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Abstract—The paradigm shift from a one-size-fits-all architec-
ture to a service-oriented network infrastructure promised by
network slicing will demand novel technical solutions, as well as
new business models. In particular, the role separation between
infrastructure providers, i.e. the ones owning the network, and
slice tenants, i.e. the ones providing specialized services tailored
to their vertical segments, may encourage the definition of a
shared platform (or marketplace) where the former can monetize
their network infrastructure by leasing network resources at a
market price, and the latter can rent on-demand the network
resources needed to offer their services at the desired quality.
This also enables the flexibility for the slice tenants to optimize
the management of their slices by adapting their resource demand
to fluctuations of their traffic or variations of the price in the
market. In this paper, we extend the market mechanism scheme
developed in previous works by including intra-slice radio admis-
sion control policies in the utility definition of the tenants in the
slicing market game. Moreover, we characterize the mathematical
properties of the game with respect to slice configuration, i.e. how
diverse strategical behavior of the tenants affects the market
operation, in terms of slice resource allocation and performance.
Our analysis offers insights to the slice tenants on how they
could reconfigure their techno-economic performance indicators
in response to the dynamics of network and of the market, namely
how to adapt their long-term (and/or real-time) strategies to the
fluctuations of the traffic to enhance network performance and
increase profits.

I. INTRODUCTION

The key differentiator of the upcoming 5G and beyond
systems from previous wireless technologies is the integration
of vertical industries in the telcos ecosystem, which paves
the way for new market opportunities and innovative business
models [1]. In particular, network slicing enables an Infras-
tructure Provider (INP) to support diverse services over a
common network infrastructure by offering customized end-
to-end (E2E) logical networks, i.e., slices, by sharing the
same pool of network resources and functionalities. Once
in operation, the slices may need to be dynamically scaled
up/down to match any variation of service requirements or
adapt their configuration to dynamic changes and/or unde-
sired trend in their monitored Key Performance Indicators
(KPIS). Therefore, openness of the network to third parties
and flexibility in the management of the slices are key fea-
tures to encourage vertical players to use existing network
infrastructures rather than deploying their own private infras-
tructure. In [2], the authors define a framework based on a

vertical-oriented network slicing design where slice tenants
can entirely customize and upgrade their network slices,
with zero-touch service and network management. Along the
same lines, [3] addresses the key challenges of the life-cycle
management of network slices, discussing the tradeoff between
the degree of control and customization of network slices
(by the vertical tenant) and the operational complexity in
the network management (by the INP), specifically for the
management of the shared resources in Radio Access Network
(RAN) [4], e.g., the spectrum. Due to the random nature of
traffic, physical radio resource reservation might not suffice to
provide neither resource efficiency nor expected guarantees in
terms of Quality of Service (QOS) and Quality of Experience
(QOE) [5], [6]. To maintain satisfactory user experience and
high profits for slice tenants in a dynamic environment, a
slice may need to be reconfigured according to the varying
traffic demand and resource availability. However, existing
works focus either on static resource allocation, leaving to
admission control the decision of accepting a network slice
to guarantee the Service Level Agreement (SLA) in varying
traffic conditions [7], [8], or defines centralized optimization
routines to dynamically allocate the resources to increase
resource efficiency or maximize social welfare [9], [10], [11].
However, since these slices will be used by profit business
entities, e.g. verticals, the allocation of physical resources to
the network slices must consider their private revenue and
business models, in addition to the provisioning of desired
QOS.

In [12], [13], we introduce a Slicing Management Frame-
work (SMF) that can be applied for the dynamic orchestration
of network resources owned by an INP in a multi-tenant
shared marketplace. In those works, the market game with
its mathematical properties is described, together with an
algorithmic implementation to guarantee the convergence to
a Nash Equilibrium (NE). In this paper we aim at completing
the picture by testing the applicability of the SMF in a realistic
scenario and providing additional insights on the impact of
each tenant’s choice in the evolution of the market due to
the configuration of their slices. We show that the system
automatically scales and adapts the resource allocation to
the dynamics of a real network, being able to react to both
short-term effects, like mobility and handovers, and long-term
changes in the overall offered traffic at different times of a



day, whose variations are taken from traffic traces of an LTE
network collected in a urban area. Given the fluctuations of
slices’ traffic, we extend the analysis of the slicing market
game by introducing intra-slice Radio Admission Control
(RAC) policies in the strategy evaluation of the tenants, as a
mean to control slice congestion that can affect both network
performance and costs for the resources, similarly to what is
proposed in [14]. Moreover, differently from [12], [13], we
also offer insights to the slice tenants for a better customization
of their network slice techno-economical configuration. This
would allow them to better meet their business intents and
desired slice’s SLAs.

The paper is structured as follows. In Section II, we describe
the system model of the slicing marketplace and introduce
the payoff functions of the game when including RAC. In
Section III, we derive some relevant theoretical properties of
the game and analyze the impact of the slice configurations
on their strategic behavior in the market. Numerical evaluation
and simulation setup are discussed in Section IV and, finally,
Section V concludes the paper with final remarks and future
works.

II. SLICING MARKET GAME

We consider a network slicing setup consisting of a set
of network slices, S, each one owned by a single tenant
or vertical enterprise1, that engage in a shared marketplace
for purchasing radio network resources, i.e., spectrum, to be
assigned to their slices. We further assume that the marketplace
is controlled and managed by a single INP, which applies
dynamic pricing policies to monetize the utilization of the
network resources, e.g., by adapting the price for a unit of
resources according to the current demand. Let xs ∈ [0, 1]
be the resource allocation request of a slice s, normalized
according to the total available system bandwidth, and let
l =

∑
s∈S xs be the current load in the network, namely the

total resource demand from all the slices. Then, we define the
pricing function as

P (l) = 1 + eγ(l−l0), (1)

where parameters γ and l0 allow one to tune the shape of the
pricing function. In particular, when the total load approaches
the value l0, the price increases exponentially to discourage the
tenants to purchase extra resources. Accordingly, we compute
the costs of the tenants for purchasing xs resources in the
market as

Cs(xs, l) = xs · P (l), (2)

where the term xs depends solely on the tenant decision,
while P (l) accounts for the aggregate decisions of all the
tenants (in terms of load). As done in [12], [13], we model
the interactions of the tenants in the marketplace as a slicing
market game. Then, let G = 〈S, (Xs)s∈S , (us)s∈S〉 be the
strategic form of the slicing market game with S as the

1This assumption holds for simplicity. In general, a single tenant may
control multiple network slices and still have different business models for
each of them.

set of players (the slice tenants), Xs ∈ [0, 1] the strategy
space (normalized amount of resources to buy) and us the
payoff functions of the players. In previous works [12], [13],
we analyze the property of the game, by showing that the
game G belongs to the subclass of aggregative games [15],
given the aggregative property of the cost function Cs(·).
We further prove the existence of NE for a class of utility
(payoff) functions and provide an algorithmic implementation
that guarantees the convergence to at least one of them, also
discussing the quality of the achieved equilibria. We assume
the payoff function of the players to consist of two terms:
• a private term, Rs(xs), describing the business model of

the tenants that computes the expected returns given the
achieved slice performance, which depends solely on the
individual action of the slice tenant, and

• a costs term, Cs(xs, l), that varies according to the law
of demand and supply of the market.

Therefore, the payoff function of the tenant can be computed
as

us(xs,x−s) = Rs(xs)− Cs(xs,x−s), (3)

where we replace the load l with x−s to highlight the
dependence on the other players’ strategies. In particular, the
revenue function of the tenants is expressed as

Rs(xs) =
∑
k∈Ks

χk ·Ak(xk), (4)

where Ks is the set of users within a slice s, χk is a per-user
economic value that the tenant assigns to each user k, and
Ak(xk) is an acceptance probability function that quantifies
the level of satisfaction of a user for the experienced quality
of service. Notice that the value xk defines the per-user
resource allocation, which depends on how the radio scheduler
redistributes the xs resources of a slice among its users2. We
model the experienced quality of service (in terms of achieved
throughput) of a user through the acceptance probability
function defined in [18]:

Ak(xk;µ, r0) = 1− q
(
r(xk)

r0

)µ
, (5)

where q ∈ (0, 1), µ defines the steepness of the curve, i.e.,
the sensitivity of the user to performance degradation, r0
represents the maximal throughput and r(xk) = xk ·ηk denotes
the achievable throughput given the allocated resources, xk,
and the experienced spectral efficiency, ηk. As in [12], we as-
sume that the marginal utility shows diminishing return when
approaching some reference value (i.e., maximal throughput
r0), namely that the increase in quality of experience of a
user vanishes when approaching the requested QOS.

A. Admission control policies

In this paper, we extend the analyses of the previous
works by including customized RAC policies for each slice.
Indeed, the admission of new users in the system for a slice

2In the rest of the work, we assume that the resources are evenly split
among the users, i.e. xk ' xs

|Ks|
- with | · | denoting the cardinality of a set

- as achieved by the state of the art proportional fair schedulers [16], [17].



may require a renegotiation of the current purchased network
resources to avoid degradation of performance of already
admitted users. However, depending on the current load of the
network, the purchase of extra resources might not necessarily
lead to an increase in performance (or profits, due to higher
prices). Therefore, the admission of new users can impact
the decisions of the tenants in the market. Hence, we replace
the payoff functions presented in Eq. (3) with the following
formulation

us(xs, ns,x−s) = Rs(xs, ns)− Cs(xs,x−s), (6)

where the RAC decision of a tenant translates into the number
of users admitted in the system, ns. Notice that at time of
resource negotiation, we assume the tenants to have complete
knowledge of their current offered traffic. This assumption
holds for tractability reason. However, this approach can be
applied and further optimized predicting (e.g. by means of
time series) their daily traffic, taking into account that, as
a consequence, their RAC policies might be affected by
potential prediction errors [8]. Given the complexity of this
prediction use case (and the potential impact on its decisions
as well as on the decisions of other players in the market
game), we focus on a simplified scenario where the amount
of traffic is known by the tenants and no prediction errors must
be taken into account.

The RAC policy considered hereafter assumes that users
arrive in the system at random time and, therefore, the tenants
cannot select the users to be accepted according to favorable
channel conditions, neither discriminate users based on their
location (e.g., reject an user at cell edge). Indeed, the tenant
evaluates one user per time and accept a new user only if
it generates an increase in its profit function, us(·). After a
new user is rejected, all following users are also rejected.
The optimization variables of the tenants become, therefore,
the tuple (xs, ns), where the RAC policy implements the
following:

∀xs,∃nopt
s : Rs(xs, n

opt
s ) ≥ Rs(xs, ns),∀ns ∈ [0, |Ks|]. (7)

In a such way, the slice tenant will admit a new user only if
it generates an increase in revenues, rejecting them otherwise.
It is important to remark that

Proposition 1. The market game G with the RAC policy of
Eq. (7) always admits at least one NE. Furthermore, the Best
Response Dynamics (BRD) algorithm always converges to a
NE in a finite number of steps.

Proof. The proposition can be easily verified by construction,
by recalling the existence and convergence condition in [12,
Theorem 1 and 2]. Indeed, given the formulation in Eq. (7),
it can be easily verified that the revenue function Rs(xs, n

opt
s )

holds the same property of Rs(xs) when RAC is not consid-
ered, namely being an increasing and differentiable function
in xs, which is a necessary condition for the existence and the
convergence to a NE.

In what follows, we remove the dependency on ns of us(·)
for ease of notation.

III. THEORETICAL PROPERTIES OF THE MARKET GAME

In this section, we characterize the properties of the market
game, based on the customization of the tenants’ private rev-
enue function, Rs(·). The main idea behind our investigation
comes from the property that in aggregative games the players
can analyze the evolution of the game by simply focusing on
their individual action and on the value of the aggregate of
the other players. In our specific market structure, we can
further simplify those assumptions since players only need
to know the updated shape of the pricing function, with no
need to expose the actual total resource occupation. This is a
very interesting property that allows each player to analyze
the game independently on the number of players and on
the shape of the opponents’ utility functions, focusing only
on the evolution of the prices in the market. Moreover, we
can characterize the effects of changing a parameter of the
utility function of any player. For this purpose, we introduce
the concept of positive shock defined in [19].

Definition 1. Consider the payoff function of the game G,
us(xs,x−s, ps) with parameter ps. An increase in ps ∈ R
is a positive shock for player s if the payoff function us(·)
exhibits increasing differences in xs and ps and ut(x, ps) =
ut(x) ∀t 6= s.

From [19], we can also state the following

Proposition 2. In the game G, a positive shock to any player
s ∈ S determines an increase in his allocation, xs, and
decrease in the aggregate allocations of the remaining players,
x−s, at the NE. Moreover, it causes an increase in his own
payoff and a decrease in at least one other player’s payoff at
the NE.

Specifically, we can prove that, for the slicing market game,
holds the following

Proposition 3. For any slice s, the admission of new users or
an increase in the per-user economic value, χk, is a positive
shock for the player in the market game G.

Proof. To prove the proposition, one must verify that the util-
ity function us(·) exhibits increasing differences in

(
xs, n

opt
s

)
and (xs, χs), respectively, and that any changing in the value
of parameters nopt

s and χs for slice s does not affect the utility
function of other players t ∈ S, t 6= s. The latter is true by
definition, given that the parameters χs and nopt

s affect only the
revenues, Rs(xs), which are privately defined by each tenant.
The increasing difference property can be verified by checking
that the cross-partial derivatives of us(·) are nonnegative. This
is immediately verified by noticing that Cs(xs,x−s) does not
depend neither on nopt

s nor on χs. Therefore, we just need
to verify that the cross partials obtained from Rs(xs) are
nonnegative. The analytical derivation is left to the reader.
However, intuitively, one can expect that the revenue function
satisfies the increasing differences property, being the revenue
function Rs(xs) an increasing function in the purchased
resources, xs, per-user economic value, χs, and number of
admitted users, nopt

s , as also remarked in Proposition 1.
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Fig. 1: The parameter χ and number of users cause a positive
shock for Slice 1.

An example of a positive shock for a player is plotted in
Figure 1, for the two aforementioned values. We consider a
scenario with two symmetric slices and one slice which spans
different parameter configurations. In particular, in Fig. 1(a),
we show that an increase in the per-user economic value, χ1,
allows the tenant to get an higher amount of resources, causing
a decrease in his opponents’ strategies (and, therefore, to the
aggregate, as stated in Proposition 2). The same applies when
a slice experiences an increase in his traffic demand, expressed
as number of accepted users n1, where the admission of new
users induces the same effect (cf. Fig. 1(b)). Conversely, if we
look at the parameters modeling the quality of experience of
the users, they do not induce a positive shock in the allocation
of the network slices. Indeed, as shown in Figure 2, an increase
in the sensitivity parameter µ and in the maximal throughput
r0 - for example due to a change in the user behavior - may
encourage the tenants to purchase more resources in the market
(to improve the user performance), but it may also result in
the opposite behavior due to non sustainable costs, causing,
e.g., an higher user rejection rate and/or lower revenues.

IV. NUMERICAL EVALUATION

In this section, we simulate the online trading of radio
resources in the slicing marketplace. We consider the same
slicing setting presented in [12], with S = {critical IoT (cIoT),
eMBB Premium (eMBB Pr.), eMBB Basic (eMBB Bs.)}, to
span different service characteristics and user behaviors, i.e.,
• critical applications with low-rate requirements but high

QoS guarantees (cIoT),
• non-critical applications with high-rate requirements and

high user economic value (eMBB Pr.),
• non-critical applications with adaptive QoS and low user

economic value (eMBB Bs.),
that we model by means of different values of the tuple
(χs, µs, r0s). In our experiments, the users of each slice are
uniformly distributed throughout the coverage area of 3 cells
and their position over time varies according to their random
movements. In particular, we assume that the users of the cIoT
slice have fixed locations, while the users of eMBB slices
move at constant speed of 3 km/h. We further consider, without
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Fig. 2: The parameters µ and r0 do not cause positive shock for
Slice 1.

Tenant cIoT eMBB Pr. eMBB Bs.
µs 8 4 2

r0s 0.5 Mbps 4 Mbps 2 Mbps
qs 0.001 0.001 0.001

χs 3 8 3

TABLE I: Slice parameters setting

loss of generality, that all the users within a slice have the same
QoS requirements, which are defined in terms of throughput,
r0s , and the same economic value, i.e. χk = χs,∀k ∈ Ks. In
Table I we resume the parameter settings of the 3 slices.

The simulations reproduce a realistic scenario, where the
incoming traffic of the slices vary over time. The simulated
traffic traces are taken from real measurements collected from
an LTE network in an urban area and they are artificially re-
distributed among the 3 slices. In our simulations, we consider
the traffic patterns of two consecutive weekdays to leverage the
network utilization and the resource demand during different
time of the day (e.g., showing different behavior during peak
hours or during non-peak hours - for example at night).
We assume that cIoT end-users have a deterministic network
behavior, with constant data transmission during daily hours
and only background traffic transmitted during night hours.
Contrarly, the eMBB slices exhibit more randomic behavior,
due to sudden activation of users requesting data. The traffic
traces are taken from an original dataset that consists of
time series collecting average downlink datarate observations
(measured in bps) with 15-minute granularity from 3 cells of
an LTE network for a duration of two days. The subdivision
of the traffic traces among the 3 slices during the two days of
measurements is shown in Fig. 3, for the whole 48 hours with
4 samples per hour (for a total of 192 simulated scenarios).
For every traffic sample of 15 minutes, each user random
movement is simulated for 3 out of the 15 minutes to reduce
the simulation time, determining the variable serving cell and
channel during that time span.

The experiments are performed in a downlink system level
simulator which is 3GPP-calibrated [20] for a 3D Urban
Macro (3D-UMa) scenario and abstracts the physical-layer
effects through a link-to-system level interface. The interface
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Fig. 3: Time evolution of traffic request for each slice. In dashed lines the incoming offered traffic; in solid lines the accepted served traffic
after RAC.

applies an equivalent Signal-to-Interference-and-Noise Ratio
(SINR), computed given the cell topology, the active user
transmissions, and a vertically polarized antenna configuration.
The radio environment and other relevant simulation param-
eters are taken from [17]. We assume that the strategy step
size of each slice is equal to ∆x = 15 kHz, that is the
subcarrier spacing and a total bandwidth of 10 MHz. The
traffic traces are then generated in the 3GPP-calibrated system
level simulator, where each user data transmission is modeled
as Constant Bit Rate (CBR) traffic, and the traffic variation
in Fig. 3 is obtained via the activation and/or deactivation
of new users in each slice. We assume that the tenants have
perfect knowledge of their incoming traffic at time of resource
negotiation and they can implement their own independent
admission control policies to shape the traffic they are going
to accept. The market game is executed at each cell on a
timescale of 30 seconds to let slice tenants adjust the per-cell
required resources due to user mobility (e.g., after handovers)
and/or variation of channel quality of their users, in addition
to traffic fluctuations.

In Fig. 3, we show the offered traffic (in dashed lines)
and the served traffic (in solid lines) of each slice, after the
RAC policies are implemented. One can notice that both the
cIoT and the eMBB Bs. slices (Fig. 3(a) and Fig. 3(c)) can
almost serve 100% of their traffic, rejecting only few users
during peak hours, while the eMBB Pr. slice shows an higher
amount of dropped traffic, specifically in proximity of a burst
of traffic for its slice (cf. Fig. 3(b)). This behavior depends
on multiple factors, hidden in the strategic behavior of the
players in the marketplace, but they can be partly addressed
by analyzing the results given in Fig. 4, where we show the
achieved performance of the slices with and without RAC.
One can observe in Fig. 4(a) the variation in costs for each
slice, which follows the increase in price due to their daily
traffic oscillation, while in Fig. 4(b) the average acceptance
values of the slices, which we use as a measure to estimate

the monitored slice KPIs. If we compare the results for the
cIoT and the eMBB Bs. when RAC policies are implemented,
we see that there is no significant variation in their KPIs.
Indeed, given the nature of the two slices, the cIoT slice
can always afford higher costs (to accept more users) to keep
the desired level of performance, due to the criticality of its
service, while the eMBB Bs. slice can always accept users in
the system while keeping low costs by offering lower QoS.
Slightly variations can be observed only during high traffic
peaks, where an optimized utilization of the resources can
benefit the slices in terms of lower costs and more affordable
performance. Conversely, the eMBB Pr. slice can effectively
improve his KPIs only by rejecting part of the traffic, in
order to get lower prices and higher performance for the
accepted users. However, as shown in the previous section,
the slice tenants can manipulate their configuration parameters
to enhance some of their KPIS, being reducing costs or
improving performance. In particular, we consider the case
when the eMBB Pr. slice intends to improve his performance
indicators, namely increasing the percentage of accepted users
in the system. For example, by raising the per-user economic
value from χs = 8 to χs = 20, we can observe a radical
behavioral change in the marketplace. Indeed, from Fig. 5,
one can see the positive shock effect on resource allocation
(Fig. 5(a)) and on the served traffic (Fig. 5(b)), plotted as dif-
ferences with respect to the same values illustrated in previous
configuration. In particular, during non-peak hours, where the
traffic demand is not high, there are no evident variations in
the strategic behavior of all the tenants (due to the lower price
for resources); contrarily, the eMBB Pr. can accept more traffic
for his slice (by increasing the resource demand) during peak
hours. As expected, we can appreciate also the reduction in
the resource demand of the other players, with consequences
also on their accepted traffic. Although this behavior might
look undesirable, it exactly describes how diverse can be
the strategic behavior of the slice tenants in this market and
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Fig. 4: Real-time KPIs monitoring during marketplace evolution
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Fig. 5: Positive shock and performance enhancement for eMBB Pr.
slice

how they might influence each other in the decisions to be
taken. One can imagine that the optimal setup of the techno-
economic KPIS (i.e., the ones reflecting the strategic behavior
of the players in the market) can either define the long-term
or real-time slice configuration, depending on their private
business model. By our approach, we offer slice tenants a
mean to optimize the management of their slices, by keeping
simultaneously an eye to technical performance indicators, like
achieved throughput or latency, and business intents, like cost
reductions or profit maximization.

V. CONCLUSION

In this paper, we discuss a slicing marketplace that enables
a dynamic negotiation of radio resources among network slice
tenants. We model the interaction of the slice tenants in
the market through game theory and describe the theoretical
properties of the market game, by means of theoretically
demonstrations and numerical simulations. We introduce intra-
slice radio admission control policies in the utility function of
the players and describe how the tenants behavior in the market
is affected by the parameter configuration of the slices. We test
the proposed scheme on a dynamic environment, showing that
the system automatically scales and adapts the slice resource
allocation to the fluctuations of the traffic demand of slice
users. Moreover, we show how slice tenants can modify their
techno-economic parameter configuration in response to the

evolution of the market, e.g., for performance enhancement
and/or costs reduction. The automated optimization of those
parameters is left to future works.
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