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An LMI-Based Design Method for Modular Observers*

J. G. Martin, F. J. Muros, E. Masero, E. F. Camacho and J. M. Maestre

Abstract— A linear matrix inequality approach for designing
a family of observers suitable for systems with variable com-
munication topologies is presented. In particular, the observer
is composed of blocks associated to the status of the commu-
nication links, providing increasing performance as more links
are enabled. The error boundaries for topology switchings are
analyzed both for the presented observer and for a specific
Kalman filter for each topology. Finally, a simulation example
is used to illustrate the feasibility of the proposed method.

I. INTRODUCTION

In the last decades, distributed schemes have gained rele-
vance in the field of control and estimation due to their well-
known advantages such as scalability, modularity, ease of im-
plementation, and robustness, which make them appropriate
for large-scale networked systems [1], and other complex
approaches [2]. Distributed architectures are characterized
for being composed of a set of subsystems, governed by
agents that have access to local information. Consequently,
communication is needed to gather information from the
rest of the system to carry out estimation and control tasks
in the most efficient way [3]. Reshaping the topology of
the communication network according to the necessities
of the system provides additional flexibility to optimize
performance. In this way, only communication channels that
really contribute to the improvement of the task are enabled
(see, e.g., [4], [5] for cooperative approaches).

Through the observers, variables such as the system state,
disturbances, noises, etc., can be estimated in the cases in
which they cannot be measured directly [6]. Some classical
estimators, e.g., the Luenberger filter [7], settled the basis for
most observers designed nowadays. Also, the Kalman filter,
which introduced white noise in the filtering formulation
to offer optimal solutions [8], [9], has been widely studied
and extended over the years [10]. Recently, both approaches
have been adapted to noncentralized systems requirements.
Some distributed Luenberger approaches for linear systems
are explored in: [11], with a given fixed communication
architecture between subsystems; [12], where time-varying
communication topologies are considered; and [13], where
consensus between subsystems is used to estimate the non-
locally detectable portion of the state. More details about
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distributed observers can be consulted in [14]. Regarding
to Kalman filters, in [15], a decentralized Kalman filter is
used to address the localization of a multiple-robot problem;
[16] discusses three distributed Kalman filter algorithms, one
of them focused on a cooperative and recursive estimation
that combines the consensus strategy and Kalman filtering;
[17] focuses on the scheduling of data in a networked system;
and [18] develops a method based on linear matrix inequali-
ties (LMIs) to compute the Kalman filter, being this method
implemented in [19] for multi-robot localization purposes.
Note that LMIs have become a major way of formulating
a vast variety of control and estimation problems [20]. In
particular, the development of LMI control toolboxes for
software environments as Matlab® [21] has increased the
use of LMIs in several applications, e.g., [22]–[24].

Generally, the reconfiguration of the communication topol-
ogy in distributed observer approaches [25], [26] leads to
an increase in the computational cost due to the com-
binatorial explosion of the possibilities. Furthermore, the
implementation of these methods on real systems brings
several problems. To begin with, each observer must store as
many configurations as topologies are taken into account. In
addition, an upper layer may be necessary in the estimation
architecture for the sake of coordination. With the idea of
tackling these issues, this paper proposes a novel observer,
in the line of [18], which, by contrast, is suitable for all
the topologies considered. More specifically, the observer
presented in this paper has a modular structure, i.e., it is
composed of fixed blocks that are assigned to the status of
the communication links. The value of the elements inside
these blocks has a constant value for all the topologies
where the corresponding link is activated and becomes zero
otherwise. Consequently, a single observer is designed for
all topologies, thus greatly simplifying the implementation
of the observer and removing the need for a coordination
layer. Nevertheless, extra restrictions need to be introduced
in the problem to guarantee that it works with the desired set
of topologies with a modular structure. For this reason, the
proposed method becomes more conservative than a classical
Kalman filter. Hence, an additional goal of this work is to
assess the modular observer with other methods such as a
topology specific Kalman filter.

The rest of the paper is organized as follows. Section II
presents the problem formulation. Section III introduces
the concept of modular observer, providing the LMI-based
design method and some properties of interest. Section IV il-
lustrates the proposed method through an academic example.
Finally, conclusions are detailed in Section V.



II. PROBLEM FORMULATION

Consider an uncertain distributed linear system composed
by a set of agents N = {1, 2, ..., n}, where the discrete-time
model of a single agent i ∈ N is described by

xi(k + 1) = Aiixi(k) +
∑

j∈Ni

Aijxj(k) +Qiwi(k),

yi(k) = Ciixi(k) +
∑

j∈Ni

Cijxj(k) +Rivi(k),

(1)
where xi ∈ Rni and xj ∈ Rnj are respectively the state
vectors of subsystem i and its neighboring subsystem j, Ni

denotes the set of neighbors of agent i, i.e., Ni := {j ∈
N , i 6= j : Aij 6= 0 ∨ Cij 6= 0}; yi ∈ Rqi refers to the
corresponding output vector, and wi ∈ Rni and vi ∈ Rqi are
normal noises with zero mean and unit standard deviation,
i.e., N (0, 1). Likewise, Aii ∈ Rni×ni and Cii ∈ Rqi×ni are
respectively the state and output matrices of subsystem i,
and matrices Aij ∈ Rni×nj and Cij ∈ Rqi×nj are related to
the interrelation between subsystems. Finally, Qi ∈ Rni×ni

and Ri ∈ Rqi×qi are diagonal matrices that describe the
magnitude of the noise.

The dynamics of the global system, which is assumed to
be observable, are given by

xN (k + 1) = ANxN (k) +QNwN (k),

yN (k) = CNxN (k) +RN vN (k),
(2)

where the aggregate vectors and matrices are described by
xN = [xi]i∈N , yN = [yi]i∈N , AN = [Aij ]i,j∈N , CN =
[Cij ]i,j∈N , QN = diag(Qi)i∈N , RN = diag(Ri)i∈N , wN =
[wi]i∈N and vN = [vi]i∈N .

The overall estimated state x̂N (k) can be calculated
from (2) as

x̂N (k) = AN x̂N (k − 1) + L
(
yN (k)− CNAN x̂N (k − 1)

)
,

(3)
with L being the observer matrix for the global system.

A. Error bounds

The error is defined as the difference between the overall
state and its estimation, i.e.,

eN (k) = xN (k)− x̂N (k). (4)

From (2), (3) and (4), we can obtain

eN (k + 1) = ApeN (k) +QpwN (k) +RpvN (k + 1),
(5)

where Ap = (AN −LCNAN ), Qp = (QN −LCNQN ) and
Rp = LRN .

Note that (5) can be considered as a dynamical system
with two inputs, i.e., wN and vN . This system will be stable
as long as Ap is stable, or in other words, as long as the
eigenvalues of Ap are inside the unit circle.

Defining Bp =
[
Qp Rp

]
, and uN (k) =[

wN (k)T vN (k + 1)T
]T

, the error system in (5) can
be rewritten as

eN (k + 1) = ApeN (k) +BpuN (k). (6)

At this point, applying (6) recursively, it is
possible to define the aggregate input vector
along a given window of arbitrary length N as
U =

[
uN (k −N) uN (k −N + 1) · · · uN (k − 1)

]T
.

Hence, the current error can be rewritten as

eN (k) = GeeN (k −N) +GuU, (7)

where Ge = AN
p and the input matrix is Gu =[

AN−1
p Bp AN−2

p Bp · · · ApBp Bp

]
.

Since Ap is considered stable, there must be a value of N
large enough that makes the first term in (7) vanish, i.e., that
corresponding to the error in the system at instant k − N ,
which is assumed to be finite. Therefore, we can rewrite the
system error at time instant k as

eN (k) =
N∑
i=1

AN−i
p BpuN (k −N − 1 + i). (8)

Provided that uN (k) is a vector composed of normal
variables N (0, 1) for every k, we can obtain eN (k) as a
normal variable N (0, σe). Hence, the error can be bounded
to a known certainty by using the well-known expression [27]

P (a ≤ eN ≤ b) =
1√

2πσ2
e

b∫
a

exp
(−e2

N
2σ2

e

)
deN , (9)

which will be considered in the simulation results.

B. Communication constraints

We can describe the communication network as a
graph (N ,L) where N and L refer respectively to the set
of nodes or agents of the system, and the set of possible
communication links connecting the nodes. Note that L ⊆
LN = {{i, j}|{i, j} ⊆ N , i 6= j}. It is assumed that there is
only direct communication, i.e., node j will get information
from node i iff `ij is enabled. Let us define Λ as a given
topology of enabled communication links. Then, it is possible
to introduce T = {ΛDC,Λ1,Λ2, ...,ΛL} as the set of all the
possible topologies of our system, where ΛDC corresponds to
the totally decentralized topology (no communication links
enabled) and ΛL refers to the totally centralized system
(every node has information from all the other nodes).

To illustrate this fact, consider for instance the system
represented in Fig. 1, which is composed of four agents and
consider all the possible connections between them. For this

Fig. 1. Different communication links for a 4-agent system



scenario, it is possible to define the following observer:

L =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

, (10)

where L = [Lij ]i,j∈N if `ij is enabled and Lij = 0 if `ij is
disabled.

According to (10), observer LΛL for the centralized topol-
ogy would have the complete structure presented in (10),
whereas LΛDC would have the following form:

LΛDC =


L11 0 0 0
0 L22 0 0
0 0 L33 0
0 0 0 L44

. (11)

Likewise, assuming an intermediate topology, e.g., the
case where node 2 is completely isolated and the rest of
nodes are connected, the corresponding observer, say LΛex ,
would have the following structure:

LΛex =


L11 0 L13 L14

0 L22 0 0
L31 0 L33 L34

L41 0 L43 L44

. (12)

Remark 1: For each observer LΛ,∀Λ ∈ T , all nonzero
elements have the same value, so that the observer defined
in (10) becomes actually a family of observers that can
be adapted to each topology simply by making zero the
corresponding blocks.

III. MODULAR OBSERVER DESIGN
In this section, a method that refines that of [18] is

provided to design the modular observer. In particular, the
observer in [18] was suitable for a static network configu-
ration. By contrast, extra restrictions have been added here,
by means of the following theorem, to guarantee modularity,
i.e., to allow the observer to be implementable for the full
set of topologies:

Theorem 1 Let the system be described by AN and CN ,
and the disturbances be characterized by normal noise with
covariance matrices QN and RN . If there exist matrices
WN = W T

N = diag(Wi)i∈N , with Wi ∈ Rni×ni and SΛ =
[SΛ

ij ]i,j∈N , with SΛ
ij ∈ Rni×qj if `ij is enabled and SΛ

ij = 0
if `ij is not enabled, such that the LMI
−WN WNAN − SΛCNAN WN − SΛCN SΛ

∗ −WN 0 0
∗ ∗ −Q−1

N 0
∗ ∗ ∗ −R−1

N

 < 0,

(13)
has a feasible solution for all Λ ∈ T , then there exists a
family of modular observers provided by LΛ = W−1

N SΛ that
have the same bound in the steady-state error covariance
matrix, given by PN = W−1

N .

The proof of Theorem 1 is straightforward following [18].
In any case, note that the set of topologies T does not need

to be exhaustive, i.e., it can be composed only by a reduced
set of topologies of interest, say F . Moreover, the following
lemma introduces a further way in which the design of the
observer can be simplified to reduce the issues derived from
the combinatorial explosion in the number of topologies.

Lemma 1 Consider a family of topologies Fa composed of a
topology Λa with a set of enabled communication links, and
all its parent topologies, which are those with at least the
same set of enabled communication links than Λa. Iff there
exists a feasible solution following (13) for Λa, there is also
a feasible solution for any Λ ∈ Fa and hence, a modular
observer LFa for the complete family Fa can be found.

Notice that the condition established in Lemma 1 is nec-
essary given that (13) needs to be satisfied for Λa. Likewise,
it is sufficient since a feasible solution of (13) for Λa is
also a feasible solution for any of its parents topologies.
In particular, note that the solution for Λa corresponds
to the particular solution for its parents topologies where
the decision variables that correspond to the disabled links
blocks are set to zero. Consequently, if there is no solution
for Λa, there cannot be a solution for the modular problem
for family Fa.

Remark 2: The result of Lemma 1 can be particularized
for the decentralized case, i.e., Λa = ΛDC. If there is a
solution for ΛDC in (13), there is a feasible solution for every
topology and hence, a modular observer for all Λ ∈ T .

While it may seem restrictive requiring the topology with
the fewest links to have a solution, note that it is unavoidable
because the system also needs to work under that topology.
Likewise, note that the performance of the observer improves
as more links become available, as it will be shown with the
numerical example in the next section.

A. Design Method

The observer can be designed by solving

max
WN ,SΛ

tr(WN ), (14)

subject to LMI (13) for all Λ ∈ T . Maximizing the trace
of matrix WN , leads to minimizing the trace of matrix PN ,
which in turn reduces the steady-state error. By imposing
constraints for all topologies the solution space is restricted,
so that the modular observer LFa does not have the perfor-
mance of a Kalman filter designed specifically for a topology
Λ ∈ Fa. Nevertheless, the proposed modular observer gains
ease of implementation and modularity with respect to the
topology specific Kalman filter.

Remark 3: In a previous work [4], an optimization prob-
lem was solved for each topology, i.e., the LMI conditions
related to each topology were computed independently. By
contrast, here only one optimization problem is solved for
all the topologies Λ ∈ Fa, by solving simultaneously the
full set of LMIs described in (13), obtaining the family of
modular observers LFa . In any case, combinatorial explosion
issues are still present because the computation complexity of



LMIs does not scale linearly with the number of constraints,
as shown in [28]. Hence, this method is suitable for a modest
number of agents if all topologies are to be considered.
Another alternative to mitigate the complexity of the problem
is by using a branch-and-bound-like approach [29] based on
Lemma 1. In particular, a bound on the performance is given
by that of the centralized Kalman filter. Also, a lower bound
on the performance of any topology is provided by any of
its sons, i.e., topologies with fewer activated links. Hence, it
is possible to select which branches of topologies are more
promising regarding a possible gain of performance. This is
a matter of current research.

IV. AN ILLUSTRATIVE EXAMPLE

In order to illustrate and assess the modular observer
presented in this work, we take the following academic
scheme, which consists of four subsystems whose discrete-
time dynamics are given by

A11 =

[
0 0.5
1 0.4

]
, A22 =

[
0 0.3
1 0.2

]
,

A33 =

[
0 0.4
1 0.45

]
, A44 =

[
0 0.8
1 0.1

]
,

Aij =

[
0 0
0 0

]
, i 6= j, ∀i, j ∈ N ,

Cij =
[
0 1

]
, i = j, ∀i, j ∈ N ,

Cij =
[
0 0.15

]
, i 6= j, ∀i, j ∈ N ,

Qi =

[
10 0
0 10

]
, ∀i ∈ N , Ri =

[
10
]
, ∀i ∈ N ,

(15)

i.e., there is no coupling in the state evolution but agents can
help others to improve their estimates.

For this example, four different topologies have been
considered: the centralized and decentralized topologies,
numbered as 1 and 4, respectively, and also two intermediate
topologies – numbered as 2 and 3 –, as shown in Fig. 2.
Notice that in each of these topologies the links that have
been considered are bidirectional, i.e., if lij is enabled, lji is
enabled as well. This family of topologies is denoted as Fa
and, as stated in Lemma 1, there is a solution for the modular
observer iff there is a solution for the decentralized topology,
since it is the most restrictive topology of the family.

Fig. 2. Different topologies considered in the academic example

Considering the design method presented in Section III-A,
the following overall matrix PN has been obtained:

PN =



12.3019 0.8017 0 0 0 0 0 0
0.8017 8.9153 0 0 0 0 0 0

0 0 10.9167 0.2276 0 0 0 0
0 0 0.2276 8.4889 0 0 0 0
0 0 0 0 11.5043 0.6927 0 0
0 0 0 0 0.6927 8.8597 0 0
0 0 0 0 0 0 16.1193 0.3588
0 0 0 0 0 0 0.3588 9.1431


,

(16)
and the observer for the centralized topology is calculated by
means of LΛ = W−1

N SΛ as stated in Theorem 1, obtaining

LΛL
Fa

=



0.0666 −0.0009 −0.0005 −0.0005
0.7435 −0.0100 −0.0059 −0.0061
−0.0003 0.0191 −0.0001 −0.0002
−0.0097 0.7073 −0.0055 −0.0057
−0.0007 −0.0007 0.0579 −0.0004
−0.0088 −0.0085 0.7404 −0.0053
−0.0004 −0.0003 −0.0002 0.0297
−0.0091 −0.0087 −0.0053 0.7654


.

(17)
Let us consider for instance the observer for topology

Λex = 3 in Fig. 2, which is now simply formed by adding
zeros in the blocks corresponding to nodes 1 and 2 in (17),
leading to the observer

LΛex
Fa

=



0.0666 0 0 0
0.7435 0 0 0

0 0.0191 0 0
0 0.7073 0 0
0 0 0.0579 −0.0004
0 0 0.7404 −0.0053
0 0 −0.0002 0.0297
0 0 −0.0053 0.7654


. (18)

That is, only one problem needs to be solved since the
observers for the rest of topologies are directly derived from
the centralized approach. Note that an LMI for each topology
would have to be solved to obtain a topology specific Kalman
filter, which in the worst case corresponds to 2|N | problems.
Furthermore, due to the modular nature of the proposed
observer, each agent only needs to know its column in LΛL .
For example, agent 1 only needs to know the first column
of the modular observer in (17). By contrast, in case we had
topology dependant observers, the agent would need to know
a different column per topology plus information relative to
what topology is active. Hence, the modular approach allows
simplifying the implementation of observers for systems with
time-varying communication networks.

To test this modular observer, we present an experiment
where we have considered 400 iterations, starting with the
centralized topology, i.e., topology 1, changing to the inter-
mediate topology 2 at time step k = 100, then to topology 3
at k = 200, and finally to topology 4 (decentralized) at k =
300, as shown in Fig. 3A, where connected and disconnected
agents are represented in green and blue, respectively. In
particular, we compare the results of the modular observer
(MOD), with an observer consisting on different Kalman
filters designed for each specific topology, here referred
to as non-modular observer (NMOD), and also with the



Kalman filter designed for the decentralized topology, which
is denoted as decentralized observer (DEC).

As shown in red color in Fig. 3B, for the topologies where
there is a high number of enabled communication links,
square error eN (k)TeN (k) in the MOD scheme is higher
than that of the NMOD approach. Nevertheless, as long as
the topology is closer to the decentralized one, this difference
decreases. In contrast, when comparing the MOD and DEC
approaches, the opposite occurs, which is depicted in blue.
In fact, for topologies where there are more enabled links,
the square error in the MOD scheme is lower than in the
DEC scheme since the MOD observer uses extra information.
In other words, the performance of the observer increases
as new links become available. In order to quantify these
differences, the integral square error (ISE) of the different
observers have been calculated, resulting that the ISEMOD
is 1.38% lower than the ISEDEC and it is only 4.4% higher
than the ISENMOD.

Note also that by using (8), and taking into account that
both Ap and Bp depend on LΛ as can be seen in (5) and (6),
it can be concluded that the error variance of the system,
i.e., σe, depends on the observer being used, and hence, on
the topology. For example, by establishing a 92% interval of
confidence and using (9), we can calculate the boundaries of
the error resulting in 1.75σe, which are satisfactory in our
experiments, as drawn in Fig. 4 for the particular case of
state 1 (the first state of agent 1).

Also, a full comparison of the error variance is detailed in
Table I, where it can be seen that σe decreases as more links
are enabled in both MOD and NMOD schemes. We can also

Fig. 3. Comparison between the square errors for the topologies in Fig. 2

Fig. 4. Error in state 1 provided by the MOD approach

see that σe decreases less in the MOD approach than in the
NMOD scheme. Likewise, σe converges for both observers
for the decentralized topology.

V. CONCLUSIONS

In this paper, a novel observer with a modular structure,
which consists of a family of observers suitable for a
distributed system with variable communication topologies
and based on linear matrix inequalities (LMIs), has been
presented. To obtain this family, a single LMI problem needs
to be solved instead of requiring the computation of one LMI
per topology. Moreover, the modular structure simplifies con-
siderably the implementation of local observers, which only
need to know which agents they are receiving information
from and, consequently, there is no need of an upper layer
that compiles information regarding the current topology.
Also, a theorem that guarantees modularity and a lemma
showing a necessary and sufficient condition to design this
type of observers have been proposed.

The feasibility of the proposed modular observer has been
shown via an academical example and its results have been
compared with those of a Kalman filter specialized for each
topology, and also with the case of a decentralized Kalman
filter. As it can be seen, the modular scheme outperforms
the decentralized one and it is not far away from the specific
Kalman filter for each topology, being the loss of accuracy
strongly compensated with the ease of implementation of the
proposed approach.

Future work should include the implementation of the
proposed observer in a realistic large-scale network, includ-
ing the use of branch-and-bound methods to mitigate the
combinatorial explosion, in the line of what is commented
in Remark 3.



TABLE I
ERROR VARIANCE σe OF EVERY STATE OF THE SYSTEM IN THE TOPOLOGIES INVOLVED IN THE EXPERIMENT

MOD σe1 σe2 σe3 σe4 σe5 σe6 σe7 σe8

Topology 1 (ΛDC) 10.8979 8.8826 10.3306 8.6849 10.5754 8.8578 12.3022 8.9824
Topology 2 (1 isolated) 10.9079 8.9381 10.3323 8.7085 10.5781 8.8804 12.3132 9.0063
Topology 3 (1 and 2 isolated) 10.9079 8.9381 10.3344 8.7374 10.5804 8.9002 12.3229 9.0274
Topology 4 (ΛL) 10.9079 8.9382 10.3344 8.7376 10.5822 8.9153 12.3296 9.0419
NMOD σe1 σe2 σe3 σe4 σe5 σe6 σe7 σe8

Topology 1 (ΛDC) 10.8590 8.6921 10.3177 8.5272 10.5502 8.6696 12.1962 8.7730
Topology 2 (1 isolated) 10.9969 9.3568 10.3234 8.5976 10.5607 8.7488 12.2398 8.8582
Topology 3 (1 and 2 isolated) 10.9104 8.9520 10.3353 8.7492 10.5826 8.9199 12.3308 9.0445
Topology 4 (ΛL) 10.9098 8.9489 10.3351 8.7471 10.5828 8.9212 12.3314 9.0457
DEC σe1 σe2 σe3 σe4 σe5 σe6 σe7 σe8

Any topology 10.9098 8.9489 10.3351 8.7471 10.5828 8.9212 12.3314 9.0457
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