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The digital twin synchronization problem: Framework, formulations, and analysis
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ABSTRACT 
As the adoption of digital twins increases steadily, it is necessary to determine how to operate 
them most effectively and efficiently. In this article, the digital twin synchronization problem is 
introduced and defined formally. Frequent synchronizations would increase cost and data traffic 
congestion, whereas infrequent synchronizations would increase the bias of the predictions and 
yield wrong decisions. This work defines the synchronization problem variants in different contexts. 
To discuss the problem and its solution, the problem of determining when to synchronize an unre
liable production system with its digital twin to minimize the average synchronization and bias 
costs is formulated and analyzed analytically. The state-independent, state-dependent, and full- 
information solutions have been determined by using a stochastic model of the system. Solving 
the synchronization problem using simulation is discussed, and an approximate policy is proposed. 
Our results show that the performance of the state-dependent policy is close to the optimal solu
tion that can be obtained with full information and significantly better than the performance of the 
state-independent policy. Furthermore, the approximate periodic state-dependent policy yields 
near-optimal results. To operate digital twins more effectively, the digital twin synchronization 
problem must be considered and solved to determine the optimal synchronization policy.
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1. Introduction

Following the adoption of new data communication and 
processing technologies in intelligent manufacturing, digital 
twins are considered one of the critical technologies in 
Industry 4.0 (Tao et al., 2019). One of the most common uses 
of a digital twin is monitoring a machine or a manufacturing 
system in real-time. However, they also allow us to predict 
the system’s future state by using simulation experiments that 
exploit the most recent information on the system state. The 
digital twin is also used to assist a decision with its predicted 
performance, also known in the literature as prescription. 
Monitoring, prediction, and prescriptions are some of the 
external services or functionalities provided by digital twins.

As data-collection and processing technology advances, the 
detail level of digital twins also increases to capture the 
dynamics of a manufacturing system with accuracy. A digital 
twin of a complex system, such as a manufacturing plant, 
may include thousands of variables that track the system 
dynamics. As the complexity of a digital twin increases, 
reflecting all the changes in the physical system in the digital 
twin, synchronizing the digital twin with the current status of 
the system, using the digital and to predict the system’s future 
performance, and using these predictions to make and revise 
decisions effectively become more challenging (Lugaresi and 
Matta, 2018). In particular, synchronizing all the variables 

with the data collected from the system, using the collected 
data to update the predictions, and using these predictions to 
make decisions take time, require more resources, and may 
affect the real-time operation of digital twins. On the other 
hand, not synchronizing a digital twin with the actual state of 
the physical system may lead to inaccurate predictions, espe
cially in highly dynamic contexts. Figure 1 shows an example 
of a digital twin that predicts the system time in a production 
facility while synchronizing with the real system. While syn
chronizing a digital twin will improve its predictive capability 
into the future, the costs related to retrieving and processing 
data, updating models, obtaining predictions, and updating 
decisions must be compared with the benefits arising from an 
improved prediction. A method must be developed to make 
an operational decision to determine when and how to syn
chronize a digital twin to balance these costs.

This study defines and analyzes the optimal synchroniza
tion problem as a dynamic stochastic control problem. Since 
synchronization can involve multiple decisions, different 
variants of the synchronization problem are discussed. The 
objective of the control problem is to minimize the expected 
total cost of synchronizing the digital twin and the total 
misalignment costs caused by the prediction error due to 
not synchronizing the digital twin in a given period. We 
focus on the digital twin synchronization problem for a 
manufacturing system. In this setting, the number of parts 
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produced in a given time interval by a production system 
that observes downtime will be lower than when the system 
is up and running. If the digital twin is used as a simulation 
tool to predict the daily resource requirements that depend 
on daily production, the production system must be simu
lated again. Simulating the system again requires initializing 
the simulation model with the current state of the produc
tion system. We formulate the problem as a stochastic opti
mal control problem that minimizes the expected 
synchronization and bias costs by determining when to syn
chronize and when not to synchronize the digital twin based 
on the observation of the state of the production system. By 
formulating the problem as a stochastic nonlinear integer 
program, we determine the state-dependent and state-inde
pendent policies using a scenario approach. We also discuss 
how the synchronization problem can be solved using simu
lation and propose an approximate policy. The performances 
of the state-dependent, state-independent, approximate, and 
full-information policies are compared.

The organization of the remaining part of this article is 
as follows. The pertinent literature is reviewed in Section 2. 
Section 3 discusses the different forms of synchronization 
that can be relevant in real applications. The optimal digital 
twin synchronization problem is introduced and defined for
mally for the general case in Section 4. The optimal digital 
twin synchronization problem for an unreliable production 
system is given in Section 5. The solution to the synchron
ization problem using simulation is discussed in Section 6. 
The exact analytical solution of the optimal digital twin syn
chronization problem for an unreliable production system 
that yields the state-independent, state-dependent, and full- 
information policies is obtained by using a scenario 
approach, and an approximate synchronization policy is 
proposed in Section 7. Numerical results that analyze the 
effect of system parameters on the performance of the state- 
independent and state-dependent policies are given in 
Section 8. Finally, the conclusions are provided in Section 9.

2. Literature review

The tradeoff between acquiring more information for deci
sion-making and acting with the existing information has 

been discussed in different settings (Moore and Whinston, 
1986; Ballou and Pazer, 1995). We focus our review on stud
ies addressing this problem in simulation and digital twins. 
In the simulation literature, Sargent (2013) states that 
increasing confidence in a model has a diminishing return 
on the value obtained from that model. Similarly, in the 
digital twin synchronization problem, synchronizing the 
digital twin more frequently increases the confidence in a 
simulation model, but at a cost. The additional cost of syn
chronizing a digital twin may not be justified if the benefits 
of improving the predictions are limited.

In the context of digital twins, synchronization may bur
den the communication network. Modoni et al. (2019) 
acknowledge that a high frequency and detailed synchron
ization can entail a significant processing cost, and proper 
balancing should be pursued. In Kuts et al. (2019), experi
ments are run in a manufacturing laboratory demo center to 
test a synchronization Internet–of–Things (IoT) architecture; 
a criterion of evaluation is the ping time in the network 
communications. With a similar purpose, Ait-Alla et al. 
(2019) study the impact of positioning more sensors on the 
communication speed between physical and digital systems. 
Jia et al. (2021) explore the clock synchronization problem 
in industrial IoT systems and consider network resource 
consumption as a critical criterion for assessing and validat
ing synchronization algorithms. In Hashash et al. (2022), 
near-zero latency is indicated as a significant criterion for 
sustaining high quality–of–service for dynamic digital twins 
operating in variable environments. An upper limit value for 
the maximum time allowed for the data synchronization 
task is considered in the demonstration reported in 
Manothiang and Nuratch (2021). Summarizing from this 
first stream of work, the containment of the synchronization 
frequency is expected to help decrease resource network 
consumption, latency, and communication failures.

The prediction of a digital twin can differ from the 
behavior of a physical system, and de-synchronization may 
affect the quality of the prediction. Gao et al. (2021) present 
an anomaly detection framework for monitoring the differ
ent behavior between digital twin and physical system due 
to modeling errors and sensor and faults in the physical sys
tem. This difference may lead to additional problems when 

Figure 1. An example of synchronization executed in real time; synchronization frequency is 40 minutes. The values represented in the graph are the system time 
of parts processed in a production system: measured from the physical system (blue) and predicted by the digital twin (red) since the 25th minute.
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digital twins are used for different decisions. Hanisch et al. 
(2005) define the online simulation initialization problem 
that focuses on aligning system variables with the available 
data. Zipper and Diedrich (2019) specify an optimization 
problem to synchronize the states of the digital twin with 
the physical system and detect changes; the objective is the 
minimization of the error between measurements from a 
physical system and predictions from its digital twin. Zipper 
(2021) presents an extension of the state synchronization 
methodology to synchronize online simulations in real-time. 
Zipper and Diedrich (2019) and Zipper (2021) focus on the 
digital twin of a physical resource that has an analytical 
model that can be used to evaluate its performance in a 
deterministic way. In Hashash et al. (2022), the authors pre
sent a dual objective optimization problem to minimize the 
loss function between the simulation of an autonomous 
vehicle traversing a dynamic environment obtained by a 
deep neural network at the wireless network edge and the 
physical twin. The tradeoff between the accuracy obtained 
by training the model again and the time that will be used 
to train the model is addressed in this study. Lengerke et al. 
(2022) present a goal-oriented communication approach to 
decide when to synchronize subject to traffic control and 
probabilistic synchronization performance constraints to bal
ance the tradeoff between the additional data traffic gener
ated by more frequent synchronizations and the accuracy. A 
different synchronization problem has been presented by 
Qin et al. (2022), in which the authors deal with the align
ment of robot manipulations in robot-assisted surgeries.

Synchronizing digital twins with their respective physical 
systems may involve updates of the simulation models used 
for predictions. Cardin and Castagna (2011) discuss different 
operational problems when digital twins are used as a fore
casting tool for production planning. Model inaccuracies 
can be caused by inadequate model level or because the 
physical system is generally an asset with a long life cycle 
that is inevitably prone to changes. In M€uller et al. (2022), 
the data sources from physical and digital twins are com
pared to detect anomalies. In Negri et al. (2021), the authors 
propose a framework for production scheduling using the 
last data collected from the field but they do not consider 
the synchronization problem.

Another stream of literature dealing with synchronization 
focuses on the IoT architecture. In Manothiang and Nuratch 
(2021), the authors focus on a detailed architecture that 
includes 3D equipment models. They show that data com
munication between their physical and digital systems can 
be completed in milliseconds.

This study follows our preliminary work where the digital 
twin synchronization problem was defined, and a stylistic 
problem of predicting the number of successes in a given 
number of binomial trials was used to discuss different syn
chronization policies (Tan and Matta, 2022). Our study dif
fers from the previous studies in terms of the setting used 
and in terms of the methodology used. We focus on a 
digital twin of a manufacturing system that is primarily used 
to predict its future performance. Unlike the synchroniza
tion problem for a digital twin that monitors a machine, a 

discrete-event simulation that captures the interaction 
among different entities is used to predict its future per
formance. The performance of a manufacturing system is 
significantly affected by random events, such as machine 
failures, random processing time, or random arrivals. As a 
result, even if the digital twin uses a correct model to repre
sent the physical system, synchronization may be necessary 
to make the digital twin follow the physical system’s random 
trajectories. Therefore, the synchronization problem is 
related to increasing the accuracy of the predictions by using 
more frequent synchronizations without neglecting their 
related costs.

The contribution of this article is 2-fold. First, the opti
mal digital twin synchronization problem, with its variants, 
for a manufacturing system is formally defined as a stochas
tic control problem. Second, the optimal digital twin syn
chronization problem for a specific unreliable production 
system is solved analytically to explain the problem and its 
solution in detail. The solution to the synchronization prob
lem by using simulation is also discussed. The state-inde
pendent and state-dependent policies are determined exactly 
and compared with the optimal solution obtained with full 
information and an approximate policy. It is shown that the 
state-dependent policy significantly improves the perform
ance compared with the state-independent policy and yields 
an average cost close to the one that can be obtained with 
the full information. Furthermore, the proposed approxi
mate policy delivers a near-optimal performance.

3. Synchronization problems

To use the primary services provided by the digital twin 
effectively, the digital system and the physical system need 
to be kept aligned. There can be various reasons for the mis
alignment between the digital and physical systems. First, 
the randomness intrinsic in the physical processes may cause 
deviations of the digital twin from the real system trajectory. 
A second reason is related to the evolution of the physical 
system. Indeed, manufacturing systems have a long life cycle 
in which many changes are introduced to improve system 
efficiency, match customer demand, etc. In addition, equip
ment may degrade over time. Therefore, upon a system 
change (natural or artificial), the digital twin starts deviating 
from its real twin, and a model update is necessary. Lastly, 
it may happen that the digital twin is using models that are 
not fully representative of the physical system. In this case, a 
model update is necessary.

According to the literature described in the previous sec
tion, in particular (Gao et al., 2021; Hashash et al., 2022; 
Lugaresi and Matta, 2018; and Modoni et al., 2019) synchro
nizing a digital twin may involve several activities ranging 
from retrieving the system state to updating the action pre
scribed by the digital twin. State retrieval is an activity 
always needed when a synchronization task is executed. 
Indeed, an alignment of the digital twin must know entirely 
or partially the system state. Therefore, every form of syn
chronization problem includes a state update activity 
that transfers the system state from physical to digital. 
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Further, the system can be partially observable, and some 
tasks might be executed to build an estimate of the current 
state of the physical system. Predictions from a digital twin 
are continuously compared with measurements from the 
system, when available. The performance estimates are 
renewed every time synchronization occurs by launching a 
new prediction calculation. If deviations are detected from 
the comparison, an update of either the digital model logic 
or its parameters could be necessary to realign the twins. 
Furthermore, the prediction and the prescription may need 
to be updated upon a disruptive event. All these activities 
require an effort in terms of time needed for their execution 
and data communication flow.

The most straightforward synchronization problem is the 
prediction update problem, which aims at deciding when to 
execute a new simulation experiment to obtain an updated 
estimate of the performance of the digital twin. Table 1 gives 
a list of the synchronization problems discussed in this sec
tion. Depending on the detail level of the digital model and 
the complexity of the system, obtaining a new prediction 
may involve a significant amount of time. When a simple 
digital twin, e.g., a digital twin of an electric motor, is used, 
the time for generating a new prediction is very short (less 
than a second). On the contrary, this time can be large for 
complex systems that require detailed simulation, such as 
the case for estimating the lead time in semiconductor man
ufacturing systems. In these cases, deciding when to simulate 
becomes relevant because the new prediction must be avail
able before the decision epoch. The activities included in 
this type of synchronization are the state update and the 
simulation experiment for the prediction.

Another problem often discussed in the literature is the 
realignment of the model used by the digital twin for gener
ating the prediction referred to as the model update problem 
in Table 1. The model update may involve only updating its 
parameters or increasing the detail level of the model and 
determining its parameters by using the most recent obser
vations from the physical system. Indeed, when a significant 
enough deviation of the prediction from the measured per
formance is detected, a model change is needed, or simply 
changing an inadequate model topology. The deviation can 
be caused by several reasons, such as modification of the 
physical system, having insufficient detail level of the model, 
or using parameters estimated from old data. The changes 
can be related to the model logic, the parameters used in 
the model, or both. The activities to be included in this type 

of synchronization are the state update, the model update, 
and the prediction update. The prediction update may be 
needed because the last available prediction is likely to be 
invalid. Frequent changes in the model may cause instability 
of predicted performance, explainability issues for decision- 
makers, unavailability of prediction service, and network 
communication issues. A rarely updated model can still be 
valid in static environments but not adequate in dynamic 
ones.

The prescription update problem has extensively been dis
cussed in the decision-making literature. In the context of 
decisions assisted by digital twins, a prescription has to be 
considered as a decision. The action to update a decision 
must be evaluated together with the decision of re-obtaining 
a new prediction because the last can decrease the error and 
possibly improve the decision. Thus, this problem defines 
when to update the prediction and when to update the deci
sion. The activities to be included in this type of synchron
ization are the state update, the prediction update, and the 
prescription update.

The most treated problem in the literature is the update 
of the model and the prediction. For this reason, when we 
refer to this problem in this work, we use the name syn
chronization problem. However, the reader must be aware 
that the same terms are used in the literature indistinctly 
also for the other different problems shown in Table 1. This 
problem defines when to update the model and provide a 
new prediction, whereas the prescription decision is not 
considered. The activities to be included in this type of syn
chronization are the state update, the prediction update, and 
the model update. The extension of this problem is reported 
in Table 1 as the general synchronization problem and also 
includes the prediction update. To the best of our know
ledge, this problem has not yet been addressed in the 
literature.

4. Optimal digital twin synchronization problem

Following the framework in Section 3, we now present a 
general formulation of the synchronization problem. 
Considering the scope of the general synchronization prob
lem depicted in Table 1, the objective of the optimal digital 
twin synchronization problem is finding an optimal policy 
that determines when to update the predictions obtained by 
the digital twin, when to update the digital twin model, and 

Table 1. Relevant synchronization problems

Problem

Activities

DecisionsState Prediction Model Prescription

Prediction update � � When to provide a new prediction
Model update � � � When to modify the digital twin model
Prescription update � � � When to provide a new decision
Synchronization problem � � � When to modify the digital twin model and update the prediction
General synchronization problem � � � � When to modify the digital twin model, update the prediction  

and the decision

All the activities are updates of different components (state, prediction, model, prescription) and require effort. Prediction update and model update are single- 
type decision problems. Synchronization and general synchronization problems are joint decision problems. All problems are dynamic in a multi-stage time 
horizon setting.
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when to update the decision at each decision epoch based 
on the observed state of the system.

Figure 2 shows a sample evolution of the next period’s 
resource requirements (Rn,1 and Rn,0) that is used as the pri
mary performance measure of an unreliable production sys
tem tracked by a digital twin and the synchronization 
decisions given at every D cycles (Hn) depending on the 
state of the station (yn). In this example, only the prediction 
synchronization problem is depicted. The optimal digital 
twin synchronization problem yields a policy that deter
mines when to synchronize and when not to synchronize, 
depending on the state of the system at a given time. We 
define this illustrative synchronization problem formally in 
Section 5, discuss its solution using simulation in Section 6, 
and solve it optimally in Section 7.

4.1. Physical system description

The physical system evolves stochastically with discrete time 
t ¼ 0, 1, :::: The system is evaluated every D times intervals. 
The performance measure at time nD is a random variable 
denoted with Rn. Assuming that we are at the nth evaluation 
at time nD, we are interested in predicting the expected per
formance at time sD,E½Rs� within the interval nD < sD �

ðnþ dÞD as well as the expectation of other functions that 
depend on the system performance measure at time sD: The 
parameter d is given and can be considered as the forecast
ing horizon.

The observed system state at time kD is yk. For the gen
eral case, yk can be a multidimensional tuple of discrete and 
continuous values. The tuple of observed system states avail
able at time nD with the last observation at time kD, k< n 
is depicted with the tuple yn, k ¼ ðy0, y1, :::, ykÞ: Then the full 
history of the system states at time nD is yn, n: The expected 
value of the performance measure given the full history 
is E½Rsjyn, n�:

4.2. Digital system description

A digital twin is available to calculate the predicted system 
performance numerically. The predicted system performance 
at time sD is denoted with R̂s: In this work, the digital twin 
is a discrete-event simulation model that represents the sys
tem dynamics relevant for estimating the key performance 
of the physical system. Since the physical system is stochas
tic, the simulation model is also stochastic. The simulation 
model is executed to predict system performance, such as 

production throughput, inventory levels, resource utilization, 
system time, service levels, etc. Due to the physical system’s 
stochastic behavior, the digital twin may become misaligned 
from the physical system, thus jeopardizing its prediction 
capabilities. This section presents the model of the digital 
twin used to decide when synchronizing digital and physical 
systems.

The simulation model is developed at a certain detail 
level d, where higher values correspond to more detailed 
models and adequacy to the physical system. Simulation 
input parameters are fitted based on real observations of the 
variables that are modeled in a stochastic way in the simula
tion model. Examples of such variables are part arrivals, fail
ure events, processing times, etc. The set of the fitted input 
simulation parameters is denoted with p. When modifying 
the detail level and the parameters of the digital twin are 
considered, the detail level and the parameters at time nD 

are denoted with dn and pn, respectively.
The digital twin is a simulation program run at initial 

time 0 and evaluated at time instances D, 2D, :::, kD, :::, nD:

The state of the digital twin at time nD before the action at 
time nD is taken includes the available history of the phys
ical system states yn, k and the state of the digital twin model 
with its detail level dn and parameters pn: That 
is Sn ¼ ðyn, k, dn, pnÞ:

The performance of the system at time sD predicted by 
simulation is a function g that depends on the values of the 
observations of the performance measures, the physical system 
states last synchronized at time kD, k � n, i.e., yn, k, the cur
rent digital twin model with its detail level and parameters, 
and the prediction interval. This estimate is denoted with 
function gðs, yn, k, dn, pnÞ, i.e., E½R̂sjSn� ¼ gðs, yn, k, dn,pnÞ:

Since the digital twin is not a perfect representation of 
the actual system, the prediction obtained by using the 
digital twin is not equal to the prediction that can be 
obtained by using the full history of physical system states, 
i.e., E½R̂sjSn� 6¼ E½Rsjyn, n�: Another cause of prediction error 
is the inability to use all the information available on the 
actual performance until time Dn: Indeed, as the digital twin 
uses new information, the model’s parameters are updated 
with the new information, and the detail level of the model 
is increased, the prediction is expected to improve. 
Therefore, to improve the accuracy of performance predic
tion made at time nD, it is possible to synchronize simula
tion with the real system by updating the predictions by 
collecting yn and using yn, n or by modifying the model by 

Figure 2. The decisions, state variables, and costs associated with the synchronization decision of an unreliable station for a given sample path.
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increasing its detail level and/or updating its parameters 
with yn, n.

4.3. Actions

At each observation epoch, three different decisions need to 
be given: setting the detail level of the digital twin model, 
deciding whether to update its parameters with the most 
current observed data, and deciding whether to update the 
predictions.

The decision at time nD is given by un ¼ ðHn, dn, pnÞ

where Hn is the prediction update decision that has a 
value of one if the prediction update decision is taken and 
zero otherwise, dn is the detail level of the digital twin, 
and pn is its parameters that will be used for running the 
digital twin following the decision at time nD: The set of 
decisions taken from time 0 until nD is given in the 
tuple vn ¼ ðu0, u1, :::, un−1Þ:

At a given time, if a parameter update decision is taken, 
the current state of the physical system will be retrieved to 
determine the parameters with the current observation. The 
same values are then also used to update the predictions, 
i.e., Hn ¼ 1: Similarly, suppose it is decided to increase the 
detail level of the digital twin. In that case, the current state 
of the physical system will be retrieved, and the parameters 
of the model will be determined based on the updated detail 
level. The parameter update and the detail level increase 
decisions are parts of the model update decision.

Given that the predictions have been synchronized at 
time kD, at time nD > kD, the detail level has been changed 
at time lD, and the parameters are updated at time 
mD, nD > lD > mD if a synchronization action is not taken 
at time nD, that is if the predictions are not updated, the 
detail level of the model is not modified, and its parameters 
are not updated, the state of the digital twin does not change, 
i.e., Snþ1 ¼ Sn ¼ ðyn, k, dl, pmÞ ¼ ððy0, y1, :::, ykÞ, dl, pmÞ:

The prediction update action at time nD adds all the 
observations since the last synchronization of the system 
at time kD, (ykþ1, ykþ2, :::, yn) to the synchronization his
tory. That is yn, n ¼ ðy0, y1, :::, ynÞ is used to make the pre
diction. The parameter update decision uses yn, n to 
determine the updated values of the parameters pn:

Therefore, when the parameter update decision is taken, 
pn 6¼ pm: The model-detail-level-increase decision modifies 
the logic of the digital twin to dn and updates its parame
ters. Therefore, when the model-detail-level-increase deci
sion is taken, dn > dl and dn 6¼ dl: Since the additional 
information can only be used to improve the accuracy 
and is ignored otherwise, the system’s accuracy cannot 
degrade with a synchronization action. With the new 
observation, the prediction of the expected value of the 
performance measure at time sD, nD � sD � ðnþ dÞD can 
be updated, and the bias of the estimated performance 
will likely be reduced. However, this reduction is likely to 
decrease as s increases.

The state Snþ1 at time ðnþ 1ÞD is determined based on 
the previous state Sn and on the action un ¼ ðHn, dn, pnÞ

taken at time nD: 

Snþ1 ¼ SMðSn,unÞ ¼

ððy0, y1, :::, yk, :::, ynÞ, dl,pmÞ ðHn ¼ 1, dn ¼ dl, pn ¼ pmÞ

ððy0, y1, :::, yk, :::, ynÞ, dl,pnÞ ðHn ¼ 1, dn ¼ dl, pn 6¼ pmÞ

ððy0, y1, :::, yk, :::, ynÞ, dn,pnÞ ðHn ¼ 1, dn > dl, pn 6¼ pmÞ

ððy0, y1, :::, ykÞ, dl,pmÞ ðHn ¼ 0, dn ¼ dl, pn ¼ pmÞ

8
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(1) 

where SM denotes the transition function. In Equation (1), the 
first transition corresponds to the prediction update decision, 
the second corresponds to the parameter update decision, the 
third depicts the model-detail-level-increase decision, and the 
last is the no synchronization decision.

4.4. Costs

Each synchronization action has a cost that increases pro
portionally with the time and resources used to align the 
digital twin with its physical counterpart. Cost increases 
when the detail level of the digital twin is increased, and its 
parameters are updated. The total digital twin cost of action 
un ¼ ðHn, dn,pnÞ, is

CDTðunÞ ¼ f ðHn, dn, pnÞ (2) 

where f ð�Þ is an increasing function of Hn, dn, and Ifpn 6¼pmg

and Ix has a value of one if condition x is satisfied and zero 
otherwise.

The cost of increasing the detail level is expected to 
increase as dn approaches one, and a fixed cost of parameter 
update cost is expected to be incurred if pn 6¼ pm (Sargent, 
2013). Furthermore, the cost of updating the predictions is 
lower than the cost of updating the parameters of the digital 
twin, and the cost of updating the parameters is lower than 
the cost of increasing its detail level.

The cost related to the prediction bias for the prediction 
at time sD is denoted with cBðs, Sn,unÞ: This cost depends 
on the difference between the expected value of the per
formance measure at time Ds (with ðnþ 1ÞD � sD � ND) 
obtained by using the full history at time nD in the most 
detailed digital twin, and the performance measures 
obtained with the digital twin following the synchronization 
decision.

The prediction bias cost related to the synchronization 
decision at time nD for the period s > n is assumed as fol
lows:

CBðs, Sn, unÞ ¼ h E RN jyn
� �

, gðs, yn, k, dn,pnÞ
� �

(3) 

where function hð�Þ is a convex function. To calculate the 
bias cost, an estimate of E½Rsjyn, n� can be obtained from the 
available history or by using the digital twin. Function 
gðs, yn, k, dn, pnÞ can be obtained by using the digital twin.

The synchronization action costs can be set depending 
on the relative accuracy improvement to be obtained with a 
synchronization action that requires a particular level of 
resource to be used.
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4.5. The optimal synchronization problem

The main problem considered in the general synchroniza
tion problem is deciding whether to update the predictions 
by using the current observations of the real system, 
whether to update the parameters of the digital twin, and 
whether to increase its detail level. The decision can be 
taken at any time epoch until N and balances the tradeoff 
between the bias of the prediction and the total costs 
incurred to make the prediction.

The objective is finding a policy P that sets the decision 
variables un based on the observed state variables Sn, i.e., 
un ¼ UPðSnÞ to minimize the expected cumulative cost of 
prediction bias and of synchronizations:

min
P

XN

n¼0
CDTðUPðSnÞÞ þ E CBðSMðSn, UPðSnÞÞjS0

� �
(4) 

where the cost functions are defined with Equations (2) and 
(3), and Equation (1) describes the transition equations.

To solve this problem, a digital twin estimates the 
expected bias cost for different control actions by calculating 
the bias cost for different sample paths. At each period n, 
the history of observations, together with the digital twin, is 
used to have an estimate of the expected value of the per
formance measure E½Rsjyn, n�:

In addition to the functional parameters that specify the 
synchronization and bias costs, this problem uses a digital 
twin that provides the predictions of the performance meas
ure based on the available state information and the history 
of system observations as the model inputs and yields the 
optimal synchronization policy as its output.

With the exogenous random process given for the evolu
tion of the performance measure of the physical system, this 
problem can be analyzed as a sequential decision-making 
problem by using different approaches, including reinforce
ment learning (Powell, 2021). This is a challenging problem 
since the evolution of the performance measure of the phys
ical system, as well as the effect of the synchronization 
actions on the accuracy improvement, need to be learned 
and updated with the new information starting with the 
prior estimates.

5. Digital twin synchronization of a production 
system

We now present the problem of synchronizing an unreliable 
production system’s digital twin to decide whether to update 
the predictions by using the current observations to explain 
the synchronization problem and discuss its solution.

5.1. Problem description

The following example explains the problem to be analyzed 
in this section: a production system that produces one 
part every hour is observed every morning to predict 
the resource requirements for a 10-h day. Depending on the 
prediction of the number of parts to be produced in the 
next 10 h, the resource requirements, such as the number of 

workers, are revised. If the output of the production system 
was not affected by any failures, i.e., if the production sys
tem were reliable, 10 parts would be produced during this 
day and the resource requirements would be set without 
considering a possible deviation during the day. However, 
since the production system is unreliable, the number of 
parts to be produced in a 10-h period will be random. A 
digital twin that simulates the operation of the production 
system yields a prediction of the number of parts to be pro
duced during the next 10 h. Synchronizing the digital twin 
with the state of the production system, e.g., whether it is 
up and running or down at the beginning of the day, allows 
obtaining a better prediction of the number of parts to be 
produced during this period. However, since synchronizing 
the digital twin comes at a cost that includes retrieving the 
data, updating the simulation, and revising the resource 
requirement decision based on the updated prediction, the 
synchronization decision needs to be given by considering 
the cost of synchronization and the expected benefits of 
improving the predictions.

In this example, we focus on the prediction update prob
lem. The model update problem for this setting includes 
updating the parameters of the simulation model, e.g., the 
estimates of the failure and repair probabilities of the 
machine in case they are not known in advance, and updat
ing the detail level of the simulation problem. Here, we 
assume that the most detailed simulation model with the 
exact parameters of the failure and repair probabilities are 
used in the digital twin. In this setting, the prescription 
update refers to determining the resources to be used in the 
next time period. We consider the case where the prescrip
tion decision is set each time; we update our prediction. 
These simplifications allow us to analyze the synchronization 
problem analytically for this particular case. As an extension 
of this model, an imperfect simulation model with initial 
estimates of the failures and repair parameters can be used, 
and a learning problem can be set up to update these esti
mates at the selected periods depending on the state 
observations.

5.2. Model

Table 2 describes the notation in the model, and Figure 2
depicts the decisions, state variables, and costs associated 
with the synchronization decision for a given sample path.

5.2.1. Physical model
We focus on the simulation synchronization problem for a 
production system composed of a single unreliable station. 
The station is never starved and never blocked. The system 
is observed at the end of each cycle, equal to a part’s proc
essing time. The probability that the station working on an 
item breaks down at the end of the cycle is denoted with p. 
Given that the station is down at the beginning of a cycle, 
the probability that the station is repaired at the end of the 
cycle is r. According to this description, the state of the 
physical system is the state of the station at time t that can 
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be either one (up and running) or zero (down), 
i.e., yt 2 f0, 1g:

The evolution of the system state can be used to estimate 
the failure and repair probabilities. Let MTTFt and MTTRt 
be the mean time to failure and mean time to repair 
observed from the state of the system y0, y1, :::, yt at time t. 
Then the failure and repair probability estimates at time t, 
~pt , and ~rt are 1=MTTFt and 1=MTTRt , respectively.

5.2.2. Digital twin model
We assume that a perfect digital twin, in this case a dis
crete-event simulation model, with the detail level d¼ 1 and 
perfect parameters p ¼ ðp, rÞ is used to obtain the predic
tions based on the available history of the state of the 
machine. Since the detail level and the parameters are not 
modified, the state of the digital twin at time t 
is Sn ¼ ðyn, k).

5.2.3. Performance measure
The system’s future resource requirements are evaluated 
periodically each D cycle until the end of the planning 
period, e.g., at times D, 2D, 3D, :::, KD to determine the 
resource requirements for the following period. The resource 
requirement prediction at the nth evaluation for the period 
½nD, ðnþ 1ÞDÞ is the main performance measure denoted by 
Rn. At time nD, the system observation yields yn which is 
the state of the machine at time nD, i.e., whether the 
machine is up (yn ¼ 1) or down (yn ¼ 0) at the time of 
observation.

The resource requirement in a given time interval is propor
tional to the expected number of parts to be produced during 
this interval denoted by E½Nt, tþs� where Nt, tþs is the number 
of parts to be produced during the interval ½t, t þ sÞ: The 
resource consumption unit is rescaled to measure the resource 
consumption with an equal number of parts produced.

5.2.4. Control
Since only the prediction update decision is considered and 
the model detail level and parameters are not updated, the 
synchronization decision at time nD is un ¼ ðHnÞ which has 
a value of one if the digital twin is synchronized at time n 
and zero otherwise.

For this system, due to the Markovian property, the pre
diction for the next period depends only on the state of the 
system at the most recent synchronization. That is, 
E½R̂sjyn, k� ¼ E½R̂sjyk�: Therefore, only the most recent obser
vation yk, not the history up to this time yn, k is included in 
the state description. The state Snþ1 at time ðnþ 1ÞD is 
determined based on the state at previous time Sn that 
reflects the last transition at time kD and on the action un ¼

ðHnÞ taken at time Dn: 

Snþ1 ¼ SMðSn, unÞ ¼
yn Hn ¼ 1
yk Hn ¼ 0

�

(5) 

where SM denotes the transition function.

5.2.5. Costs
The estimate of the resource requirements for the upcoming 
period n depends on the last observed state of the digital 
twin. Not using the most recent observation of the physical 
system and the performance measures yields a prediction 
error for the resource requirements. Let Rn, un be the 
resource requirement estimate obtained at time nD with the 
synchronization decision taken un: The best estimate can be 
obtained by synchronization at time nD with the decision 
un ¼ 1 is Rn, 1: The bias cost is assumed to be a quadratic 
loss function that depends on the difference between the 
best estimate and the estimate based on the synchronization 
decision. Accordingly, CBðn, Sn, unÞ ¼ cBðRn, un − Rn, 1Þ

2
: A 

linear digital twin synchronization cost is used. That is, 
CDTðunÞ ¼ cHHn where cH is the cost for each 
synchronization.

5.2.6. Synchronization problem
The synchronization problem is to minimize the total syn
chronization and bias cost over N evaluation periods:

min
fung

XN

n¼0
CDTðunÞ þ E CBðSMðSn,unÞ,unÞÞjSn

� �
: (6) 

5.2.7. State-independent and state-dependent policies for 
the synchronization problem

We consider two different policies: state-independent policy 
and state-dependent policy. In the state-independent policy, 

Table 2. Description of the main notation for the unreliable station model

Notation Description

p Failure probability in a cycle
r Repair probability in a cycle
p ¼ ðp, rÞ Physical model parameters
D Number of time periods in each cycle
cH The cost for each synchronization
cB The bias cost coefficient
yn 2 f0, 1g The state of the production system at time nD
yn, k ¼ ðy0, y1, :::, ykÞ The tuple of observations available at cycle n with the last synchronization at cycle k
Sn ¼ ðyn, kÞ The state of the production system at time n
Rn The resource requirement prediction at cycle n
Nt, tþs Number of parts produced during the period ½t, t þ s�
un 2 f0, 1g The synchronization decision at time n (1: synchronized, 0 not synchronized)
Rn, un The resource requirement estimate at cycle n with the synchronization decision un
pt The probability that the station is up and running at time t
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the synchronization decision is made without differentiating 
the observed state of the system yn. That is, the decision is 
given only based on n. On the other hand, the state-depend
ent policy differentiates the decision based on the observa
tion n and the observation yn.

For the state-independent policy, let hn 2 f0, 1g denote 
the synchronization decision at the nth evaluation of the 
system. Then, the objective is to determine the optimal 
state-independent policy, un ¼ hn 2 f0, 1g, n ¼ 0, 1, :::, N to 
solve the problem in Equation (6).

For the state-dependent policy for the unreliable station 
synchronization problem, the prediction of the performance 
measure depends only on the current system state of the sta
tion and not on the recent observations of the performance 
measure. Let hn, Yn 2 f0, 1g denote the synchronization deci
sion at the nth evaluation of the system when the state of 
the station is observed to be yn ¼ Yn 2 f0, 1g: Then, for the 
state-dependent policy, the decision variables are un ¼

hn, Yn 2 f0, 1g, n ¼ 0, 1, :::, N to solve the problem in 
Equation (6).

6. Solution of the synchronization problem using 
simulation

The model described above can be analyzed using simula
tion to determine the optimal synchronization policy. The 
simulation approach requires obtaining the estimates of the 
objective function for each decision and using a simulation- 
optimization approach to determine the optimal policy. As a 
result, the policy to be determined using simulation is prone 
to estimation errors.

The simulation approach requires estimating the resource 
requirement prediction based on the state of the system at 
the last synchronization at time kD, rn, kðSkÞ ¼

E½NnD, ðnþ1ÞDjSn� for all values of Sn, k ¼ 1, :::, n, n ¼
1, :::, N − 1: In general, when there are many states in the 
state space, estimating the performance measures based on 
the observations is challenging and requires different learn
ing approaches.

In the case of an unreliable station, the system state at the 
nth evaluation can be in one of two states Sn ¼ yn 2 f0, 1g:
Therefore, only E½NðkþmÞD, ðkþmþ1ÞDjyk ¼ 1� and E½NðkþmÞD, 
ðkþmþ 1ÞDjyk ¼ 0�, k ¼ 1, N − 1, m ¼ 0, N − k − 1 need to 
be estimated. This estimation can be done effectively by using 
averages of the observations. Let yj

t be the state of the machine 
at time t and Nj

t, tþs be the number of parts produced during 
½t, t þ sÞ in the jth sample path, j ¼ 1, :::, J where J is the total 
number of sample paths obtained using the digital twin. If the 
machine is up at time k, one part will be produced during 
½k, kþ 1Þ: Therefore,

Nj
nD, ðnþ1ÞD ¼

XD−1

i¼0
yj

nþi: (7) 

As a result, the estimate of the resource requirement pre
diction based on the last synchronization at time kD,~rn, kðykÞ

can be obtained from the digital twin as

~rn, kðykÞ ¼

PJ
j¼1yj

kNj
nD, ðnþ1ÞD

PJ
j¼1yj

k

¼

PJ
j¼1yj

k
PD−1

i¼0 yj
nþi

PJ
j¼1yj

k

, yk ¼ 1

PJ
j¼1ð1 − yj

kÞN
j
nD, ðnþ1ÞD

PJ
j¼1ð1 − yj

kÞ
¼

PJ
j¼1ð1 − yj

kÞ
PD−1

i¼0 yj
nþi

PJ
j¼1ð1 − yj

kÞ
, yk ¼ 0

:
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(8) 

Once ~rn, k is obtained from simulation, the estimate of 
the resource requirement based on the synchronization deci
sion at time n, ~Rn,un is

~Rn,un ¼
~rn, nðynÞ, un ¼ 1
~rn, kðykÞ, un ¼ 0 :

�

(9) 

Since ~Rn, un and ~Rn, 1 are available, the bias cost based on 
the synchronization decision at time nD be evaluated 
from the digital twin as CBðn, Sn, unÞ ¼ cBð~Rn, un − ~Rn, 1Þ

2
:

Once the costs associated with the decisions are estimated, a 
simulation optimization approach can be used to minimize 
the total average cost given in Equation (6).

7. Exact analytical solution of the synchronization 
problem of the unreliable production system

As described in the preceding section, a simulation approach 
can be used to estimate CBðn, Sn, unÞ for each decision, and 
then a simulation-optimization approach can be used to 
determine the solution of the synchronization problem. 
However, since the solution found by the simulation may 
not yield the optimal synchronization policy due to the esti
mation errors, we use an analytical model to focus on the 
optimal solution of the synchronization problem. The ana
lytical model yields the exact solution to the problem for the 
specific case of an unreliable station.

7.1. Performance measures

For a single unreliable station, the expected number of parts 
produced by this station during the period ½t, t þ sÞ condi
tioned on the state of the system at time t, E½Nt, tþsjyt� is 
given in Tan (1999) as

E Nt, tþsjyt
� �

¼
r

pþ r
sþ

ptp − ð1 − ptÞr
ðpþ rÞ2

1 − ð1 − p − rÞs
� �

(10) 

where pt ¼ prob½yt ¼ 1� is the probability that the station is 
up and running at time t. Furthermore, given that the prob
ability that the station is up and running at the kth evalu
ation period is pk, the probability that the station will be up 
and running at the evaluation period n is also given in Tan 
(1999) as

pn, k ¼ prob yn ¼ 1jyk ¼ 1
� �

¼
r

pþ r
þ

pkp − ð1 − pkÞr
pþ r

ð1 − p − rÞðn−kÞD
: (11) 
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Since the state of the system is observed with certainty 
following a synchronization decision, pk is either one if 
yk ¼ 1 or zero if yk ¼ 0, e.g., pk ¼ yk in Equation (11).

Therefore, the resource requirement, which is the 
expected number of parts produced by this station during 
the period ½nD, ðnþ 1ÞDÞ conditioned on the state of the 
system at time kD,E½NnD, ðnþ1ÞDjyk� is given as

rn, kðykÞ ¼ E NnD, ðnþ1ÞDjyk
� �

¼
r

pþ r
Dþ

pn, kp − ð1 − pn, kÞr
ðpþ rÞ2

1 − ð1 − p − rÞD
� �

(12) 

where pn, k is given in Equation (11) with pk ¼ yk: Appendix A 
given in the online supplement discusses the effect of synchroniza
tion on the resource requirements with a numerical experiment.

The resource requirement based on the synchronization 
decision at time n can be expressed as Rn,un is

Rn, un ¼
rn, nðynÞ un ¼ 1
rn, kðykÞ un ¼ 0

�

(13) 

where rn, k is given in Equation (12). With these expressions, the 
bias cost CBðn, Sn, unÞ ¼ cBðRn, un − Rn, 1Þ

2 is available in closed- 
form in terms of the system parameters, state of the system Sn, 
and the synchronization decision un at the nth evaluation.

7.2. Solution of the optimal synchronization problem

Since the analytical method presented in the preceding sec
tion yields the objective function in closed-form based on 
the state of the system and the synchronization decisions at 
different periods, the synchronization problem to determine 
the state-independent and state-dependent policies can be 
formulated as a mathematical program.

For the state-independent case, the following formulation 
is used to determine the optimal state-independent policy, 
un ¼ hn, n ¼ 0, 1, :::, N and the average total cost cSI :

min
fhng

XN

n¼1
cHhn þ cBE Rn, un − Rn, 1ð Þ

2� �� �
(14) 

Rn, 1 ¼
r

pþ r
Dþ

Ynp − ð1 − YnÞr
ðpþ rÞ2

1 − ð1 − p − rÞD
� �

, n ¼ 1, :::, N

(15) 

Znþ1 ¼ Znð1 − hnÞ þ Ynhn, n ¼ 1, :::, N (16) 

knþ1 ¼ knð1 − hnÞ þ nhn, n ¼ 1, :::, N (17) 

kn ¼ YnDhn þ ð1 − hnÞ
r

pþ r
þ

Znp − ð1 − ZnÞr
pþ r

ð1− p − rÞðn−knÞD

� �

,

n ¼ 1, :::, N

(18) 

Rn, un ¼
r

pþ r
Dþ

knp − ð1 − knÞr
ðpþ rÞ2

1 − ð1 − p − rÞD
� �

, n ¼ 1, :::, N

(19) 

hn 2 f0, 1g, n ¼ 1, :::, N (20) 

Z1 ¼ y0, k1 ¼ 0, (21) 

where y0 is the initial state of the station and 
fY1, Y2, :::, YNg is the random realization of machine states 
at times D, 2D, :::, ND:

In this formulation, the total cost of synchronization and 
the prediction bias cost is given as the objective function in 
Equation (14). In the objective function, the expectation is 
over the sample path of the system that shows the state of the 
machine during the evaluation periods n ¼ 1, :::N: Equations 
(19) and (18) with the initial value given in Equation (15)
implement the definition of the resource requirement based 
on the synchronization policy given in Equations (11)–(13).

Note that decision variables hn depend only on the time 
epoch n and not the system state. As a result, the formula
tion given in Equations (14)–(21) is a stochastic nonlinear 
integer programming formulation. For the general case, the 
solution to the above stochastic optimization problem can 
be determined by using a scenario approach.

In the state-dependent policy, the decisions depend on 
the evaluation period n and also the observation of the state 
variable Yn, i.e., un ¼ hn, Yn : The formulation for the state- 
dependent policy P where un ¼ UPðSnÞ is given in 
Appendix B in the online supplement.

7.2.1. Scenario approach to determine the optimal 
policies

We formulate the state-independent and state-dependent 
problems by enumerating all the possible scenarios and 
averaging the prediction cost. Specifically, the cost deriving 
from the decision taken at each period is averaged over all 
the possible combinations.

The total number of sample paths for the machine in ND 

cycles is 2DN : However, we only observe the system in N 
evaluation periods. For N evaluation periods, the number of 
all possible combinations for the machine states at each 
evaluation period is 2N : We present a method to calculate 
the probability of each sample path of the evaluation periods 
with a given combination of machine states at times 
D, 2D, :::, ND: This approach decreases the number of time- 
based sample paths (2ND) to evaluation period-based sample 
paths (2N). This formulation is often called the deterministic 
equivalent linear program and can be afforded only for 
small values of N. Since the objective of this study is to 
define the synchronization problem and investigate the 
state-independent and state-dependent policies, the scenario 
approach is suitable by appropriately selecting N.

In each scenario j ¼ 1, :::, 2N , the digital twin prediction 
can be updated upon a synchronization or taken from the 
previous period of the same scenario j. Let O ¼ on, j, n ¼
1, :::, N, j ¼ 1, :::, 2N , be an N � 2N matrix where on, j 2

f0, 1g shows whether the state of the machine in nth evalu
ation period is Up (1) or Down (0) in jth realization among 
2N possible sample paths of the evaluation periods.

The probability of a given path is the joint probability of 
the machine state at times D, 2D, :::, ND: Due to the 
Markovian property of the evaluation of the physical system, 
this joint probability can be decomposed into N probabil
ities, where each component gives the probability of observ
ing the state of the station at the end of an interval of D 
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times units given the initial state of the station. The prob
ability that the machine is up given the initial state is given 
in Equation (11). Therefore, the probability that the machine 
is down given the initial state is 1 − pnD where pnD is given 
in Equation (11). The states of the machine at time nD, n ¼
1, :::, N in the jth sample path are given in the matrix O ¼
fon, jg: Therefore, given the initial state of the machine o0, j, 
the probability of scenario j can be calculated as

qj ¼
YN

n¼1
wn (22) 

where

wn ¼

r
pþ r

þ
on−1, jp − ð1 − on−1, jÞr

pþ r
ð1 − p − rÞD on, j ¼ 1

p
pþ r

−
on−1, jp − ð1 − on−1, jÞr

pþ r
ð1 − p − rÞD on, j ¼ 0

:

8
>>><

>>>:

(23) 

Following these definitions, the following mathematical pro
gram gives the optimal state-independent synchronization 
policy and its average total cost cSI :

min
fhng

XN

n¼1
cHhn þ

X2N

j¼1
qjcB Rn, un − Rn, 1Þ

2� �
0

@

1

A (24) 

Rn, 1 ¼
r

pþ r
Dþ

on, jp − ð1 − on, jÞr
ðpþ rÞ2

1 − ð1 − p − rÞD
� �

,

n ¼ 1, :::, N, j ¼ 1, :::, 2N

(25) 

Znþ1, j ¼ Zn, jð1 − hnÞ þ on, jhn, n ¼ 1, :::, N, j ¼ 1, :::, 2N

(26) 

knþ1, j ¼ kn, jð1 − hnÞ þ nhn, n ¼ 1, :::, N, j ¼ 1, :::, 2N

(27) 

kn, j ¼ on, jhn þ ð1 − hnÞ

r
pþ r

þ
Zn, jp − ð1 − Zn, jÞr

pþ r
ð1 − p − rÞðn−kn, jÞD

 !

,

n ¼ 1, :::, N, j ¼ 1, :::, 2N

(28) 

Rn, un ¼
r

pþ r
Dþ

kn, jp − ð1 − kn, jÞr
ðpþ rÞ2

1 − ð1 − p − rÞD
� �

,

n ¼ 1, :::, N, j ¼ 1, :::, 2N

(29) 

Z1, j ¼ y0, j ¼ 1, :::, 2N (30) 

k1, j ¼ 0, j ¼ 1, :::, 2N (31) 

hn 2 f0, 1g, n ¼ 1, :::, N (32) 

where y0 is the initial state of the station and the sample 
paths fo1, j, :::, oN, jg, j ¼ 1, :::, 2N are given in matrix O. The 
probability of observing the jth sample path in O, qj, j ¼
1, :::, 2N is calculated based on the underlying Markov chain 
and given in Equation (22). In the above formulation, the 
objective function given in Equation (24) includes the calcu
lation of the expectation considering all scenario realizations 
of fy1, y2, :::, yNg in each scenario j with the corresponding 
probability qj given in Equation (22).

The inputs to this problem are the system parameters 
p, r, D, N, the cost parameters cH and cB, the initial state of 
the system y0 and the sample path matrix O. The output is 
the synchronization decision vector fhng that determines 
whether to synchronize the digital twin or not at period n.

For the state-independent policy, the average number of 
synchronizations during the simulation period from n¼ 1 to 
N denoted by b is the same for all sample paths and given 
as b ¼

PN
n¼1 hn:

To determine the state-dependent policy based on the 
scenario approach, a similar formulation as the one given 
for the state-independent case is developed and provided in 
Appendix C given in the online supplement. For the state- 
dependent policy, the number of synchronizations during 
the simulation period from n¼ 1 to N depends on the 
observation of different states and the defined state-depend
ent policy. For the jth sample path, the total number of syn
chronizations is 

PN
n¼1 hn, on, j : Therefore, depending on the 

probability of observing the sample path j and all possible 
sample paths, the average number of synchronizations 
is b ¼

PN
n¼1
P2N

j¼1 qjhn, on, j :

7.2.2. Full-information policy
To compare the performances of the state-independent 
and state-dependent policies, the full-information policy 
that sets a different optimal synchronization policy for 
each sample path is also determined. For path j, an opti
mization policy sets the optimal state-dependent policy for 
the sample path j and yields the total cost of cF

j : After 
solving the problem under full information 2N times for 
each sample path fo1, j, :::, oN, jg, j ¼ 1, :::, 2N given in O, 
the average cost for the full-information policy 
is cF ¼

P2N

j¼1 qjc
F
j :

7.2.3. An approximate synchronization policy
For a stationary system, the solution of the optimal syn
chronization problem in the infinite horizon, given in 
Equation (4) as N approaches infinity, is expected to have a 
stationary policy. In this section, we investigate an approxi
mate periodic synchronization policy. The periodic syn
chronization policy Pper where un ¼ hn, Yn ¼ UPper

ðSnÞ is 
defined by two binary variables x1, x0 2 f0, 1g and two 
non-negative integers m1, m0 2 f0, 1, 2, :::g.

The periodic state-dependent synchronization policy with 
the parameters ðx1, m1, x0, m0Þ sets the synchronization 
decision hn, Yn depending on the observation of the machine 
state Yn being either one or zero according to the following 
equation:
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hn, y ¼

xy if my ¼ 0
xy if my > 0 and n � 0 mod my
1 − xy if my > 0 and n 6� 0 mod my

8
<

:

(33) 

where y 2 f0, 1g, xy 2 f0, 1g, and my 2 f0, 1, 2, :::g:
Namely, for each machine state, this policy either keeps the 
same decision, i.e., always synchronize or never synchronize, 
or alternates the synchronize and do-not-synchronize deci
sions with a fixed period between them. For example, the 
state-dependent optimal policy for the case cH ¼ 300 given 
in Figure 3 is a periodic policy that can be described with 
the quadruple ðx1, m1, x0, m0Þ ¼ ð0, 0, 0, 2Þ: Our numerical 
experiments given in Section 8 show that this policy yields 
near-optimal performance.

8. Numerical results

We solve the optimization problems given in the preceding 
section exactly. The solution to these problems yields all the 
optimal state-independent and state-dependent policies. As 
benchmarks, the optimal policy under full information and 
approximate periodic policy are also determined. The opti
mal periodic state-dependent policy is characterized by the 
optimal values of the quadruple ðx1, m1, x0, m0Þ: We ana
lyze the effects of the system parameters on the state-inde
pendent and state-dependent policies. We also examine the 
effects of the system parameters on the average costs and 
the average number of synchronizations and compare the 
performance of the optimal state-dependent and state-inde
pendent policies with the optimal policy under full informa
tion and the approximate periodic policy.

Figure 3 shows the state-independent and state-dependent 
solutions for different values of the synchronization cost, the 
average cost, and the average number of synchronizations 
for each policy. The solutions show that the optimal syn
chronization policy depends on the balance between the 
synchronization cost, bias cost, and evaluation period. When 
the synchronization cost is <50, the state-independent 

policy synchronizes the digital twin at all evaluation periods. 
When it is �50, the optimal state-independent policy does 
not synchronize the digital twin at any given time period. 
On the other hand, when the synchronization cost is <50, 
the state-dependent policy states that the digital twin should 
be synchronized at all time periods only when the station is 
observed to be down (0). When the synchronization cost is 
�20, the optimal state-dependent policy does not allow syn
chronization when the station is up (1). The state-dependent 
policy also sets a synchronization rule that not only depends 
on the state of the station, but also the synchronization 
period. For example, when the synchronization cost is 10, 
the synchronization policy synchronizes the digital twin 
when the station is down at any given period or up in the 
third and fifth periods. Similarly, when the synchronization 
cost is 250, the state-dependent synchronization policy syn
chronizes the digital twin when the machine is down in the 
first, second, third, and fifth periods. When a synchroniza
tion policy synchronizes at selected periods in the planning 
horizon, the selected periods are approximately equally 
distributed in the planning horizon.

As the synchronization cost increases, the number of 
synchronizations used by the state-independent and state- 
dependent policies decreases as expected. While the state- 
dependent policy determines the states where the digital twin 
will be synchronized, the average number of synchronizations 
b depends on the probabilities of visiting these states. As a 
result, the average number of synchronizations will be lower 
than the number of states where a synchronization action is 
required in these states according to the synchronization pol
icy. For example, when cH ¼ 10, the state-dependent policy 
gives that the digital twin will be synchronized at each period 
when the machine is found to be down at the time of observa
tion and in addition when the machine is up or down in peri
ods 3 and 5. Although a total of eight synchronization 
decisions are defined for different state and period pairs, the 
average number of synchronizations is 2.4 based on the prob
abilities of observing these states. This is lower than the 

Figure 3. State-independent and state-dependent synchronization policies for different values of the synchronization cost (cH) and their average cost and the 
number of synchronizations (cB ¼ 10, r¼ 0.09, p¼ 0.01, D¼ 10, N¼ 6, y0 ¼ 1).
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number of synchronizations used by the state-independent 
policy that synchronizes at every evaluation period.

The effects of the synchronization cost, average availabil
ity of the production system, repair rate, and the number of 
cycles between the observations are investigated with further 
experiments given in Appendix D given as an online 
supplement.

The experiments with varying synchronization cost shows 
that the average cost obtained using the state-dependent 
policy is very close to the average cost obtained under 
the full-information policy. The maximum deviation of the 
state-dependent policy’s average cost compared with the 
full-information policy’s average cost is 12% for the cases 
analyzed. The average number of synchronizations under 
the state-dependent policy for a given synchronization cost 
is also very close to the average number of synchronizations 
under the full-information policy.

The experiments that investigate the effect of the system 
availability (u ¼ r

pþr) show that when the availability is above 
60%, the number of parts to be produced during the D time 
periods does not vary much around the expected value. As a 
result, resource requirement prediction can be done better. 
This yields a lower number of synchronizations and a lower 
average cost. When the average availability is lower than 
60%, the variability of the number of parts to be produced 
increases with an increasing u that yields an increase in the 
total average cost.

For the same average availability, increasing the repair 
rate increases the probability that the state of the machine is 
up and running at the time of observations. In this case, 
observing the state does not improve the synchronization 
policy, and the state-dependent, state-independent, and full- 
information policy solutions become closer to each other. 
Similar to the effect of the repair rate, the number of cycles 
between the observations affects the policies depending on 
the likelihood of observing state changes at each observa
tion. As D increases, the likelihood of observing that the 
machine is up and running approaches its steady-state value. 
Therefore, incorporating the machine’s initial state in the 
policy does not improve the policies. However, if the obser
vation period allows observing state changes, the state- 
dependent policy yields a better average cost.

The experiments show that the periodic state-dependent 
policy yields either exactly the optimal cost or an average 
cost that is within 2% of the optimal cost. The average per
centage difference for 54 cases reported in Appendix D of 
the online supplement is 0.54%.

9. Conclusions

In this article, the digital twin synchronization problem is 
introduced and defined formally. The digital twin synchron
ization problem determines when to synchronize a digital 
twin and when not to synchronize it at each period depend
ing on the observations to balance the cost of synchronizing 
a digital twin with the physical system with the benefit of 
improving the prediction of a performance measure with the 
synchronization. We define the different variants of the 

synchronization problem in different contexts. Namely, we 
discuss the prediction update, model update, and prescrip
tion update as different variants of the general synchroniza
tion problem.

After giving the general model and formulation of the 
digital twin synchronization problem, the problem of syn
chronizing an unreliable production system with its digital 
twin is formulated. The state-independent, state-dependent, 
and full-information solutions have been determined by 
using a stochastic model of the system. Although the prob
lem could be analyzed using discrete-event simulation, the 
analysis of the stochastic model allows solving the stochastic 
optimization problem exactly with the scenario approach. 
This approach allows us to focus on the exact optimal solu
tion without the need to predict the objective function value 
of the optimization problem by using simulation for each 
decision and then a simulation-optimization approach.

Our numerical experiments show that the optimal syn
chronization policy does not synchronize the digital twin at 
all observation periods. Furthermore, the state-dependent 
policy incorporating the state of the system, whether the 
machine is up or down during the observation periods, 
yields significantly better results than the state-independent 
solution. The average cost of the state-dependent policy is 
also close to the average cost that can be obtained with the 
full information. The effects of the system parameters on 
the benefits of using a state-dependent policy have been 
investigated through numerical experiments. We also inves
tigated the optimal control problem in the infinite horizon 
and suggested an approximate periodic synchronization pol
icy. The comparison of the performance of this policy with 
the optimal policy shows that the proposed periodic policy 
is a very good approximation and yields either optimal or 
near-optimal results. This policy can also be implemented in 
more complicated systems to determine the synchronization 
policy.

This research can be extended in different ways. To 
introduce and analyze the synchronization problem with an 
analytically tractable special case, we focus on the prediction 
update problem under the full information case. 
Accordingly, a scenario approach is used to determine the 
optimal solution. The general synchronization problem with 
the decisions on when to update the predictions, the model, 
and the prescription without the full information is a chal
lenging problem. A sequential decision-making approach, 
such as reinforcement learning can be used to analyze a case 
where the effect of the decisions on the overall objective 
function needs to be estimated from the observed data with
out requiring an extensive number of simulations.

In the simplified production system example analyzed in 
this article, the system state is either up or down and fully 
observable. In a complex manufacturing system, determining 
when or not to synchronize the digital twin requires devel
oping an indicator based on a subset of the observable 
states. This is left for future research. In this study, the opti
mal state-dependent solution for the finite horizon case is 
determined numerically. A future research challenge is 
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showing the optimal policy structure for the finite and infin
ite horizon cases.

In conclusion, we show that an optimal digital twin syn
chronization policy balances the cost of synchronizing a 
digital twin with the physical system with the benefit of 
effectively improving the prediction of a performance meas
ure with synchronization. Furthermore, this policy should 
depend on the system state during the observation periods.
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