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goes to infinity. Due to this interaction, the fluid domain 
depends on time in an unknown fashion and the problem 
needs a delicate functional analytic setting. As a result, the 
solution operator associated to the system acts on a time-
dependent phase space, and it cannot be described in terms 
of a semigroup nor of a process. Nonetheless, we are able 
to extend the notion of global attractor to this particular 
setting, and prove its existence and regularity. This provides 
a strong characterization of the asymptotic behavior of the 
problem. Moreover, when the inflow is sufficiently small, the 
attractor reduces to the unique stationary solution of the 
system, corresponding to a perfectly symmetric configuration.
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Fig. 1. Wind tunnel experiment at Politecnico di Milano.

1. Introduction

We study the long-time dynamics of a coupled system describing the motion of a fluid 
in a 2D channel with a rectangular obstacle. We aim at modeling the interaction between 
the cross-section of the deck of a suspension bridge and the wind as in a wind tunnel 
experiment where, at the inlet and outlet sections, the velocity field of the fluid has a 
prescribed parabolic unidirectional profile, called Poiseuille flow. See Fig. 1 for a picture 
taken during a wind tunnel experiment held at Politecnico di Milano. The asymmetry of 
the flow vortices leeward generates a vertical solicitation (lift force) on the plate (deck) 
[22].

Our analysis is performed on the two-dimensional fluid-structure interaction problem 
introduced in [5] whose well-posedness has been later established in [44], with the excep-
tion that, in the present paper, the channel has finite length. The reason for this choice 
is that we aim at modeling a wind tunnel (Fig. 1), where the long-time dynamics may 
also be studied experimentally. The wind tunnel framework allows to introduce several 
simplifications such as perfect symmetry of the air flow, of the cross-section of the deck, 
and of the surrounding environment. At the price of much more technical assumptions 
and proofs, our results may be extended to general asymmetric situations and to the 
case of more degrees of freedom for the structure, such as torsional movements as in [5]
and horizontal translations.

The motion of the fluid is governed by the Navier-Stokes equations. We denote by

B = [−d, d] × [−δ, δ]

the rectangular rigid body representing the 2D (scaled) cross-section of the deck of a 
suspension bridge. In fact, also alternative symmetric shapes, such as ellipses, are allowed 
without altering our results but a rectangular shape is more similar to the cross-section 
of a bridge. However, the proofs would become much more delicate since the “collision 
points”, that for B coincide with the two segments [−d, d] × {−δ, δ}, could have very 
weird behavior (such as union of segments, points, Cantor sets...) and many parameters 
(curvature, smoothness) would enter into the analysis, see [30,31,35]. Without loss of 
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Fig. 2. Channel with the vertically moving obstacle Bh, above at t = 0 (taking, e.g., h0 = 0), below at t > 0.

generality, we take d = 1 so that d becomes the reference length unit. Let I � d = 1
and L � δ with δ < 1: in particular, the assumption that I � 1 allows the fluid 
to “regularize” and recover some symmetry at the outlet section, quite similar to a 
Poiseuille outflow as wind tunnel experiments seem to confirm. The rigid body is free to 
move vertically inside the 2D channel (the section of a wind tunnel)

R = (−I, I) × (−L,L),

driven by the action of both a smooth elastic restoring force and the fluid flow, see Fig. 2. 
The upper and lower boundaries of such a channel are given by Γ = (−I, I) × {−L, L}, 
whereas h denotes the vertical displacement of the barycenter of the rigid body from the 
equilibrium line x2 = 0. Thus,

Bh = B + hê2 ∀ |h| < L− δ

tracks the position of the body after the vertical translation. In particular, when |h| =
L − δ the obstacle collides with Γ. Due to the motion of the rigid body, the domain 
occupied by the fluid is variable in time and is given by

Ωh = R \Bh , where h = h(t). (1.1)

For simplicity, in the sequel we will sometimes omit emphasizing the dependence on 
t ∈ (0, T ) and, with an abuse of notation, we will denote through a Cartesian product 
the space-time domain given by

Ωh × (0, T ) := {(x, t) ∈ R2 ×R+; 0 < t < T, x ∈ Ωh = Ωh(t)}.

We denote by qλ a stationary Poiseuille flow on the whole channel R with a prescribed 
intensity λ > 0, that is the vector field
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qλ(x2) = λ(L2 − x2
2)ê1 ∀x2 ∈ [−L,L] .

We observe that qλ and the associated pressure πp(x1, x2) = −2μλ x1, for every (x1, x2) ∈
R, satisfy the steady-state Navier-Stokes equations

−μΔqλ + (qλ · ∇)qλ + ∇πp = 0 , div qλ = 0 in R ,

since (qλ · ∇)qλ ≡ 0 in R. If m > 0 is the mass of the body B, and if at the inlet 
and outlet section of the channel the velocity field reproduces qλ, the fluid-structure 
interaction evolution problem on the time-interval is then described by

ut = μΔu− (u · ∇)u−∇p, divu = 0 in Ωh × (0, T ),

u = qλ(x2) on ∂R× (0, T ), u = h′ ê2 on ∂Bh × (0, T ),

mh′′ + f(h) = −ê2 ·
∫

∂Bh

T (u, p) · n̂ dσ in (0, T ),
(1.2)

to which we associate the initial conditions h(0) = h0, h′(0) = k0, u(x, 0) = u0(x) in 
Ωh0 = Ωh(0). Here u : Ωh × (0, T ) → R2 and p : Ωh × (0, T ) → R are, respectively, 
the velocity vector field and the scalar pressure, while n̂ denotes the outward normal 
to ∂Ωh, thus directed towards the interior of ∂Bh. For simplicity the fluid density is 
normalized to unit, the constant μ > 0 is the (fixed) fluid viscosity, while λ > 0 in qλ
measures the magnitude of the Poiseuille flow and its variations determine the variations 
of the Reynolds number. It is understood that λ belongs to a physical range, hence it 
can not exceed some (possibly very large) value. Since λ remains uniformly bounded, in 
our estimates all the superlinear powers of λ are controlled by λ times a suitably large 
constant. The motion of the body is governed by the ODE in (1.2), where f(h) is an 
elastic smooth restoring force and T (u, p) is the strain tensor, namely,

T (u, p) = −pI + 2μD(u) with D(u) = ∇u + ∇�u

2 , (1.3)

being I the 2 × 2-identity matrix, so that the right hand side of the ODE is the lift force 
exerted by the fluid on the body [28]. Further assumptions on f(h) are given in Section 2.

From a physical (and engineering) point of view, a crucial issue is to prevent structural 
and areodynamic instabilities [1,2,4,7,10,23], which translates into predicting simple be-
haviors of the body-fluid system as time goes to infinity. In mathematical terms, this 
is usually described by means of small (in a suitable sense) subsets of the phase space 
able to confine the long-time dynamics, namely to substantially reduce the degrees of 
freedom of the system. To this end, the most effective tool available in the theory of 
infinite-dimensional dynamical systems is the notion of global attractor [13,15]. But since 
the fluid domain (1.1) and the phase space for (u, h) are time dependent, for the prob-
lem (1.2), the very definition of such an object introduces a major difficulty: there is no 
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way to describe the solutions in terms of a semigroup, and not even in terms of a process 
in the sense of [13]. For this reason, while well-posedness issues have been abundantly 
explored (see, e.g., [19,21,33,45]), the existence of a global attractor for the whole fluid-
structure interaction problem with a time-dependent fluid domain is extremely delicate, 
and, to the best of our knowledge, only partial results are known. On the one hand, a part 
of the literature is devoted to the study of the long-time dynamics of fluid-plate interac-
tion models, see, e.g., [16–18] with a fixed fluid domain. On the other hand, the long-time 
dynamics of the Navier-Stokes equations set on time-varying domains has been studied 
only when the motion of the domain is prescribed and sufficiently smooth, see [46]; this 
allows to reformulate the problem on a fixed domain by a coordinate transformation and 
to apply the techniques for non-autonomous systems, see [11,12,39,42].

Accordingly, one of the main purposes of the present work is to extend the notion of 
global attractor to cover the case of maps lacking the concatenation property (typical 
of semigroups or processes), referred to in this paper as semiflows. This allows us to 
circumvent the main obstruction, leading to a proper definition of global attractor apt 
to describe the asymptotics of our fluid-structure interaction problem acting on a time-
dependent phase space. With this notion at hand, we are able to study the dissipativity 
properties of (1.2), showing that in the long-time it indeed admits an attractor. As 
we will see, this is a compact subset of the (variable-in-time) phase space to which all 
the solutions (u, h) of (1.2) eventually approach. In this respect, the first step is to 
characterize explicitly the attractor in some particular situation: we will show that if 
the inflow qλ is sufficiently small, then the attractor reduces to the unique stationary 
solution of (1.2).

The symmetric model considered in the present paper illustrates the power of these 
abstract tools. Not only we believe that our results may be extended to general asym-
metric frameworks, but also that semiflows and the related notion of attractor can be 
used to tackle a much wider class of fluid-structure interaction models with different ap-
plications [25,38,43] and to further long-time dynamics evolution problems with variable 
phase space.

1.1. Plan of the paper

The paper is organized as follows. In Section 2 we introduce the main tools for the 
analysis of (1.2), and we recall some results about the well-posedness and the existence 
and uniqueness of equilibrium solutions, the latter holding under smallness assumptions 
on the flow. In Section 3 we explain why the classical approach does not apply and, 
particularly, why the description of the dynamics of (1.2) in terms of semigroups or 
processes seems to be out of reach. In Section 4 we show that, in case of uniqueness, the 
equilibrium solution is stable. In Section 5 we define what we mean by semiflow, and we 
introduce a time-dependent map which enables us to transform (1.2), which is set in the 
time-dependent domain (1.1), into a different problem in a fixed domain. In Section 6
we state and prove our final result on the existence of a global attractor for (1.2).
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2. Weak solutions and well-posedness

Let D ⊂ R2 be an open bounded Lipschitz domain. We denote by Lq(D), q ≥ 1, 
and Hm(D), m ≥ 0, respectively the usual Lebesgue and Hilbert spaces with associated 
norms ‖ · ‖Lq(D) and ‖ · ‖Hm(D), under the convention that H0(D) = L2(D).

2.1. Assumptions on the restoring force f = f(h)

We assume that

f ∈ C1(−L + δ, L− δ) satisfies f(0) = 0 and f ′(h) > 0 ∀h ∈ (−L + δ, L− δ).
(2.1)

We point out that the boundary of the channel is somehow artificial in order to restrict to 
a bounded domain so that our physical model breaks down in case of collision between 
the obstacle and the boundary. In order to prevent collisions, we require that f be a 
strong force, that is

∃ r > 0 s.t. lim
|h|→L−δ

|f(h)| exp
{
− 1

(L− δ − |h|)4+r

}
= +∞. (2.2)

From a mathematical point of view, (2.2) may be probably weakened but it was used 
in [44] as a sufficient condition to avoid collisions and obtain the well-posedness. In 
any case, here it is not essential to determine the minimal growth condition for f as 
|h| → L − δ. The simplest example of function f satisfying (2.2) is

f(h) = h exp 1
(L− δ − |h|)4+q

,

where q > 0 (in this case r = q
2 ). Nevertheless, since the restoring force for the deck of a 

bridge also involves gravity, the function f may not be odd. From (2.1), it follows that 
f(h)h > 0 for all h = 0 and that there exists ρ such that f ′(h) > ρ > 0 for all h. Hence, 
if we put

F (h) =
h∫

0

f(s) ds, (2.3)

we obtain

f(h)h ≥ F (h) ≥ ρ

2h
2. (2.4)

Then, we define the function M : [0, +∞) → (−L + δ, L − δ) as

M(y) := sup
{
|s| : F (s) ≤ y

}
.
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Fig. 3. The smoothened rectangle Aε0 .

Observe that M is a continuous increasing function with M(0) = 0. Moreover,

∀C ≥ 0 F (h) ≤ C =⇒ |h| ≤ M(C). (2.5)

2.2. Definition of a solenoidal extension

In order to be able to capture the non-homogeneous boundary condition in (1.2), 
we build a solenoidal extension for the Poiseuille flow, by combining some results from 
[9,26,28,40]. We need an H2-solenoidal extension (and not merely H1) because we need 
some additional regularity to study the dissipativity properties of our system (1.2). Let 
ε0 ∈ (0, L − δ) and consider the “smoothened rectangle”

Aε0 =
{

(x1, x2) ∈ R2 ; |x2| < L− ε0, |x1| < 2 + 4
√

(L− ε0)4 − x4
2

}
, (2.6)

so that ∂Aε0 ∈ C3, see Fig. 3. Then, we take the non-simply connected domain

Υε0 = R \ Āε0 , ∂Υε0 = ∂R∪ ∂Aε0 , (2.7)

and we state

Lemma 2.1. For any η > 0, there exist ε0 = ε0(η) and a solenoidal vector field s = sε0 =
sε0(η) such that

s ∈ H2(R) ∩ L∞(R), s = 0 in Āε0 , s = qλ on ∂R, (2.8)

and ∣∣∣∣ ∫
R

(u · ∇)s · u dx
∣∣∣∣ ≤ η ‖∇u‖2

L2(R) ∀u ∈ H1
0 (R) , (2.9)

where Aε0 is as in (2.6). Moreover, there exist c1, c2, c3, c4 > 0 such that

‖s‖L2(R) ≤ c1λε0e
2/ε0 , ‖∇s‖L2(R) ≤ c2λε0e

4/ε0 ,

‖Δs‖ 2 ≤ c λε e6/ε0 ‖s‖ ∞ ≤ c λε e2/ε0 .
(2.10)
L (R) 3 0 L (R) 4 0
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Proof. For any ε0 ∈ (0, L − δ) to be fixed later, let Υε0 be as in (2.7). Consider the 
Stokes system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Δv + ∇p = 0 in Υε0 ,

div v = 0 in Υε0 ,

v = qλ on ∂R,

v = 0 on ∂Aε0 .

(2.11)

Defining weak solutions as in [26, Section IV.1], by [26, Theorem IV.1.1] there exists a 
unique weak solution (v, q) ∈ H1(Υε0) × L2(Υε0) to (2.11) such that

‖∇v‖L2(Υε0 ) + ‖p‖L2(Υε0 ) ≤ c λ,

for some c depending on ε0. Although ∂Υε0 is not globally of class C2 (it contains the 
corners of R), since R is convex, we may proceed as in [28, Theorem 3.3] to infer that 
the regularity of the solution can be improved to (v, q) ∈ H2(Υε0) ×H1(Υε0). Then, we 
localize the solution of (2.11) in a neighborhood of ∂R. More precisely, let v = (v1, v2)
be the solution to (2.11), fix x0 ∈ Υε0 and let

g(x) =
x∫

x0

(v1 dx2 − v2 dx1) ∀x ∈ Υε0

be the stream function associated to v (see e.g., [26, Lemma IX.4.1]). As a consequence,

v1 = ∂g

∂x2
, v2 = − ∂g

∂x1
, g ∈ H3(Υε0). (2.12)

Let δ(x) := dist(x, ∂R), γ(ε0) := exp(−1/ε0), and ψε0 ∈ C∞(Ῡε0) be the cut-off func-
tion, introduced in [36] (see also [26, Lemma III.6.2]), satisfying for all x ∈ Υε0

|ψε0(x)| ≤ 1, |ψε0(x)| = 1 if δ(x) < k1γ
2(ε0), ψε0(x) = 0 if δ(x) ≥ 2γ(ε0),

|∇ψε0(x)| ≤ k2ε0/δ(x), |Dαψε0(x)| ≤ k3ε0/δ
|α|(x) for |α| ∈ {2, 3}, (2.13)

with k1, k2, k3 > 0. We set

s =
(

∂

∂x2
(g ψε0),−

∂

∂x1
(g ψε0)

)
in Υε0 , s = 0 inR \ Υε0 .

From (2.12), we see that s satisfies (2.8). Moreover, we can proceed as in [26, Lemma 
IX.4.2] to fix ε0 ∈ (0, L − δ) small enough so as to obtain (2.9). Finally, the estimates in 
(2.13) imply that

|∇ψε0(x)| ≤ k4ε0e
2/ε0 ; |D2ψε0 | ≤ k5ε0e

4/ε0 ; |D3ψε0(x)| ≤ k6ε0e
6/ε0 ,
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for all x such that k1γ
2(ε0) < dist(x, ∂R) ≤ 2γ(ε0), for some constants k4, k5, k6 > 0. 

This gives (2.10). �
Remark 2.2. According to the situation, we might not need (2.9). In this case ε0 can be 
chosen arbitrarily in the admissible set (0, L − δ). Except for (2.9), then s = sε0 satisfies 
all other properties stated in Lemma 2.1.

2.3. Steady states

We denote by (u∗, h∗) the steady solutions to problem (1.2), namely the solutions to

−μΔu∗+(u∗ · ∇)u∗ + ∇p∗ = 0, divu∗ = 0 in Ωh∗ ,

u∗ = qλ on ∂R, u∗ = 0 on ∂Bh∗ ,
(2.14)

together with the static fluid-structure interaction condition

f(h∗) = −ê2 ·
∫

∂Bh∗

T (u∗, p∗) · n̂ dσ. (2.15)

Weak solutions (u∗, h∗) ∈ H1(Ωh∗) × (−L + δ, L − δ) to (2.14)-(2.15), whose precise 
definition is standard [26, Section IX.1], represent equilibrium positions of the body, for 
a given flow regime of the fluid. In the following theorem we provide a well-posedness 
result for (2.14)-(2.15).

Theorem 2.3. Assume that f satisfies (2.1)-(2.2). For any λ > 0 the problem (2.14)-(2.15)
admits a weak solution. Furthermore, there exists λ∗ > 0 such that if λ < λ∗ the problem 
(2.14)-(2.15) admits a unique weak solution (u∗, h∗) ∈ H1(Ωh∗) × (−L + δ, L − δ) given 
by (uλ, 0), that is u∗, with h∗ = 0. Moreover, there exists C(λ) > 0, with C(λ) → 0 as 
λ → 0, such that

‖∇uλ‖L2(Ω0) ≤ C(λ).

Proof. For any τ ∈ (0, L − δ), build the “smoothened rectangle”

Aτ =(−2, 2) × (−L + δ + τ, L)

∪ {(x1, x2) ∈ R2 | (x1 − 2)4 + (x2 − δ
2 − τ

2 )4 < (L− δ
2 − τ

2 )4, x1 ≥ 2, x2 ≤ δ
2 + τ

2}
∪ {(x1, x2) ∈ R2 | (x1 + 2)4 + (x2 − δ

2 − τ
2 )2 < (L− δ

2 − τ
2 )4, x1 ≤ −2, x2 ≤ δ

2 + τ
2}

∪ {(x1, x2) ∈ R2 | (x1 − 2 − 2L + δ + τ)4 + (x2 − δ
2 − τ

2 )4

< (L− δ
2 − τ

2 )4, x1 ≥ 2, x2 > δ
2 + τ

2}
∪ {(x1, x2) ∈ R2 | (x1 + 2 + 2L− δ − τ)4 + (x2 − δ

2 − τ
2 )4

< (L− δ − τ )4, x ≤ −2, x > δ + τ },
2 2 1 2 2 2
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and take the domain

Υτ = R\ Āτ , ∂Υτ = ∂Υτ,1∪∂Υτ,2 =
(
∂R\∂Aτ

)
∪
(
∂Aτ \{−2 ≤ x1 ≤ 2∧x2 = L}

)
.

(2.16)
By symmetry of the problem one can assume that Bh∗ entirely lies above the horizontal 
line x2 = −L + δ + τ . Then, we can repeat the construction of Lemma 2.1, in which we 
replace Υε0 with Υτ as in (2.16) and obtain the existence of a function s = sτ = sτ (η)
satisfying (2.8)-(2.9), for any η > 0.

The proof of existence is similar to the proof of [5, Theorem 1], with some modifica-
tions; see also [27] and the revised version in [6]. We define

u∗ = û∗ + s.

Clearly û∗ will depend on the particular s chosen, but when we get rid of the solenoidal 
extension by undoing the change of unknown, we go back to the solution to the original 
problem u∗. Then, we take as weak formulation of (2.14)-(2.15) the following identity

μ

∫
Ωh∗

∇û∗ · ∇φdx +
∫

Ωh∗

(û∗ · ∇)û∗ · φdx +
∫

Ωh∗

(û∗ · ∇)s · φdx +
∫

Ωh∗

(s · ∇)û∗ · φdx

=
∫

Ωh∗

(s · ∇)s · φdx +
∫

Ωh∗

∇s · ∇φdx, (2.17)

for any solenoidal test function φ ∈ C∞
c (R). By a standard Galerkin construction in this 

context, an apriori bound on ‖∇û∗‖L2(Ωh∗ ) is sufficient to have the existence of a weak 
solution of (2.14)-(2.15) (see for instance [26, Theorem IX.4.1]). Take φ = û∗ in (2.17). 
After using the fact that∫

Ωh∗

(û∗ · ∇)û∗ · û∗ dx =
∫

Ωh∗

(s · ∇)û∗ · û∗ dx = 0,

we obtain

μ‖∇û∗‖2
L2(Ωh∗ ) +

∫
Ωh∗

(û∗ · ∇)s · û∗ dx =
∫

Ωh∗

(s · ∇)s · û∗ dx +
∫

Ωh∗

∇s · ∇û∗ dx. (2.18)

The terms on the right-hand side of (2.18) can then be bounded as

∫
Ωh∗

(s · ∇)s · û∗ dx ≤ ‖s‖L4(Ωh∗ )‖∇s‖L2(Ωh∗ )‖û∗‖L4(Ωh∗ )

≤ C‖s‖L4(Ωh )‖∇s‖L2(Ωh )‖∇û∗‖L2(Ωh ),
∗ ∗ ∗
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where C is the embedding constant for H1
0 (Ωh∗) ⊂ L4(Ωh∗), and∫

Ωh∗

∇s · ∇û∗ dx ≤ ‖∇s‖L2(Ωh∗ )‖∇û∗‖L2(Ωh∗ ).

Finally, by exploiting (2.9) and fixing τ ∈ (0, L − δ) such that η is sufficiently small we 
obtain the desired uniform bound on ‖∇û∗‖L2(Ωh∗ ), which guarantees existence of weak 
solutions for any value of the parameter λ.

Uniqueness of the solution of (2.17) and its specific form (u∗, h∗) = (uλ, 0) follows by 
[5, Theorem 1]. �

In [5, Theorem 1], the authors impose a bound both on the Poiseuille flow rate λ
and on the Reynolds number Re = cV/μ, where V is a reference speed and c > 0 a 
real constant. In the statement of Theorem 2.3, we joined those two bounds in a unique 
condition on λ by choosing as reference speed in the Reynolds number precisely the 
velocity of the Poiseuille flow at the outlets of the channel. As expected, Theorem 2.3
guarantees that the equilibrium position is unique and symmetric, at least for small flow 
rate of the incoming Poiseuille flow.

To develop our analysis in the subsequent sections, we rewrite problem (2.14)-(2.15)
in an equivalent form. For a given ε0 ∈ (0, L − δ), let

s = sε0 (2.19)

be the function obtained through Lemma 2.1. We emphasize that at this point we are not 
interested in (2.9), thus we can choose ε0 arbitrarily in the admissible set (0, L − δ) (see 
Remark 2.2). The unique solution (u∗, h∗) = (uλ, 0) to problem (2.14), may be rewritten 
as

(u∗, h∗) = (uλ, 0) = (ûλ + s, 0).

Denoting by

ĝ := μΔs− (s · ∇) s, (2.20)

we have that (û∗, h∗) = (ûλ, 0) satisfies in a weak sense, for any λ < λ∗,

−μΔûλ + (ûλ · ∇) ûλ+∇pλ + (ûλ · ∇) s + (s · ∇) ûλ = ĝ, div ûλ = 0 in Ω0,

ûλ = 0 on ∂R, ûλ = 0 on ∂B0,

(2.21)

and

0 = f(0) = −ê2 ·
∫

T (ûλ + s, pλ) · n̂ dσ. (2.22)

∂B0
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Finally, we prove a property of the function ĝ in (2.20).

Lemma 2.4. Let ĝ be as in (2.20), s = sε0 as in Lemma 2.1 for some ε0 ∈ (0, L − δ). 
Then ĝ ∈ L2(Ωh) and

‖ĝ‖L2(Ωh) ≤ μ‖Δs‖L2(Ωh) + ‖s‖L4(Ωh)‖∇s‖L4(Ωh) ≤ cλ ε0e
6/ε0 for some c > 0 .

Proof. Multiply ĝ by ϕ ∈ C∞
c (R) and integrate over Ωh. We obtain∫

Ωh

ĝ · ϕdx = μ

∫
Ωh

Δs · ϕdx−
∫
Ωh

(s · ∇)s · ϕdx.

We bound the two terms on the right-hand side through the Hölder inequality and we 
get∣∣∣∣ ∫

Ωh

ĝ · ϕdx

∣∣∣∣ ≤ (
μ‖Δs‖L2(Ωh) + ‖s‖L4(Ωh)‖∇s‖L4(Ωh)

)
‖ϕ‖L2(Ωh) ∀ϕ ∈ C∞

c (R)

which, combined with (2.10), proves the statement. �
2.4. Weak solutions to the evolution problem

Notation. The classical functional spaces from fluid mechanics are (see, e.g., [26,49]):

V(R) = {v ∈ C∞
c (R) |div v = 0 inR},

H(R) = closure of V w.r.t. the norm ‖ · ‖L2(R),

V (R) = closure of V w.r.t. the norm ‖∇ · ‖L2(R).

We denote by 〈·, ·〉 the duality pairing between V and V ′. We introduce the product 
spaces

H(R) = H(R) ×R, V (R) = V (R) ×R.

In order to define a weak solution to our problem, we also need to define, for every 
h ∈ (−L + δ, L − δ), the closed subspaces Hh ⊂ H and H1

h ⊂ V of compatible pairs

Hh = {z = (u, l) ∈ H(R) |uBh
= l ê2}, H1

h = {z = (u, l) ∈ V (R) |uBh
= l ê2},

(2.23)
endowed with the scalar products

〈z1, z2〉Hh
=

∫
u1 · u2 dx + ml1l2, 〈z1, z2〉H1

h
=

∫
∇u1 : ∇u2 dx + ml1l2, (2.24)
Ωh Ωh
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where zi = (ui, li), and m is the mass of the body B. We call ‖ · ‖Hh
and ‖ · ‖H1

h
the 

norms induced by the scalar products in (2.24), and we denote by H−1
h the dual of H1

h. 
The integral in the second formula in (2.24) can be defined on the whole channel R; 
indeed, ∇u1 = ∇u2 = 0 on Bh, since any element of H1

h corresponds to a purely vertical 
rigid motion on Bh. Recalling (1.3), for all u1, u2 ∈ V , we have

2
∫
R

D(u1) : D(u2) dx =
∫
R

∇u1 : ∇u2 dx.

If h = h(t) is a function from [0, T ] to (−L + δ, L − δ), we define the following spaces:

Lp(0, T ;H1
h(t)) =

{
f : [0, T ] → H1

h(t) s.t. ‖f‖p
Lp(0,T ;H1

h(t))
=

T∫
0

‖f(t)‖pH1
h(t)

dt < +∞
}

for 1 ≤ p < ∞, and

L∞(0, T ;Hh(t)) =
{
f : [0, T ] → Hh(t) s.t. ‖f‖L∞(0,T ;Hh(t)) = ess sup

t∈[0,T ]
‖f(t)‖Hh(t) < +∞

}
.

With the notation at hand, we can move to the evolution problem (1.2). To this end, we 
assume that

h0 ∈ [−L + δ + ε̂, L− δ − ε̂] and (u0 − qλ, k0) ∈ Hh0 ,

where ε̂ ∈ (0, L − δ) is arbitrarily fixed. For a given ε0 ∈ (0, L − δ), let s = sε0 be as in 
Lemma 2.1. The (weak) solutions to the problem (1.2), in the sense of the forthcoming 
Definition 2.5, have the form

u = û + s.

Again, we point out that û depends on the choice of the solenoidal extension s built 
through Lemma 2.1, but, by undoing the change of variables, one recovers the solution 
to the original problem. Hence,

the solution to the original problem (1.2) does not depend on the solenoidal extension.
(2.25)

Given ĝ as in (2.20), û solves the problem:

ût − μΔû + (û · ∇) û + ∇p + (û · ∇) s + (s · ∇) û = ĝ, div û = 0 in Ωh × (0, T ),
û = 0 on ∂R× (0, T ), û = h′ê2 on ∂Bh × (0, T ),
û(x, 0) = û0(x) = u0(x) − sε̂(x) for a.e.x ∈ Ωh0 .

(2.26)

According to (1.2), the vertical translation of the obstacle h responds to
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mh′′ + f(h) = −ê2 ·
∫

∂Bh

T (û + s, p) · n̂ dσ in (0, T ), (2.27)

with some initial conditions h(0) = h0, h′(0) = k0. We observe that û0 ∈ L2(Ωh0) is such 
that û0 · n̂ = k0ê2 · n̂ on ∂Bh0 . It is worthwhile to emphasize that the knowledge of h′(t)
allows to reconstruct the position of the body:

Bh(t) = B + h(t)ê2, with h(t) = h0 +
t∫

0

h′(τ) dτ. (2.28)

We can now define weak solutions to (2.26)-(2.27).

Definition 2.5. A pair (û, h) is called a weak solution of (2.26)-(2.27) on (0, T ) for all 
T > 0 with initial data (û0, h0, k0) if there exists ε0 = ε0(û0, h0, k0, T ) ∈ (0, L − δ) such 
that, for s = sε0 as in Lemma 2.1,

h ∈ W 1,∞(0, T ; [−L + δ + ε0, L− δ − ε0]),

(û, h′) ∈ L2(0, T ;H1
h(t)) ∩ L∞(0, T ;Hh(t)),

û ∈ C([0, T ];L2(R)) ,

(ût, h
′′) ∈ L2(0, T ;H−1

h(t)),

and the pair (û(t), h(t)) verifies, for any (φ(t), l(t)) ∈ H1
h(t) and almost every t ∈ (0, T ),

〈ût(t), φ(t)〉 +mh′′(t)l(t) + f(h(t)) l(t) + μ

∫
R

∇û(t) : ∇φ(t) dx

+
∫
Ωh

(û(t) · ∇)û(t) · φ(t) dx +
∫
Ωh

(û(t) · ∇)s · φ(t) dx +
∫
Ωh

(s · ∇)û(t) · φ(t) dx

=
∫
Ωh

ĝ · φ(t) dx,

(2.29)

and û(0) = û0, h(0) = h0, h′(0) = k0.

Remark 2.6. The requirement h ∈ W 1,∞(0, T ; [−L +δ+ε0, L −δ−ε0]) makes Definition 2.5
consistent: it ensures that no collision occurs between the obstacle and the boundary of 
the channel because there exists a separation strip of size ε0 ∈ (0, L − δ) for all times, 
by which one is allowed to build the solenoidal extension s as in Lemma 2.1 precisely by 
choosing such an ε0. As the no-collision result is a non trivial issue, it will be recalled 
explicitly in Corollary 2.9. Also, we point out that the test functions depend on time 
and on the solution of the problem itself.
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Let us show that any classical solution to (2.26)-(2.27) is a weak solution according 
to Definition 2.5. Incidentally, this also confirms (2.25).

Proposition 2.7. Let ĝ be as in (2.20). If a pair (û, h) is a classical solution to (2.26)-(2.27)
such that |h(t)| ≤ L − δ − ε0 for all t ∈ [0, T ] for some ε0 ∈ (0, L − δ), then it satisfies 
(2.29) for all t ∈ [0, T ] and for every pair of test functions (φ(t), l(t)) ∈ H1

h(t).

Proof. In order to obtain (2.29), we choose a test pair (φ(t), l(t)) ∈ H1
h(t). We multiply 

the first equation in (2.26) by φ and integrate by parts over Ωh. All terms may be treated 
in a standard manner (see, e.g., [24]). Though, a particular attention must be devoted 
to the diffusive and pressure terms. Indeed∫

Ωh

(−μΔû + ∇p) · φdx =
∫
Ωh

divT (û, p) · φdx = −
∫

∂Bh

(T · n̂) · φdσ +
∫
Ωh

T : ∇φdx

= −lê2 ·
∫

∂Bh

(T (û, p) · n̂) dσ +
∫
Ωh

T (û, p) : ∇φdx

= (mh′′ + f(h)) l + μ

∫
Ωh

∇û : ∇φdx

= (mh′′ + f(h)) l + μ

∫
R

∇û : ∇φdx,

where the last equality holds because ∇φ = 0 on Bh. Thus, we obtain the weak formu-
lation (2.29). �
2.5. Well-posedness of the evolution problem

We provide the following well-posedness result for (2.26)-(2.27).

Theorem 2.8. Let ε̂ ∈ (0, L − δ) be fixed. For any initial data h0 ∈ [−L + δ+ ε̂, L − δ− ε̂], 
(û0, k0) in the space Hh0 and every T > 0, there exists a unique weak solution (û, h) to 
(2.26)-(2.27), in the sense of Definition 2.5, for some ε0 = ε0(h0, ̂u0, k0, T ) ∈ (0, L − δ). 
Moreover, it satisfies the following energy estimate, for every t ∈ [0, T ],

‖û(t)‖2
L2(Ωh(t))+mh′(t)2+2F (h(t))+μ

t∫
0

‖∇û(τ)‖2
L2(Ωh(τ))dτ

≤ ‖û0‖2
L2(Ωh0 )+mk0

2+2F (h0)+
2
μ

4L2

π2 ‖ĝ‖2
L2(Ωh)t.

(2.30)

Proof. Existence and uniqueness of a weak solution of (2.26)-(2.27) follows from [44], 
where existence is obtained exploiting a penalization method, while uniqueness is based 
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on the introduction of deformation mappings for the fluid domain allowing to define two 
different weak solutions on the same domain (see also [19,32]). In order to prove (2.30), 
we start formally taking (φ, l) = (û, h′) in (2.29). We obtain, by the Reynolds Transport 
Theorem (see, e.g., [34]),

1
2
d

dt
‖û‖2

L2(Ωh) +mh′′h′ + f(h)h′ + μ‖∇û‖2
L2(Ωh) =

∫
Ωh

ĝ · û dx−
∫
Ωh

(û · ∇)s · û dx. (2.31)

We seek bounds for the two terms on the right-hand side. The first term is bounded 
by Lemma 2.4, the Hölder inequality, the Young inequality and the Poincaré inequality 
(with constant 4L2/π2). This gives

∣∣∣∣ ∫
Ωh

ĝ · û dx
∣∣∣∣ ≤ 1

μ

4L2

π2 ‖ĝ‖2
L2(Ωh) + μ

4 ‖∇û‖2
L2(Ωh).

In order to bound the second term, by possibly taking ε0 smaller than ε0 =
ε0(h0, ̂u0, k0, T ) given in the first statement of the theorem, we exploit (2.9) with η = μ/4
and we obtain ∣∣∣∣ ∫

Ωh

(û · ∇)s · û dx
∣∣∣∣ ≤ μ

4 ‖∇û‖2
L2(Ωh).

From (2.31) and the above bounds we deduce

d

dt

(
‖û‖2

L2(Ωh) + mh′2 + 2F (h)
)

+ μ‖∇û‖2
L2(Ωh) ≤

2
μ

4L2

π2 ‖ĝ‖2
L2(Ωh),

where F (h) is defined as in (2.3). Integrating on (0, t), we infer (2.30), at least at the 
formal level. In order to obtain the strong continuity in time of the weak solution with 
values in L2(R) and make the previous computations rigorous we can follow step by step 
[8, Theorem 2.1]. �

In the sequel, we will use the following result, already implicitly stated in Theorem 2.8. 
It reads as

Corollary 2.9. For all T > 0, there exists ε0 = ε0(h0, ̂u0, k0, T ) ∈ (0, L − δ) such that

|h(t)| ≤ L− δ − ε0 ∀ t ∈ [0, T ]. (2.32)

Moreover, ε0 decreases as |h0|, ‖û0‖L2(Ω0), |k0| and T increase. In particular, the solution 
to (1.2) is global in time.
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Proof. To prove (2.32), we can proceed as in [44, Lemma 3.2]. By contradiction, if the 
solution of (1.2) was not global in time, then a collision would occur at some finite time 
t = T . But, according to (2.25), the collision is independent of the solenoidal extension 
and we reach a contradiction by taking s = sε0 with ε0 = ε0(T ) ensuring (2.32). �
3. Dissipativity of the solution operator

From Theorem 2.8 we learn that, for every ε̂ > 0 small and every h0 ∈ [−L + δ +
ε̂, L − δ − ε̂], problem (2.26)-(2.27) generates an operator

U(t) : Hh0 −→ Hh(t),

defined by the rule

z0 = (û0, k0) �−→ U(t)z0 = (û(t), h′(t)), (3.1)

where, reconstructing h as in (2.28), the pair (û(t), h(t)) is the unique weak solution at 
time t to problem (2.26)-(2.27) with initial data

û(0) = û0, h(0) = h0, h′(0) = k0.

Remark 3.1. It is worth noting that, although not explicitly written so not to burden the 
notation, the operator U(t) depends on the particular h0 chosen. Besides, it acts between 
different spaces; but this reflects the nature of the fluid-structure interaction problem 
(2.26)-(2.27), where the functional framework is influenced by the evolution itself.

Let us introduce the proper notion of dissipativity for the dynamical system under 
consideration. This definition makes sense because all the solutions of (2.26)-(2.27) are 
global in view of Theorem 2.8 and Corollary 2.9.

Definition 3.2. We call R0 > 0 a zero-order absorbing radius if, for any R > 0 and ε̂ > 0, 
there exists t0 = t0(R, ̂ε), called entering time, such that, for every

h0 ∈ [−L + δ + ε̂, L− δ − ε̂] and ‖z0‖Hh0
≤ R

it follows that

‖U(t)z0‖Hh(t) =
[
‖û(t)‖2

L2(Ωh(t)) + mh′(t)2
] 1

2 ≤ R0 ∀ t ≥ t0.

We call R1 > 0 a first-order absorbing radius if, under the same assumptions, there exists 
t1 = t1(R, ̂ε), such that

‖U(t)z0‖H1 =
[
‖∇û(t)‖2

L2(Ω ) + mh′(t)2
] 1

2 ≤ R1 ∀ t ≥ t1.

h(t) h(t)
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Paralleling the classical definition, we may say that the solution operator is dissipative 
if it admits a zero-order absorbing radius. We now address the dissipativity properties 
of U(t) in terms of zero-order and first-order absorptions.

Theorem 3.3. There exists a universal constant R0 = R0(λ) > 0 with the following 
property: for any R > 0 and any ε̂ ∈ (0, L − δ), there is an entering time t0 = t0(R, ̂ε)
such that

‖U(t)z0‖Hh(t) ≤ R0 ∀ t ≥ t0,

whenever

h0 ∈ [−L + δ + ε̂, L− δ − ε̂] and ‖z0‖Hh0
≤ R.

In compliance with Definition 3.2, the constant R0 is a zero-order absorbing radius. 
Moreover, R0 → 0 as λ → 0.

Proof. Define a solenoidal vector field w ∈ C∞(R) ∩H1
0 (R) such that w(t) = h(t) ̂e2 in 

Bh(t) as

w(x, t) = h(t)
[
− ∂

∂x2
(ζ(x)x1),

∂

∂x1
(ζ(x)x1)

]
∀(x, t) ∈ R× (0,∞) ,

where, for any ε ∈ (0, L − δ), the function ζ is a C∞-cut-off equal to 1 in the rectangle 
[−2, 2] × [L − ε, −L + ε] and equal to 0 outside a larger rectangle, both contained in R. 
The following estimates hold

‖w(t)‖L2(R) ≤ a1|h(t)| , ‖∇w(t)‖L2(R) ≤ a2|h(t)| ,
‖∇w(t)‖L∞(R) ≤ a3|h(t)| , ‖wt(t)‖L2(R) ≤ a4|h′(t)| ,

(3.2)

where a1, a2, a3 and a4 are constants depending on the cut-off ζ. We emphasize that this 
cut-off function ζ is well-defined due to Corollary 2.9, which guarantees the existence of 
a separation strip of width ε0 between the obstacle and the channel. Hence

w(x, t) = wε0(x, t) . (3.3)

Given F as in (2.3), for ω ∈ (0, 1) to be fixed later, we introduce the energy functionals:

E(t) = ‖û(t)‖2
L2(Ωh(t)) + mh′(t)2 + 2F (h(t)),

Eω(t) = E(t) + 2mω h(t)h′(t) + 2
∫

Ωh(t)

û(t) · ωw(t) dx.

From the Young inequality, we have
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2mω|h(t)h′(t)| + 2ω

∣∣∣∣∣∣∣
∫

Ωh(t)

û(t) · w(t) dx

∣∣∣∣∣∣∣
≤ m

2 h′(t)2 +
(
2mω2 + 2a2

1ω
2)h(t)2 + 1

2‖û(t)‖2
L2(Ωh) .

Hence, we obtain the bounds

c1 E ≤ Eω ≤ c2 E, (3.4)

for some c2 > c1 > 0, provided that ω is small enough. So far, we have used an arbitrary 
ε0 ∈ (0, L − δ) to build s = sε0 in Lemma 2.1, but in view of (2.25), ε0 may be modified. 
To this end, we claim that

∃ ε1 = ε1(λ) > 0 and t0 = t0(R, ε̂) s.t. |h(t)| ≤ L− δ − ε1 ∀ t ≥ t0 . (3.5)

By contradiction, suppose that (3.5) does not hold. Then, by Corollary 2.9, this implies 
that

lim sup
t→∞

h(t) = L− δ

and/or similarly for liminf = −L + δ. Then, since h ∈ C(R+), for all ε > 0 there exist 
two sequences tending to infinity {tn1} and {tn2} such that

h(t) ≥ L− δ − ε ∀t ∈
∞⋃

n=1
[tn1 , tn2 ] .

By (2.2), we can take ε > 0 small enough so that there exists c > 0 such that

F
(
h(t)

)
=

h(t)∫
0

f(s)ds >
L−δ−ε∫

L−δ−2ε

f(s)ds > c

L−δ−ε∫
L−δ−2ε

exp 1
(L− δ − s)4+r

ds

= c

2ε∫
ε

exp 1
τ4+r

dτ ≥ cε exp 1
ε4+r

(3.6)

whenever t ∈ ∪n[tn1 , tn2 ]. By (2.25), we can replace the solenoidal extension s = sε0 in 
Lemma 2.1 to the solenoidal extension s = sε and w = wε in (3.3). Given a pair of test 
functions (φ, l) = (û + ωw, h′ + ωh) ∈ H1

h, we take the scalar product of (2.26) with φ
and we apply the Reynolds Transport Theorem. By omitting (t), we obtain

1
2
d

dt
Eω −mωh′2 + ωf(h)h + μ‖∇û‖2

L2(Ωh)

=
∫

ĝ · û dx−
∫

(û · ∇)s · û dx +
∫

û · ωwt dx (3.7)

Ωh Ωh Ωh
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− μ

∫
Ωh

∇û : ω∇w dx +
∫
Ωh

ĝ · ωw dx−
∫
Ωh

(û · ∇)s · ωw dx

+
∫
Ωh

(û · ω∇)w · û dx−
∫
Ωh

(s · ∇)û · ωw dx.

We proceed to bound each term on the right-hand side of (3.7). The first term can be 
controlled by exploiting the Hölder inequality, Lemma 2.4 above, the Young inequality, 
and the Poincaré inequality. This gives∫

Ωh

ĝ · û dx ≤ ‖ĝ‖L2(Ωh)‖û‖L2(Ωh) ≤
5
2μ

4L2

π2 ‖ĝ‖2
L2(Ωh) + μ

10‖∇û‖2
L2(Ωh).

Similarly for the fifth term∫
Ωh

ĝ · ωw dx ≤ ‖ĝ‖L2(Ωh)‖w‖L2(Ωh) ≤
μ

4
4L2

π2 ‖ĝ‖2
L2(Ωh) + 1

μ
ω2‖∇w‖2

L2(R).

Concerning the second term in the right-hand side, by possibly taking ε smaller, we make 
use of (2.9) with η = μ/6, to get

−
∫
Ωh

(û · ∇)s · û dx ≤ μ

10‖∇û‖2
L2(Ωh).

For the third term, we make use of the Hölder inequality, the Poincaré inequality and 
the Young inequality. We deduce∫

Ωh

û · ωwt dx ≤ μ

10‖∇û‖2
L2(Ωh) + 5

2μ
4L2

π2 ω2‖wt‖2
L2(R) .

The fourth term is bounded through the Hölder inequality and the Young inequality as

−μ

∫
Ωh

∇û : ω∇w dx ≤ μ

10‖∇û‖2
L2(Ωh) + 5

2μω
2‖∇w‖2

L2(R).

Again, for the sixth term, by possibly taking ε smaller, we exploit (2.9) with η = 1, the 
Hölder inequality and the Young inequality. We obtain

−
∫
Ωh

(û · ∇)s · ωw dx ≤ ωη‖∇û‖L2(Ωh)‖∇w‖L2(Ωh) ≤
μ

10‖∇û‖2
L2(Ωh) + 5

2μω
2‖∇w‖2

L2(R) .

Finally, by similar methods, we estimate the last two terms as∫
(û · ω∇)w · û dx ≤ ω

4L2

π2 ‖∇w‖L∞(R)‖∇û‖2
L2(Ωh) ,
Ωh
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and

−
∫
Ωh

(s · ∇)û · ωw dx ≤ ‖s‖L∞(Ωh)‖∇û‖L2(Ωh)ω‖w‖L2(Ωh)

≤ 1
4ω

2‖w‖2
L2(R)‖∇û‖2

L2(Ωh) + ‖s‖2
L∞(Ωh) .

At this point, by (3.2) and using the fact that |h| ≤ L − δ, we define ν through

μ

2 − ω
4L2

π2 ‖∇w‖L∞(R) −
1
4ω

2‖w‖2
L2(R) ≥ μ− a3ω|h|

4L2

π2 − a2
1
4 ω2|h|2

≥ μ− a3ω (L− δ) 4L2

π2 − a2
1
4 ω2(L− δ)2

=: 3ν > 0

if ω is small enough. Inserting all the above inequalities in (3.7), and recalling (2.4), we 
arrive at

d

dt
Eω − 2mωh′2 + ωF (h) + 3ν‖∇û‖2

L2(Ωh) ≤
10 + μ2

2μ
4L2

π2 ‖ĝ‖2
L2(Ωh) + 2‖s‖2

L∞(Ωh)

+ 12
μ
ω2‖∇w‖2

L2(R)

+ 5
μ

4L2

π2 ω2‖wt‖2
L2(R) .

We apply the following trace inequality, through which we extract a damping term for 
the obstacle Bh:

‖∇û‖L2(Ωh) ≥ c‖h′ê2‖L2(∂Bh) = c|∂Bh||h′|,

for some positive constant c. Moreover we use (3.2) to deduce that

ωF (h) − 12
μ
ω2‖∇w‖2

L2(R) ≥ (ω − a2
2
12
μ
ω2)h2 ≥ c h2 ,

where c is a positive constant, if ω is small enough. Thus, using the last estimate in (3.2), 
we infer

d

dt
Eω + (cν|∂Bh|2 − 2mω − a2

4
5
μ

4L2

π2 ω2)h′2 + ωF (h) + 2ν‖∇û‖2
L2(Ωh)

≤ 10 + μ2

2μ
4L2

π2 ‖ĝ‖2
L2(Ωh) + 2‖s‖2

L∞(Ωh),

where cν|∂Bh|2 − 2mω − a2
4

3
μ

4L2

π2 ω2 > 0 if ω is small enough. Finally, applying the 
Poincaré inequality in the left-hand side, we find
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d

dt
Eω + (cν|∂Bh|2 − 2mω − a2

4
5
μ

4L2

π2 ω2)h′2 + ωF (h) + νπ

4L2 ‖û‖
2
L2(Ωh) + ν‖∇û‖2

L2(Ωh)

≤ 10 + μ2

2μ
4L2

π2 ‖ĝ‖2
L2(Ωh) + 2‖s‖2

L∞(Ωh).

Defining

β = min
{
cν|∂Bh|2 − 2mω − a2

4
3
μ

4L2

π2 ω2

m
,
ω

2 ,
νπ

4L2

}
> 0,

we end up with

d

dt
Eω + βE + ν‖∇û‖2

L2(Ωh) ≤ κ , (3.8)

where

κ = 10 + μ2

2μ
4L2

π2 ‖ĝ‖2
L2(Ωh) + 2‖s‖2

L∞(Ωh) (3.9)

is independent of t due to the very construction of ĝ and s. Then, renaming β/c2 as β, 
we infer from (3.4) that

d

dt
Eω + βEω ≤ κ.

The Gronwall Lemma yields

Eω(t) ≤ Eω(0)e−βt + κ

β
.

Inequalities (3.4) imply that

‖U(t)z0‖2
Hh(t)

≤ E(t) ≤ c2
c1

E(0)e−βt + κ

βc1
. (3.10)

Therefore,

lim sup
t→∞

‖U(t)z0‖Hh(t) ≤
√

κ

βc1
. (3.11)

Then, by using (3.6)-(3.10), Lemma 2.1 and Lemma 2.4, we deduce that there exists 
c3 > 0 such that

2 c ε exp 1
ε4+r

≤ 2F
(
h(t)

)
≤ E(t) ≤c2

c1
E(0)e−βt + κ

βc1
≤ c2

c1
E(0)e−βt + c3λε

2 exp 12
ε
.

(3.12)
Choose ε > 0 small enough in such a way that
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c ε exp 1
ε4+r

> c3λε
2 exp 12

ε
.

Then take t0 = t0(R, ̂ε) such that

c2
c1

E(0)e−βt < c3λε
2 exp 12

ε
∀ t ≥ t0 .

With these two choices, we contradict (3.12) and we prove (3.5).
We modify once more the solenoidal extension s in Lemma 2.1 and the function w

in (3.3) by taking s = sε1 , w = wε1 , with ε1 given by (3.5). This is allowed thanks to 
(2.25). With this choice (possibly taking ε1 smaller), we reach again (3.11), which tells 
us that any ball in Hh of radius

R0 > R̂ :=
√

κ

βc1

is absorbing, namely, it captures the dynamics of (2.26)-(2.27) for t large. This translates 
into the existence of the zero-order absorbing radius R0 in the sense of Definition 3.2. 
Summarizing, for any h0 ∈ [−L + δ + ε̂, L − δ − ε̂], given z0 = (û0, h0) such that 
‖z0‖Hh0

≤ R, we have

‖U(t)z0‖Hh
≤

√
E(t) ≤ R0, ∀ t ≥ t0 = t0(R, ε̂) := 1

β
log

(
min

{
1, c2

c1

E(0)
R2

0 − R̂2

})
.

(3.13)
The proof is finished once we observe that κ → 0 as λ → 0. Indeed, from Lemmas 2.1
and 2.4 both ‖s‖L∞(Ωh) → 0 and ‖ĝ‖L2(Ωh) → 0 as λ → 0. �

Note that (3.5) improves Corollary 2.9 by emphasizing a separation strip between the 
obstacle and the boundary of the channel. Accordingly, throughout the whole section, 
we take s as in (2.19) by choosing the value ε1 given by (3.5), i.e. we take s = sε1 . 
A consequence of Theorem 3.3 is the existence of a suitable dissipation integral for the 
solution (û, h) to problem (2.26)-(2.27).

Corollary 3.4. Let R > 0 and ε̂ > 0 small be arbitrarily given, t0 as in (3.13) and R0 as 
in Theorem 3.3. Assume that h0 ∈ [−L + δ+ ε̂, L − δ− ε̂] and ‖z0‖Hh0

≤ R. There exists 
D = D(R0) > 0 such that

t+1∫
t

‖∇û(τ)‖2
L2(Ωh(τ)) dτ ≤ D ∀ t ≥ t0.

Moreover, D → 0 as λ → 0.

Proof. Integrating inequality (3.8) (recalling (3.9)) on the time-interval (t, t + 1), and 
exploiting (3.4), we get



24 F. Gazzola et al. / Journal of Functional Analysis 286 (2024) 110199
ν

t+1∫
t

‖∇û(τ)‖2
L2(Ωh(τ)) dτ ≤ κ + Eω(t) ≤ κ + c2 E(t).

Hence, in light of (3.13), for t ≥ t0 we are led to

t+1∫
t

‖∇û(τ)‖2
L2(Ωh(τ)) dτ ≤ κ

ν
+ c2

ν
R2

0.

Since we know that κ, R0 → 0 as λ → 0, we are done. �
We have now all the ingredients to proceed to show the existence of the first-order 

absorbing radius, ensuring dissipativity of higher-order.

Theorem 3.5. There exists a universal constant R1 = R1(λ, L, δ, d, m, μ) > 0 with the 
following property: for any R > 0, and any ε̂ > 0 small, it follows that

‖U(t)z0‖H1
h(t)

≤ R1 ∀t ≥ t0 + 1,

whenever

h0 ∈ [−L + δ + ε̂, L− δ − ε̂] and ‖z0‖Hh0
≤ R,

where t0 is given by (3.13). In compliance with Definition 3.2, the constant R1 is a 
first-order absorbing radius with entering time t1 = t0 + 1. Moreover, R1 → 0 as λ → 0.

The proof of the theorem will make use of the uniform Gronwall lemma, that we recall 
for the reader’s convenience (see [48, §III.2, Lemma 1.1])

Lemma 3.6. Let f1, f2, f3 be three positive locally integrable functions on (t0, +∞) such 
that f ′

3 is locally integrable on (t0, +∞), and which satisfy

df3

dt
≤ f1f3 + f2,

t+1∫
t

f1(s) ds ≤ a1,

t+1∫
t

f2(s) ds ≤ a2,

t+1∫
t

f3(s) ds ≤ a3

for t ≥ t0,

where a1, a2, a3 are positive constants. Then

f3(t + 1) ≤ (a3 + a2) exp(a1) ∀ t ≥ t0.

Proof of Theorem 3.5. We proceed similarly to [20] by starting to define some auxiliary 
functions. Let ζ ∈ C∞(R2; R) be a cut-off function with compact support such that 
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ζ ≡ 1 in a neighborhood of B̄h0 , and set

ζ̂(x, t) = ζ(x1, x2 − h(t) + h0) ∀ (x, t) ∈ R2 × (0,∞) .

We then define the solenoidal vector field V̂ (x, t) : R2 ×R+ → R2 by

V̂ (x, t) = h′(t)
[
− ∂

∂x2
(ζ̂(x, t)x1),

∂

∂x2
(ζ̂(x, t)x1)

]
∀ (x, t) ∈ R2 × (0,∞) .

We notice that V̂ (·, t) ∈ C∞(R2, R2) for all t ≥ 0, V̂ (x, ·) ∈ L∞(0, T ; R2) for all x =
(x1, x2) ∈ R2, and

‖V̂ (·, t)‖W 1,∞(Ωh(t)) ≤ C|h′(t)| (3.14)

for some C > 0. At this stage, one proceeds formally (see [24,48]) and assumes that 
ût ∈ L2(Ωh). We multiply the first equation in (2.26) with the following function

ût + (V̂ · ∇)û− (û · ∇)V̂ ,

so as to obtain

∫
Ωh

ût ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx−

∫
Ωh

divT (û, p) ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx

= −
∫
Ωh

(û · ∇) û ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx

+
∫
Ωh

(û · ∇) s ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx

+
∫
Ωh

(s · ∇) û ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx +

∫
Ωh

ĝ ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx.

(3.15)

Arguing as in [20, Lemma 4.3], we find the identity

−
∫
Ωh

divT (û, p) ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx

= μ
d

dt
‖∇û‖2

L2(Ωh) + mh′′2 + f(h)h′′

+ 2μ
∫
Ωh

(Dû) :
[
(∇û)(∇V̂ ) −D((û · ∇)V̂ )

]
dx.

Thus, by plugging the above equality into (3.15), we obtain



26 F. Gazzola et al. / Journal of Functional Analysis 286 (2024) 110199
μ
d

dt
‖∇û‖2

L2(Ωh) + mh′′2 + ‖ût‖2
L2(Ωh) = −

∫
Ωh

ût ·
[
(V̂ · ∇)û− (û · ∇)V̂

]
dx− f(h)h′′

−2μ
∫
Ωh

(Dû) :
[
(∇û)(∇V̂ )−D((û · ∇)V̂ )

]
dx−

∫
Ωh

(û · ∇) û ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx

−
∫
Ωh

(û · ∇) s ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx−

∫
Ωh

(s · ∇) û·
[
ût + (V̂ · ∇)û−(û · ∇)V̂

]
dx

+
∫
Ωh

ĝ ·
[
ût + (V̂ · ∇)û− (û · ∇)V̂

]
dx.

(3.16)

At this point, some estimates for the terms of the right-hand side of (3.16) are needed, 
by exploiting in a suitable way the Hölder, the Young and the Poincaré inequalities, 
together with the properties of the solenoidal extension s. We have the two following 
inequalities

f(h)h′′ ≤ m

2 h′′2 + 1
2m |f(h)|2,

and ∣∣∣∣ ∫
Ωh

ĝ · ût

∣∣∣∣ ≤ ‖ĝ‖L2(Ωh)‖ût‖L2(Ωh) ≤
7
4‖ĝ‖

2
L2(Ωh) + 1

7‖ût‖2
L2(Ωh).

Using the Ladyzhenskaya inequality [48, p.108, (2.16)],∣∣∣∣ ∫
Ωh

(û · ∇)û · ût

∣∣∣∣ ≤ c1‖û‖1/2
L2(Ωh)‖∇û‖L2(Ωh)‖ût‖3/2

L2(Ωh)

≤ 1
14‖ût‖2

L2(Ωh) + c2‖û‖2
L2(Ωh)‖∇û‖4

L2(Ωh),

where c1 and c2 are strictly positive constants. For the remaining terms, we argue in a 
similar manner, finding∣∣∣∣ ∫

Ωh

(û · ∇)s · ût

∣∣∣∣ ≤ ‖∇s‖L4(Ωh)‖û‖L4(Ωh)‖ût‖L2(Ωh)

≤ C
7
4‖∇s‖2

L4(Ωh)‖∇û‖2
L2(Ωh) + 1

7‖ût‖2
L2(Ωh),

where C > 0 depends on the constant describing the Sobolev embedding H1
0 (Ωh) ⊂

L4(Ωh). Exploiting again the Ladyzhenskaya inequality, we deduce∣∣∣∣ ∫
Ωh

(s · ∇)û · ût

∣∣∣∣ ≤ ‖s‖1/2
L2(Ωh)‖∇û‖L2(Ωh)‖ût‖3/2

L2(Ωh)

≤ c3‖s‖2
L2(Ω )‖∇û‖4

L2(Ω ) + 1 ‖ût‖2
L2(Ω ),
h h 14 h
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for some strictly positive constant c3 > 0. For all terms involving the map V̂ (x, t), we 
exploit (3.14). Thus, we have∣∣∣∣ ∫

Ωh

ût ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣
≤ ‖V̂ ‖W 1,∞(Ωh)‖ût‖L2(Ωh)‖∇û‖L2(Ωh) + c4‖V̂ ‖W 1,∞(Ωh)‖ût‖L2(Ωh)‖∇û‖L2(Ωh)

≤ c4‖V̂ ‖2
W 1,∞(Ωh)‖∇û‖2

L2(Ωh) + 2
7‖ût‖2

L2(Ωh) ≤ c4 h
′2‖∇û‖2

L2(Ωh) + 2
7‖ût‖2

L2(Ωh),

where c4 > 0 changes from line to line, and it depends on the Poincaré constant. Then,∣∣∣∣ ∫
Ωh

(Dû) :
[
(∇û)(∇V̂ ) −D((û · ∇)V̂ )

] ∣∣∣∣ ≤ c5‖V̂ ‖W 1,∞(Ωh)‖∇û‖2
L2(Ωh)

≤ c5|h′|‖∇û‖2
L2(Ωh),

for some strictly positive constant c5 > 0. Let c6, c7, c8, c9, c10 be some strictly positive 
constant that might change from line to line. By the Hölder inequality, the Poincaré 
inequality and (3.14), we obtain∣∣∣∣ ∫

Ωh

(û · ∇) û ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣
≤ ‖(û · ∇) û‖L2(Ωh)‖(V̂ · ∇)û− (û · ∇)V̂ ‖L2(Ωh)

≤ 1
2‖(û · ∇) û‖2

L2(Ωh) + ‖V̂ ‖2
W 1,∞(Ωh)‖∇û‖2

L2(Ωh) + c6‖V̂ ‖2
W 1,∞(Ωh)‖∇û‖2

L2(Ωh)

≤ 1
2‖(û · ∇) û‖2

L2(Ωh) + c6‖∇û‖2
L2(Ωh) h

′ 2 .

Proceeding step by step as in [20, Theorem 1.2], taking into account for the extra terms, 
we arrive to an estimate for the term (û · ∇)û:

‖(û · ∇)û‖2
L2(Ωh) ≤c7

[
‖∇û‖2

L2(Ωh)(‖∇û‖2
L2(Ωh) + ‖∇s‖2

L∞(Ωh) + ‖s‖2
L∞(Ωh)

+ ‖û‖4
L2(Ωh) + ‖û‖2

L2(Ωh)‖∇û‖2
L2(Ωh))

+ ‖ĝ‖2
L2(Ωh) + h′ 2

]
+ 2

7‖ût‖2
L2(Ωh) .

For what concerns the trilinear terms involving the solenoidal extension s, we have∣∣∣∣ ∫
Ωh

(û · ∇) s ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣ ≤ c7‖∇s‖L4(Ωh)‖V̂ ‖W 1,∞(Ωh)‖∇û‖2
L2(Ωh)

≤ c8‖∇s‖L4(Ωh)|h′|‖∇û‖2
L2(Ω )
h
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and ∣∣∣∣ ∫
Ωh

(s · ∇) û ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣ ≤ c9‖s‖L∞(Ωh)|h′|‖∇û‖2
L2(Ωh).

For what concerns the last term, we have

∣∣∣∣ ∫
Ωh

ĝ ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣ ≤ c9|h′|‖ĝ‖L2(Ωh)‖∇û‖L2(Ωh)

≤ 7
4‖ĝ‖

2
L2(Ωh) + c10h

′2‖∇û‖2
L2(Ωh).

Collecting all together, and dividing by μ, we finally get

d

dt
‖∇û‖2

L2(Ωh) ≤ ‖∇û‖2
L2(Ωh)

(
c2 + c7

μ
‖û‖2

L2(Ωh)‖∇û‖2
L2(Ωh) + c3

μ
‖s‖2

L2(Ωh)‖∇û‖2
L2(Ωh)

+ C
7
4μ‖∇s‖2

L4(Ωh) + c4
μ
h′2 + c5

μ
|h′| + c6

μ
h′2 + c7

μ
‖∇û‖2

L2(Ωh)

+ c7
μ
‖∇s‖2

L∞(Ωh) + c7
μ
‖s‖2

L∞(Ωh) + c7
μ
‖û‖4

L2(Ωh)

+ c8‖∇s‖L4(Ωh)|h′| + c9
μ
‖s‖L∞(Ωh)|h′| + c10

μ
h′ 2

)
+ 1

μ
(c7 + 7

4)‖ĝ‖2
L2(Ωh) + c7h

′ 2 + 1
2mμ

|f(h)|2.

We are now in a position to apply Lemma 3.6 with the choice

f1 = c2 + c7
μ

‖û‖2
L2(Ωh)‖∇û‖2

L2(Ωh) + c3
μ
‖s‖2

L2(Ωh)‖∇û‖2
L2(Ωh) + C

7
4μ‖∇s‖2

L4(Ωh)

+ c4
μ
h′2 + c5

μ
|h′| + c6

μ
h′2 + c7

μ
‖∇û‖2

L2(Ωh) + c7
μ
‖∇s‖2

L∞(Ωh) + c7
μ
‖s‖2

L∞(Ωh)

+ c7
μ
‖û‖4

L2(Ωh) + c8‖∇s‖L4(Ωh)|h′| + c9
μ
‖s‖L∞(Ωh)|h′| + c10

μ
h′ 2,

f2 = 1
μ

(c7 + 7
4)‖ĝ‖2

L2(Ωh) + c7h
′ 2 + 1

2mμ
|f(h)|2,

f3 = ‖∇û‖2
L2(Ωh).

Indeed, since t ≥ t0 with t0 as in (3.13), from (3.13) we have that 2F (h) ≤ R2
0, so that 

by (2.5)

|h| ≤ M(R2
0) ,
2
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providing in turn a uniform bound for |f(h)|. Therefore, with reference to Lemma 3.6, 
denoting by Q a generic increasing positive function, and exploiting (3.13) and Corol-
lary 3.4, we draw the estimates

t+1∫
t

f1(s) ds ≤ a1,

t+1∫
t

f2(s) ds ≤ a2,

t+1∫
t

f3(s) ds ≤ a3 for t ≥ t0,

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = c2+c7
μ R2

0 a3 + c3
μ ‖s‖2

L2(Ωh)a3 + C 7
4μ‖∇s‖2

L4(Ωh) + c4
μ R2

0 + c5
μ R0 + c6

μ R2
0 + c7

μ a3

+ c7
μ ‖∇s‖2

L∞(Ωh) + c7
μ ‖s‖2

L∞(Ωh) + c7
μ R4

0 + c8
μ ‖∇s‖L4(Ωh)R0 + c9

μ ‖s‖L∞(Ωh)R0

+ c10
μ R2

0,

a2 = 1
μ(c7 + 7

4 )‖ĝ‖2
L2(Ωh) + Q(R0),

a3 = D(R0).

The conclusion is

‖∇û‖2
L2(Ωh) ≤ (a3 + a2) exp(a1) ∀t ≥ t0 + 1.

The last step is to add mh′2 to both sides of the inequality above, which allows us to 
reconstruct the norm of the norm of the solution, to wit,

‖U(t)z0‖H1
h(t)

≤
√

(a3 + a2) exp(a1) + R2
0 ∀t ≥ t0 + 1.

Here, we leaned on the estimate mh′2 ≤ R2
0, coming from (3.13). By calling R1 the 

right-hand side, the proof is finished. �
Remark 3.7. Due to the compact embedding

H1
h(t) � Hh(t),

which holds true for all t, the closed ball B1(t) of radius R1 in H1
h(t) is compact in Hh(t). 

Theorem 3.5 tells that

U(t)B ⊂ B1(t) ∀ t ≥ t0 + 1,

where B is the ball of radius R in Hh0 , for R > 0 arbitrarily given. This shows that the 
solution operator U(t) defined by the rule (3.1) is not only dissipative in the sense of 
Definition 3.2, but it has also a regularizing effect.
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4. Stability of the unique steady state

In this section, we investigate the convergence of the solutions of (1.2) to the unique 
steady state, if λ < λ∗, see Theorem 2.3. In particular, we study the convergence of the 
solutions of (1.2) to those of (2.14)-(2.15), in terms of the convergence of the solutions 
of (2.26)-(2.27) to the solution of (2.21)-(2.22).

Theorem 4.1. Let R > 0 be arbitrarily fixed and λ∗ as in Theorem 2.3. There exists λ1 =
λ1(R) ∈ (0, λ∗) such that if λ < λ1, the weak solution (û, h) of problem (2.26)-(2.27), 
with initial position of the obstacle h0 = 0 and initial velocities z0 = (û0, k0) ∈ H0 such 
that ‖z0‖H0 ≤ R, converges at an exponential rate to the solution (ûλ, 0) of (2.21)-(2.22)
in H0 as t → ∞.

Remark 4.2. Theorem 4.1 could be generalized to the case of small |h0| > 0 without much 
effort. However, we state and prove it for h0 = 0 having in mind the straightforward 
application of a bridge at its rest position suddenly being invested by a wind gust.

In order to prove Theorem 4.1, we need two preliminary results. We begin by stating 
the following regularity property on a solution given by Theorem 2.8.

Lemma 4.3. Let (û, h) be the weak solution to (2.26)-(2.27), in the sense of Definition 2.5. 
There holds

t û ∈ L4/3(0, T ;W 2,4/3(Ωh(t))), t ∂tû ∈ L4/3(0, T ;L4/3(Ωh(t))) ,

t∇p ∈ L4/3(0, T ;L4/3(Ωh(t))) .
(4.1)

Proof. The proof of (4.1) follows the proof of [32, Proposition 3], up to some slight 
modification. We report here the main steps. We start by deducing, from a classical 
interpolation argument [49, Chapter 3, Lemma 3.3] and suitable Sobolev embeddings, 
that

û ∈ L4/3(0, T ;L4/3(Ωh(t))) , (û · ∇)û ∈ L4/3(0, T ;L4/3(Ωh(t))) .

The second step to prove (4.1) implies introducing the following auxiliary linear system 
with unknown (U, H):

∂U

∂t
− μΔU + ∇Q = f forx ∈ Ωh(t) ,

divU = 0 forx ∈ Ωh(t) ,

U = H ′ê2 forx ∈ ∂Bh(t) , (4.2)

U = 0 forx ∈ ∂ΓR ,
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mH ′′(t) = −ê2 ·
∫

∂Bh(t)

T (U,Q)n̂ dσ + mf1 ,

where f and f1 are given source terms, and Ωh(t) and Bh(t) are prescribed and not 
unknown. In particular, they are associated to (û, h). Following [32, Definition 2], we say 
that, given f ∈ L4/3((0, T ) × Ωh(t)), f1 ∈ L4/3(0, T ; R) and ε0 ∈ (0, L − δ), then

(U,H) ∈ [L2(0, T ;H1
0 (Ωh(t)))∩L∞(0, T ;L2(Ωh(t)))]×C([0, T ]; [−L+ δ + ε0, L− δ− ε0])

is a weak solution to (4.2), with vanishing initial data and source term f, f1, if U is 
divergence free, U(0) = 0, H(0) = 0 and

∫
Ωh(t)

∂U

∂t
φ dx + 2μ

∫
R

DU : Dφdx + m(H ′′ − f1)lφ =
∫

Ωh(t)

f φ dx

for all φ ∈ C∞
0 ([0, T ] ×R; R2) such that φ(·, t)|Bh(t) = lφ(t)ê2, with l(t) ∈ R. The third 

step implies showing that weak solutions to (4.2) in the sense given above are unique. 
This can be done precisely as in [32, Lemma 8], by taking the difference between two 
weak solutions, which is allowed because the fluid domain is in this case prescribed, thus 
identical for the two solutions. Then, by [32, Lemma 4] and [29, Theorem 4.1] we know 
that problem (4.2) has a unique strong solution with vanishing initial data belonging to

U ∈ L4/3(0, T ;W 2,4/3(Ωh(t))) , ∂tU ∈ L4/3(0, T ;L4/3(Ωh(t))),

H ∈ W 2,4/3(0, T ;R) , ∇Q ∈ L4/3(0, T ;L4/3(Ωh(t))) ,
(4.3)

and such that

‖U‖L4/3(0,T ;W 2,4/3(Ωh(t))) + ‖∂tU‖L4/3(0,T ;L4/3(Ωh(t))) + ‖∇Q‖L4/3(0,T ;L4/3(Ωh(t)))

≤ C
(
‖f‖L4/3(0,T ;L4/3(Ωh(t))) + ‖f1‖L4/3(0,T ;R)

)
,

(4.4)

where C depends on the geometry of the rigid body and on R. Through some integration 
by parts, it can be shown that any strong solution to (4.2) is also a weak solution to 
(4.2). The last step implies showing that, given

U := tû , H := th , Q := tp , (4.5)

then (tû, th) is a weak solution to (4.2) in the sense given above, with source term

f := û− t(û · ∇)û− t(û · ∇)s− t(s · ∇)û + tĝ ∈ L4/3(0, T ;L4/3(Ωh(t))) ,

f1 := h′ + t
f(h) ∈ L4/3(0, T ;R) .

m
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Fig. 4. The subsets Oε, Aε ⊂ R.

Thus, since weak solutions to (4.2) are unique, the solution given by (4.5) must be strong, 
thus it satisfies the regularly in (4.3) and the estimate in (4.4), which yields the desired 
result. �

As a second preliminary result, we state and prove a basic proposition allowing to 
define a change of variables associated to the rigid motion of the obstacle in problem 
(2.26)-(2.27) in order to be able to compare different solutions; indeed since (2.26)-(2.27)
is set on a time-dependent fluid domain, different solutions are defined on different 
domains. This change of variables depends on time t through h; it was first introduced 
by Takahashi ([47, Section 4.1]), inspired by Inoue and Wakimoto ([37]). We denote for 
all ε ∈ (0, L − δ)

Oε =
{
x ∈ R : dist(x,Γ) ≥ 2ε ∧ |x1| < 3

2
}
, Aε =

{
x ∈ R : dist(x,Γ) ≤ ε ∨ |x1| > 2

}
,

see Fig. 4 for a representation. Note that, choosing ε to build the function s = sε defined 
in Lemma 2.1, then

s(x) ≡ 0 on R \Aε. (4.6)

Proposition 4.4. Consider a fixed h ∈ W 1,∞(0, T ; (−L + δ, L − δ)) with h(0) = h0. For 
every t ∈ [0, T ] there exists a volume preserving diffeomorphism

ψ(t, ·) : Ωh(t) −→ Ωh0

satisfying, for all ε > 0, the following properties:

ψ(t, x1, x2) = (x1, x2 + h(t) − h0) ∀x = (x1, x2) ∈ Oε,

ψ(t, x1, x2) = (x1, x2) ∀x = (x1, x2) ∈ Aε.

Proof. Let ζ(x1, x2) be a smooth cutoff function equal to 0 in Aε and equal to 1 in Oε. 
Then, we define the solenoidal vector field V : R+ × Ωh(t) → R2 as

V (t, x) = ∇× {0, 0,−ζ(x1, x2)x1h
′}.
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Notice that

V (t, x) =
{

0 in Aε,

h′ê2 in Oε,
(4.7)

and V (·, t) ∈ C∞(R2, R2) for all t ≥ 0, V (x, ·) ∈ L∞(0, T ; R2) for all x ∈ R2. Then we 
build the deformation mapping of Ωh(t) into Ωh0 , ψ : R+ × Ωh(t) → Ωh0 , as the flow 
associated to (4.7):

{
∂
∂tψ(t, x) = V (t, ψ(t, x)),
ψ(0, x) = x.

Since ∇ · V = 0, ψ is volume preserving and det(∂ψi

∂xj
)i,j = 1 for all t ≥ 0. The mapping 

ψ is a smooth function of V . In particular, for some C > 0,

‖∂j
tψ(t, ·)‖Ck(Ω̄h(t)) ≤ C|hj(t)| ∀j = 0, 1,∀ k = 0, 1, 2. (4.8)

Notice that ψ ∈ W 1,∞(0, T ; Ck(Ωh(t))) for any k = 0, 1, 2. �
Through Proposition 4.4, we define ϕ : R+ × Ωh0 −→ Ωh(t) by ϕ = ψ−1 in the space 

variables to be the volume preserving diffeomorphism such that, for any y = (y1, y2) ∈ Oε,

ϕ(t, y1, y2) = (y1, y2 + h0 − h(t))

and, for any y = (y1, y2) ∈ Aε, ϕ(t, y1, y2) = (y1, y2). There holds

‖∂j
tϕ(t, ·)‖Ck(Ω̄h0 ) ≤ C|hj(t)| ∀j = 0, 1,∀ k = 0, 1, 2.

Obviously ϕ ∈ W 1,∞(0, T ; Ck(Ωh0)) for any k = 0, 1, 2. We can now give the

Proof of Theorem 4.1. Let ε1 > 0 be given by (3.5) and take s = sε1 from Lemma 2.1. 
Multiply the fluid equation in (2.21) by a function φ ∈ V (R) such that φ|B0 = ê2 and 
integrate over Ω0. After integration by parts it comes

μ

∫
Ω0

∇ûλ : ∇φ dy +
∫

∂Ω0

(−μ
∂ûλ

∂n̂
+ p∗n̂) · φdτ +

∫
Ω0

(ûλ · ∇)ûλ · φdy +
∫
Ω0

(ûλ · ∇)s · φdy

+
∫
Ω0

(s · ∇)ûλ · φdy =
∫
Ω0

ĝ · φdy.

Next, by the coupling condition in (2.22), we have that
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∫
∂Ω0

(−μ
∂ûλ

∂n̂
+ pn̂) · φdτ = −ê2 ·

∫
∂B0

(T (ûλ, p∗) · n̂) dτ = 0.

Consequently, we obtain that, for any φ ∈ V (R) such that φ|B0 = ê2,

μ

∫
Ω0

∇ûλ : ∇φ dy+
∫
Ω0

(ûλ ·∇)ûλ ·φdy+
∫
Ω0

(ûλ ·∇)s ·φdy+
∫
Ω0

(s ·∇)ûλ ·φdy =
∫
Ω0

ĝ ·φdy.

(4.9)
Notice that (4.9) does not see the value of φ on B0, thus we could have taken φ|B0 = c ̂e2

with c ∈ R. Then, let (û, h) be the unique solution to problem (2.26)-(2.27) given by 
Theorem 2.8, with h0 = 0 and some initial velocities z0 = (û0, k0) ∈ H0 such that 
‖z0‖H0 ≤ R, for any arbitrary R > 0. In order to be able to subtract the weak formulation 
satisfied by (û, h) and that satisfied by (û∗, h∗) = (ûλ, 0), we need to properly map 
û(t) from Ωh(t) to Ω0 for every t > 0. We follow [32,44]. From (3.5), we infer that 
h ∈ W 1,∞(0, T ; [−L + δ − ε1, L − δ − ε1]). Thus, we can build ψ as in Proposition 4.4
with h0 = 0 and ε = ε1; we also define ϕ = ψ−1. We introduce

v(y, t) = ∇ψ(ϕ(t, y), t) · û(ϕ(t, y), t) y ∈ Ω0,

to be the pullback of û by ϕ, and we set q(t, y) = p(t, ϕ(y, t)). We refer to [32, Section 
3.2] (see also [44, Section 5]) for the explicit computation of the partial derivatives of v
in terms of those of û, so that the equation satisfied by v reads

〈∂tv(t), φ〉 + mh′′(t)l(t) + f(h(t))l(t) + μ

∫
Ω0

∇v(t) : ∇φdy +
∫
Ω0

(v(t) · ∇)v(t) · φdy

+
∫
Ω0

(v(t) · ∇)s · φdy +
∫
Ω0

(s · ∇)v(t) · φdy =
∫
Ω0

ĝ · φ−
∫
Ω0

f(v(t), h(t), q(t)) · φdy,

(4.10)

for any test pair (φ, l) ∈ H1
0 where, using Einstein’s summation convention,

fi = + (∂kϕi − δik)∂tvk + ∂kϕ
i∂lv

k(∂tψl) + (∂k∂tϕi)vk + (∂2
klϕ

i)(∂tψl)vk

+ vl∂lv
k(∂kϕi − δik) + (∂2

lkϕ
i)vlvk + ∂kq(∂iψk − δik) + μ

[
− ∂jψ

m(∂2
mkϕ

i)∂lvk∂jψl

− (∂kϕi∂jψ
m∂jψ

l − δikδjmδjl)∂2
mlv

k − ∂kϕ
i∂lv

k(∂2
jjψ

l)

− ∂jψ
m(∂3

mlkϕ
i)∂jψlvk − (∂2

lkϕ
i)∂2

jjψ
lvk − (∂2

lkϕ
i)∂jψl∂jψ

m∂mvk
]
.

(4.11)

Then set w(t) = v(t) − ûλ and subtract (4.9) from (4.10) to obtain:
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〈∂tw(t), φ〉 + mh′′(t)l + f(h(t))l + μ

∫
Ω0

∇w(t) : ∇φdy +
∫
Ω0

(v(t) · ∇)w(t) · φdy

+
∫
Ω0

(w(t) · ∇)ûλ · φdy +
∫
Ω0

(w(t) · ∇)s · φdy +
∫
Ω0

(s · ∇)w(t) · φdy

= −
∫
Ω0

f(v(t), h(t), q(t)) · φdy.

We follow the same reasoning of the proof of Theorem 3.3. We define

z(x, t) = h(t)
[
− ∂

∂x2
(ζ(x)x1),

∂

∂x1
(ζ(x)x1)

]
∀(x, t) ∈ R× (0,∞),

where ζ is a C∞ cut-off function equal to 1 in a small neighborhood of the obstacle B0
and equal to 0 outside a larger neighborhood. We observe that, for all t ≥ 0,

z(t) ∈ C∞(R) ∩H1
0 (R), divz(t) = 0 , z(t) = h(t) ê2 in Bh .

Moreover, the following estimates hold:

‖z(t)‖L2(R) ≤a1|h(t)| , ‖∇z(t)‖L2(R) ≤ a2|h(t)| , ‖z(t)‖L∞(R) ≤ a3|h(t)|
‖∇z(t)‖L∞(R) ≤ a4|h(t)| , ‖zt(t)‖L2(R) ≤ a5|h′(t)| ,

where a1, a2, a3, a4 and a5 are constants depending on the cut-off function ζ. We intro-
duce, for ω ∈ (0, 1) to be fixed later, the energy and its perturbation

E(t) = ‖w(t)‖2
L2(Ω0) + mh′(t)2 + 2F (h(t)),

Eω(t) = E(t) + 2mω h(t)h′(t) + 2
∫
Ω0

w(t) · ωz(t) dy.

Such functionals satisfy (3.4), provided that ω is small enough. Then, choosing (φ, l) =
(w + ωz, h′ + ωh), we infer

1
2
d

dt
Eω −mωh′2 + ωf(h)h + μ‖∇w‖2

L2(Ω0)

= −
∫
Ω0

f(v, h, q) · w dy −
∫
Ω0

(w · ∇)ûλ · w dy −
∫
Ω0

(w · ∇)s · w dy +
∫
Ω0

w · ωzt dy

− μ

∫
Ω0

∇w : ω∇z dy −
∫
Ω0

(w · ∇)s · ωz dy +
∫
Ω0

(w · ω∇)z · w dy −
∫
Ωh

(s · ∇)w · ωz dy

−
∫
Ω0

(w · ∇)ûλ · ωz dy −
∫
Ω0

f(v, h, q) · ωz dy.
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Next, we estimate the right-hand side. We start by the first term. Following [32], we 
divide f into pieces

f = f1 + f2 + f3 + f4 + f5

with

f1 :=(∂k∂tϕi)vk+(∂2
klϕ

i)(∂tψl)vk−
∑
j

[
∂jψ

m(∂3
mlkϕ

i)∂jψlvk+(∂2
lkϕ

i)∂2
jjψ

lvk
]
,

f2 :=∂kϕ
i∂lv

k(∂tψl)

−
∑
j

[
∂jψ

m(∂2
mkϕ

i)∂lvk∂jψl + ∂kϕ
i∂lv

k(∂2
jjψ

l) + (∂2
lkϕ

i)∂jψl∂jψ
m∂mvk

]
,

f3 :=(∂2
lkϕ

i)vlvk, f4 := vl∂lv
k(∂kϕi − δik),

f5 :=(∂kϕi − δik)∂tvk + ∂kπ2(∂iψk − δik) −
∑
j

(∂kϕi∂jψ
m∂jψ

l − δikδjmδjl)∂2
mlv

k.

We have the following estimates, where we use (4.8).

• Concerning the first three terms:∫
Ω0

f1 · w dy ≤ C‖v‖L2(Ω0)‖w‖L2(Ω0)|ĥ′| ≤ C‖v‖L2(Ω0)

(
‖w‖2

L2(Ω0) + mĥ′ 2
)

∫
Ω0

f2 · w dy| ≤ C‖∇v‖L2(Ω0)‖w‖L2(Ω0)|ĥ′| ≤ C‖∇v‖L2(Ω0)

(
‖w‖2

L2(Ω0) + mĥ′ 2
)

∫
Ω0

f3 · w dy ≤ C‖v‖2
L4(Ω0)‖w‖L2(Ω0)|ĥ′| ≤ C‖v‖L2(Ω0)‖∇v‖L2(Ω0)

(
‖w‖2

L2(Ω0) + mĥ′ 2
)

• For the fourth and fifth terms, following [32], thanks to Lemma 4.3, we have

∫
Ω0

f4 · w dy ≤ C‖v‖L4(Ω0)‖t∇v‖L4(Ω0)‖
1
t
(∂kϕi − δik)‖L∞(Ω0)‖w‖L2(Ω0)

≤ C‖v‖L4(Ω0)‖t∇v‖L4(Ω0)|ĥ′|‖w‖L2(Ω0)

≤ C‖∇v‖1/2
L2(Ω0)‖v‖

1/2
L2(Ω0)‖t∇v2‖L4(Ω0)|ĥ′|‖w‖L2(Ω0) .

Next we notice that

b1(t) := ‖∇v(·, t)‖1/2
2 ‖t∇v(·, t)‖L4(Ω0) ∈ L1(0, T ) ,
L (Ω0)
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due to the Hölder inequality with exponent p = 4 and q = 4/3. Hence we obtain∫
Ω0

f4 · w dy ≤ C‖v‖1/2
L2(Ω0)b1

(
‖w‖2

L2(Ω0) + mĥ′ 2
)

Next, we introduce

b2(t) :=‖t∂tvk(·, t)‖L4/3(Ω̃1(t)) + ‖∂kπ2(·, t)‖L4/3(Ω̃1(t))

+ ‖tvk(·, t)‖W 2,4/3(Ω̃1(t)) ∈ L4/3(0, T ) .

We deduce that ∫
Ω0

f5 · w dy ≤ C b2|ĥ′|‖w‖L4(Ω0) .

Next, we apply the Young inequality twice as follows∫
Ω0

f5 · w dy ≤ Cb
2/3
2 ‖w‖2

L4(Ω0) + Cb
4/3
2 ĥ′ 2

≤ Cb
4/3
2 ‖w‖2

L2(Ω0) + Cb
4/3
2 ĥ′ 2 + μ

8 ‖∇w‖2
L2(Ω0),

where b2(t)4/3 ∈ L1(0, T ).

If we set

D1(t) :=‖v‖L∞(0,T ;L2(Ω0))
(
1 + ‖∇v(·, t)‖L2(Ω0)

)
+ ‖v‖1/2

L∞(0,T ;L2(Ω0))b1(t) + b2(t)4/3 ∈ L1(0, T ),
(4.12)

we obtain then∫
Ω0

f(v(t), h(t), q(t)) · w(t) dy ≤ D1(t)
(
‖w(t)‖2

L2(Ω0) + mh′(t)2
)

+ μ

8 ‖∇w(t)‖2
L2(Ω0).

Let Q be a positive and increasing function with respect to its variables. We observe 
that by Lemma 4.3, in particular estimate (4.4), we infer that the function D1 in (4.12)
is such that

D1(t) = Q(‖v(t)‖L2(Ω0), ‖∇v(t)‖L2(Ω0), ‖ĝ‖L∞(Ω0), ‖s‖L∞(Ω0), ‖∇s‖L∞(Ω0)) .

Analogous computations bring to the existence of a function

D2(t) = Q(‖v(t)‖L2(Ω0), ‖∇v(t)‖L2(Ω0), ‖ĝ‖L∞(Ω0), ‖s‖L∞(Ω0), ‖∇s‖L∞(Ω0)) ,
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such that ∫
Ω0

f(v(t), h(t), q(t)) · ωz(t) dy ≤ D2(t)mh′(t)2 + ω2‖∇z(t)‖2
L2(Ω0).

For the second term and the third term, we exploit [28, (2.26)], the Poincaré inequality 
and the properties of s defined as in Lemma 2.1. We obtain∫

Ω0

(w · ∇)ûλ · w dy ≤ ‖w‖2
L4(Ω0)‖∇ûλ‖L2(Ω0)

≤
(

2
3π

)1/2

‖∇w‖L2(Ω0)‖w‖L2(Ω0)‖∇ûλ‖L2(Ω0)

≤ L√
3

(
2
π

)3/2

‖∇w‖2
L2(Ω0)‖∇ûλ‖L2(Ω0),

and ∫
Ω0

(w · ∇)s · w dy ≤ ‖∇s‖L4(Ω0)‖w‖L4(Ω0)‖w‖L2(Ω0)

≤
(

2
3π

)1/4

‖∇s‖L4(Ω0)‖∇w‖1/2
L2(Ω0)‖w‖

3/2
L2(Ω0)

≤
(

2L
π

)3/2( 2
3π

)1/4

‖∇s‖L4(Ω0)‖∇w‖2
L2(Ω0).

With the same arguments of those in Theorem 3.3, we estimate the terms involving the 
function z as follows∫

Ω0

w · ωzt dy ≤ μ

16‖∇w‖2
L2(R) + 4

μ

4L2

π2 ω2‖zt‖2
L2(R) ,

−μ

∫
Ω0

∇w : ω∇z dy ≤ μ

16‖∇w‖2
L2(R) + 4

μ
ω2‖∇z‖2

L2(R) ;

−
∫
Ω0

(w · ∇)s · ωz dy ≤ μ

8 ‖∇w‖2
L2(R) + 2

μ
ω2‖∇z‖2

L2(R) ,

∫
Ω0

(w · ω∇)z · w dy ≤ ω
4L2

π2 ‖∇z‖L∞(R)‖∇w‖2
L2(R) ;

−
∫
Ω0

(s · ∇)w · ωz dy ≤ ‖s‖L∞(Ω0)‖∇w‖L2(Ω0)ω‖z‖L2(Ω0)

≤ μ‖s‖2
L∞(Ω0)‖∇w‖2

L2(Ω0) + 2
ω2‖z‖2

L2(R) ;
8 μ
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and, finally,

−
∫
Ω0

(w · ∇)ûλ · ωz dy ≤ 2L
π

‖∇w‖L2(Ω0)‖∇ûλ‖L2(Ω0)ω‖z‖L∞(Ω0)

≤ 4L2

π2 ‖∇w‖2
L2(Ω0)‖∇ûλ‖2

L2(Ω0) + ω2

4 ‖z‖2
L∞(R).

Next, with the very same arguments used in Theorem 3.3, provided that ω is small 
enough we arrive at stating that there exists c3 > 0 such that

d

dt
Eω(t) + ωF (h(t)) + μ

4 ‖∇w(t)‖2
L2(Ω0) + c3h

′(t)2 (4.13)

≤ 2L√
3

(
2
π

)3/2

‖∇w(t)‖2
L2(Ω0)‖∇ûλ‖L2(R) + 2L3/2

31/4

(
2
π

)7/4

‖∇s‖L4(Ω0)‖∇w(t)‖2
L2(Ω0)

+ 2D1(t)
(

4L2

π2 ‖∇w(t)‖2
L2(Ω0) + mh′(t)2

)
+ 2D2(t)mh′(t)2

+ μ

4 ‖s‖
2
L∞(Ω0)‖∇w(t)‖2

L2(Ω0) + 8L2

π2 ‖∇w(t)‖2
L2(Ω0)‖∇ûλ‖2

L2(Ω0).

From Theorem 2.3 we have that, if λ < λ∗ (the threshold for uniqueness of solutions for 
the stationary problem), there exists C1 = C1(λ) > 0 such that C1(λ) → 0 as λ → 0 and

‖∇ûλ‖L2(Ω0) ≤ C1(λ).

On the other hand, from Theorem 3.3 and Theorem 3.5,

D1(t),D2(t) → 0 as λ → 0 ∀ t ≥ t0 + 1,

with t0 as in (3.13). Thus, with t sufficiently large, every term on the right-hand side 
of (4.13) multiplying ‖∇w(t)‖2

L2(Ω0) and h′(t)2 tends to 0 as λ∗ → 0. As a consequence, 
one can find λ1 > 0 such that, if λ < λ1, there exist c4, c5 > 0 such that

d

dt
Eω + ωF (h) + c4‖w‖2

L2(Ω0) + c5h
′2 ≤ 0,

where we have used implicitly the Poincaré inequality. Use (2.4) and the definition of E
to obtain

d

dt
Eω + γE ≤ 0,

with γ = min{2ω, 2c4, 2c5m } > 0. Then, renaming γ/c2 as γ, we find from (3.4) that 
d
dtEω + γEω ≤ 0, which, together with (3.4), implies that c1E(t) ≤ c2E(0)e−γt. Thus 
there exists c > 0 such that
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‖v(t) − ûλ‖2
L2(Ω0) + mh′(t)2 + 2F (h(t)) ≤ c

(
‖û0 − û∗‖2

L2(Ω0) + mk0
2)e−γt, (4.14)

since F (0) = 0. From (4.14), the convergence of the solutions in H0 is established as 
t → ∞, which proves the claim. �
5. The dynamical system approach

5.1. Semiflow vs semigroup

We now want to revisit the results of Section 3 within the framework of infinite-
dimensional dynamical systems, where the solution is viewed as a trajectory in a suitable 
phase space. Let us begin with the abstract definition of a strongly continuous semiflow.

Definition 5.1. Let (X , d) be a complete metric space. A family of one-parameter maps 
S(t) : X → X is called a (strongly continuous) semiflow on X if

(i) S(0) = idX (the identity map in X );
(ii) the map t �→ S(t)x is continuous for all x ∈ X ;
(iii) the map x �→ S(t)x is continuous for all t ≥ 0.

If in addition the concatenation property holds, that is, S(t + τ) = S(t)S(τ) for all 
t, τ ≥ 0, then S(t) is called a strongly continuous semigroup (see, e.g., [48]).

Obviously, a semigroup would simplify the analysis of the dynamics but, as already 
mentioned, the evolution maps S(t) of (2.26)-(2.27) do not satisfy the concatenation 
property. The main reason relies on peculiarity of (2.26)-(2.27), where at each time step 
the pair (û(t), h′(t)) belongs to a different functional space Hh(t), for the domain of 
fluid Ωh(t) depends itself on the solution. The key idea to overcome this difficulty, for a 
given initial position h0 of the obstacle, is to map at every time t the cylindrical domain 
Ωh(t) × (0, T ) onto Ωh0 × (0, T ), via a suitable change of variables.

Throughout the whole section, let then

h0 ∈ (−L + δ, L− δ)

be fixed, and denote

H = {z = (v, l) ∈ H(R) | vBh0
= lê2}, H1 = {z = (v, l) ∈ V (R) | vBh0

= lê2},

to which we associate the norms

‖z‖2
H =

∫
|v|2 dx + ml2, ‖z‖2

H1 =
∫

|∇v|2 dx + ml2,
Ωh0 Ωh0
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where z = (v, l), and m is the mass of the body as in (2.27). The spaces H and H1

are exactly the ones defined in (2.23), where the dependence of h0 is dropped, since the 
position h0 of the obstacle is now fixed. In particular, we have the compact embedding 
H1 � H. Given z0 = (û0, k0) ∈ H, we consider the solution operator U(t) : H → Hh(t) of 
Section 3, recalling that h(t) is the second component of the weak solution to (2.26)-(2.27)
with initial data (û0, h0, k0). Hence,

U(t)z0 = (û(t), h′(t)).

Let ε0 ∈ (0, L − δ) be such that

min
t∈[0,T ]

dist(∂Bh(t),Γ) ≥ ε0. (5.1)

The existence of such an ε0 comes from Corollary 2.9. For this h(t), we can build for 
any t > 0 the map ψ(t, ·) of Proposition 4.4, where we take ε = ε0, and define its inverse 
with respect to the space variables, that we denote by ϕ(t, ·) = ψ−1(t, ·). In order to 
recast our results in the semiflow language, the main ingredient is the introduction of 
the family of maps, depending on h(t),

Φt : Hh(t) → H,

given by

Φt(û(t), h′(t)) = (∇ψ(ϕ(t, y), t) · û(ϕ(t, y), t), h′(t)),

whose properties will be described later in this section. Then, we define the one-parameter 
family of operators

S(t) : H → H,

acting by the rule

z0 �→ S(t)z0 = Φt(U(t)z0). (5.2)

Roughly speaking, what we do is to think the obstacle as fixed during the whole evolution. 
Accordingly, the variable h loses its physical meaning, since it does not represent any 
longer the position of the obstacle, but its effects appear inside the equation through the 
map Φt.

Theorem 5.2. The map S(t) fulfills the semiflow axioms (i)-(iii) of Definition 5.1 on the 
complete metric space H, endowed with the distance induced by the norm ‖ · ‖H.

As it will be clear, it is however false that S(t) is a semigroup. The proof of Theorem 5.2
is carried out in the remaining of the section. In particular, in the next Subsection 5.2, 
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we state and prove some preliminary results in order to properly characterize the action 
of the map Φt on problem (2.26)-(2.27). The conclusion of the proof will be given in 
Subsection 5.3, by verifying the semiflow properties of Definition 5.1.

5.2. Properties of the map Φt

Recalling that h0 ∈ (−L + δ, L − δ) has been fixed once for all, throughout this 
subsection, we consider a given ε ∈ (0, L − δ) and a given function

h ∈ W 1,∞(0, T ; [−L + δ + ε, L− δ − ε]) ∀T > 0 (5.3)

such that

h(0) = h0, Bh(t) ⊂ Oε ∀ t ∈ [0, T ].

With this choice, let s = sε be a function obtained through Lemma 2.1. Moreover, we 
can build the volume preserving diffeomorphism ψ of Proposition 4.4, along with its 
inverse ϕ = ψ−1. Then, we denote

gij = ∂ϕk

∂yi
∂ϕk

∂yj
, gij = ∂ψi

∂xk

∂ψj

∂xk
, Γi

kj = gil
(
∂gkl
∂yj

+ ∂gjl
∂yk

− ∂gkj
∂yl

)
= ∂ψi

∂xl

∂2ϕl

∂yk∂yi
,

(5.4)
where gij defines a metric on R2 since det(∂ψi

∂xj
)i,j = 1. Call (now the space variable is y)

v(y, t) = ∇ψ(ϕ(t, y), t) · û(ϕ(t, y), t) y ∈ Ωh0 , (5.5)

the pullback of û by ϕ, and set

q(y, t) = p(ϕ(y, t), t).

We follow the procedure in [47, paragraph 4.2] to transform the Navier-Stokes equa-
tion (2.26) in the cylindrical domain Ωh0×(0, T ). Thanks to (4.6), for each term involving 
s, the maps ψ and ϕ correspond to the identity. Thus, we obtain the (weak) problem with 
variable coefficients in the new unknown v (at this stage, the function h(t) is prescribed)

vt + Mv − μLv + N v + (v · ∇) s + (s · ∇) v + Gq = ĝ in Ωh0 × (0, T )

div v = 0 in Ωh0 × (0, T )

v = 0 on Γ × (0, T )

v = h′ê2 on ∂Bh × (0, T )

lim
|y1|→∞

v(y1, y2) = 0

v(0) = û .

(5.6)
0
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The operators M,L,N appearing in (5.6) are defined here below (the exponent i stands 
for the i-th component, and we use the Einstein notation).

(Mv)i =∂lv
i∂tψ

l + ∂kψ
i(∂k∂tϕi)vk + ∂kψ

i∂2
klϕ

i∂tψ
lvk,

(Lv)i =∂kψ
i∂jψ

m(∂2
mkϕ

i)∂lvk∂jψl + ∂jψ
m∂2

mlv
i∂jψ

l + ∂lv
i(∂2

jjψ
l)

+ ∂kψ
i∂jψ

m(∂3
mlkϕ

i)∂jψlvk + ∂kψ
i(∂2

lkϕ
i)∂2

jjψ
lvk

+ ∂kψ
i(∂2

lkϕ
i)∂jψl∂jψ

m∂mvk,

(N v)i =vl∂lv
i + ∂kψ

ivl(∂2
lkϕ

i)vk,

(Gq)i =gij∂jq.

(5.7)

Remark 5.3. Note that:
- (∂t + M)v corresponds to the original time derivative ût;
- Lv corresponds to Δû;
- N v corresponds to (û · ∇)û;
- Gq corresponds to ∇p.
In particular, in Aε these operators coincide with the original ones; the same is true in
Oε, except for

(∂t + M)v = (∂t − h′ê2 · ∇)v.

The first equation in (5.6) can be rewritten as

vt − μΔv + (v · ∇) v + ∇q + (v · ∇) s + (s · ∇) v = ĝ + F(v, h, q),

where

F(v, h, q) = μ(L − Δ)v −Mv − (N v − (v · ∇)v) − (G −∇)q.

Observe that

F(v, h, q) =
{

0 in Aε

h′ê2 · ∇v in Ōε,

thus F has compact support in Ωh0 . The introduction of the maps ψ and ϕ allows to 
remove the dependence on time from the fluid domain, with a consequent strengthening 
of the coupling between the equations governing the motion of the fluid and the one 
governing the motion of the obstacle. Such a strengthening appears in the fictitious force 
F = F(v, h, q), where the dependence on h is hidden in ψ and ϕ. This renders the 
dynamics structurally non-autonomous, and this is the reason why we do not end up 
with a semigroup.
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Remark 5.4. If h(t) is not just any prescribed function, but it is exactly the second 
component of the weak solution to (2.26)-(2.27) with initial data (û0, h0, k0), and ε = ε0
with ε0 as in (5.1), we have the equivalence between (5.6) and the original equation (2.26), 
in terms of strong solutions. This was proven in [47, Propositions 4.5, 4.6], which in turn 
refers to [37, Theorem 2.5]

Here, we are interested in the construction of weak solutions. To this aim, leaning on 
some ideas of [41], we introduce for any fixed t > 0 the scalar products

〈v1, v2〉t =
∫

Ωh0

gij(y, t)vi1(y)v
j
2(y) dy,

〈Dgv1, Dgv2〉t =
∫

Ωh0

gij(y, t)gkl(y, t)∇kv
i
1∇lv

j
2 dy, (5.8)

where

∇kv
i = ∂vi

∂yk
+ Γi

kjv
j ,

and we denote by

‖v‖2
t = 〈v, v〉t and ‖Dgv‖2

t = 〈Dgv,Dgv〉t

the induced (square) norms. We emphasize that the scalar products in (5.8) explicitly
depend on the choice of the function h in (5.3), that for the moment is understood to be 
given. Under the change of variables induced by ϕ, for any t ≥ 0 we have the equalities

〈v1, v2〉t =
∫

Ωh(t)

û1 · û2 dx, 〈Dgv1, Dgv2〉t =
∫

Ωh(t)

∇û1 : ∇û2 dx.

Moreover, since gij is a positive definite invertible matrix and the spatial derivatives of 
ϕ(·, t) are bounded functions (see also [37, Section 3]), there exist C1, C2 > 0 (depending 
on T > 0), such that, for any fixed t ∈ [0, T ],

C1‖v‖L2(Ωh0 ) ≤ ‖v‖t ≤ C2‖v‖L2(Ωh0 ). (5.9)

Analogously, there exist two positive constants C3 and C4 such that

C3‖∇v‖L2(Ωh0 ) ≤ ‖Dgv‖t ≤ C4‖∇v‖L2(Ωh0 ). (5.10)

This allows us to introduce the norms on H and H1

|z|t,H =
√

‖v‖2
t + ml2 , |z|t,H1 =

√
‖Dgv‖2

t + ml2 ,
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equivalent to the original ones. Again, we point out that such an equivalence is uniform 
for a fixed T > 0. Now we give the rigorous definition of a weak solution to problem (5.6).

Definition 5.5. Let the given function h comply with (5.3). A function v is a weak solution 
to (5.6), with initial value v(0) = û0, if

(v, h′) ∈ L2(0, T ;H1) ∩ L∞(0, T ;H), (∂tv, h′′) ∈ L2(0, T ;H−1),

and, for any pair (φ̃, l) ∈ H1 and almost every t ≥ 0,

〈∂tv(t), φ̃〉t + 〈Mv(t), φ̃〉t + mh′′(t)l + f(h(t)) l − μ〈Lv(t), φ̃〉t + 〈N v(t), φ̃〉t

+
∫

Ωh0

(v(t) · ∇) s · φ̃ dy +
∫

Ωh0

(s · ∇) v(t) · φ̃ dy =
∫

Ωh0

ĝ · φ̃ dy. (5.11)

We are ready to prove the equivalence between problem (5.6) and the original problem 
(2.26)-(2.27) in terms of weak solutions.

Proposition 5.6. Let (û, h) be the weak solution to problem (2.26)-(2.27) with initial data 
(û0, h0, k0), and let v be a weak solution to (5.6) with the same h and initial datum û0, 
in the sense of Definition 5.5. Then û and v are related by (5.5), that is,

v(·, t) = ∇ψ(ϕ(t, ·), t) · û(ϕ(t, ·), t).

Proof. The proposition is proven by establishing a correspondence among each term in 
(5.11) and in (2.29). The function h is now the second component of the weak solution 
(û, h) to problem (2.26)-(2.27) with initial data (û0, h0, k0), and ε0 is as in (5.1). Then, 
we can build the map ψ of Proposition 4.4, where we take ε = ε0, and define its inverse 
with respect to the space variables, ϕ = ψ−1. From (5.5), we obtain that

û(x, t) = ∇ϕ(ψ(t, x), t) · v(ψ(t, x), t). (5.12)

Concerning the test function φ and φ̃ appearing in the two definitions of solution, ap-
plying the change of variable we produce a bijection φ ↔ φ̃ given by

φ(x, t) = ∇ϕ(ψ(t, x), t) · φ̃(ψ(t, x)). (5.13)

Indeed, as ψ and ϕ are volume preserving, we do not lose the divergence-free property 
of the functions (see for instance [37, Proposition 2.4]). Thus, by plugging (5.12)-(5.13)
into (2.29), after integrating by parts and using the fact that y = ψ(t, x) ∈ Ωh0 , we 
obtain
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∫
Ωh0

∂t[∇ϕ(y, t) · v(y, t)] · ∇ϕ(y, t) · φ̃(y) dy +mh′′(t)l(t) + f(h(t)) l(t)

− μ

∫
Ωh0

Δ[ϕ(y, t) · v(y, t)] · ∇ϕ(y, t) · φ̃(y) dy

+
∫

Ωh0

[(v(y, t) · ∇) s · φ̃(y) + (s · ∇) v(y, t) · φ̃(y)] dy

+
∫

Ωh0

(∇ϕ(y, t) · v(y, t) · ∇) [∇ϕ(y, t) · v(y, t)] · ∇ϕ(y, t) · φ̃(y) dy =
∫

Ωh0

ĝ · φ̃(y) dy.

(5.14)

We remark that in the equality above we have used the properties of a function s of 
Lemma 2.1, which is nonzero whenever ϕ, ψ are the identity, together with the function 
ĝ of (2.20). From (5.7), we have that

∂t[∇ϕ(y, t) · v(y, t)] = ∂kϕ
i∂tv

k + ∂kϕ
i∂lv

k∂tψ
l + (∂k∂tϕi)vk + ∂2

klϕ
i∂tψ

lvk

= ∂kϕ
i∂tv

k + ∂kϕ
i(Mv)i,

Δ[ϕ(y, t) · v(y, t)] = ∂jψ
m(∂2

mkϕ
i)∂lvk∂jψl + ∂kϕ

i∂jψ
m∂2

mlv
k∂iψ

l + ∂kϕ
i∂lv

k(∂2
jjψ

l)

+ ∂jψ
m(∂3

mlkϕ
i)∂jψlvk + (∂2

lkϕ
i)∂2

jjψ
lvk + (∂2

lkϕ
i)∂jψl∂jψ

m∂mv̂k

= ∂kϕ
i(Lv)i,

(∇ϕ(y, t) · v(y, t) · ∇) [∇ϕ(y, t) · v(y, t)] = ∂kϕ
ivl∂lv

k + vl(∂2
lkϕ

i)vk = ∂kϕ
i(N v)i.

Thus, through the definition of the scalar products in (5.8), we obtain that (5.14) is 
equivalent to (5.11), which completes the proof. �
5.3. Proof of Theorem 5.2

On account of (5.5), we rewrite the map Φt as

Φt(û(t), h′(t)) = (v(t), h′(t)),

where now v is defined by choosing the function h(t) to be the second component of the 
weak solution to (2.26)-(2.27) with initial data (û0, h0, k0), and ε = ε0, with ε0 as in 
(5.1). Then, point (i) of Definition 5.1 follows directly from the properties of ψ and ϕ. 
Point (ii) is a consequence of Theorem 2.8 and Proposition 5.6, from which we learn that 
(v, h′) is equal almost everywhere to a continuous function from [0, T ] to H with respect 
to the norm | · |t,H. By the equivalence relation between the norms given in (5.9), this 
implies the continuity with respect to ‖ · ‖H as well. The next proposition proves point 
(iii).
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Proposition 5.7. Let R > 0 be arbitrarily fixed, and let n = 1, 2. For any pair of initial 
velocities

z0,n = (û0,n, k0,n) ∈ H such that ‖z0,n‖H ≤ R,

the estimate

‖S(t)z0,1 − S(t)z0,2‖H ≤ K‖z0,1 − z0,2‖H

holds for every t ∈ [0, T ], for some positive constant K = K(R, T ).

Proof. Let z0,n = (û0,n, k0,n) ∈ H be such that ‖z0,n‖H ≤ R. Setting further hn(0) = h0, 
there exists a unique weak solution (ûn, hn) to problem (2.26)-(2.27). From Corollary 2.9, 
there is ε0, depending on R and T , such that Bhn

⊂ Oε0 . Thus, through Lemma 2.1 we 
can build s = sε0 as well as ψn as in Proposition 4.4 and ϕn = ψ−1

n , where the subscript 
n = 1, 2 depends on whether we consider h1 or h2. In order to estimate the distance 
between S(t)z0,1 = (v1, h1) and S(t)z0,2 = (v2, h2) in terms of the distance between 
z0,1 and z0,2, we exploit again the result and the procedure implemented in [44, Section 
5], where it is proven the uniqueness for solutions to problem (2.26)-(2.27). The same 
procedure has been used Section 4, and it can be recast here step-by-step, up to the 
obvious changes. In order to make the proof of the theorem self-contained, let us briefly 
describe the procedure: we introduce the two maps

F : R+ × Ωh2(t) −→ Ωh1(t) and G : R+ × Ωh1(t) −→ Ωh2(t),

defined as

F = ϕ1(t, ψ2(t, x)) and G = ϕ2(t, ψ1(t, x)).

This is possible since h1(0) = h2(0) = h0. Following [44, Section 5], let

û2(x, t) = ∇F(G(x), t) · û2(G(x), t) x ∈ Ωh1(t)

be the pullback of û2 by G, and q2(x, t) = p2(G(x), t). Next, we call

w = û1 − û2, h = h1 − h2,

and we take the difference between the weak formulation satisfied by (û1, h1) and that 
satisfied by (û2, h2). We obtain

〈∂tw, φ〉 + mh′′l + [f(h1) − f(h2)] l +μ

∫
R

∇w : ∇φdx +
∫

Ωh1

(û1 · ∇)w · φdx

+
∫

(w · ∇)û2 · φdx +
∫

(s · ∇)w · φdx +
∫

(w · ∇)s · φdx =
∫

f · φdx,
Ωh1 Ωh1 Ωh1 Ωh1
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where the expression of f reads as in (4.11), once we substitute v with û2, Ω0 with Ωh1 , 
ϕ with G and ψ with F. Then, we take (φ, l) = (w, h′) and we get

1
2
d

dt

(
‖w‖2

L2(Ωh1 ) +mh′2 + 2
h1∫

h2

f(s) ds
)

+μ‖∇w‖2
L2(Ωh1 )

= −
∫

Ωh1

(w · ∇)û2 · w dx−
∫

Ωh1

(w · ∇)s · w dx

+
∫

Ωh1

f · φdx.

(5.15)

Next, we estimate each term on the right-hand side. The first two terms can be bounded 
by suitably exploiting the Hölder inequality, [28, (2.26)], the Poincaré inequality and the 
Young inequality. We obtain

∣∣∣∣ ∫
Ωh1

(w · ∇)û2 · w dx

∣∣∣∣ ≤ ‖w‖2
L4(Ωh1 )‖∇û2‖L2(Ωh1 )

≤
(

2
3π

)1/2

‖w‖L2(Ωh1 )‖∇w‖L2(Ωh1 )‖∇û2‖L2(Ωh1 )

≤ 2
3πμ‖∇û2‖2

L2(Ωh1 )‖w‖2
L2(Ωh1 ) + μ

4 ‖∇w‖2
L2(Ωh1 ),

and

∣∣∣∣ ∫
Ωh1

(w · ∇)s · w dx

∣∣∣∣ ≤ ‖w‖2
L4(Ωh1 )‖∇s‖L2(Ωh1 )

≤
(

2
3π

)1/2

‖w‖L2(Ωh1 )‖∇w‖L2(Ωh1 )‖∇s‖L2(Ωh1 )

≤ 2
3πμ‖∇s‖2

L2(Ωh1 )‖w‖2
L2(Ωh1 ) + μ

4 ‖∇w‖2
L2(Ωh1 ).

For what concerns the last term, analogously to what we did in Section 4, we can proceed 
step by step, up to the obvious changes, to obtain the existence of a function

D1 = D1(t)

= Q(‖û2(t)‖L2(Ωh ), ‖∇û2(t)‖L2(Ωh ), ‖ĝ‖L∞(R), ‖s‖L∞(R), ‖∇s‖L∞(R)) ∈ L1(0, T ),

1 1
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the L1-bound depending only on R, such that∫
Ωh1

f · φdx ≤ D1(‖w‖2
L2(Ωh1 ) + mh′2) + μ

2 ‖∇w‖2
L2(Ωh1 ).

Then, calling

Λ(t) = D1(t) + 2
3πμ‖∇s‖2

L2(Ωh1(t)) + 2
3πμ‖∇û2(t)‖2

L2(Ωh1(t)),

and by inserting all the above inequalities in (5.15), we get

1
2
d

dt

(
‖w‖2

L2(Ωh1 ) +mh′2 + 2
h1∫

h2

f(s) ds
)

≤ Λ(‖w‖2
L2(Ωh1 ) + mh′2).

Moreover, defining the functions

Θ(t) = ‖w(x, t)‖2
L2(Ωh1(t)) + mh′(t)2

= ‖û1(x, t) −∇F(G(x), t) · û2(G(x), t)‖2
L2(Ωh1(t)) + m(h′

1(t) − h′
2(t))2,

and observing that

Θ(0) = ‖û0,1 − û0,2‖2
L2(Ωh0 ) + m(k0,1 − k0,2)2,

we obtain

Θ(t) ≤ Θ(0) +
t∫

0

2 Λ(τ)Θ(τ) dτ ∀ t ∈ [0, T ].

The Gronwall Lemma (integral form) then gives

Θ(t) ≤ KΘ(0) ∀ t ∈ [0, T ], (5.16)

having set K = exp
[ ∫ T

0 2 Λ(τ) dτ
]
. The final step is to rewrite (5.16) on Ωh0 by applying 

the coordinate transformation x = ϕ1(t, y). Given

v1(y, t) = ∇ψ1(ϕ1(t, y), t)·û1(ϕ1(t, y), t) and v2(y, t) = ∇ψ2(ϕ2(t, y), t)·û2(ϕ2(t, y), t),

for all t ∈ [0, T ] we obtain

‖∇ϕ1(t, y) · v1(y, t) −∇ϕ1(t, y) · v2(y, t)‖2
L2(Ωh0 )+ m(h′

1(t) − h′
2(t))2

≤ K
(
‖û0,1 − û0,2‖2

L2(Ω ) + m(k0,1 − k0,2)2
)
,

h0
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which in turn can be rewritten as

‖v1(t) − v2(t)‖2
t + m(h′

1(t) − h′
2(t))2 ≤ K

(
‖û0,1 − û0,2‖2

L2(Ωh0 ) + m(k0,1 − k0,2)2
)
.

Note that the norm ‖ · ‖t above is constructed by taking ϕ1 in (5.4). Therefore, recalling 
the definition of the norm | · |t,H, we arrive at

|S(t)z0,1 − S(t)z0,2|t,H ≤ K‖z0,1 − z0,2‖H ∀ t ∈ [0, T ].

The desired conclusion follows by applying (5.9), up to redefining the constant K. �
6. The global attractor of the semiflow

The further step is to translate the dissipative features of our system in the semiflow 
language. Let us begin by recalling some classical notions (see, e.g., [14,48,3]). In what 
follows, S(t) is a strongly continuous semiflow acting on a complete metric space (X , d).

Definition 6.1. A set B0 ⊂ X is called an absorbing set for S(t) if for every bounded set 
B ⊂ X there exists an entering time tB ≥ 0 such that

S(t)B ⊂ B0 ∀ t ≥ tB.

The existence of a bounded absorbing set witnesses the dissipative character of a 
semiflow, since the dynamics is eventually confined in a bounded subset of the phase 
space. And indeed, in the recent literature, the definition of a dissipative semiflow is 
exactly the one of a semiflow possessing a bounded absorbing set. Nonetheless, in spite 
of its boundedness, an absorbing set can be to some extent a very large object. For 
instance, if X is a (closed) subset of a Banach space, an absorbing set might share 
the same dimension of the whole space (think to a ball). For this reason, one would 
like to exhibit a stronger form of dissipativity. The natural way to do that is to invoke 
compactness, since this is the correct notion to translate the fact that the dynamics loses 
degrees of freedom. Accordingly, the strategy is to look for the existence of compact sets, 
hence meager in the space, able to attract (in a suitable sense) all the trajectories of the 
semiflow in the long-time. This attraction property is expressed in terms of Hausdorff 
semidistance in X : given two (nonempty) sets B, C ⊂ X, their Hausdorff semidistance is 
defined as

δ(B, C) = sup
x∈B

d(x, C) = sup
x∈B

inf
y∈C

d(x, y).

In a completely equivalent manner, we can write

δ(B, C) = inf
{
ε > 0 : B ⊂ Oε(C)

}
,

where Oε(C) =
⋃

y∈C
{
x ∈ X : d(x, y) < ε

}
is the ε-neighborhood of C.
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Definition 6.2. A set K ⊂ X is called an attracting set for S(t) if, for every bounded set 
B ⊂ X ,

lim
t→∞

δ(S(t)B,K) = 0.

Whenever there exists a compact attracting set the semiflow is said to be asymptotically 
compact.

Remark 6.3. Clearly, an absorbing set is in particular an attracting set. It is also apparent 
that if the semiflow is asymptotically compact, then it is dissipative, in the sense that it 
possesses a bounded absorbing set.

Once the existence of a compact absorbing set is established, one might ask if there 
is the best possible one among those sets. This leads to our last definition.

Definition 6.4. The global attractor A of S(t) is the smallest compact attracting set.

In the literature, the notion of global attractor is usually given in the context of semi-
groups, and not just semiflows (see, e.g., [48,3]). In particular, with the only exception of 
[14], the classical definition differs from the one given above since, besides the attraction 
property, one requires also the invariance, that is, S(t)A = A for all t ≥ 0. Unfortu-
nately, when dealing with semiflows (and not semigroups), the invariance seems to be 
out of reach. Nonetheless, our definition makes perfectly sense. The only problem is the 
existence of such a set. To this aim, we state the following result.

Theorem 6.5. An asymptotically compact semiflow possesses the global attractor in the 
sense of Definition 6.4.

Proof. The idea of the proof is somehow already contained in [14], although in that 
paper S(t) is a semigroup. In fact, the theorem remains true if S(t) is a one-parameter 
selfmap of X , without requiring any of the axioms (i)-(iii) of Definition 5.1. Consider the 
family of sets

K =
{
K ⊂ X : K is compact and attracting

}
,

which, due to the hypothesis, is nonempty. Besides, let C be the collection of all possible 
sequences of the form

yn = S(tn)xn,

where xn is a bounded sequence in X and tn → ∞. For any yn ∈ C we denote

L(yn) =
{
w ∈ X : yn → w up to a subsequence

}
.

Note that L(yn) = ∅. Indeed, let K ∈ K. Then there exists wn ∈ K such that

d(yn, wn) → 0.
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Invoking the compactness of K, there is w ∈ K and a subsequence wni
converging to w. 

Hence,

d(yni
, w) ≤ d(yni

, wni
) + d(wni

, w) → 0.

Finally, define the set

A� =
⋃

yn∈C

L(yn).

We claim that A� is attracting: if not, there exist a bounded set B ⊂ X , a sequence 
tn → ∞ and ε > 0 such that

δ(S(tn)B,A�) ≥ 2ε.

From the definition of Hausdorff semidistance, this implies the existence of a sequence 
xn ∈ B, hence bounded, for which

d(S(tn)xn,A�) ≥ ε.

But, as we saw, yn = S(tn)xn has limit points, which belong to A� by construction. This 
yields the claim. It is also apparent that A� is contained in any closed attracting set. 
Accordingly, the set

A = A� (closure in X )

is the smallest element of K. An equivalent way to define A is to put

A =
⋂
K∈K

K,

noting that the (compact) sets K ∈ K fulfill the finite intersection property, for they all 
contain A�. �

We can now go back to our particular semiflow S(t) on H associated to problem 
(2.26)-(2.27), and defined in (5.2). The main result of this section reads as follows.

Theorem 6.6. The semiflow S(t) : H → H possesses the global attractor.

Remark 6.7. In the situation of Theorem 4.1, the attractor reduces to the unique station-
ary point, and the convergence rate to the attractor is exponential. But in the general 
case, as it happens for the simpler situation of semigroups, the structure of the attractor 
might be very complicated, and the convergence rate is not predictable: in principle it 
could be arbitrarily slow. An interesting issue would be to consider a different object, 
relaxing the minimality condition characterizing the global attractor, which remains 
compact and attracts the trajectories at an exponential rate. Paralleling the terminology 
of the classical theory, this object would be an exponential attractor.

Before entering the details of the proof, let us recall once again that we are working 
under the hypothesis that h0 ∈ (−L + δ, L − δ) is fixed. Theorem 6.6 makes use of 
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the technical results of Section 5.2. In view of the definition of the semiflow S(t), the 
function h(t) will always be the second component of the weak solution to (2.26)-(2.27)
with initial data (û0, h0, k0). Our purpose is to investigate the long-time dynamics of 
S(t)z0 as z0 = (û0, k0) is allowed to run in a bounded set of H. To this aim, we need to 
improve (and make uniform) the equivalence relations between the norms given in (5.9)
and (5.10). This can be done by exploiting the dissipativity properties of the solution 
operator U(t) of Section 3.

Proof of Theorem 6.6. In the light of Theorem 6.5, all we need to do is showing that S(t)
is asymptotically compact. In fact, we will obtain a stronger result, namely, the existence 
of a compact absorbing set B1 ⊂ H. Indeed, given a bounded set B ⊂ H, we know from 
Theorem 3.3 and Theorem 3.5 that there exist two universal constants R0, R1 > 0 and 
two entering times

t0 = t0(B) and t1 = t1(B) = t0 + 1

such that, for every z0 ∈ B,

‖U(t)z0‖Hh(t) =
√

‖û(t)‖L2(Ωh(t)) + mh′(t)2 ≤ R0 ∀ t ≥ t0, (6.1)

and

‖U(t)z0‖H1
h(t)

=
√
‖∇û(t)‖L2(Ωh(t)) + mh′(t)2 ≤ R1 ∀ t ≥ t1. (6.2)

Inequality (6.1), together with (3.5), implies the existence of a constant C = C(R0) such 
that

‖h‖W 1,∞(t0,∞;R) ≤ C.

Thus, for every t ≥ t0, relations (5.9)-(5.10) improve into

C1‖v‖L2(Ωh0 ) ≤ ‖v‖t ≤ C2‖v‖L2(Ωh0 ), (6.3)

C3‖∇v‖L2(Ωh0 ) ≤ ‖Dgv‖t ≤ C4‖∇v‖L2(Ωh0 ), (6.4)

where now the constants C1, C2, C3, C4 depend only on R0 (and on t0). Invoking the 
coordinate transformation ϕ, we have the equality

‖∇û(t)‖L2(Ωh(t)) = ‖Dgv(t)‖t.

Looking at (6.2) and to the definition of | · |t,H1 , this yields

|S(t)B|t,H1 = ‖U(t)B‖H1
h(t)

≤ R1 ∀ t ≥ t1.

Hence, taking t ≥ t1 > t0, from the (uniform) equivalence of the norms established 
in (6.3) and (6.4), up to redefining the universal constant R1, we conclude that

‖S(t)B‖H1 ≤ R1 ∀ t ≥ t1.
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This means that the ball B1 of H1 of radius R1, which is compact in H in view of the 
compact embedding H1 � H, is an absorbing set for S(t). �
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