/10.1016/j.cpc.2023.108993

Received 31 May 2023; Received in revised form 30 September 2023; Accepted 23 O
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ctober 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:kszenes@ethz.ch
mailto:niccolo.discacciati@alumni.epfl.ch
mailto:luca.bonaventura@polimi.it
mailto:william.sawyer@cscs.ch
https://doi.org/10.1016/j.cpc.2023.108993
https://doi.org/10.1016/j.cpc.2023.108993
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108993&domain=pdf
http://creativecommons.org/licenses/by/4.0/

K. Szenes, N. Discacciati, L. Bonaventura et al.

hardware. The developed implementation usually becomes hardware-

specific, making it not portable to emerging architectures, which are in
fact now common: seven out of the top ten supercomputers [34] are
based on either AMD or Nvidia hardware accelerators. DSLs thus can
offer platform portability by decoupling the method development from
the implementation.

Extensive effort has been made in developing frameworks to ease
the challenge of solving PDEs in specified geometries. On the far end of
the spectrum, software frameworks like FEniCS [3] and Firedrake [28]

offer a descriptive language to define the PDE and the given domain,
along with initial and boundary conditions. These frameworks then
generate the code to solve the problem using finite element methods.
FEniCS gives the user little latitude to test new numerical techniques,
making it more appropriate for domain scientists relying on standard,
widely-supported methods. Firedrake, on the other hand, has a different
underlying implementation allowing more flexibility to employ various
finite element approaches, code optimizations as well as paralleliza-

tion features, such as multithreading, GPU acceleration, or distributed
computing. Firedrake utilizes PyOp2 [27] – a full-fledged DSL for the
parallel executions of computational kernels on unstructured meshes
or graphs – to allow these interventions. More generally, PyOp2 can
be viewed as a DSL for finite element calculations. PyOp2 was subse-

quently refined into the Psyclone [32] code-generation system, which
was specifically designed to extend Fortran codes, and then used to im-

plement the LFRic [21] atmospheric model. Psyclone is essentially a
source-code generator and could conceptually address the algorithms
we consider in this paper. However, in this study we focus on tools that
have been developed internally at the Swiss National Supercomputing
Centre (CSCS).

Our interests are in the area of weather and climate simulation,
where the mesh is often built by extrusion of a two-dimensional hor-

izontal mesh covering, for example, the whole globe. Our goal is to
enable climate and numerical weather prediction (NWP) applications
to leverage a variety of architectures by utilizing software backends.
A first attempt at a C++-embedded DSL specific to the climate and
weather domain was STELLA [17], with which the COSMO dynamical
core (solver of the non-hydrostatic equations of atmospheric motion)
was implemented [31]. This prototype was completely replaced by the
GridTools [2] framework, in which the COSMO [17] and NICAM [22]

models have been rewritten. The classic implementation of GridTools
assumes a Cartesian grid, which explains the choices described in Sec-

tion 2, however the newest version, released in 2023, also allows for
a fully unstructured mesh. This DSL library is also the basis for a 30
person-year development effort within the EXCLAIM project [5] to port
the ICON model in a performance-portable manner to CPUs and GPUs
alike.

Up until recently, the numerical algorithms used by operational ser-

vices to solve the equations of atmosphere motion (the fully compress-

ible Euler equations) have been limited to spectral, spectral-element,
finite-difference, and finite-volume methods, and the above-mentioned
models are no exception. Recently there has been an extensive push to
include Discontinuous Galerkin into the mix, see, among many others,
[4,24,26,35]. To our knowledge, no mainstream DSL currently sup-

ports Discontinuous Galerkin methods in spherical geometry, a feature
that would be extremely helpful in ongoing efforts to utilize DG for at-

mospheric dynamics. The nearest effort is perhaps [37], which, to our
knowledge, is limited to Cartesian Geometry.

In this paper we consider two DSLs in the GridTools ecosystem
which can, with certain extensions, support DG in spherical geometry,
namely the C++-based Galerkin-for-Gridtools (G4GT) and the Python-

based GridTools-for-Python (GT4Py) [30], as tools for implementing
a high-order Discontinuous Galerkin (DG) method for time-dependent
problems, see e.g., [15,19]. The GridTools framework was originally
designed to support finite difference/volume methods on rectangular
grids and, more recently, on unstructured grids. G4GT, now discon-
2

tinued, was a first prototype to extend these tools for finite element
Computer Physics Communications 295 (2024) 108993

problems. GT4Py is a Python layer above GridTools and thus targets the
same FD/FV problems, for example [10]. GT4Py/GridTools now have
been used for the porting of production models, among them FVM [38],
FV3 [7] and ICON [5]. Such implementation projects last many years
and involve a large team of scientific software developers.

This work is a more modest effort to make extensions to GT4Py so
that it can be reused to implement a DG solver. As a proof of concept, we
implement an explicit time discretization and a modal DG spatial dis-

cretization for a system of conservation laws. Common, but non-trivial,
benchmarks, namely linear advection and the shallow water equations,
are used to validate our DSL implementations of a DG method. While
our experiment only concerns the DSL implementation of the discretiza-

tion of a hyperbolic system, it is noteworthy that, in a DG context, the
same data structures are employed also for more complex equations in-

cluding RANS or LES turbulence models, see for example the discussion
in [1]. Therefore, the results that we obtained are encouraging also with
respect to the DSL implementation of more realistic models.

The structure of the paper is as follows. The flux formulation of
the shallow water equations in latitude-longitude coordinates follows
in Section 2. A preliminary implementation in an early C++-based
DSL prototype called G4GT is briefly presented in Section 3.1, while
the new, Python-based implementation called GT4Py is discussed at
length in Section 3.2. The validation of the resulting implementations
is discussed in Section 4 and benchmarks are presented in Section 5. In
Section 6, we recount our experiences using the DSLs and make sugges-

tions on future features to better support finite element codes in these
frameworks.

2. The mathematical model and numerical discretization
approach

We are concerned with demonstrating the capabilities of DSLs for
implementing numerical solutions of conservation laws. A system of
conservation laws can be written as:

𝜕u

𝜕𝑡
+∇ ⋅ F(u) = S(u), (1)

where u is the vector of conserved variables, F is the flux function and
S is the source term. Equation (1) becomes well posed once comple-

mented with appropriate initial conditions and boundary conditions,
see, for example, the discussion in [23]. Since our goal is the applica-

tion of DSL tools to models for weather and climate, we choose as main
model equations the shallow water equations (SWEs) on the sphere,
which are a common benchmark for numerical models in this area.
Various formulations of these equations can be found in [40]. We con-

sider the Earth’s surface as a sphere of radius 𝑅, that is parameterized
in latitude - longitude (lat-lon) coordinates as a rectangular domain
such that the latitude 𝜃 ∈ [−𝜋∕2, 𝜋∕2] and the longitude 𝜆 ∈ [0, 2𝜋]. De-

note by Ω = 7.292 × 10−5 s−1 the Earth’s rotation rate, by 𝑓 = 2Ω sin𝜃

the Coriolis parameter and by 𝑔 = 9.81 m s−2 the Earth’s gravitational
acceleration. Furthermore, let �̂�, �̂� denote the longitudinal and latitudi-

nal unit vectors, respectively. For a generic scalar function 𝜙 and vector
field 𝐰 = 𝑤1 �̂� + 𝑤2�̂�, the spherical gradient and divergence are defined
as:

∇𝜙 = �̂�

𝑅 cos𝜃
𝜕𝜆𝜙+

�̂�

𝑅
𝜕𝜃𝜙

∇ ⋅𝐰 =
1

𝑅 cos𝜃

[
𝜕𝜆(𝑤1) + 𝜕𝜃(𝑤2 cos𝜃)

]
. (2)

Denoting then ℎ as the thickness of a fluid over the spherical surface
(assuming flat orography ℎ𝑏 = 0) and 𝐯 = 𝑢�̂�+𝑣�̂� the velocity field, which
is a tangent vector field to the sphere, the shallow water equations in
flux form are written as:

𝜕𝑡ℎ+∇ ⋅ (ℎ𝐯) = 0 (
𝑔ℎ2)
𝜕𝑡(ℎ𝐯) + ∇ ⋅ (ℎ𝐯⊗ 𝐯) = −𝑓 �̂� × ℎ𝐯−∇
2

. (3)

K. Szenes, N. Discacciati, L. Bonaventura et al.

Fig. 1. Latitude-Longitude grid.

It is well known that lat-lon coordinates entail a number of numer-

ical difficulties. Indeed, for a Cartesian lat-lon mesh such as the one
depicted in Fig. 1, the elements become increasingly distorted as they
approach the poles. Moreover, the elements precisely neighboring the
poles have a singular edge in physical space (these elements reduce
to spherical triangles instead of rectangles). While several alternatives
have been considered in the literature, see, e.g., the review in [8], this
setting is sufficient for the present purpose of validating GT4Py, which,
as discussed in Section 1, could only handle non-Cartesian meshes in
the release available to us.

The equations for the spherical components of the velocity field can
then be derived taking into account the non-inertial nature of the rotat-

ing reference frame on the sphere, see again [40] (Equations (6)-(7)).
We then obtain:

𝜕𝑡(ℎ𝑢) + ∇ ⋅ (ℎ𝑢𝐯) + 1
𝑅 cos𝜃

𝜕𝜆

(
𝑔ℎ2

2

)
=
(
𝑓 + 𝑢

𝑅
tan𝜃

)
ℎ𝑣

𝜕𝑡(ℎ𝑣) + ∇ ⋅ (ℎ𝑣𝐯) + 1
𝑅

𝜕𝜃

(
𝑔ℎ2

2

)
= −

(
𝑓 + 𝑢

𝑅
tan𝜃

)
ℎ𝑢. (4)

Since

∇ ⋅ (ℎ𝑢𝐯) =
1

𝑅 cos𝜃

[
𝜕𝜆(ℎ𝑢2) + 𝜕𝜃(ℎ𝑢𝑣 cos𝜃)

]
∇ ⋅ (ℎ𝑣𝐯) =

1
𝑅 cos𝜃

[
𝜕𝜆(ℎ𝑢𝑣) + 𝜕𝜃(ℎ𝑣2 cos𝜃)

]
and also

cos𝜃

𝑅
𝜕𝜃

(
𝑔ℎ2

2

)
= 1

𝑅
𝜕𝜃

(
𝑔ℎ2

2
cos𝜃

)
+ 𝑔ℎ2

2𝑅
sin𝜃,

the SWE can be rewritten component-wise as:

𝜕𝑡(ℎ cos𝜃) +
1
𝑅

[
𝜕𝜆 (ℎ𝑢) + 𝜕𝜃 (ℎ𝑣 cos𝜃)

]
= 0

𝜕𝑡(ℎ𝑢 cos𝜃) +
1
𝑅

[
𝜕𝜆

(
ℎ𝑢2 +

𝑔ℎ2

2

)
+ 𝜕𝜃 (ℎ𝑢𝑣 cos𝜃)

]

=
(
𝑓 cos𝜃 + 𝑢

𝑅
sin𝜃

)
ℎ𝑣 (5)

𝜕𝑡(ℎ𝑣 cos𝜃) +
1
𝑅

[
𝜕𝜆 (ℎ𝑢𝑣) + 𝜕𝜃

((
ℎ𝑣2 +

𝑔ℎ2

2

)
cos𝜃

)]

= −
𝑔ℎ2 sin𝜃

2𝑅
−
(
𝑓 cos𝜃 + 𝑢

𝑅
sin𝜃

)
ℎ𝑢.

Periodic boundary conditions are considered in the longitudinal di-

rection, while in the latitudinal direction, the fluxes are set to zero at
the poles. The SWE in spherical coordinates can therefore be written as
the system of conservation laws:

𝜕𝑡(𝐔) + 𝜕𝜆(𝐅(𝐔)) + 𝜕𝜃(𝐆(𝐔)) = 𝐒(𝐔),
3

where we have defined the conserved quantities, fluxes and sources as:
Computer Physics Communications 295 (2024) 108993

𝐔 =
⎛⎜⎜⎝

ℎ cos𝜃

ℎ𝑢 cos𝜃

ℎ𝑣 cos𝜃

⎞⎟⎟⎠ , 𝐅(𝐔) =
1
𝑅

⎛⎜⎜⎜⎝
ℎ𝑢

ℎ𝑢2 +
𝑔ℎ2

2
ℎ𝑢𝑣

⎞⎟⎟⎟⎠
𝐆(𝐔) =

cos𝜃

𝑅

⎛⎜⎜⎜⎝
ℎ𝑣

ℎ𝑢𝑣

ℎ𝑣2 +
𝑔ℎ2

2

⎞⎟⎟⎟⎠ , 𝐒(𝐔) =

⎛⎜⎜⎜⎜⎝
0(

𝑓 cos𝜃 + 𝑢

𝑅
sin𝜃

)
ℎ𝑣

−
𝑔ℎ2 sin𝜃

2𝑅
−
(
𝑓 cos𝜃 + 𝑢

𝑅
sin𝜃

)
ℎ𝑢

⎞⎟⎟⎟⎟⎠
.

(6)

We then present an overview of the classical DG method chosen for the
demonstration of a DSL implementation. A complete description can be
found, among many others, in [15,19]. We consider for simplicity the
discretization of a scalar conservation law,

𝜕𝑢

𝜕𝑡
+∇ ⋅ f(𝑢) = 𝑠(𝑢), (7)

defined on a two-dimensional rectangular domain. This domain is sub-

divided into 𝐾 elements, denoted by 𝐷𝑘, for any 𝑘 = 1 … 𝐾 . We restrict
our attention to conforming structured meshes composed of rectangu-

lar elements 𝐷𝑘 = [𝑥𝑘
𝑙
, 𝑥𝑘

𝑟
] ×[𝑦𝑘

𝑏
, 𝑦𝑘

𝑡
]. Moreover, to avoid complicating the

notation, we introduce the key concepts of the discretization assuming
a Cartesian geometry. The use of lat-lon coordinates allows us to easily
extend this formulation to the spherical case, taking into account the
specific metric factors.

In each element, let 𝑉 𝑘
ℎ

be the finite-dimensional space of multivari-

ate polynomials up to a given degree 𝑝 in each spatial dimension:

𝑉 𝑘
ℎ
=

{
𝑣 ∶ 𝑣 =

𝑝∑
𝑖,𝑗=0

𝛼𝑖𝑗𝑥
𝑖𝑦𝑗 , 𝑥 ∈ [𝑥𝑘

𝑙
, 𝑥𝑘

𝑟
], 𝑦 ∈ [𝑦𝑘

𝑏
, 𝑦𝑘

𝑡
]

}
.

As customary in the description of finite element methods, ℎ denotes
the typical mesh size.1 The finite-dimensional space in which we seek
the solution is the space of discontinuous polynomials defined as 𝑉ℎ ={
𝑣 ∈ 𝐿2(Ω) ∶ 𝑣|𝐷𝑘 ∈ 𝑉 𝑘

ℎ

}
. The numerical solution can be viewed as the

direct sum of local approximations:

𝑢ℎ =
𝐾⨁

𝑘=1
𝑢𝑘

ℎ
, (8)

where 𝑢𝑘
ℎ
∈ 𝑉 𝑘

ℎ
. Due to (8), we can restrict our attention to a single mesh

element, dropping the superscript 𝑘 for simplicity when necessary. We
define the local residual as

𝑅𝑘
ℎ
= 𝜕

𝜕𝑡
𝑢𝑘

ℎ
+∇ ⋅ 𝐟(𝑢𝑘

ℎ
) − 𝑠(𝑢𝑘

ℎ
),

and impose that it vanishes locally in a Galerkin sense, i.e.,

∫
𝐷𝑘

𝑅𝑘
ℎ
𝜙𝑘

ℎ
= 0

for any suitably defined test function 𝜙𝑘
ℎ
∈ 𝑉 𝑘

ℎ
. After integration by

parts, the weak DG formulation is given by:

∫
𝐷𝑘

𝜕

𝜕𝑡
𝑢𝑘

ℎ
𝜙𝑘

ℎ
+ ∫

𝜕𝐷𝑘

𝐟∗(𝑢ℎ) ⋅ 𝐧𝑘𝜙𝑘
ℎ
− ∫

𝐷𝑘

𝐟(𝑢𝑘
ℎ
) ⋅∇𝜙𝑘

ℎ
= ∫

𝐷𝑘

𝑠(𝑢𝑘
ℎ
)𝜙𝑘

ℎ
. (9)

In Equation (9), the physical flux at the element boundary is replaced
by a numerical approximation, denoted by 𝐟∗. This guarantees that the
flux is single-valued at each edge, enforcing conservation across any
edge. Note that all terms in Equation (9) are local to the 𝑘-th element,
except the numerical flux, which depends on the neighboring elements.
The choice of 𝐟∗ plays a crucial role in the numerical solver’s consis-

tency, accuracy and stability. A popular choice of 𝐟∗ is the Rusanov
flux, defined as:

1 The mesh size ℎ should not be confused with the fluid height ℎ, since these

are never used in the same context.

K. Szenes, N. Discacciati, L. Bonaventura et al.

Table 1

Butcher tableaux of SSP Runge Kutta methods of order 1 to 4.

0
1

0
1 1

1∕2 1∕2

0
1 1

1∕2 1∕4 1∕4
1∕6 1∕6 2∕3

0
1∕2 1∕2
1∕2 0 1∕2
1 0 0 1

1∕6 1∕3 1∕3 1∕6

𝐟∗(𝑢ℎ) = 𝐟∗(𝑢𝑘
ℎ
, 𝑢�̄�

ℎ
) =

𝐟(𝑢𝑘
ℎ
) + 𝐟(𝑢�̄�

ℎ
)

2
− 𝛼

2
(𝑢�̄�

ℎ
− 𝑢𝑘

ℎ
)𝐧𝑘, (10)

where �̄� is the index of the neighbor element to 𝑘 across a given edge,
and 𝛼 ≥ 0 is a large enough stabilization parameter, usually chosen to be
an estimate of the largest eigenvalue of the hyperbolic system associated
to the conservation law. Finally, 𝐧𝑘 is the normal unit vector, pointing
outwards on 𝐷𝑘. The local solution 𝑢𝑘

ℎ
in element 𝑘 is then written as a

linear combination of a polynomial basis 𝜙(𝑘)
𝑖

of 𝑉 𝑘
ℎ

:

𝑢𝑘
ℎ
=

𝑛𝜙∑
𝑗=1

�̂�𝑘
𝑗
𝜙
(𝑘)
𝑗

, (11)

where we have dropped the suffix ℎ in the notation for the polynomial
basis. Furthermore, �̂�𝑘

𝑖
denotes the polynomial expansion coefficients,

and 𝑛𝜙 = (𝑝 + 1)2 represents the cardinality of the polynomial basis,
where 𝑝 represents the maximum degree of the polynomials employed.
Multiple choices exist for the basis set used for the local polynomial
spaces. In this study, following e.g., [35], we employ a modal DG ap-

proach, which relies on bivariate Legendre polynomials. After inserting
the basis expansion from Equation (11) in Equation (9) and using the
𝜙
(𝑘)
𝑖

as test functions, we obtain the following semi-discrete form:

𝑀
𝑑�̂�
𝑑𝑡

= 𝐡(�̂�)⇔ 𝑑�̂�
𝑑𝑡

= 𝑀−1𝐡(�̂�). (12)

Here, the vector �̂� collects the polynomial expansion coefficients for all
elements, and the matrix 𝑀 has a block diagonal structure, where the
diagonal blocks are the local mass matrices 𝑀 (𝑘):

𝑀
(𝑘)
𝑖𝑗

= ∫
𝐷𝑘

𝜙
(𝑘)
𝑖

𝜙
(𝑘)
𝑗

associated with each element. Notice that all the terms on the right-

hand side have been grouped in the vector function 𝐡(�̂�), thus obtaining
spatial semi-discretization that can be fully discretized by the method
of lines approach described below. Thanks to the use of a DG discretiza-

tion, the resulting mass matrix can be inverted locally for each element.
Furthermore, in the case of spherical coordinates, we also simplify the
definition of the conserved variables in Equations (5) by including the
cos𝜃 metric terms directly in the local mass matrix:

𝑀
(𝑘)
𝑖𝑗

= ∫
𝐷𝑘

𝜙𝑖(𝜆, 𝜃)𝜙𝑗 (𝜆, 𝜃) cos(𝜃),

so that the conserved variables are given by ℎ, ℎ𝑢 and ℎ𝑣. Note that the
mass matrices are all identical for a specific longitudinal value.

For the time discretization of Equation (12), we follow the classical
method of lines approach employing Runge-Kutta (RK) methods. More
precisely, we use explicit Strong Stability Preserving (SSP) methods of
orders from 1 to 4, denoted later as RK1-RK4, see e.g., [16], which can
be defined by means of their Butcher tableaux listed in Table 1. No-

tice that the numerical experiments reported in Section 4, with minor
exceptions, utilize the fourth order RK4 method. These explicit time
discretization methods are only conditionally stable. Their stability de-

pends on the value of the non-dimensional parameter known as the
Courant number, which is usually defined as 𝑐Δ𝑡∕, where 𝑐 denotes
some estimate of the largest eigenvalue of the underlying hyperbolic
system and is the minimum grid spacing in physical space. For DG
methods and other high-order finite element techniques, however, it
is customary to redefine the Courant number by taking into account
4

the presence of internal degrees of freedom in each element, see e.g.,
Computer Physics Communications 295 (2024) 108993

[25,26,35], so that a more appropriate definition is in this case 𝑝𝑐Δ𝑡∕,
where 𝑝 denotes the maximum element degree. Due to the reduction of
the effective element size at the poles and the use of high-order ele-

ments, rather small values of the time step have to be chosen to allow
for stable simulations.

3. Implementations in G4GT and GT4Py

We have implemented DG solvers for conservation laws in sepa-

rate projects with distinct DSLs for planar and spherical geometry. The
Galerkin-for-GridTools (G4GT) and GridTools-for-Python (GT4Py) are
both part of the GridTools (GT) [30] ecosystem, which offers an effi-

cient platform-agnostic C++ library. It makes extensive use of template
meta-programming techniques and has optimized backends for both
CPU and GPU architectures. GT was initially designed to target nu-

merical simulations of PDEs using regular grids and finite-difference
schemes. Although the latest version of GT also supports unstructured
grids, the presented implementation relies on its original version.

We remark that G4GT was simply a proof of concept and is no
longer supported. Indeed, the popularity of Python among modern-day
programmers led the GT team to switch to the Python-based GT4Py
layer, which is actively developed and open source. However, the ideas
illustrated in G4GT, in terms of both supported PDE models and compu-

tational performance, are educational. Thus, before discussing in detail
the GT4Py implementation, which should be regarded as the main tool
employed, we briefly summarize the main features of the G4GT frame-

work, which GT4Py retains and improves.

3.1. Galerkin for GridTools (G4GT) implementation

G4GT is a C++-based extension to the GridTools library that sup-

ports finite element codes. It relies on GT for the underlying implemen-

tation of computation kernels, but also on the Trilinos [18] libraries
Intrepid [20] and Epetra [13], which provide the numerical support
for finite element discretizations and specific linear algebra tools. The
G4GT framework provides the link between these libraries, adding a
higher-level, user-friendly layer to GT. Additionally, it adds support
for finite element discretizations using GT-based codes, which is not
present in GT.

As the main subject of this work is the GT4Py implementation,
of which G4GT can be viewed as a precursor, to keep the discussion
concise we do not delve into the technicalities of the implementa-

tion. However, we refer to [11] and [12] for a detailed discussion on
the main programming techniques employed. We simply mention that,
as it is the case with Section 3.2, the key steps of the discretization
are implemented with GT abstractions, allowing the user to write an
element-wise code, which is then evaluated in the entire computational
domain with a minimal effort.

3.2. GT4Py implementation

We provide now a comprehensive overview of the fundamental con-

cepts and functionalities offered by the GT4Py package. It introduces
the specific Python syntax utilized for defining stencil computations.
Additionally, we present our implementation of the DG scheme, empha-

sizing the enhancements we have integrated into the GT4Py framework
to support high order discontinuous finite element methods.

3.2.1. Compilation pipeline

The pipeline of GT4Py is illustrated in Fig. 2. The domain scientist
expresses the stencils in a user-friendly Python syntax called GTScript,
and this code is then processed through a series of toolchains that
applies optimizations and generates a high-performance executable tar-
geting a specific architecture.

Computer Physics Communications 295 (2024) 108993K. Szenes, N. Discacciati, L. Bonaventura et al.

Fig. 2. GT4Py compilation pipeline. Figure thanks to Till Ehrengruber, CSCS.
Table 2

List of supported GT4Py backends.

Framework Name

GridTools

gt:cpu_ifirst

gt:cpu_kfirst

gt:gpu

DaCe
dace:cpu

dace:gpu

cuda

numpy

3.2.2. Backends

GT4Py can compile code for various backends; see Table 2 for a com-

plete list of the supported ones at the time of the evaluation. Several
others are planned or under development. Three of the seven back-

ends compatible with GT4Py rely on the GT framework to compile and
optimize the stencil computations. They are all characterized with the
prefix gt:. The gt:cpu_ifirst and gt:cpu_kfirst both target the
CPU architecture, while the gt:gpu backend produces code for the
GPU. In addition, two backends utilize the Data Centric (DaCe) par-

allel programming framework [6] developed by the Scalable Parallel
Computing Lab at Swiss Federal Institute of Technology Zurich, namely

dace:cpu and dace:gpu targeting CPUs and GPUs, respectively. At
the time of the DG-GT4Py implementation, only prototype implemen-

tations of these backends were available, and thus we decided not to
include them in the subsequent performance evaluation.

Alternatively, there is a naive CUDA backend which only utilizes GT
utilities, but not its DSL. Finally, a NumPy backend exists, which can be
used to inspect the generated code for debugging purposes.

3.2.3. Stencils

Stencils are special GT4Py functions that operate on fields in a spe-

cific domain. Fields store the values of variables at each grid point of
the domain.

Declaration In the following example, we compute the discretized 2-

dimensional Laplacian operator:

(Δ𝑢)𝑖,𝑗 = −4𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1

which can be written as the following stencil in GT4Py:

1 import numpy as np

2 import gt4py.gtscript as gtscript

3 @gtscript.stencil(backend=backend, **
backend_opts)

4 def laplacian(

5 field: gtscript.Field[np.float64],

6 out: gtscript.Field[np.float64]

7):

8 with computation(PARALLEL), interval(...):

9 out = - 4 * field + (field[1,0,0] + field

[-1,0,0] + field[0,1,0] + field

[0,-1,0])
5

In the function decorator, we provide the target backend as well as
potential back-end options. The function expects fields as arguments, on
which the stencil computations are executed. GT4Py uses the Python-

type hinting system to specify the data type of each field, which in this
case is np.float64.

The body of the function requires two context managers that de-

fine the execution of the stencil in the vertical direction, the first being

computation which accepts the arguments PARALLEL, FORWARD or

BACKWARD. This defines the scheduling of the execution stencil. The
keyword PARALLEL, which we use exclusively for our implementa-

tion, indicates that there is no dependency between subsequent vertical
levels, and hence they can all be solved concurrently. The keywords

FORWARD and BACKWARD define this dependency and indicate the di-

rection in which the vertical levels must be solved. The second context
manager interval allows the user to specify the vertical indices for
which the stencil will be applied. The ‘...’ is a shorthand notation to
select the entire vertical domain.

Finally, we note that the stencil computation is applied for each grid
point; hence, relative offsets are used as indices. Note that, if omitted,
the offset is assumed to be [0,0,0].

Invocation The above laplacian function can be called using the fol-

lowing command:

1 nx, ny, nz = field.shape

2 origins = {"field":(1,1,0),"out":(1,1,0)} # or

{"_all_":(1,1,0)}

3 laplacian(field, out, origin=origins, domain=(

nx-2, ny-2, nz))

We provide the fields relevant to the stencil computation as ar-

guments to the function. In addition, we add two optional keyword
arguments, namely domain, which specifies the domain of execution
of the stencil, and origin, which defines the origin for each field. In
the case of the laplacian stencil, we set these to ensure that the sten-

cil only operates on the inner part of the domain.

The origin argument indicates relative offset between the differ-

ent fields. The keyword _all_ can be utilized to set the same origin
for all fields that have not been specified separately. Note that the key-

word names inside the origins dictionary refer to the names of the
fields in the stencil definition and not to the names of the fields in the
call to the stencil. Upon invocation of a stencil, GT4Py searches for a
cached version and relies on just-in-time (JIT) compilation in case none
is found.

3.2.4. Storages

In GT4Py, fields are variables on which stencils can be applied. The
DSL provides a storage format for these fields which is a wrapper over
the array types numpy/cupy.ndarrays called gt4py.storages,
which ensures that the memory layout of the data is compatible with
the requested backend. The interface provides several methods for in-
stantiating storages, including empty(), ones() and zeros(), as well

https://github.com/spcl/dace

K. Szenes, N. Discacciati, L. Bonaventura et al.

as directly from an existing NumPy array using from_array(). All of
these functions require several additional parameters: shape defines
the size of the storage in the three dimensions, and default_origin
specifies the default origin to be used in case none is specified during
a stencil call. Finally, dtype not only defines the data type of the field
but can also be used to assign higher-order tensors to each grid point
instead of simple scalar values. These fields are subsequently referred
to as higher-dimensional fields.

In the example below, each grid point stores a matrix of size 3x2:

1 u = gt4py.storage.zeros(

2 backend=backend, default_origin=(1,1,0),

3 shape=(4, 4, 2), dtype=(np.float64, (3,2))

4)

Moreover, suppose a field has identical values along one or more spatial
dimensions. In that case, GT4Py provides a feature called ‘masking’,
which avoids the storage of unnecessary copies of the identical values
while still giving the appearance of a full 3-dimensional field. This can
lead to a substantial reduction in memory consumption, which is crucial
for large problem sizes. The previous field can be masked in the vertical
direction using:

1 u = gt4py.storage.zeros(

2 backend=backend, default_origin=(1,1),

3 shape=(4, 4), dtype=(np.float64, (3,2)),

4 mask=[True, True, False]

5)

Note that when using a GPU backend, the fields need to be explic-

itly synchronized from the device back to the host to obtain the results
of a stencil computation. In addition, it is recommended to cast the

gt.storage to a numpy.ndarray to ensure that the data has indeed
been copied from the device. This can be accomplished with the follow-

ing code snippet:

1 x_gt.device_to_host()

2 x_np = np.asarray(x_gt)

3.2.5. Frontend

This section describes the structure of the GT4Py frontend and our
contribution to expanding the functionality vector-valued fields.

Abstract syntax tree (AST) The Python language uses an interpreter
which converts the source code of a program into a representation
called an Abstract Syntax Tree (AST) before compiling the program to
bytecode which is executed by the computer. As the name suggests, the
AST represents the logic of the program as a tree structure stripped of
the specific syntax used in the source code. This representation captures
the semantics of the program and provides a convenient way to inspect
and modify Python applications.

In the case of GT4Py, the frontend parses the Python AST and con-

verts it into a series of custom ASTs through the pipeline (Fig. 2), which
provide additional information necessary for the backends to produce
well-optimized executables.

Limited support for higher-dimensional fields For our implementation, we
represent each DG element by a grid point in GT4Py. Each grid point is
thus assigned a vector that stores its polynomial expansion coefficients.
We refer to this additional dimension of the field as data_dims.

Initially, the support for these vector-valued fields in GT4Py was lim-

ited. In particular, there was no functionality for performing element-

wise operations between fields with respect to the data_dims dimen-

sion. Indeed, these operations needed to be explicitly written out for
each vector component, reducing their utility to scalar fields. The fol-

lowing example illustrates a stencil performing an element-wise multi-

plication between two higher-dimensional fields:

1 @gtscript.stencil(backend=backend)
6

2 def mult(
Computer Physics Communications 295 (2024) 108993

3 field1: gtscript.Field[(np.float64, (3,))],

4 field2: gtscript.Field[(np.float64, (3,))],

5 out: gtscript.Field[(np.float64, (3,))]

6):

7 with computation(PARALLEL), interval(...):

8 out[0,0,0][0] = field1[0,0,0][0] * field2

[0,0,0][0]

9 out[0,0,0][1] = field1[0,0,0][1] * field2

[0,0,0][1]

10 out[0,0,0][2] = field1[0,0,0][2] * field2

[0,0,0][2]

The first set of indices represents the relative offsets between the fields,
while the second set of indices refers to the actual components of the

data_dims dimension. Note that in this case, the relative offsets can-

not be omitted and need to be specified explicitly. Clearly, utilizing this
syntax for implementing a DG scheme would be impractical.

Element-wise operation We have implemented element-wise operations
for vector-valued fields in order to facilitate their use in GT4Py. The
goal is to modify the frontend such that the following convenient syntax
is valid:

1 # ...

2 with computation(PARALLEL), interval(...):

3 out = field1 * field2

This was accomplished by adapting the GT4Py internal processing of
AST nodes such that, when vector-valued fields appear in expressions,
their AST nodes are converted to the ones produced by the previous
explicitly unrolled code snippet. The implemented system verifies the
compatibility of dimensions for vector-valued fields.

Our implementation supports not only chaining together multiple
operations on higher-dimensional fields but also broadcasting of scalar
values for scalar-vector operations. The syntax and functionality should
be intuitive for anyone familiar with the NumPy package.

Matrix multiplication An additional operation that we required for
our DG scheme was a matrix-vector multiplication between higher-

dimensional fields. This was incorporated into our existing framework
and can be invoked using the “@” operator. Also, the multiplication of
a vector by the transpose of a matrix can be achieved by appending the
matrix with the “T” attribute. This leads to the following syntax:

1 @gtscript.stencil(backend=backend)

2 def matmul(

3 matrix: gtscript.Field[(np.float64, (3, 2))],

4 vec: gtscript.Field[(np.float64, (3,))],

5 out: gtscript.Field[(np.float64, (2,))]

6):

7 with computation(PARALLEL), interval(...):

8 out = matrix.T @ vec

DG solver: precomputation At the start of the execution of the program,
the GT4Py solver precomputes on the CPU certain variables that remain
constant during the whole simulation. This includes the computation
of the inverse mass matrix, as well as the Gauss-Legendre quadrature
points and weights for numerical integration. A helper class called van-
der, defined in vander.py, contains all the Vandermonde matrices
required to evaluate the polynomials stored as modal expansion coeffi-

cients at nodal values in the domain (see e.g., [19]). These matrices are
instantiated as fields using gt4py.storages.

DG solver: stencils All subsequent computations are carried out using
stencils in GT4Py. An example stencil is presented subsequently, related
to our DG solver. Applying the theory derived in Section 2 for the linear,
constant-coefficient advection problem

𝜕𝑢

𝜕𝑡
+∇ ⋅ (𝜷𝑢) = 0, (13)

with e.g., 𝜷 = [𝛽1, 𝛽2]𝑇 = [1, 1]𝑇 , we will need to evaluate an integral of

the following form:

K. Szenes, N. Discacciati, L. Bonaventura et al.

∫
𝐷𝑘

[
𝛽1𝑢

𝜕𝜙

𝜕𝑥
+ 𝛽2𝑢

𝜕𝜙

𝜕𝑦

]
𝑑𝑥𝑑𝑦.

This integral can be computed using the stencil below:

1 #...

2 with computation(PARALLEL), interval(...):

3 u_qp = phi @ u_modal

4 fx = u_qp * 1

5 fy = u_qp * 1

6 rhs = determ *
7 (phi_grad_x.T @ (fx * w) / bd_det_x

8 + phi_grad_y.T @ (fy * w) / bd_det_y)

Note how the provided code snippet concisely articulates the mathemat-

ical expression with minimal boilerplate. In line 3, the modal expansion
coefficients are mapped to nodal values at the quadrature points. In
lines 4 and 5, the flux function in the x and y directions is applied. In
this simple case, the flux function is the identity due to the constant ve-

locity field 𝜷 = [1, 1]𝑇 . Finally, in lines 6 — 8, the numerical integration
is performed. The scalar field w represents the quadrature weights while
the matrix-valued field phi_grad_x/y contains the spatial derivatives
of the basis functions. The terms determ, bd_det_x/y denote the Ja-

cobians arising from the mapping of the element in physical space onto
a reference element. Although not reported here, this description easily
generalizes to the SWE case.

4. Code validation

Although G4GT has been discontinued, we retain the results of the
G4GT implementation, because different aspects are emphasized with
respect to the GT4Py implementation. Firstly, several unit tests have
been performed to assess the correctness of our implementations. For
the GT4Py implementation, the tests rely on this framework’s existing
testing infrastructure, which verifies the success of the code generation
as well as the code execution on all backends when compared with a
reference Numpy implementation.

Subsequently, both the G4GT and GT4Py implementations were val-

idated on benchmarks derived from the shallow water test suite [40],
as well as on tests on a planar geometry presented in [36]. These in-

clude a convergence test on linear advection of a smooth profile and
on a geostrophic zonal flow, the simulation of geostrophic adjustment
on the plane, and that of a Rossby-Haurwitz wave in spherical geome-

try. Although our final goal is the simulation of the SWE on the sphere,
all the presented tests provide useful insight from a numerical point of
view and contribute to a progressive increase in the complexity of the
solutions.

4.1. Linear advection convergence of a smooth initial condition

Since both implementations are essentially solving the same prob-

lem, albeit with slightly different flux calculations and numerical im-

plementations, we summarize the convergence results for both in this
section. Specifically, we apply our DG discretization to planar linear ad-

vection on the unit square, assuming periodic boundary conditions and
a constant velocity field 𝜷 = [1, 1]𝑇 , see Equation (13). We consider a
smooth initial condition: 𝑢0(𝑥, 𝑦) = sin(2𝜋𝑥) sin(2𝜋𝑦), which allows us to
achieve optimal convergence rates. The analytic solution of Equation
(13) evolves without changing shape in the direction of the velocity
field. Due to the periodic boundary conditions, the solution will coin-

cide with the initial condition after one full rotation, i.e., at time 𝑇 = 1.
We use a uniform mesh with 𝐾 elements obtained from the tensor prod-

uct of
√

𝐾 elements in each of the coordinate directions. We measure
the error of the numerical approximation using the 𝐿2 norm at the final
simulation time, and we denote it by 𝜖. The expected spatial conver-

gence order for DG methods is given by [19]:
7

𝜖 ∼ 𝑂(ℎ𝑝+1), (14)
Computer Physics Communications 295 (2024) 108993

Table 3

𝐿2 errors 𝜖 and estimated rate of convergence 𝑟 for the linear ad-

vection problem, G4GT implementation.

𝐾
𝑝 = 1 𝑝 = 2 𝑝 = 3

𝜖 𝑟 𝜖 𝑟 𝜖 𝑟

102 1.343e−2 - 1.050e−3 - 3.780e−5 -

202 3.369e−3 2.00 1.329e−4 2.98 2.030e−6 4.22

402 8.405e−4 2.00 1.666e−5 3.00 1.302e−7 3.96

802 2.099e−4 2.00 2.084e−6 3.00 8.345e−9 3.96

1602 5.246e−5 2.00 2.611e−7 3.00

Table 4

𝐿2 errors 𝜖 and estimated rate of convergence 𝑟 for the linear advec-

tion problem, GT4Py implementation.

𝐾
𝑝 = 1 𝑝 = 2 𝑝 = 3

𝜖 𝑟 𝜖 𝑟 𝜖 𝑟

202 4.204e-3 - 1.330e-4 - 2.061e-6 -

402 9.004e-4 2.22 1.666e-5 2.99 1.288e-7 4.00

802 2.139e-4 2.07 2.084e-6 2.99 8.049e-9 4.00

1602 5.212e-5 2.02 2.606e-7 3.00 5.030e-10 4.00

where ℎ is the characteristic mesh size and 𝑝 is the degree of the local
polynomials. To estimate the convergence rate, we compute the dis-

cretization error using two different meshes with characteristic sizes
ℎ1, ℎ2, that we denote as 𝜖1, 𝜖2, respectively. Then, the estimated rate,
denoted by 𝑟, is computed as

𝑟 =
log(𝜖1) − log(𝜖2)
log(ℎ1) − log(ℎ2)

. (15)

The results obtained with the G4GT implementation are reported in
Table 3 and agree with the theoretical expectations, thus validating the
implementation. Not surprisingly, the GT4Py implementation achieves
nearly identical convergence results to the G4GT version, as shown in
Table 4. Notice that the results in Table 3 have been obtained using for
all spatial discretizations the RK4 method for the time discretization,
while those in Table 4 were obtained using for each 𝑝 a RK method of
the same order for the time discretization.

4.2. G4GT implementation: geostrophic adjustment for planar SWE

For the G4GT implementation, we consider the SWE discretized on a
Cartesian mesh in a planar domain. Specifically, we want to show that
the scheme is able to reproduce the geostrophic adjustment process,
see, for example, the discussion in [36]. Starting from a perturbation of
the equilibrium state corresponding to a constant water height, gravi-

tational and rotational forces interact, so that only part of the energy is
transported away from the center, leading to a nontrivial stationary so-

lution profile. Consider a square domain Ω = [0, 𝐿]2 with 𝐿 = 107 m and
a final time of 𝑇 = 36000 s. The initial velocities and momenta are set
to zero, while the height ℎ is equal to

ℎ = ℎ0 + ℎ1 exp
(
−
(𝑥−𝐿∕2)2 + (𝑦−𝐿∕2)2

2𝜎2

)
, (16)

where ℎ0 = 1000 m, ℎ1 = 5 m and 𝜎 = 𝐿∕20 m. Assuming an 𝑓 -plane
approximation, the Coriolis parameter 𝑓 is chosen to be constant and
equal to 10−4 s−1. The problem is completed with periodic boundary
conditions. The simulation has been run using 50 × 50 spatial elements,
a polynomial degree 𝑝 = 3 and the RK4 scheme in time with step Δ𝑡 =
100 s, corresponding to a maximum Courant number of approximately
0.15. The results are reported in Fig. 3. The solution is consistent with
the results reported in [36].

4.3. GT4Py implementation: geostrophic zonal flow for SWE on the sphere

After validating the planar version of the GT4Py implementation, we
consider two of the classical test cases in spherical geometry introduced

in [40] for the shallow water equations. Periodic boundary conditions

Computer Physics Communications 295 (2024) 108993K. Szenes, N. Discacciati, L. Bonaventura et al.

Fig. 3. Numerical results for the geostrophic adjustment test case. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this

article.)

Table 5

𝐿2 errors 𝜖 and estimated rate of convergence 𝑟 for the Williamson
test case 2, GT4Py implementation.

𝐾
𝑝 = 1 𝑝 = 2 𝑝 = 3

𝜖 𝑟 𝜖 𝑟 𝜖 𝑟

102 9.366e−2 - 1.020e−3 - 6.864e−5 -

202 1.984e−3 5.56 1.085e−4 3.23 3.951e−6 4.08

402 4.508e−4 2.13 1.490e−5 2.86 2.362e−7 4.06

802 1.111e−4 2.02 1.986e−6 2.90 1.471e−8 4.00

were applied in the longitudinal direction, while in the latitudinal direc-

tion the fluxes were set to zero. Indeed, since the edges become singular
at the poles, the flux through them must be zero.

In the benchmark denoted as test case 2 in [40], a stationary zonal
flow in geostrophic equilibrium is considered. We perform a conver-

gence test for the spatial discretization, using for all polynomial degrees
the RK4 scheme for time discretization with time steps chosen for each
resolution so as to keep the Courant number sufficiently small and
bounded by a quantity of the order 10−2. The test case has been run
until time 𝑇 = 2 days on meshes of increasing resolutions. The results
are reported in Table 5 and show a convergence behavior entirely anal-

ogous to that of the linear advection case in planar geometry.

4.4. GT4Py implementation: Rossby-Haurwitz wave for SWE on the sphere

The Rossby-Haurwitz wave (denoted as test case 6 in [40]) consists
of a large-scale planetary wave that mimics the high/low-pressure sys-

tems typical of mid-latitude weather patterns. The test case considers
initial data that would result in a stable solution for the barotropic vor-

ticity equation, evolving from west to east without changing shape. It
is known that this configuration is ultimately unstable — see, for ex-

ample, the discussion in [33] — but this instability only arises on a
8

relatively long time scale. Therefore, it is customary to assess the qual-
ity of numerical methods based on their capability to reproduce a stable
eastward moving pattern for several days. In Fig. 4, we see the results
of an 8-day simulation of the Rossby-Haurwitz wave on a 40x20 grid
using the RK4 method in time with Δ𝑡 = 4 s and 𝑝 = 3 in space. It can be
observed that the numerical solution indeed evolves from west to east
while maintaining a close resemblance with the initial shape and that
the simulated pattern is in good agreement with reference solutions,
see, e.g., [35].

5. Performance

In this section, we present performance benchmarks of the G4GT
and GT4Py implementations for the SWE in both planar and spherical
geometry. In both cases, the time spent in the precomputation steps is
neglected, as it becomes negligible for long simulation periods.

The G4GT simulations have been run on the compute nodes of Piz
Daint at CSCS, using an Intel® Xeon® E5-2690 v3, 12-core processor
(single node), characterized by a peak memory bandwidth of 68 GB/s.
On the other hand, the GT4Py benchmarks were performed on a differ-

ent partition of Piz Daint with the CPU code executed on two 18-core
Intel® Xeon® E5-2695 v4 @ 2.10 GHz processor (each with 77 GB/s
peak memory bandwidth) and the GPU code on an NVIDIA® Tesla®

P100 with 16 GB of memory (540 GB/s peak memory bandwidth).

5.1. G4GT performance evaluation

The geostrophic adjustment setup presented in the previous section
can also be used to evaluate the performance of the method and G4GT
in general. Unless stated otherwise, the physical and numerical parame-

ters are therefore kept unchanged, including a grid consisting of 50 ×50

elements and a time step of 100 s.

Computer Physics Communications 295 (2024) 108993K. Szenes, N. Discacciati, L. Bonaventura et al.

Fig. 4. 8-day simulation of the Rossby-Haurwitz wave.
The performance evaluation is done using the Roofline model [39].
This is based on the operational intensity, i.e., the number of floating-

point operations (flops) per byte of DRAM traffic, and the attainable
Gflops per second, i.e., the concrete performance measure. Here, the
DRAM traffic takes into account the bytes that are read from/written
in the main memory after the filter of the cache hierarchy. Because of
hardware limits, the attainable flops per second cannot go beyond a
fixed threshold, determined by the peak memory bandwidth and the
peak floating point performance. In practice, the actual threshold is de-

termined by running benchmark cases, such as the (bandwidth-limited)
stream or the (computationally-limited) LINPACK benchmark. In our
case, these give a memory bandwith upper bound of 44 GB/s and a
peak performance limit of 318 GFlops/s [9]. Thus, for a given opera-

tional intensity, an efficient implementation in terms of performance
should attain values close to the determined limit. In our analysis, we
decided to ignore the cache effects. In other words, every access to a
variable is considered for the computation of the required bytes. This
is in contrast with the definition provided by the model, but a pre-

cise estimate of the DRAM traffic is far from an easy task and, in the
G4GT framework, no tool is available to appropriately measure it. The
9

matrix-vector multiplication, which is the central operation in the DG
implementation, is bandwidth-limited and achieves a performance [11]

somewhat below the leftmost (rising) roofline.

Based on the way in which the code is structured (see [11]), we can
recognize three different kernels:

1. Common part: The nodal values for the solution and the flux func-

tion are computed.

2. Rusanov fluxes: The boundary fluxes are computed, and the
boundary conditions are applied. This requires communication
among neighboring elements.

3. Main computation: The right-hand side is assembled, and the so-

lution is updated.

The results for varying polynomial degree 𝑝 are reported in Fig. 5,
which compares the performances of the global program and the ker-

nels separately. As a complement to Fig. 5, Table 6 breaks down the
computational times.

Looking at the overall performance, we observe that no significant
variations in the operational intensities are present. This is because vari-
ations in the polynomial order lead to similar changes in the number of

Computer Physics Communications 295 (2024) 108993K. Szenes, N. Discacciati, L. Bonaventura et al.

Fig. 5. Performance evaluation of the G4GT implementation of the SWEs in a Cartesian geometry with different spatial degrees 𝑝, RK4 scheme.
Table 6

Computational times of the G4GT implementation of the
SWEs in a Cartesian geometry with different spatial degrees
𝑝, RK4 scheme.

𝑝 Global [s] Kernel 1 [s] Kernel 2 [s] Kernel 3 [s]
1 15.17 7.42 1.45 6.31

2 78.98 21.22 3.10 54.66

3 430.21 54.97 5.81 369.43

floating point operations and memory traffic. However, it appears that
performances obtained with linear basis functions are slightly lower
than higher-order polynomials. The total number of operations might
not be large enough to attain the expected asymptotic values, causing
deviations from the optimal performance.

Looking at the kernels independently, for high values of 𝑝 the third
kernel has the most significant influence on the overall performance.
This is expected since it includes the majority of the computations.
Specifically, the assembly of the internal integral is the most intensive
part, both in terms of resources and time. On the other hand, the second
kernel always has a low computational cost. This is not surprising, as
only boundary quantities are involved. The performance of this kernel
in terms of floating point operations per second is consistently low and
do not vary with 𝑝. Since it is the only phase that involves exchanges
between neighboring elements, it is reasonable that cache misses or in-

efficient memory accesses are present. No particular trend is observed
for the first kernel, except for 𝑝 = 1, in which this kernel has the domi-

nant effect on global performance.

5.2. GT4Py performance evaluation

For the GT4Py implementation, we consider both performance scal-

ability while increasing the horizontal problem size as well as increasing
the number vertical layers while holding the horizontal size constant.

5.2.1. Horizontal scaling

We study the scaling of the runtime of the application with increas-

ing horizontal resolution. In the benchmark, we use a 4th-order scheme
in space which corresponds to a vector of size 16 stored at each grid
point (data_dims = 16). Fig. 6 compares the runtimes of the vari-

ous backends. The gt:cpu_ifirst backend was used as the baseline,
since this is the best performing CPU backend.

Each successive data point doubles the number of grid points in both
horizontal directions. Thus, the expected asymptotic scaling is quadratic
since doubling the number of grid points in both horizontal directions
results in a four-fold increase in the total number of grid points.

In this experiment, the two CPU backends, powered by the GridTools
framework, have virtually identical execution times. For small problem
sizes, the two GPU backends (namely the cuda and gt:gpu) perform
10

worse than the CPU backends. This is due to the under-utilization of
Fig. 6. Benchmark of the execution time of the GT4Py backends with increasing
problem size. Each subsequent data point doubles the grid points in 𝑥 and 𝑦 and
thus quadruples the total number of grid points.

Table 7

Speedup of GT4Py backends vs reference gt:cpu_ifirst implementation
on 640x640 grid.

gt:cpu_kfirst gt:cpu_ifirst cuda gt:gpu

Speedup Factor 0.952 1.00 1.15 3.19

the GPU resources for small-scale problems which are not able to fully
saturate the device. This is illustrated in the delayed asymptotic scaling
of the GPU code when compared to the CPU resulting in better perfor-

mance for larger problems. When comparing the two GPU backends, we
observe that the optimizations provided by the GridTools framework
(included in the gt:gpu backend) yield significant better performing
code than the naive CUDA backend. Note that we were limited to pre-

senting a maximum problem size of 640x640 due to memory constraints
on the GPU.

Table 7 summarizes the speedup observed versus the

gt:cpu_ifirst baseline on the largest problem size. One observa-

tion from Table 7 is that the fastest GPU backend results in a speedup
factor of ∼ 3.2 versus the fastest CPU backend. Since we know from
Fig. 5a that the performance is limited by memory bandwidth, we ex-

pect the speedup to mirror the ratio of bandwidths listed in Section 5

for the P100 GPU to two Intel Broadwell processors, namely, 540 GB/s:
2x77 GB/s ≃ 3.6.

5.2.2. Vertical scaling

In this Section we try to assess the potential performance of GT4Py

on a 3-dimensional problem by considering a set of decoupled 2-

K. Szenes, N. Discacciati, L. Bonaventura et al.

Fig. 7. Benchmark of best-performing CPU and GPU backends in addition to the
CUDA backend. The plot depicts execution time with respect to the number of
identical vertical problems solved in parallel. The final data point for the CUDA
backend is unavailable due to the memory limit reached on GPU.

dimensional SWE problem copied in the vertical direction and solved
in parallel. This configuration increases the computational load and
resembles to some extent those of low order finite difference/finite
volume discretizations of 3-dimensional problems in atmospheric mod-

eling. However, it is substantially different from a full 3-dimensional
DG discretization, since all the local matrices that arise correspond to
2-dimensional rather than 3-dimensional elements. The resulting algo-

rithm scales linearly with the number of vertical levels. Considering
that all levels can be solved independently, this problem is embarrass-

ingly parallel, and we might expect performance benefits on the GPU
compared to the CPU.

Fig. 7 illustrates the execution time of a 4th-order DG scheme on a
300 × 300 grid with increasing vertical levels. Surprisingly, we do not
observe any scaling benefits for this experiment on the GPU. Indeed,
all backends exhibit asymptotic scaling from the first data point, indi-

cating that the hardware’s resources are fully saturated. This is most
likely due to the 2-dimensional problem solved in each level being suf-

ficiently large and fully occupying the memory bandwidth of the GPU.
We observe that the CUDA backend performs even worse than the Grid-

Tools CPU backend. Moreover, it suffers from poor memory utilization
compared to the GridTools GPU implementation, as the last data point
could not be gathered due to the memory capacity of the GPU being
reached.

6. Conclusions

We have presented two implementation examples of a high-order
Discontinuous Galerkin method in the framework of the G4GT and
GT4Py Domain-Specific Languages, respectively. After summarizing the
main novelties of both the implementations, we validated them using
the shallow water equations in both a Cartesian and a spherical geom-

etry and evaluated their computational performance, with a focus on
GPUs.

Despite being only a proof of concept, the now obsolete G4GT
DSL presented several advantages for the end user over the original
GridTools framework, including higher levels of abstraction and thus
improved productivity for the application developer. Several techni-

cal reasons, including dependencies on external libraries, as well as
the emergence of Python as a programming language, were responsi-

ble for the termination of the development of G4GT and the migration
to GT4Py.

The GT4Py extension discussed in this paper enhances its capabili-

ties to accommodate higher-dimensional fields and enables the imple-
11

mentation of Discontinuous Galerkin schemes in spherical geometry,
Computer Physics Communications 295 (2024) 108993

while leveraging the existing GridTools code-generation framework.
Indeed, without modification of the source code, our model could seam-

lessly operate at high performance on both CPUs and GPUs. To the best
of our knowledge, GT4Py stands out as the first GPU-enabled DSL sup-

porting DG solvers in complex geometries. For climate scientists, our
framework is thus particularly appealing due to its versatility in sup-

porting diverse discretization schemes (Finite Difference, Finite Volume
and now Discontinuous Galerkin) with a platform-portable DSL capa-

ble of harnessing accelerators. This, coupled with its intuitive Python
syntax, significantly amplifies productivity in computational modeling
endeavors. In conclusion, we have shown that GT4Py can play a pio-

neering role in the application of GPU-accelerated DSLs for DG schemes
and pave the way for broader adoption of DSL-driven development in
the context of climate modeling.

In future GT4Py work the support for high-dimensional fields could
be extended further. Indeed, currently the DSL does not support array
slicing, which would allow to group related variables into large ma-

trices instead of a series of separate vectors. Furthermore, in order to
eliminate code duplication, functions currently operating exclusively on
scalar fields could be extended to higher-dimensional fields. Lastly, the
inclusion of a dedicated optimization pass in the backend could be used
to fully exploit the unique data memory layout of these fields.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The Swiss National Supercomputing Centre (CSCS) funded the four-

month internships of the first two authors, N.D. and K.S.. We thank the
reviewers for their constructive comments, which helped improve the
quality of the paper. We would also like to thank Linus Groner, Till
Ehrengruber, Enrique González Paredes, Mauro Bianco and Christopher
Bignamini of CSCS for their gracious support during both internships.
L.B. was partially supported by the ESCAPE-2 project, European Union’s
Horizon 2020 Research and Innovation Programme (Grant Agreement
No. 800897).

References

[1] A. Abbà, L. Bonaventura, M. Nini, M. Restelli, Dynamic models for large eddy sim-

ulation of compressible flows with a high order DG method, Comput. Fluids 122
(2015) 209–222.

[2] A. Afanasyev, M. Bianco, L. Mosimann, C. Osuna, F. Thaler, H. Vogt, O. Fuhrer, J.
VandeVondele, T.C. Schulthess, GridTools: a framework for portable weather and
climate applications, SoftwareX 15 (2021) 100707.

[3] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J.
Ring, M.R. Rognes, G.N. Wells, The FEniCS project version 1.5, Arch. Numer. Softw.
3 (100) (2015).

[4] M. Baldauf, A horizontally explicit, vertically implicit (HEVI) discontinuous Galerkin
scheme for the 2-dimensional Euler and Navier-Stokes equations using terrain-

following coordinates, J. Comput. Phys. 446 (2021) 110635.

[5] T. Bandikova, Extreme scale computing and data platform for cloud-resolving
weather and climate modeling, https://exclaim .ethz .ch /publications /exclaim -
publications .html, 2022, EXCLAIM Brochure.

[6] T. Ben-Nun, J. de Fine Licht, A.N. Ziogas, T. Schneider, T. Hoefler, Stateful dataflow
multigraphs: a data-centric model for performance portability on heterogeneous ar-

chitectures, in: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ‘19, New York, NY, USA, Associa-

tion for Computing Machinery, ISBN 978-1-4503-6229-0, November 2019, pp. 1–14.

[7] T. Ben-Nun, L. Groner, F. Deconinck, T. Wicky, E. Davis, J. Dahm, O.D. Elbert,
R. George, J. McGibbon, L. Trümper, et al., Productive performance engineering

for weather and climate modeling with python, in: SC22: International Conference

http://refhub.elsevier.com/S0010-4655(23)00338-7/bib2446EF80C9C8065C3755C73311405F26s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib2446EF80C9C8065C3755C73311405F26s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib2446EF80C9C8065C3755C73311405F26s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib72E6BCE3A61610FB16478D37113F422Es1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib72E6BCE3A61610FB16478D37113F422Es1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib72E6BCE3A61610FB16478D37113F422Es1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib64D6BED44F748D0273DFDF7259146664s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib64D6BED44F748D0273DFDF7259146664s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib64D6BED44F748D0273DFDF7259146664s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib38358E5FD9B993691B94FB3F1442FEAAs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib38358E5FD9B993691B94FB3F1442FEAAs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib38358E5FD9B993691B94FB3F1442FEAAs1
https://exclaim.ethz.ch/publications/exclaim-publications.html
https://exclaim.ethz.ch/publications/exclaim-publications.html
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib49700F923D7310F07A6CF75BDC560FA0s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib49700F923D7310F07A6CF75BDC560FA0s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib49700F923D7310F07A6CF75BDC560FA0s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib49700F923D7310F07A6CF75BDC560FA0s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib49700F923D7310F07A6CF75BDC560FA0s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib4136B18080125EDE8CD418BAA6BFA651s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib4136B18080125EDE8CD418BAA6BFA651s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib4136B18080125EDE8CD418BAA6BFA651s1

Computer Physics Communications 295 (2024) 108993K. Szenes, N. Discacciati, L. Bonaventura et al.

for High Performance Computing, Networking, Storage and Analysis, IEEE, 2022,
pp. 1–14.

[8] L. Bonaventura, R. Redler, R. Budich, Earth System Modelling 2: Algorithms, Code
Infrastructure and Optimisation, Springer Verlag, New York, 2012.

[9] Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano, Raffaele Tripic-

cione, Thunderx2 performance and energy-efficiency for HPC workloads, Computa-

tion (ISSN 2079-3197) 8 (1) (2020), https://doi .org /10 .3390 /computation8010020,
https://www .mdpi .com /2079 -3197 /8 /1 /20.

[10] J. Dahm, E. Davis, T. Wicky, M. Cheeseman, O. Elbert, R. George, J.J. McGibbon,
L. Groner, E. Paredes, O. Fuhrer, GT4Py: Python tool for implementing finite-

difference computations for weather and climate, in: 101st American Meteorological
Society Annual Meeting, AMS, 2021, https://ams .confex .com /ams /101ANNUAL /
meetingapp .cgi /Paper /381653.

[11] N. Discacciati, Implementation and evaluation of Discontinuous Galerkin methods
using Galerkin4GridTools, https://github .com /nickdisca /DG _code /blob /master /
G4GT _reports /report _PACS .pdf, 2018, Master project at the Politecnico di Milano.

[12] N. Discacciati, Implementation and evaluation of Discontinuous Galerkin methods
using Galerkin4GridTools, https://github .com /nickdisca /DG _code /blob /master /
G4GT _reports /G4GT _report _20190216 .pdf, 2019, Small Development Project at the
Swiss National Supercomputing Centre.

[13] The Epetra Project Team, The Epetra Project Website, https://trilinos .github .io /
epetra .html, 2022. (Accessed 6 December 2022).

[14] M. Fowler, Domain-Specific Languages, Pearson Education, 2010.

[15] F.X. Giraldo, An Introduction to Element-Based Galerkin Methods on Tensor-Product
Bases, Springer Nature, 2020.

[16] S. Gottlieb, D. Ketcheson, C.-W. Shu, Strong Stability Preserving Runge-Kutta and
Multistep Time Discretizations, World Scientific, Singapore, 2011.

[17] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, T.C. Schulthess, STELLA: a domain-specific
tool for structured grid methods in weather and climate models, in: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, 2015, pp. 1–12.

[18] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, K.R.
Long, R.P. Pawlowski, E.T. Phipps, et al., An overview of the Trilinos project, ACM
Trans. Math. Softw. 31 (2005) 397–423.

[19] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods, Texts in Ap-

plied Mathematics, vol. 54, Springer, New York, 2008.

[20] The Intrepid Project Team, The Intrepid Project Website, https://trilinos .github .io /
intrepid .html, 2022. (Accessed 6 December 2022).

[21] I. Kavcic, LFRic and PSyclone: utilising DSLs for performance portability, in: AGU
Fall Meeting Abstracts, vol. 2020, 2020, pp. A023–07.

[22] J. Kunkel, N. Jumah, A. Novikova, T. Ludwig, H. Yashiro, N. Maruyama, M. Wahib,
J. Thuburn, AIMES: advanced computation and I/O methods for Earth-System sim-

ulations, in: Software for Exascale Computing-SPPEXA 2016-2019, Springer, 2020,
pp. 61–102.

[23] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, first edition, Cam-

bridge University Press, 2002.

[24] S. Marras, J.F. Kelly, M. Moragues, A. Müller, M.A. Kopera, M. Vázquez, F.X. Gi-

raldo, G. Houzeaux, O. Jorba, A review of element-based Galerkin methods for

numerical weather prediction: finite elements, spectral elements, and discontinuous
Galerkin, Archives of Computational Methods in Engineering 23 (2016) 673–722.

[25] G. Orlando, P. Barbante, L. Bonaventura, An efficient IMEX-DG solver for the com-

pressible Navier-Stokes equations for non-ideal gases, J. Comput. Phys. 471 (2022)
111653.

[26] G. Orlando, T. Benacchio, L. Bonaventura, An IMEX-DG solver for atmospheric dy-

namics simulations with adaptive mesh refinement, J. Comput. Appl. Math. (2023)
115124.

[27] F. Rathgeber, G.R. Markall, L. Mitchell, N. Loriant, D.A. Ham, C. Bertolli, P.H.J.
Kelly, PyOP2: a high-level framework for performance-portable simulations on un-

structured meshes, in: 2012 SC Companion: High Performance Computing, Network-

ing Storage and Analysis, 2012, pp. 1116–1123.

[28] F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T.T. McRae, G.T.
Bercea, G.R. Markall, P.H.J. Kelly, Firedrake: automating the finite element method
by composing abstractions, ACM Trans. Math. Softw. 43 (2016) 1–27.

[29] C. Schär, O. Fuhrer, A. Arteaga, N. Ban, C. Charpilloz, S. Di Girolamo, L. Hent-

gen, T. Hoefler, X. Lapillonne, D. Leutwyler, et al., Kilometer-scale climate models:
prospects and challenges, Bull. Am. Meteorol. Soc. 101 (5) (2020) E567–E587.

[30] Swiss National Supercomputing Centre, The GridTools framework, https://github .
com /GridTools, 2022. (Accessed 24 November 2022).

[31] F. Thaler, S. Moosbrugger, C. Osuna, M. Bianco, H. Vogt, A. Afanasyev, L. Mosi-

mann, O. Fuhrer, T.C. Schulthess, T. Hoefler, Porting the COSMO weather model to
manycore CPUs, in: Proceedings of the Platform for Advanced Scientific Computing
Conference, 2019, pp. 1–11.

[32] The Psyclone Project Team, The Psyclone Project Website, https://github .com /stfc /
PSyclone, 2022. (Accessed 8 December 2022).

[33] J. Thuburn, Y. Li, Numerical simulations of Rossby–Haurwitz waves, Tellus A 52
(2000) 181–189.

[34] TOP500. The List, https://top500 .org /lists /top500 /2023 /06, June 2023.

[35] G. Tumolo, L. Bonaventura, A semi-implicit, semi-Lagrangian discontinuous
Galerkin framework for adaptive numerical weather prediction, Q. J. R. Meteorol.
Soc. 141 (2015) 2582–2601.

[36] G. Tumolo, L. Bonaventura, M. Restelli, A semi-implicit, semi-Lagrangian, 𝑝− adap-

tive discontinuous Galerkin method for the shallow water equations, J. Comput.
Phys. 232 (2013) 46–67.

[37] J. Vila-Pérez, R. Heyningen, N. Nguyen, J. Peraire, Exasim: Generating discontin-

uous Galerkin codes for numerical solutions of partial differential equations on
graphics processors, SoftwareX 20 (2022) 101212, https://doi .org /10 .1016 /j .softx .
2022 .101212.

[38] H. Wernli, C. Kühnlein, A. Calotoiu, H. Joos, Kilos: kilometer-scale nonhydrostatic
global weather forecasting with IFS-FVM, https://www .pasc -ch .org /projects /2021 -
2024 /kilos /index .html, 2021.

[39] S. Williams, A. Waterman, D. Patterson., Roofline: an insightful visual performance
model for multicore architectures, Commun. ACM 52 (2009) 65–76.

[40] D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard
test set for numerical approximations to the shallow water equations in spherical
geometry, J. Comput. Phys. 102 (1992) 211–224.
12

http://refhub.elsevier.com/S0010-4655(23)00338-7/bib4136B18080125EDE8CD418BAA6BFA651s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib4136B18080125EDE8CD418BAA6BFA651s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibFB8E21BDA424F1189F008A0A3B49E855s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibFB8E21BDA424F1189F008A0A3B49E855s1
https://doi.org/10.3390/computation8010020
https://www.mdpi.com/2079-3197/8/1/20
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/381653
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/381653
https://github.com/nickdisca/DG_code/blob/master/G4GT_reports/report_PACS.pdf
https://github.com/nickdisca/DG_code/blob/master/G4GT_reports/report_PACS.pdf
https://github.com/nickdisca/DG_code/blob/master/G4GT_reports/G4GT_report_20190216.pdf
https://github.com/nickdisca/DG_code/blob/master/G4GT_reports/G4GT_report_20190216.pdf
https://trilinos.github.io/epetra.html
https://trilinos.github.io/epetra.html
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibFFF56045CF73693D3EE83CA691995766s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibD693D9326F750D16E4DD00C25FCC1A54s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibD693D9326F750D16E4DD00C25FCC1A54s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibC4B0C5BB352F596FAF332D1FE3CE746Fs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibC4B0C5BB352F596FAF332D1FE3CE746Fs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib42585A857C3C0886175B6709041C488Cs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib42585A857C3C0886175B6709041C488Cs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib42585A857C3C0886175B6709041C488Cs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib42585A857C3C0886175B6709041C488Cs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib5B81AA78A5A9C97A69847C9B42C08FFAs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib5B81AA78A5A9C97A69847C9B42C08FFAs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib5B81AA78A5A9C97A69847C9B42C08FFAs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib7F6B4F4C9EE06FEEFF3E98A60622389As1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib7F6B4F4C9EE06FEEFF3E98A60622389As1
https://trilinos.github.io/intrepid.html
https://trilinos.github.io/intrepid.html
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib596DCC5C20A95E621DF0EC70BDF53CDAs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib596DCC5C20A95E621DF0EC70BDF53CDAs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib7078B46413BD16437BA70BD0610BF046s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib7078B46413BD16437BA70BD0610BF046s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib7078B46413BD16437BA70BD0610BF046s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib7078B46413BD16437BA70BD0610BF046s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib6D7297ADC1223D3BE6AA075F5DAE534Cs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib6D7297ADC1223D3BE6AA075F5DAE534Cs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibD13451458CDF98CF6E6B33D18542CC9Fs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibD13451458CDF98CF6E6B33D18542CC9Fs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibD13451458CDF98CF6E6B33D18542CC9Fs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibD13451458CDF98CF6E6B33D18542CC9Fs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibB1803A5B694D50ECBBE7E4FB0AE445F8s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibB1803A5B694D50ECBBE7E4FB0AE445F8s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibB1803A5B694D50ECBBE7E4FB0AE445F8s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibC3C4F46220AA71742571F9AC4E39B32Fs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibC3C4F46220AA71742571F9AC4E39B32Fs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibC3C4F46220AA71742571F9AC4E39B32Fs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibE29032124B11ECD3928390A542184BB5s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibE29032124B11ECD3928390A542184BB5s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibE29032124B11ECD3928390A542184BB5s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibE29032124B11ECD3928390A542184BB5s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib48FFB1DD045C7DD888247D25554873E4s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib48FFB1DD045C7DD888247D25554873E4s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib48FFB1DD045C7DD888247D25554873E4s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib1241128712D939CDBE570A0D7BE74F7As1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib1241128712D939CDBE570A0D7BE74F7As1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib1241128712D939CDBE570A0D7BE74F7As1
https://github.com/GridTools
https://github.com/GridTools
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibB623AFE106BA0C75E92C0E882F539864s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibB623AFE106BA0C75E92C0E882F539864s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibB623AFE106BA0C75E92C0E882F539864s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibB623AFE106BA0C75E92C0E882F539864s1
https://github.com/stfc/PSyclone
https://github.com/stfc/PSyclone
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib63DF2E0EB269EB983F5F33299FA0EADAs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib63DF2E0EB269EB983F5F33299FA0EADAs1
https://top500.org/lists/top500/2023/06
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibE8DEB37093A9A0C4ACE3E9C64E89969Bs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibE8DEB37093A9A0C4ACE3E9C64E89969Bs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibE8DEB37093A9A0C4ACE3E9C64E89969Bs1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib36804C5EDC061A2C2B7B0140A8C42FA1s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib36804C5EDC061A2C2B7B0140A8C42FA1s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib36804C5EDC061A2C2B7B0140A8C42FA1s1
https://doi.org/10.1016/j.softx.2022.101212
https://doi.org/10.1016/j.softx.2022.101212
https://www.pasc-ch.org/projects/2021-2024/kilos/index.html
https://www.pasc-ch.org/projects/2021-2024/kilos/index.html
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibA83EA82B1BF0C91290A9E1EBBA16C66Es1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bibA83EA82B1BF0C91290A9E1EBBA16C66Es1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib0056BB7940AA036E2FC6E968F7ABFEE5s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib0056BB7940AA036E2FC6E968F7ABFEE5s1
http://refhub.elsevier.com/S0010-4655(23)00338-7/bib0056BB7940AA036E2FC6E968F7ABFEE5s1

	Domain-specific implementation of high-order Discontinuous Galerkin methods in spherical geometry
	1 Introduction
	2 The mathematical model and numerical discretization approach
	3 Implementations in G4GT and GT4Py
	3.1 Galerkin for GridTools (G4GT) implementation
	3.2 GT4Py implementation
	3.2.1 Compilation pipeline
	3.2.2 Backends
	3.2.3 Stencils
	Declaration
	Invocation

	3.2.4 Storages
	3.2.5 Frontend
	Abstract syntax tree (AST)
	Limited support for higher-dimensional fields
	Element-wise operation
	Matrix multiplication
	DG solver: precomputation
	DG solver: stencils

	4 Code validation
	4.1 Linear advection convergence of a smooth initial condition
	4.2 G4GT implementation: geostrophic adjustment for planar SWE
	4.3 GT4Py implementation: geostrophic zonal flow for SWE on the sphere
	4.4 GT4Py implementation: Rossby-Haurwitz wave for SWE on the sphere

	5 Performance
	5.1 G4GT performance evaluation
	5.2 GT4Py performance evaluation
	5.2.1 Horizontal scaling
	5.2.2 Vertical scaling

	6 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

