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Abstract—In this manuscript, we propose a novel method to
perform audio inpainting, i.e., the restoration of audio signals
presenting multiple missing parts. Audio inpainting can be
interpreted in the context of inverse problems as the task of
reconstructing an audio signal from its corrupted observation.
For this reason, our method is based on a deep prior approach,
a recently proposed technique that proved to be effective in
the solution of many inverse problems, among which image
inpainting. Deep prior allows one to consider the structure
of a neural network as an implicit prior and to adopt it
as a regularizer. Differently from the classical deep learning
paradigm, deep prior performs a single-element training and thus
it can be applied to corrupted audio signals independently from
the available training data sets. In the context of audio inpainting,
a network presenting relevant audio priors will possibly generate
a restored version of an audio signal, only provided with its
corrupted observation. Our method exploits a time-frequency
representation of audio signals and makes use of a multi-
resolution convolutional autoencoder, that has been enhanced
to perform the harmonic convolution operation. Results show
that the proposed technique is able to provide a coherent and
meaningful reconstruction of the corrupted audio. It is also able
to outperform the methods considered for comparison, in its
domain of application.

Index Terms—Audio inpainting, deep prior, deep learning.

I. INTRODUCTION

The advent of high-fidelity digital audio streaming and
communications over the internet has significantly in-

creased public awareness and expectations regarding sound
quality across all kinds of recordings. It follows that there
is a growing demand for the restoration of deteriorated or
corrupted audio signals in order to enhance their perceived
quality [1]. In fact, audio signals may often exhibit corrupted
parts, in which multiple samples are absent, noisy, or unre-
liable. These alterations may be caused by several reasons,
such as recording issues, packet loss during transmission, and
faulty or aged storage supports. Among the different audio
restoration tasks, we can cite for example audio denoising,
which aims at reducing or removing unwanted background or
acoustic noise [2] from audio recordings. Another common
task is audio super resolution, also referred to as bandwidth
extension [3]. The goal of audio super resolution is to generate
high-quality audio from a down-sampled input that contains
only a reduced number of the original samples [4]. The task of
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reconstructing an audio signal containing portions of missing
samples, instead, is referred to as audio inpainting in the
literature. This problem is closely related to audio Packet
Loss Concealment (PLC) [5], [6], which can be seen as a
subset applicative scenario of audio inpainting, when audio
samples have been lost in the transmission over the internet.
However, PLC has more computation time constraints, in
order to enable the almost real-time and continuous fruition of
audio data (e.g., in VoIP calls or music streaming). Moreover,
typically PLC is defined as a causal process, meaning that
the restoration algorithms only have visibility of the reliable
packets preceding a missing portion [7]–[9]. On the other
hand, audio inpainting is a more general problem, in which
algorithms can exploit features coming both from before and
after each missing portion of an audio signal. Additionally,
time computation restrictions are typically not taken into
account in this context.

In audio inpainting, the process of restoring lost information
in audio signals is usually aimed at producing coherent and
meaningful information while preventing the introduction of
audible artifacts [10]. A precise reconstruction can be obtained
only when the corrupted parts are a few milliseconds long.
Instead, for corruptions in the order of hundreds of millisec-
onds or even seconds, an accurate estimate of the missing
information might become unrealistic. Therefore, in order to
provide a convincing reconstruction, inpainting methods need
to produce a larger quantity of novel samples, that have to be
semantically compatible with the surrounding context (i.e., the
audio signal before and after each missing portion) [11].

Historically, the first methods tackled the audio inpainting
problem by exploiting signal processing techniques. We can
cite, for example, model-based techniques, such as auto-
regressive models [12]–[14]. In this case, the goal is to infer
the parameters of the statistical process that generated the
signal, only having access to its uncorrupted portions. The
efficiency of these techniques relies on underlying assumptions
on the characteristics of the considered audio signal (e.g.,
signal stationarity). For this reason, their performances rapidly
degrade when these assumptions are no longer guaranteed
[15].

Other signal processing methods, instead, rely on signal
similarity to perform audio inpainting. In fact, speech, music,
and other audio signals are composed of patterns and structures
that occur multiple times. Information extracted from such
repetitions demonstrated to be effective in the prediction
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of missing samples [16]. For example, in [7], the authors
proposed a novel method to perform long audio inpainting
that follows an optimization strategy carried out on similarity
graphs. This data structure relates audio segment belonging to
the corrupted signal according to time-frequency features and
finally determines the most natural fit for the substitution of
the lost content.

In recent years, given the results that deep learning achieved
in many signal processing problems, audio inpainting has
also been tackled by exploiting the power of deep neural
networks [10], [11].The basic idea of deep learning-based
audio inpainting is to train an artificial neural network to
generate the missing data, given the uncorrupted parts of the
signal. The model is provided only with indirect information
about the content to generate, which however needs to be
seamlessly inserted within the existing audio signal [11].
Nonetheless, these methods have shown to be effective in the
inpainting of medium-length and long parts (> 50ms). For
example, in [11], the authors introduced GACELA (Generative
Adversarial Context Encoder for Long Audio inpainting), an
audio inpainting method based on a Generative Adversarial
Network (GAN). GACELA proved to be able to restore
missing musical audio data with a duration ranging between
hundreds of milliseconds to a few seconds.

In general, the superior performances of deep learning
techniques are motivated by their ability to learn realistic priors
from a large quantity of training data. However, there are prac-
tical scenarios in which data sets are difficult to collect or even
non-existing. In order to overcome this limitation, different
techniques have been proposed [17], [18]. For example, in [17]
the authors introduced Catch-A-Waveform (CAW), a GAN-
based system in which the network is trained on a single audio
signal analyzed at increasing sampling frequency. CAW is able
to perform different audio restoration tasks, including audio
inpainting. In this last case, the system is conditioned only on
the available information surrounding the missing portions of
the signal, producing reconstructions comparable to the ones
provided by GACELA [11]. These approaches, in which a
neural network is conditioned on a single data sample, can
be interpreted in the context of deep prior. Deep prior [19]
is a paradigm for the solution of inverse problems and has
been initially proposed to address image restoration tasks. In
the paper [19], the authors showed that, differently from the
classical deep learning paradigm, the structure of a deep neural
network is sufficient to capture most low-level statistics needed
to solve such problems, prior to any learning on large data
sets. Through this approach, a network learns how to map
a random noise realization into the solution of the assigned
task, relying on a single data item. In addition to the image
domain, deep prior has also been successfully applied in the
context of seismic data [20], room impulse responses [21] and
vibrometric data [22].

In this article, we propose a method that exploits the deep
prior paradigm to perform audio inpainting. In particular, we
consider audio signals presenting multiple missing portions
(also called gaps), each one in the order of tens of millisec-
onds. This kind of corruptions is relevant in the context of
telecommunications, in which transmission errors (e.g., packet

loss), might introduce several gaps of that size [23]. Moreover,
this is a scale where the non-stationary characteristic of audio
already becomes non-negligible [10], making the problem
more challenging.

The proposed algorithm, that will be referred in the follow-
ing as Deep Prior Audio Inpainting (DPAI), is based on the
time-frequency representation of audio signals and exploits the
MultiResUNet [24] architecture. Moreover, differently from
previously proposed solutions, in our architecture we ex-
ploit the harmonic convolution operation [25]. Unlike regular
convolution, this operation helps deep networks model low-
level audio characteristics by aggregating information using a
harmonics-shaped convolutional filter [25], thus leading to a
better audio reconstruction. We compare DPAI with the Sim-
ilarity Graph Algorithm (SGA) [7], and Catch-A-Waveform
(CAW) [17]. Results show that our solution outperforms both
reference methods in the inpainting of audio signals presenting
multiple holes, each one ranging from 40ms to 80ms. There-
fore, the obtained performances demonstrate that the proposed
approach can be effectively applied in the context of audio
inpainting. The audio prior embedded in the network structure,
provided by the combination of a multi-resolution approach
and of the harmonic convolution, allows us to consistently
reconstruct the missing parts of a corrupted audio signal.

The rest of this manuscript is organized as follows. In Sec. II
we formalize the audio inpainting problem in the context of the
deep prior paradigm. In Sec. III we present DPAI. In Sec. IV
we show the results of the comparison between our method
and the ones considered as reference. Finally, in Sec. V, we
draw the conclusions of our work.

A demo web page for the project is available at the follow-
ing link: https://fmiotello.github.io/dpai.

II. PROBLEM FORMULATION

A. Signal model

Let us consider a discrete audio signal x = [x0, x1, . . . ,
xN−1]

T , with x ∈ RN×1, sampled at sampling frequency
Fs. X ∈ CM×L (an example is depicted in Fig. 1(a)) is
the time-frequency representation of x, with M frequency
bins and L time frames. We denote by x̃ a corrupted or
incomplete observation of x, and by X̃ ∈ CM×L (Fig. 1(b)),
its time-frequency representation (i.e., STFT). Hence, some
time frames of X̃ are missing and we introduce a masking
vector s ∈ R1×L, which indicates whether a time frame of X̃
is lost (i.e., presents an overlap with the missing portions of
the audio signal) or present, as

si =

{
1, if the ith frame is present;
0, otherwise.

(1)

From s we can obtain S ∈ RM×L (Fig. 1(c)), which is a
time-frequency mask, as

S = js (2)

where j ∈ {1}M×1 is an all-ones vector. A partial observation
of X can then be defined as

X̃ = X⊙ S, (3)

https://fmiotello.github.io/dpai


3

(a) (b) (c) (d)

Fig. 1: Examples of uncorrupted spectrogram (a), corrupted spectrogram (b), mask (c) and reconstructed spectrogram (d).

where ⊙ indicates the Hadamard product. In this context,
we interpret audio inpainting in the framework of inverse
problems. In practice, we aim at finding

X̂ = F (X̃), X̂ ≈ X, (4)

which is an estimate of X, starting from the available ob-
servation X̃. F is a reconstruction operation that restores
the missing portions of X̃. Finally, from X̂ (Fig. 1(d)) it is
possible to revert to the time-domain representation x̂ (i.e., the
reconstructed audio signal) through the inverse STFT.

B. Deep prior approach

The solution to the inpainting problem requires the inversion
of the relation in (3). This is an ill-posed inverse problem,
whose solution X̂∗ is typically constrained in order to obtain
meaningful results. In particular, it is necessary to add some
kind of a priori information on the optimal solution. This is
usually expressed in the form of a regularizer, that can be a
handcrafted feature which models some implicit characteristic
of the audio signal, such as sparsity [26], or can be learned
from data, as it happens in deep learning audio inpainting
methods [10], [11]. Formally, the solution can be expressed
as an optimization problem in the form

X̂∗ = argmin
X̂

E
(
X̂⊙ S, X̃

)
+R

(
X̂
)
, (5)

where E(·) is a data fidelity term (e.g., Mean Squared Error)
that measures some distance between the reconstructed and
observed data, and R(·) is the regularizer. It is worth noting
that in (5) the distance between the reconstructed spectrogram
and the corrupted one is computed ignoring the missing
frames.

Inspired by solutions in the context of images [19], seismic
data [20], room impulse responses [21] and vibrometric data
[22], we propose to adopt a deep prior approach as an alterna-
tive regularization strategy for the solution of (5). Following
this approach, let us consider a deep neural network as a
generator described by the function fθ, such as X̂ = fθ(Z),
where θ is the set of trainable parameters of the considered
network and Z is a random noise realization given as input to
the network. Deep prior focuses on finding the parameters θ∗,
that allow the considered neural network to estimate X̂ from

Z. In this framework the optimization problem in (5), can be
reformulated as

X̂∗ = fθ∗(Z), (6)

where
θ∗ = argmin

θ
E
(
fθ(Z)⊙ S, X̃

)
. (7)

Through this procedure, by minimizing (7) rather than (5), we
search for the solution to the inverse problem in the space
of the neural network parameters instead of the space of the
model [20].

Also in (7), the data fidelity E(·) between the reconstructed
spectrogram, given as output by the neural network, and
the corrupted one, is computed ignoring the missing frames.
However, unlike (5), in (7) the minimization is not constrained
by an explicit regularization term but its role is replaced by the
inherent a priori information provided by the network itself.
Although the fit is performed on X̃, the prior provided by the
network enables to reconstruct also the missing parts of the
spectrogram. It follows that the regularization ability of the
neural network is linked to the structure of the architecture
that drives the minimization - performed iteratively through
gradient descent - towards solutions consistent with the prior
[19].

It is also worth noting that, although X̂∗ is the output of
an artificial neural network, our approach does not exploit the
deep learning paradigm where a training phase is performed
over an extensive data set of examples. In fact, only the
corrupted observation X̃ is used in the reconstruction process
and the deep neural network implicitly assumes the role of
prior information that exploits correlations in the data to learn
its inner structure. For this reason, the choice of a specific
architecture is crucial to find a suitable and coherent solution
[19], [20].

III. PROPOSED METHOD

In this section we present DPAI, describing the architec-
ture of the employed neural network and its fundamental
characteristics. In particular, the considered network exploits
a multi-resolution processing of data and it is enhanced
with the harmonic convolution operation. Both these features,
discussed in the following, proved to be essential in order to
successfully model audio signals and thus achieve an effective
regularization of (7).
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Fig. 2: A MultiRes block: the outputs of the three consecutive
convolutional layers are concatenated and then added to the
residual connection.

A. Network architecture

The proposed network architecture is based on MultiRe-
sUNet, a convolutional model proposed in [24] and char-
acterized by an autoencoder structure. MultiResUNet has
been introduced as an improvement of the well-known U-
Net architecture [27], originally used for multimodal medical
image segmentation, and exploits a multi-resolution approach
to process data. In the context of audio signals, the multi-
resolution processing of data allows the model to extract
complex structures with dependencies at various frequency and
temporal scales. This approach has been exploited by other
audio inpainting techniques [11], [17], showing promising
results.

In order to implement the multi-resolution processing of
data, MultiResUNet replaces the standard convolutional layers
with the so-called MultiRes blocks. Such blocks are inspired
by the inception architecture [28], which analyzes the input
features at different scales, using parallel convolutional filters
with increasing kernel size. As a way to enhance this scheme,
in [29], the authors show that convolutions with larger spatial
filters (e.g., 5 × 5 or 7 × 7), can be factorized by using
multiple layers of smaller convolutions (e.g., 3 × 3), that
operate in series. In this way, for example, it is possible
to replace a 5 × 5 convolutional block with two layers of
3×3 convolutional blocks. For this reason, in [24] the authors
introduce the MultiRes Block, represented in Fig. 2, in which
three 3 × 3 convolutional blocks operate in series and the
output of each block is concatenated to the output of the
following ones. Finally, the concatenated outputs are added
to a residual connection, consisting in a 1 × 1 convolutional
layer. As shown in [24], the result of the MultiRes block
processing scheme is similar as if the processing was carried
out using in parallel one 3 × 3 block, one 5 × 5 block and
one 7× 7 block, concatenating their outputs. As a result, this
approach enables the multi-resolution processing proposed in
[28], limiting the number of learnable parameters needed for
the implementation.

Another important feature of MultiResUnet concerns the
Res Path blocks (see Fig. 3). Res Path blocks replace classic
skip connections, which are a key element of U-Net ar-
chitectures [27] and enable the feature propagation between
corresponding layers in encoder and decoder. Nonetheless,
as explained in [24], skip connections are prone to generate
the so-called semantic gap. In fact, features at the encoder
that are passed unprocessed to the decoder are characterized

Fig. 3: A Res Path block: the output of the convolutional layer
is added to the residual connection.

Fig. 4: Proposed MultiResUNet architecture.

by a low informative level, since they come from earlier
stages of the processing. In the decoder, instead, features are
derived from a higher-level representation of the bottleneck
and possible previous decoding layers. The combination of
these features, that often present a semantic discrepancy, can
lead to a performance reduction. To address this semantic gap
and alleviate the disparity between the encoder and decoder
features, the authors of the MultiResUNet architecture [24]
introduced convolutional layers along the shortcut connections,
providing additional non-linear transformations to the encoder
features before merging them with the ones in the decoder. The
use of 3 × 3 filters helps account for the further processing
done during decoding. In addition, the 1 × 1 filters in the
residual connections allow the model to capture extra spatial
information. This solution, as noted in [24], is able to reduce
the semantic gap and thus improve the network performance.

In our implementation of MultiResUNet (see Fig. 4) we
adopt 5 MultiRes blocks in the encoder with the corresponding
decoding layers connected through Res Path blocks. The 3
filters in the MultiRes blocks contain 21, 43 and 64 kernels,
respectively. The downsampling is performed through 3 × 3
convolutional layers with stride value of 2. On the other side,
the upsampling is achieved with nearest-neighbor interpola-
tion, using an upsampling factor equal to 2. Throughout the
network, we adopted batch normalization and LeakyReLU as
non-linear activation function after each convolutional layer.

Finally, in the practical implementation of the network,
we treat complex STFT coefficients as two separate real-
valued channels. This approach allows us to avoid the phase
reconstruction step [30], [31] necessary for other common
methods that operate on the magnitude only [10], [11].
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(a) (b) (c)

Fig. 5: Harmonic convolution (a) with anchor n = 1, the output frequency in Y is interpreted as the fundamental frequency
of the convolution. In (b) the anchor is n = 2, thus the output frequency corresponds to the first harmonic. (c) harmonic
convolution with anchor n = 3.

B. Harmonic convolution

In our implementation of MultiResUNet, convolutional
layers in the encoder (MultiRes blocks, Res Path blocks,
and downsampling layers), perform the so-called harmonic
convolution [25], [32]. Harmonic convolution operates on
the time-frequency representation of a given audio signal.
While regular discrete 2D convolution in deep neural networks
aggregates information on local regions of the input, harmonic
convolution interprets the frequency dimension of the kernel as
weights for a harmonic series at each target frequency location.
This finds motivation in the structure of harmonic sounds, in
which higher harmonics are located at integer multiples of
a fundamental frequency, and which are also closely related
to human sound perception. It has been demonstrated that
harmonic convolution helps deep networks to model priors
as an inductive bias in audio signals [25].

Formally, given the spectrogram X and a convolutional
kernel K, harmonic convolution is defined as a mapping from
X[m, l] to Y[m̂, l̂], where

Y[m̂, l̂] =

Km∑
k=1

Kl∑
l=1

X

[
km̂

n
, l̂ − l

]
K [k, l] . (8)

Km and Kl are the kernel sizes along frequency and time
dimensions respectively, m̂ and l̂ are the time and frequency
output locations, and n an extra parameter called anchor. The
output Y[m̂, l̂] is computed as a weighted sum of the input
X at multiples of target frequency m̂. Moreover, the anchor
value n can be exploited to indicate the order of harmonics
at location m̂. For example, as represented in Fig. 5, using
n = 1, m̂ is interpreted as the fundamental frequency, using
n = 2, m̂ is interpreted as the first harmonic, and so on. In this
way, the harmonic convolution is then computed considering
m̂
n as the base frequency [32].

For the implementation of harmonic convolution we fol-
lowed the method proposed in [32]. In the article, the authors
present a faster calculation strategy for harmonic convolution,
called Harmonic Lowering. As far as anchor values are con-
cerned, we decided to vary them (shown in Tab.I) inside each
convolutional block. We empirically verified that these values
helped us obtain better results, since they allow us to exploit
more harmonics other than the fundamental only.

TABLE I: Anchor values used in each convolutional block.

Block Anchor value
MultiRes block

Residual connection 1
Conv. layer #1 2
Conv. layer #2 3
Conv. layer #2 4

Res Path block
Residual connection 1

Conv. layer #1 2
Downsampling

Conv. layer #1 1

C. Loss function

The training of the network is based on the minimization
of the total reconstruction loss (7) between the output of the
network and the observed spectrogram, computed only on the
uncorrupted parts. This allows us to find the optimal weights
θ∗ of the network, needed to find the optimal solution (6). To
this end, the loss function is computed as

ℓtot = α1[MSE(ℜ(X̂)⊙ S,ℜ(X̃))+

MSE(ℑ(X̂)⊙ S,ℑ(X̃))] + α2 MSS(X̂⊙ S, X̃),
(9)

where ℜ is the operator that retrieves the real part of a
spectrogram and ℑ is the operator that retrieves the imaginary
part of a spectrogram. In particular, (9) is the weighted sum of
a Mean Squared Error (MSE) and a Multi-Scale Spectrogram
(MSS) loss [33]. The MSE, between an observed spectrogram
X̂ and its prediction X̃, is computed as

MSE(X̂, X̃) =
1

ML

M∑
m=1

L∑
l=1

(X̂[m, l]− X̃[m, l])2, (10)

where M and L are the sizes of the spectrograms along
frequency and time dimensions respectively.

The MSS loss instead, is composed of different spectrogram
losses, computed changing each time the STFT analysis pa-
rameters (i.e., FFT size, window size, and hop length). The
combination of multiple metrics, computed using different
analysis parameters, helps the model learn time-frequency
characteristics of the analyzed signal. Moreover, it also pre-
vents the network from being biased by a fixed STFT repre-
sentation, which may result in sub-optimal performances [33].
More specifically, our MSS loss is computed as the average
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of the total error at each of the P considered set of STFT
parameters:

MSS(X̂⊙ S, X̃) =
1

P

P∑
p=1

ℓsc(X̂p, X̃p)

+ℓlog STFT(X̂p, X̃p) + ℓSTFT(X̂p, X̃p)+

ℓphs(X̂p, X̃p),

(11)

where X̂p and X̃p are estimated by first computing the inverse
STFT of X̂ ⊙ S and X̃ respectively, and then applying the
STFT again, using analysis parameters of scale p. In particular,
the term ℓsc accounts for the spectral convergence between two
spectrograms X and Y, and is computed as

ℓsc(X,Y) =
∥|X| − |Y|∥F

∥|Y|∥F
, (12)

where ∥ · ∥F is the Frobenius norm. ℓsc emphasizes errors
on spectral components presenting high energy. Conversely,
ℓlog STFT is defined as

ℓlog STFT(X,Y) =
1

N
∥ log (|X|) − log (|Y|)∥1, (13)

where ∥·∥1 is the ℓ1 norm and N the number of STFT frames.
It is exploited in order to improve the fit of low-amplitude
components of the spectrogram [34]. The term ℓSTFT is given
by

ℓSTFT(X,Y) =
1

N
∥|X| − |Y|∥1, (14)

and computes the linear STFT magnitude loss. Finally, the
spectral phase loss accounts for the phase component recon-
struction and is defined as

ℓphs(X,Y) = MSE(∠X,∠Y). (15)

The values α1 and α2 in (9) have been obtained through grid
search and are set to α1 = 1 and α2 = 0.1. Following [33], we
adopt the STFT parameters indicated in Table II to compute
(11).

TABLE II: STFT parameters used to compute MSS loss
function. All values are expressed in samples, considering a
sampling frequency Fs = 16 kHz.

FFT size Window size Hop length
2048 1200 240
1024 600 120
512 240 50

Note: all configurations use Hann window.

IV. RESULTS

In this section we first present a preliminary experiment that
justifies the network architecture chosen for DPAI. Then we
evaluate the proposed method by performing both quantitative
and perceptual tests. For each test, we compare the results
obtained using DPAI to the ones achieved by CAW [17] and
SGA [7].
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Fig. 6: Comparison of loss (a) and validation loss (b) evolution
(in log scale) during the fitting of a corrupted spectrogram
with three different models: U-Net, MultiResUNet and Mul-
tiResUNet with harmonic convolution.

A. Network analysis

In order to validate the network architecture adopted in
DPAI, we performed a preliminary experiment that compares
the loss curves obtained during the training of our model on
a single data sample, with the ones produced by two different
models presenting a comparable number of parameters. In
particular, we compared the MultiResUNet model enhanced
with harmonic convolution (ours) to the MultiResUNet [24]
and the standard U-Net architecture [27]. Both MultiResUNet
architectures (with and without harmonic convolution) contain
2015252 parameters, while the considered U-Net architecture
has 2158578 parameters.

In Fig. 6(a) we show the loss evolution during the fitting
of a corrupted spectrogram following the deep prior approach
and exploiting the loss function presented in Sec. III-C. Both
MultiResUNet with and without convolution obtain similar
curves, reaching quite rapidly small values of the loss, while
the U-Net model, instead, stabilizes on much higher values.

Fig. 6(b), instead, compares the evolution of the validation
loss, namely, computed only on the missing portions of the
spectrogram. Hence, it is possible to examine the reconstruc-
tion capabilities of the considered models. The reconstruction
ability of the U-Net architecture, on the missing portions of the
spectrogram, is limited, as shown by the validation loss value
that diverges as the epochs increase. MultiResUNet, instead,
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(a) (b) (c)

(d) (e) (f)

Fig. 7: Reconstruction of a corrupted spectrogram at increasing epochs: 30 epochs (a), 50 epochs (b), 150 epochs (c), 500
epochs (d), 1000 epochs (e) and 5000 epochs (f).

reaches quite quickly small values of validation loss, and even
smaller values when the harmonic convolution is employed.
Both results demonstrate that the use of a multi-resolution
approach and the exploitation of the harmonic convolution
allow the chosen model to extract strong audio priors from the
corrupted spectrogram, thus leading to a better reconstruction.
This process of reconstruction is illustrated in Fig. 7. In
particular, it shows the output of the MultiResUNet model
with harmonic convolution at different iterations. First, starting
from a noise input, only some blurry structures are recovered.
Then, the higher energy elements, usually located at the lower
frequencies, start to be reconstructed. Finally, also low energy
components are gradually reconstructed as the number of
epochs increases, simultaneously achieving the generation of
the missing frames.

B. Dataset

We tested the performance of the proposed audio inpainting
technique on a corpus of 15 audio signals, coming from
piano [35], popular music [36] and speech datasets [37]. The
length of each audio signal is 5 s, with a sampling frequency
Fs = 16 kHz. Similarly to the approach proposed in [38], we
considered in the experiments 5 different values of cumulative
gaps duration, namely 200ms, 400ms, 600ms, 800ms and
1 s. Given a cumulative gaps duration, we generated a masking
vector, as defined in (1), for each audio signal, encoding
multiple gaps with random positions and random lengths
ranging from 40ms to 80ms. The corrupted observations are
obtained through (3).

C. Objective metrics

To numerically evaluate the three methods under compar-
ison, we used the Normalized Mean Squared Error (NMSE)
averaged on the whole data set, i.e.

NMSE = 10 log10

(
1

N

N∑
i=1

∥x̂i − xi∥22
∥xi∥22

)
, (16)

where N is the cardinality of the data set and ∥ · ∥2 is the
ℓ2 norm. In particular, we computed NMSE in two different
configurations: NMSEtot and NMSEmiss. In the first case we
consider the whole reconstructed signal x̂ and therefore, also
the uncorrupted parts of the audio impact on NMSE. On the
contrary, NMSEmiss is evaluated only on the portions of signal
that were missing in the observation.

Moreover, for the speech samples of our dataset, we
also considered the Perceptual Evaluation of Speech Quality
(PESQ) metric [39], that is a widely used method to assess
speech quality in terms of Mean Opinion Score (MOS) [40].
Although PESQ was originally developed to model subjec-
tive tests in the context of telecommunications, it is also
used to evaluate the performances of speech enhancement
algorithms [41]–[43]. We computed PESQ for corrupted and
reconstructed signals and then we computed the difference
between these two values, in order to assess the quality
improvement (or deterioration) provided by the considered
reconstruction methods. The results were then averaged on
the whole data set.
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D. Subjective tests

In order to evaluate the perceived signal quality, we also
conducted a human auditory test, comparing the reconstruc-
tions obtained via DPAI with those generated by CAW [17]
and SGA [7]. Specifically, similarly to the test proposed in
[17], for each question participants listened to a corrupted
audio signal, along with three possible reconstructions (one for
each method), and were asked to rate the plausibility of each
one. We considered a reconstruction plausible if every gap had
been filled with information coherent with its surroundings and
if it did not contain audible artifacts. The entire test consisted
of 10 questions, with each audio signal being 5 s long.

E. Setup

DPAI results were computed training the model proposed
in Sec. III for 5000 epochs, using the Adam optimizer [44]
and learning rate set to 0.01. The network’s input consists of a
uniform noise tensor with variance equal to 0.1. In particular,
from a preliminary analysis of the network we found out
that uniformly distributed noise consistently produced better
results. Thus, we decided to use it for all subsequent ex-
periments. Moreover, similarly to [19], in order to reinforce
convergence at each iteration the input tensor is perturbed with
additional zero-mean white noise of 0.03 variance.

By default settings, SGA is set to produce results with
a difference in length from the input corrupted signal. This
trade-off is aimed at achieving reconstructions that present
smoother transitions with the original signal. However, this
approach prevents a direct numerical comparison of signals
with different lengths in terms of NMSE and PESQ. To address
this limitation, adjusting SGA parameters, we forced the length
of the reconstructed signal to match the length of the initial
one.

CAW exploits the processing of audio signals at progres-
sively increasing sampling rates to train the neural network.
Specifically, for computing the results using CAW, we adopted
6 different sampling frequencies: 1000Hz, 1600Hz, 2500Hz,
8000Hz, 12 000Hz and 16 000Hz. We derived the adopted
scales based on a set of preliminary analyses that demonstrated
reduced computational time while not significantly affecting
the reconstruction error with respect to the scales proposed in
the original paper [17].

It is important to underline that both methods used for
comparison, preserve, by design, the uncorrupted parts of
the input signal, inserting the reconstructions inside the gaps.
DPAI, instead, has the capability of reconstructing the whole
signal. In fact, similarly other deep-prior-based methods [19]–
[21], we replicate in output also the uncorrupted parts of the
input.
As far as SGA is concerned, the method does not provide
newly generated signals, neither for the missing portions nor
for the uncorrupted ones. Instead, SGA seamlessly inserts
sections of the uncorrupted signal into the gaps, selecting
the ones that ensure smooth integration with the surrounding
signal context, based on the similarity criteria [7]. In contrast,
CAW generates a completely new signal by using its GAN
structure, based only on the uncorrupted segments of the
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Fig. 8: Quantitative test results. Total NMSE (a) and NMSE
evaluated only on the portions of signal that were missing (b).

signal. Nevertheless, the output is crafted to sound “in the style
of” the original signal, without attempting to exactly replicate
it, even in the uncorrupted sections. Consequently, as proposed
in [17] the inpainting is performed seamlessly blending the
reconstructed segments into the original corrupted audio.

F. Discussion

The quantitative results in terms of NMSE are shown in
Fig. 8. We can observe that the proposed solution is able to
outperform both reference methods, suggesting that the output
signal produced by DPAI reconstructs more accurately the
original audio signal. In particular, the gain in NMSE attained
by DPAI with respect to CAW and SGA is at least −3.3 dB
and −3 dB in terms NMSEtot and NMSEmiss, respectively, as
visible inspecting Fig. 8(a) and Fig. 8(b).

SGA is the method that on average performs the worst,
as it is not able to return a coherent reconstruction. Our
interpretation is that the algorithm needs more uncorrupted
information to build an effective similarity graph. For this
reason, for the computation of the results, we provided SGA
with 5 s of additional reliable signal before and after each
audio. With a more reliable context the algorithm possibly
identifies more repetitions and recurring structures in the
audio and thus has more options to choose from for the
substitution. However, given the results, this is not sufficient,
since the reconstructed signals are significantly distant from
the original ones, in terms of NMSE. Moreover, in some cases,
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(a) (b) (c) (d)

Fig. 9: Corrupted spectrogram (a), SGA reconstruction (b), CAW reconstruction (c) and DPAI reconstruction (d).

the algorithm also modifies uncorrupted portions of the audio
signal, overlapping them with non-contextual information.

Reconstructions computed using CAW, instead, seem to be
more reliable than the ones provided by SGA. However, the
transitions between the reconstructed portions and the original
ones are evident, and the reconstructed portions sound noisier
than the original ones.

The plot in Fig. 8(a) shows that as the cumulative duration
of the gaps increases, a degradation of reconstruction perfor-
mances of the methods is observed. Instead, as represented
in the plot in Fig. 8(b), the reconstruction capabilities of the
methods remain almost constant, if only the reconstructed
portions are considered. These observations are particularly
true for DPAI and CAW, and suggest that the degradation
of performances of inpainting methods is particularly affected
by a larger number of gaps. This is justified by the fact that
the presence of more gaps leads to the introduction of more
discontinuities and artifacts that highly affect NMSEtot.

The differences mentioned above can also be noticed by
inspecting Fig. 9, which represents the spectrograms of a cor-
rupted audio signal, in Fig. 9(a), and the three corresponding
reconstructions, obtained using SGA, in Fig. 9(b), CAW, in
Fig. 9(c) and DPAI in Fig. 9(d). It can be noticed how SGA
fails to obtain a coherent reconstruction, also affecting the
uncorrupted portions of the audio signal. Nonetheless, it does
not insert too many visible artifacts. CAW, instead, is able
to reconstruct most of the missing portions. However, as it
can be seen in the spectrogram, the reconstructions are noisy
and show a discontinuity with the surrounding context. As a
result, these corruptions can be perceived as artifacts during
the playback of the restored audio signal. On the contrary,
the reconstruction provided by DPAI appears to be the most
accurate: it restores the missing information in all the gaps
and does not present any visible discontinuity. The transition
between reconstructions and uncorrupted parts is smooth and
not perceivable during playback. Only when the audio signal
is corrupted by longer gaps, the signal energy appears to drop
within the restored portions, making them noticeable.

Fig. 10 shows the mean PESQ increment between corrupted
and reconstructed speech audio signals. In particular, we
computed the increment as

∆PESQ = PESQ(x, x̂)− PESQ(x, x̃), (17)

where PESQ is the function that computes the PESQ value
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Fig. 10: Perceptual test results. PESQ difference between
corrupted and reconstructed speech signals.

between a reference and a degraded audio signal. We can
observe that DPAI is able to obtain a better increment than
CAW and SGA. This proves that speech signals reconstructed
with our method are characterized by higher intelligibility and
quality, making it suitable for speech restoration tasks.

TABLE III: Results of the perceptual test.

DPAI CAW SGA
69% 10% 21%

Table III shows the results of the perceptual test. The test
was carried out on 11 subjects, ranging from age 24, to age 36.
All the subjects were asked to use consumer-grade headphones
or higher while taking the test, in order to better assess the
audio quality of the reconstructions. 69% of the participants
chose DPAI as the method that provided the most plausible
reconstruction. SGA was instead chosen in the 21% of the
cases, and CAW in the 10% of the cases. As far as SGA
and CAW are concerned, the results of the perceptual test
show an opposing trend to the numerical tests, in which CAW
obtained better results. This outcome is justified by the fact
that while SGA also affects the uncorrupted parts of the audio
signals, the algorithm does not introduce many artifacts or
discontinuities, since the portions of signal used to fill the
gaps are extracted from the input signal itself. Audio signals
computed using CAW instead, while achieving better results
in terms of quantitative metrics, present many discontinuities
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and audible artifacts in proximity of the transition between
reconstructions and uncorrupted parts.

The subjective test confirms the results of the quantitative
tests and proves that the proposed method is able to obtain
coherent and meaningful reconstructions of corrupted audio
signals, in the considered domain of application.

V. CONCLUSION

In this work, we presented a novel audio inpainting method,
based on a deep prior approach. The method is able to
restore an audio signal affected by multiple gaps, with a
duration ranging between 40ms and 80ms. Unlike classic
deep learning techniques, in which the models are trained
on large data sets, our solution only relies on the corrupted
audio observation it aims to reconstruct. It is based on the
MultiResUNet architecture [24] and enhanced with the use
of harmonic convolutions [25]. Both quantitative and per-
ceptual tests show that, in its domain of application, the
proposed solution outperforms the methods considered for
comparison. Nonetheless, DPAI also presents some downsides.
In particular, as the size of individual gaps increases, the
performances quickly degrade: the overall reconstruction gets
worse and the gaps more noticeable as the signal energy
drops within the filled portions. Moreover, the single-element
training approach, while it does not need to exploit a large
data set, is limited by the time necessary to process a single
corrupted audio signal. In order to overcome this limitation
it could be possible to exploit pre-trained architectures, that
have already been conditioned on different audio signals.

Further developments for this method could include the ex-
traction, from the corrupted audio, of explicit features such as
beat and chord-tracking, since their exploitation could improve
the inpainting quality and introduce complex structures and
dependencies.
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