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A novel space-time discretization for the (linear) scalar-valued dissipative wave equation is presented. It 
is a structured approach, namely, the discretization space is obtained tensorizing the Virtual Element (VE) 
discretization in space with the Discontinuous Galerkin (DG) method in time. As such, it combines the advantages 
of both the VE and the DG methods. The proposed scheme is implicit and it is proved to be unconditionally stable 
and accurate in space and time.
1. Introduction

In this paper we propose a space-time Virtual Element/Discontin-

uous Galerkin method for the (linear) scalar-valued dissipative wave 
equation in two- and three-dimensions. The method is based on Vir-

tual Element (VE) for space discretization coupled with discontinuous 
Galerkin (DG) finite element method for the time integration of the re-

sulting second-order ordinary differential system. The model problem 
considered in this paper serves as a prototype model for the vector-

valued (damped) elastic wave equation typically encountered in geo-

physical applications.

The Virtual Element method (VEM) has been introduced in [1] for 
elliptic problems. VEMs for linear and nonlinear elasticity have been 
developed in [2–4], whereas VEMs for parabolic, plate bending, Cahn-

Hilliard, Stokes, Helmholtz and Laplace-Beltrami problems have been 
addressed in [5–10]. VEMs for the space discretization of wave-type 
problems have been addressed in [11–14].

Concerning time-integration of second-order differential systems 
stemming from space discretization of wave-type problems, classically, 
time marching schemes are based on (either implicit or explicit) finite 
differences approaches, e.g., we refer to [15,16] for a general overview. 
On the other hand, space-time finite element methods for second-order 
hyperbolic equations have been largely developed, thanks to their abil-

ity to achieve high-order approximations in both space and time, to 
accurately capture steep fronts, and their firm mathematical founda-

tion, where stability and convergence can be proved.

Among space-time finite element methods, we can distinguish be-

tween “structured” and “unstructured” numerical approaches. In “struc-

* Corresponding author.

E-mail addresses: paola.antonietti@polimi.it (P.F. Antonietti), francesca.bonizzoni@polimi.it (F. Bonizzoni), marco.verani@polimi.it (M. Verani).

tured” approaches, the space-time grid is obtained as tensor product of 
space and time meshes; a non-exhaustive list of approaches includes 
[17–21]. For such formulations, ℎ−, 𝑝− or ℎ𝑝− adaptive refinement of 
the space-time domain can be developed and implemented, see, e.g., 
[22,23]. On the other hand, “unstructured” techniques, see, e.g., the 
seminal works [24,25] make use of full space-time meshes, where time 
is treated as an additional dimension, see [26–28] for examples, and the 
recent contribution [29]. Among unstructured methods, we also men-

tion Trefftz-type techniques [30–34], in which the numerical solution 
is looked for in the Trefftz space, and the tent-pitching paradigm [35], 
in which the space-time elements are progressively built on top of each 
other in order to grant stability of the numerical scheme. Recently, in 
[33,34] a combination of Trefftz and tent-pitching techniques has been 
proposed with application to first order hyperbolic problems. A tent-

pitching scheme motivated by Friedrichs’ theory can be found in [36].

The DG approach has been extensively used to approximate initial-

value problems, where the DG paradigm shows certain advantages with 
respect to other implicit schemes such as the Johnson’s method, see e.g. 
[37,38]. Indeed, thanks to the DG paradigm, the solution at time-slab 
[𝑡𝑛, 𝑡𝑛+1] depends only on the solution at the time instant 𝑡−

𝑛
. The use 

of DG methods in both space and time dimensions leads to a fully DG 
space-time formulation such as e.g., [39–41,21].

Finally, a typical approach for second order differential equations 
consists in reformulating them as a system of first order hyperbolic 
equations. Thus, velocity is considered as an additional problem’s un-

known, yielding to doubling the dimension of the final linear system, 
cf. [39,24,42,37,43,44].
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In this work we present a novel structured VEM/DG formulation 
that combines the VE advantages for space discretization together with 
those of the DG methods for time integration. The obtained scheme is 
implicit, unconditionally stable and provides an accurate approximation 
with respect to both space and time discretization errors. Throughout 
the paper we will use the notation 𝑥 ≲ 𝑦 with the meaning 𝑥 ≤ 𝑐𝑦, with 
𝑐 positive constant independent of the discretization parameters.

The paper is organized as follows. In Section 2 we introduce the 
problem; its semi-discrete VEM approximation is discussed in Section 3, 
and in Section 4 we present DG discretization in time. Section 5 in-

troduces the fully-discrete VEM-DG formulation and studies its well-

posedness and stability, whereas in Section 6 we prove a priori error 
estimates in a suitable energy norm. Finally, in Section 7, the method is 
validated through several numerical experiments in two dimensions (in 
space).

2. Problem setting

Let Ω ⊂ℝ𝑑 , 𝑑 = 2, 3, be an open bounded convex polygonal domain. 
The problem we are interested reads as follows: for 𝑇 > 0, find 𝑢∶ Ω ×
(0, 𝑇 ] →ℝ such that

⎧⎪⎨⎪⎩
𝑢𝑡𝑡 + 𝜈𝑢𝑡 −Δ𝑢 = 𝑓, in Ω× (0, 𝑇 ],
𝑢 = 0, on 𝜕Ω× (0, 𝑇 ],
𝑢(⋅,0) = 𝑢0, 𝑢𝑡(⋅,0) = 𝑧0, in Ω,

(2.1)

where 𝜈 ∈ ℝ+ is the dissipation coefficient, 𝑓 is the external force, 𝑢0
and 𝑧0 are the initial data, and 𝑢𝑡, 𝑢𝑡𝑡 denote the first and second or-

der time derivative of the unknown function 𝑢, respectively. Note that, 
by little modifications, our analysis extends to the case of (positive) 
bounded dissipation function 𝜈 ∈ 𝐿∞(Ω). By standard arguments, we 
derive the variational formulation of (2.1): given 𝑓 ∈𝐿2(Ω × (0, 𝑇 )) and 
𝑢0, 𝑧0 ∈𝐻1

0 (Ω), find 𝑢 ∈ 𝐶0 (0, 𝑇 ;𝐻1
0 (Ω)

)
∩𝐶1 (0, 𝑇 ;𝐿2(Ω)

)
such that, for 

all 𝑣 ∈𝐻1
0 (Ω) and for a.e. 𝑡 ∈ (0, 𝑇 )(

𝑢𝑡𝑡(𝑡), 𝑣
)
𝐿2(Ω) + 𝜈

(
𝑢𝑡(𝑡), 𝑣

)
𝐿2(Ω) + 𝑎(𝑢(𝑡), 𝑣) = (𝑓 (𝑡), 𝑣)𝐿2(Ω) , (2.2)

supplemented with the initial conditions 𝑢(⋅, 0) = 𝑢0, 𝑢𝑡(⋅, 0) = 𝑧0, where 
(∙, ∙)𝐿2(Ω) denotes the 𝐿2(Ω)-inner product, and 𝑎∶ 𝐻1

0 (Ω) ×𝐻
1
0 (Ω) →ℝ is 

defined as 𝑎(𝑤, 𝑣) = (∇𝑤,∇𝑣)𝐿2(Ω). Following [45] it is possible to prove 
existence and uniqueness of the solution to problem (2.2).

Remark 2.1. Note that we assume Ω to be convex in order to prove op-

timal 𝐿2-error estimates. However, the proposed method can be applied 
without modifications to non-convex domains, yielding suboptional the-

oretical convergence rates in the 𝐿2-norm.

3. Space discretization based on the VEM

In this section we apply the VEM to discretize problem (2.2) in 
space. In particular, we follow [11], where the VE space discretization 
of (2.2) with damping 𝜈 = 0 is introduced. We start recalling the ingre-

dients of the VEM that we will need, with focus on the two-dimensional 
case (the three-dimensional case being analogous but more technical). 
For a complete presentation, we refer to [1,46,47].

3.1. VE space

Let ℎ be a (not necessarily conforming) decomposition of Ω into 𝑛𝑃
non-overlapping (open) polygons 𝐸𝓁 with flat faces, i.e., Ω̄ = ∪𝑛𝑃𝓁=1�̄�𝓁
with 𝐸𝓁 ∩ 𝐸𝓁′ = ∅ for 𝓁 ≠ 𝓁′. Let ℎ𝐸 ∶= diam(𝐸) and ℎ ∶= max𝐸∈ℎ ℎ𝐸 . 
In the following, we assume that (i) each element 𝐸 ∈ ℎ is star-shaped 
with respect to a ball of radius 𝛾 ℎ𝐸 ; (ii) the distance between any two 
vertices of 𝐸 is larger than 𝑐 ℎ𝐸 , for 𝛾, 𝑐 > 0 constants independent of ℎ
and 𝐸.

Let 𝑘 ∈ℕ denote the polynomial degree of the method. For any fixed 
𝐸 ∈ ℎ, we introduce the following notations:
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(i) ℙ𝑘(𝐸) is the set of polynomials on 𝐸 of total degree less or equal 
to 𝑘;

(ii) 𝔹(𝜕𝐸) ∶= {𝑣 ∈ 𝐶0(𝜕𝐸) s.t. 𝑣|𝑒 ∈ ℙ𝑘(𝑒) for all edge 𝑒 ⊂ 𝜕𝐸};

(iii) Π∇,𝐸 ∶ 𝐻1(𝐸) → ℙ𝑘(𝐸) is the energy projection operator defined 
by

𝑎𝐸 (𝑞𝑘,𝑤−Π∇,𝐸𝑤) = 0 ∀ 𝑞𝑘 ∈ ℙ𝑘(𝐸), (3.1)

where 𝑎𝐸 ∶ 𝐻1(𝐸) × 𝐻1(𝐸) → ℝ is the local counterpart of the 
bilinear form 𝑎(∙, ∙), namely, 𝑎𝐸 (𝑣, 𝑤) = ∫

𝐸
∇𝑣 ⋅∇𝑤 d𝑥 for all 𝑣, 𝑤 ∈

𝐻1(𝐸), and 𝑎(𝑣, 𝑤) =∑𝐸∈ℎ 𝑎𝐸 (𝑣, 𝑤) for all 𝑣, 𝑤 ∈𝐻1(Ω). To fix 
the constant in the definition (3.1) of Π∇,𝐸𝑤, we further require

⎧⎪⎪⎨⎪⎪⎩

1|𝜕𝐸| ∫
𝜕𝐸

(𝑤−Π∇,𝐸𝑤) d𝑠 = 0, for 𝑘 = 1,

1|𝐸| ∫
𝐸

(𝑤−Π∇,𝐸𝑤) d𝑥 = 0, for 𝑘 > 1;

(iv) Π0,𝐸 ∶ 𝐿2(𝐸) → ℙ𝑘(𝐸) is the 𝐿2-orthogonal projection operator 
defined by(
𝑞𝑘,𝑤−Π0,𝐸𝑤

)
𝐿2(𝐸) = 0 ∀ 𝑞𝑘 ∈ ℙ𝑘(𝐸). (3.2)

There exists a positive constant 𝐶 such that, for all 𝑢 ∈𝐻𝑠+1(𝐸)
with 0 ≤ 𝑠 ≤ 𝑘, there holds‖‖‖𝑢−Π0,𝐸𝑢

‖‖‖𝐿2(𝐸) ≤ 𝐶ℎ𝑠+1𝐸 |𝑢|𝐻𝑠+1(𝐸) , (3.3)

where ℎ𝐸 is the diameter of the element 𝐸. (See [48].)

We can now introduce the (local) enhanced VE space

𝑊 𝐸
ℎ
∶=
{
𝑤 ∈ 𝑉 𝐸

ℎ
s.t.

(
𝑤−Π∇,𝐸𝑤, 𝑞

)
𝐿2(𝐸) = 0 for all 𝑞 ∈ ℙ𝑘(𝐸)∕ℙ𝑘−2(𝐸)

}
,

(3.4)

where 𝑉 𝐸
ℎ

denotes the (local) augmented VE space

𝑉 𝐸
ℎ

∶=
{
𝑤 ∈𝐻1(𝐸) s.t. 𝑤 ∈ 𝔹𝑘(𝜕𝐸) and Δ𝑤 ∈ ℙ𝑘(𝐸)

}
,

and ℙ𝑘(𝐸)∕ℙ𝑘−2(𝐸) denotes the set of polynomials of total degree 𝑘
on 𝐸 that are 𝐿2-orthogonal to all polynomials of total degree 𝑘 − 2
on 𝐸 (with the convention ℙ−1 ∶= ∅). Note, in particular, that ℙ𝑘(𝐸) ⊂
𝑊 𝐸
ℎ
(𝐸). The space 𝑊 𝐸

ℎ
is equipped with the following set of (local) 

degrees of freedom (DOFs):

• nodal values at all 𝑛𝐸 vertices of the polygon 𝐸;

• nodal values at 𝑘 − 1 internal Gauss-Lobatto quadrature points of 
every edge 𝑒 ∈ 𝜕𝐸;

• (for 𝑘 ≥ 2) moments up to order 𝑘 − 2 in 𝐸, namely, for 𝑤 ∈𝑊 𝐸
ℎ

,(
𝑤,𝑞𝑘−2

)
𝐿2(𝐸) for all 𝑞𝑘−2 ∈ ℙ𝑘−2.

In particular, dim(𝑊 𝐸
ℎ
) = 𝑛𝐸𝑘 +

𝑘(𝑘−1)
2 . It is important to notice that both 

the energy projection and the 𝐿2-orthogonal projection operators are 
computable only on the basis of degrees of freedom above.

The global enhanced VE space is given by

𝑊ℎ ∶=
{
𝑣 ∈𝐻1

0 (Ω) s.t. 𝑣|𝐸 ∈𝑊 𝐸
ℎ

for all 𝐸 ∈ ℎ} . (3.5)

It is equipped with the following set of (global) DOFs:

• nodal values at all 𝑛𝑉 vertices of ℎ;
• nodal values at 𝑘 −1 internal Gauss-Lobatto quadrature points of all 
𝑛𝑒 edges of ℎ;

• (for 𝑘 ≥ 2) moments up to order 𝑘 − 2 in all 𝑛𝑃 polygons of ℎ, 
namely, for 𝑤 ∈𝑊ℎ,(
𝑤,𝑞𝑘−2

)
2 for all 𝑞𝑘−2 ∈ ℙ𝑘−2(𝐸);
𝐿 (𝐸)
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and it has dimension dim(𝑊ℎ) = 𝑛𝑉 + (𝑘 − 1)𝑛𝑒 + 𝑛𝑃
𝑘(𝑘−1)

2 . In the follow-

ing, we set 𝑁ℎ ∶= dim(𝑊ℎ).
Given a smooth enough function 𝑢, we define its VE interpolant 𝑢𝐼

as the function in 𝑊ℎ verifying, for all 𝑗 = 1, … , 𝑁ℎ

dof𝑗 (𝑢) = dof𝑗 (𝑢𝐼 ), (3.6)

where dof𝑗 is the operator associating its argument to the 𝑗-th (global) 
DOF. It can be shown (see, e.g., [52,54,55,53]) that there exists a posi-

tive constant 𝐶 such that, for all 𝐸 ∈ ℎ, there holds

‖‖𝑢− 𝑢𝐼‖‖𝐿2(𝐸) + ℎ ||𝑢− 𝑢𝐼 ||𝐻1(𝐸) ≤ 𝐶ℎ𝑘+1 |𝑢|𝐻𝑘+1(𝐸) . (3.7)

3.2. VE bilinear forms

Based on the classical observation that, given an arbitrary pair of VE 
functions 𝑣ℎ, 𝑤ℎ ∈𝑊 𝐸

ℎ
, the quantities 𝑎𝐸 (𝑣ℎ, 𝑤ℎ), 

(
𝑣ℎ,𝑤ℎ

)
𝐿2(𝐸) can not 

be computed, we introduce computable approximations 𝑎𝐸
ℎ
, 𝑚𝐸
ℎ
∶ 𝑊 𝐸

ℎ
×

𝑊 𝐸
ℎ

→ℝ, given by

𝑎𝐸
ℎ
(𝑣ℎ,𝑤ℎ) ∶= 𝑎𝐸 (Π∇,𝐸𝑣ℎ,Π∇,𝐸𝑤ℎ) +𝑆𝐸

(
(𝐼𝑑 −Π∇,𝐸 )𝑣ℎ, (𝐼𝑑 −Π∇,𝐸 )𝑤ℎ

)
,

𝑚𝐸
ℎ
(𝑣ℎ,𝑤ℎ) ∶=

(
Π0,𝐸𝑣ℎ,Π0,𝐸𝑤ℎ)

)
𝐿2(𝐸)

+𝑅𝐸
(
(𝐼𝑑 −Π0,𝐸 )𝑣ℎ, (𝐼𝑑 −Π0,𝐸 )𝑤ℎ

)
,

(3.8)

where 𝑆𝐸, 𝑅𝐸 ∶ 𝑊 𝐸
ℎ
×𝑊 𝐸

ℎ
→ℝ are symmetric stabilizing bilinear forms 

fulfilling, for all 𝑣ℎ 𝑤ℎ ∈𝑊 𝐸
ℎ

with Π∇,𝐸𝑣ℎ = 0, Π0,𝐸𝑤ℎ = 0,

𝑎𝐸 (𝑤ℎ,𝑤ℎ) ≲𝑅𝐸 (𝑤ℎ,𝑤ℎ) ≲ 𝑎𝐸 (𝑤ℎ,𝑤ℎ),(
𝑤ℎ,𝑤ℎ

)
𝐿2(𝐸) ≲𝑆

𝐸 (𝑤ℎ,𝑤ℎ) ≲
(
𝑤ℎ,𝑤ℎ

)
𝐿2(𝐸) .

(3.9)

In particular, the local virtual bilinear forms defined in (3.8) fulfill the 
𝑘-consistency and stability properties, namely, for all 𝑞ℎ ∈ ℙ𝑘(𝐸) and 
𝑤ℎ ∈𝑊 𝐸

ℎ

𝑎𝐸
ℎ
(𝑞ℎ,𝑤ℎ) = 𝑎𝐸 (𝑞ℎ,𝑤ℎ), 𝑚𝐸

ℎ
(𝑞ℎ,𝑤ℎ) =𝑚𝐸 (𝑞ℎ,𝑤ℎ), (3.10)

and

𝑎𝐸 (𝑤ℎ,𝑤ℎ) ≲𝑎𝐸ℎ (𝑤ℎ,𝑤ℎ) ≲ 𝑎
𝐸 (𝑤ℎ,𝑤ℎ),(

𝑤ℎ,𝑤ℎ
)
𝐿2(𝐸) ≲𝑚

𝐸
ℎ
(𝑤ℎ,𝑤ℎ) ≲

(
𝑤ℎ,𝑤ℎ

)
𝐿2(𝐸) .

(3.11)

Remark 3.1. In the numerical experiments, we will approximate the 
stabilizing forms 𝑆𝐸 (∙, ∙), 𝑅𝐸 (∙, ∙) with the computable bilinear forms 
𝑆𝐸
ℎ
(∙, ∙), 𝑅𝐸

ℎ
(∙, ∙) defined as follows:

𝑆𝐸
ℎ
(𝑣ℎ,𝑤ℎ) ∶=

𝑁𝐸∑
𝑟=1

DOF𝑟

(
(Id−Π∇,𝐸 )𝑣ℎ

)
DOF𝑟

(
(Id−Π∇,𝐸 )𝑤ℎ

)
,

𝑅𝐸
ℎ
(𝑣ℎ,𝑤ℎ) ∶= |𝐸|𝑁𝐸∑

𝑟=1
DOF𝑟

(
(Id−Π0,𝐸 )𝑣ℎ

)
DOF𝑟

(
(Id−Π0,𝐸 )𝑤ℎ

)
,

where |𝐸| is the area of the polygon 𝐸, 𝑁𝐸 ∶= dim(𝑊 𝐸
ℎ
) and {DOF𝑟}

𝑁𝐸
𝑟=1

denotes the set of local DOFs introduced in Section 3.1.

The global virtual bilinear forms 𝑎ℎ, 𝑚ℎ ∶ 𝑊ℎ ×𝑊ℎ→ℝ are then de-

fined, for all 𝑣ℎ 𝑤ℎ ∈𝑊 𝐸
ℎ

, as

𝑎ℎ(𝑣ℎ,𝑤ℎ) ∶=
∑
𝐸∈ℎ

𝑎𝐸
ℎ
(𝑣ℎ,𝑤ℎ), 𝑚ℎ(𝑣ℎ,𝑤ℎ) ∶=

∑
𝐸∈ℎ

𝑚𝐸
ℎ
(𝑣ℎ,𝑤ℎ).

From (3.11) it follows that the global virtual bilinear forms are contin-

uous, namely,

𝑎ℎ(𝑣,𝑤) ≲ ‖∇𝑣‖𝐿2(Ω) ‖∇𝑤‖𝐿2(Ω) ,
𝑚ℎ(𝑣,𝑤) ≲ ‖𝑣‖𝐿2(Ω) ‖𝑤‖𝐿2(Ω) . (3.12)
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We define the discrete 𝐻1-seminorm and the discrete 𝐿2-norm as fol-

lows

|∙|21,ℎ ∶= 𝑎ℎ(∙, ∙), ‖∙‖20,ℎ ∶=𝑚ℎ(∙, ∙). (3.13)

Combining (3.11) and (3.12), we find that, for all 𝑣ℎ, 𝑤ℎ ∈𝑊ℎ, there 
holds

𝑚ℎ(𝑣,𝑤) ≲ ‖‖𝑣ℎ‖‖0,ℎ ‖‖𝑤ℎ‖‖0,ℎ . (3.14)

3.3. VE semi-discrete variational problem

We define the VE approximation to the loading term 𝑓 (𝑡) for all 
𝑡 ∈ (0, 𝑇 ) as

𝑓ℎ(𝑡)|𝐸 ∶= Π0,𝐸𝑓 (𝑡) for all 𝐸 ∈ ℎ,
and the VE approximation to the initial conditions 𝑢0, 𝑧0 as the VE 
interpolants 𝑢0,ℎ, 𝑧0,ℎ of 𝑢0, 𝑧0, specifically, 𝑢ℎ,0, 𝑧ℎ,0 are piecewise poly-

nomials of degree less than or equal to 𝑘, with evaluations of DOFs 
coinciding with those of 𝑢0, 𝑧0 (see (3.6)).

The VE semi-discrete approximation to (2.2) reads: find 𝑢ℎ ∈
𝐶0 (0, 𝑇 ;𝑊ℎ) ∩ 𝐶1 (0, 𝑇 ;𝑊ℎ) such that, for all 𝑣ℎ ∈ 𝑊ℎ and for a.e. 
𝑡 ∈ (0, 𝑇 )

𝑚ℎ(𝑢ℎ,𝑡𝑡(𝑡), 𝑣ℎ) + 𝜈𝑚ℎ(𝑢ℎ,𝑡(𝑡), 𝑣ℎ) + 𝑎ℎ(𝑢ℎ(𝑡), 𝑣ℎ) =
(
𝑓ℎ(𝑡), 𝑣ℎ

)
𝐿2(Ω) , (3.15)

supplemented with the initial conditions 𝑢ℎ(⋅, 0) = 𝑢ℎ,0, 𝑢ℎ,𝑡(⋅, 0) = 𝑧ℎ,0. By 
classical arguments, it is possible to show that problem (3.15) admits a 
unique solution 𝑢ℎ(𝑡) (see Section Appendix A.1). Moreover, there holds 
the following stability result.

Theorem 3.2. Let 𝑓ℎ ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)). Then, the unique solution 𝑢ℎ to 
problem (3.15) fulfills the following inequality, for all 𝑡 ∈ (0, 𝑇 )

||𝑢ℎ(𝑡)||21,ℎ + ‖‖𝑢ℎ,𝑡(𝑡)‖‖20,ℎ ≲ ||𝑢ℎ,0||21,ℎ + ‖‖𝑧ℎ,0‖‖20,ℎ + ‖‖𝑓ℎ‖‖2𝐿2(0,𝑡;𝐿2(Ω)) . (3.16)

Proof. Choosing the test function 𝑣ℎ = 𝑢ℎ,𝑡(𝑡) in problem (3.15), and 
integrating in time between 0 and 𝑡, we find

𝑡

∫
0

𝑚ℎ(𝑢ℎ,𝑡𝑡(𝑠), 𝑢ℎ,𝑡(𝑠)) d𝑠+ 𝜈

𝑡

∫
0

𝑚ℎ(𝑢ℎ,𝑡(𝑠), 𝑢ℎ,𝑡(𝑠)) d𝑠

+

𝑡

∫
0

𝑎ℎ(𝑢ℎ(𝑠), 𝑢ℎ,𝑡(𝑠)) d𝑠

=

𝑡

∫
0

(
𝑓ℎ(𝑠), 𝑢ℎ,𝑡(𝑠)

)
𝐿2(Ω) d𝑠.

Observe that

𝑡

∫
0

𝑚ℎ(𝑢ℎ,𝑡𝑡(𝑠), 𝑢ℎ,𝑡(𝑠)) d𝑠 = 1
2

𝑡

∫
0

𝑑

𝑑𝑠
𝑚ℎ(𝑢ℎ,𝑡(𝑠), 𝑢ℎ,𝑡(𝑠)) d𝑠

= 1
2

(‖‖𝑢ℎ,𝑡(𝑡)‖‖20,ℎ − ‖‖𝑧ℎ,0‖‖20,ℎ) ,
and, analogously,

𝑡

∫
0

𝑎ℎ(𝑢ℎ(𝑠), 𝑢ℎ,𝑡(𝑠)) d𝑠 = 1
2

𝑡

∫
0

𝑑

𝑑𝑠
𝑎ℎ(𝑢ℎ(𝑠), 𝑢ℎ(𝑠)) d𝑠

= 1
2

(||𝑢ℎ(𝑡)||21,ℎ − ||𝑢ℎ,0||21,ℎ) .
Moreover, using (3.11) we find that

𝑡

∫
0

𝑚ℎ(𝑢ℎ,𝑡(𝑠), 𝑢ℎ,𝑡(𝑠)) d𝑠 ≳

𝑡

∫
0

‖‖𝑢ℎ,𝑡(𝑠)‖‖2𝐿2(Ω) d𝑠 ≳ ‖‖𝑢ℎ,𝑡‖‖2𝐿2(0,𝑡;𝐿2(Ω)) .
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Finally, using the Cauchy-Schwarz and Young’s inequalities, we find

𝑡

∫
0

(
𝑓ℎ(𝑠), 𝑢ℎ,𝑡(𝑠)

)
𝐿2(Ω) d𝑠 ≤ ‖‖𝑓ℎ(𝑡)‖‖𝐿2(0,𝑡;𝐿2(Ω)) ‖‖𝑢ℎ,𝑡‖‖𝐿2(0,𝑡;𝐿2(Ω))

≤ 1
2𝜀
‖‖𝑓ℎ(𝑡)‖‖2𝐿2(0,𝑡;𝐿2(Ω)) + 𝜀2 ‖‖𝑢ℎ,𝑡‖‖2𝐿2(0,𝑡;𝐿2(Ω)) .

Hence, (3.16) follows for 𝜀 sufficiently small. □

Remark 3.3. Let the further assumption 𝑢ℎ ∈𝐻𝑞(0, 𝑇 ; 𝐻1
0 (Ω)) for 𝑞 ≥ 2

hold, and denote with 𝜕𝑞
𝑡
𝑢ℎ the 𝑞-th time derivative of 𝑢ℎ (which 

still fulfills homogeneous Dirichlet boundary conditions on 𝜕Ω). Then, 
𝑤ℎ ∶= 𝜕

𝑞

𝑡
𝑢ℎ satisfies, for all 𝑣ℎ ∈𝑊ℎ and for a.e. 𝑡 ∈ (0, 𝑇 ),

𝑚ℎ(𝑤ℎ,𝑡𝑡(𝑡), 𝑣ℎ) + 𝜈𝑚ℎ(𝑤ℎ,𝑡(𝑡), 𝑣ℎ) + 𝑎ℎ(𝑤ℎ(𝑡), 𝑣ℎ) =
(
𝜕
𝑞

𝑡
𝑓ℎ(𝑡), 𝑣ℎ

)
𝐿2(Ω) ,

coupled with initial conditions 𝑤ℎ(0) = 𝑤ℎ,𝑡(0) = 0. Theorem 3.2 then 
states that

||𝑤ℎ(𝑡)||21,ℎ + ‖‖𝑤ℎ,𝑡(𝑡)‖‖20,ℎ ≲ ‖‖‖𝑓 (𝑞)ℎ ‖‖‖2𝐿2(0,𝑡;𝐿2(Ω)) . (3.17)

3.4. Error analysis

To perform the error analysis for the semi-discrete problem, we need 
to introduce the modified energy projection ∇ ∶ 𝐻1

0 (Ω) →𝑊ℎ, where, 
for any 𝑢 ∈𝐻1

0 (Ω), ∇𝑢 ∈𝑊ℎ satisfies, for all 𝑣ℎ ∈𝑊ℎ

𝑎ℎ(∇𝑢, 𝑣ℎ) = 𝑎(𝑢, 𝑣ℎ). (3.18)

Similarly, we define the modified 𝐿2-projection 0 ∶ 𝐿2(Ω) → 𝑊ℎ, 
where, for any 𝑢 ∈𝐿2(Ω), 0𝑢 ∈𝑊ℎ satisfies, for all 𝑣ℎ ∈𝑊ℎ

𝑚ℎ(0𝑢, 𝑣ℎ) =
(
𝑢, 𝑣ℎ

)
𝐿2(Ω) . (3.19)

We recall the following approximation results, whose proofs can be 
found in [5] and [11], respectively.

Lemma 3.4. For all 𝑢 ∈𝐻1
0 (Ω) ∩𝐻

𝑘+1(Ω), there holds

|||𝑢−∇𝑢
|||𝐻1(Ω)

≲ ℎ𝑘 |𝑢|𝐻𝑘+1(Ω) , (3.20)

‖‖‖𝑢−∇𝑢
‖‖‖𝐿2(Ω) ≲ ℎ𝑘+1 |𝑢|𝐻𝑘+1(Ω) . (3.21)

Lemma 3.5. For all 𝑢 ∈𝐻𝑘+1(Ω), there holds

‖‖‖𝑢−0𝑢
‖‖‖𝐿2(Ω) ≲ ℎ𝑘+1 |𝑢|𝐻𝑘+1(Ω) . (3.22)

Let us denote

|∙|𝐿1(0,𝑡;𝐻𝑘+1(Ω) ∶= 𝑡

∫
0

|∙|𝐻𝑘+1(Ω) d𝑠,

⎛⎜⎜⎝|∙|𝐿2(0,𝑡;𝐻𝑘+1(Ω) ∶=
𝑡

∫
0

|∙|2
𝐻𝑘+1(Ω) d𝑠

⎞⎟⎟⎠
1∕2

.

We are now ready to state the following convergence result, which ex-

tends [11, Theorem 3.3] to the case 𝜈 > 0.

Theorem 3.6. Let 𝑢, 𝑢ℎ be the unique solutions of problems (2.2) and 
(3.15), respectively. Assume that 𝑢 ∈ 𝐶2 (0, 𝑇 ;𝐻1

0 (Ω) ∩𝐻
𝑘+1(Ω)

)
, 𝑢0, 𝑧0 ∈

𝐻𝑘+1(Ω) and 𝑢𝑡, 𝑢𝑡𝑡, 𝑓 ∈𝐿2 (0, 𝑇 ;𝐻𝑘+1(Ω)), with 𝑘 ≥ 1 integer. Then, there 
holds
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‖‖𝑢ℎ(𝑡) − 𝑢(𝑡)‖‖𝐻1(Ω) + ‖‖𝑢ℎ,𝑡(𝑡) − 𝑢𝑡(𝑡)‖‖𝐿2(Ω)
≲ ℎ𝑘

( ||𝑢0||𝐻𝑘+1(Ω) + ℎ ||𝑧0||𝐻𝑘+1(Ω) + ℎ |𝑓 |𝐿2(0,𝑡;𝐻𝑘+1(Ω))
+ ||𝑢𝑡||𝐿1(0,𝑡;𝐻𝑘+1(Ω)) + ℎ ||𝑢𝑡||𝐿2(0,𝑡;𝐻𝑘+1(Ω)) + ℎ ||𝑢𝑡𝑡||𝐿1(0,𝑡;𝐻𝑘+1(Ω))
+ ℎ ||𝑢𝑡||𝐿2(0,𝑡;𝐻𝑘+1(Ω)) ).

(3.23)

Proof. The proof follows the same steps as the proof of [11, Theorem 
3.3]. We set

𝑢ℎ(𝑡) − 𝑢(𝑡) =
(
𝑢ℎ(𝑡) −∇𝑢(𝑡)

)
+
(∇𝑢(𝑡) − 𝑢(𝑡)

)
=∶ 𝜃(𝑡) + 𝜌(𝑡).

We bound the ‖𝜌(𝑡)‖𝐻1(Ω) by using (3.20)

‖𝜌(𝑡)‖𝐻1(Ω) ≲ ℎ
𝑘 |𝑢(𝑡)|𝐻𝑘+1(Ω) = ℎ𝑘 ⎛⎜⎜⎝||𝑢0||𝐻𝑘+1(Ω) +

𝑡

∫
0

||𝑢𝑡(𝑠)||𝐻𝑘+1(Ω) 𝑑𝑠⎞⎟⎟⎠
= ℎ𝑘

(||𝑢0||𝐻𝑘+1(Ω) + ||𝑢𝑡||𝐿1(0,𝑡;𝐻𝑘+1(Ω))) .
(3.24)

Similarly, thanks to (3.21), we find

‖‖𝜌𝑡(𝑡)‖‖𝐿2(Ω) ≲ ℎ𝑘+1 ||𝑢𝑡(𝑡)||𝐻𝑘+1(Ω) = ℎ𝑘+1 (||𝑧0||𝐻𝑘+1(Ω) + ||𝑢𝑡𝑡||𝐿1(0,𝑡;𝐻𝑘+1(Ω))) .
(3.25)

Note that we can use the estimate (3.21) since we are assuming Ω con-

vex. In order to bound the norm of 𝜃(𝑡), we note that, for all 𝑣ℎ ∈𝑊ℎ
there holds

𝑚ℎ(𝜃𝑡𝑡(𝑡), 𝑣ℎ) + 𝜈𝑚ℎ(𝜃𝑡(𝑡), 𝑣ℎ) + 𝑎ℎ(𝜃(𝑡), 𝑣ℎ)

=
(
𝑓ℎ(𝑡) − 𝑓 (𝑡), 𝑣ℎ

)
𝐿2(Ω) +

[(
𝑢𝑡𝑡(𝑡), 𝑣ℎ

)
𝐿2(Ω) −𝑚ℎ(∇𝑢𝑡𝑡(𝑡), 𝑣ℎ)

]
+ 𝜈

[(
𝑢𝑡(𝑡), 𝑣ℎ

)
𝐿2(Ω) −𝑚ℎ(∇𝑢𝑡(𝑡), 𝑣ℎ)

]
=∶

(
𝜑(𝑡), 𝑣ℎ

)
𝐿2(Ω) +

(
𝜂1(𝑡), 𝑣ℎ

)
𝐿2(Ω) +

(
𝜂2(𝑡), 𝑣ℎ

)
𝐿2(Ω) ,

where 𝜂1(𝑡), 𝜂2(𝑡) ∈ 𝑊ℎ are the Riesz representation of the operators (
𝑢𝑡𝑡(𝑡), ∙

)
𝐿2(Ω) − 𝑚ℎ(∇𝑢𝑡𝑡(𝑡), ∙) and 

(
𝑢𝑡(𝑡), ∙

)
𝐿2(Ω) − 𝑚ℎ(∇𝑢𝑡(𝑡), ∙) on the 

dual space of 𝑊ℎ. Then, 𝜃(𝑡) is the unique solution of the following 
weak problem: for all 𝑣ℎ ∈𝑊ℎ there holds

⎧⎪⎨⎪⎩
𝑚ℎ(𝜃𝑡𝑡(𝑡), 𝑣ℎ) + 𝜈𝑚ℎ(𝜃𝑡(𝑡), 𝑣ℎ) + 𝑎ℎ(𝜃(𝑡), 𝑣ℎ) =

(
𝜑(𝑡) + 𝜂1(𝑡) + 𝜂2(𝑡), 𝑣ℎ

)
𝐿2(Ω)

𝜃(0) = 𝑢ℎ,0 −∇𝑢0
𝜃𝑡(0) = 𝑧ℎ,0 −∇𝑧0.

By applying Theorem 3.2 we find:

|𝜃(𝑡)|21,ℎ + ‖‖𝜃𝑡(𝑡)‖‖20,ℎ
≲ ||𝜃0||21,ℎ + ‖‖𝜃𝑡(0)‖‖20,ℎ + ‖𝜑‖2𝐿2(0,𝑡;𝐿2(Ω)) + ‖‖𝜂1‖‖2𝐿2(0,𝑡;𝐿2(Ω)) + ‖‖𝜂2‖‖2𝐿2(0,𝑡;𝐿2(Ω)) .

(3.26)

On the other hand, using (3.3), we find

‖𝜑‖2
𝐿2(0,𝑡;𝐿2(Ω)) =

𝑡

∫
0

‖𝜑(𝑠)‖2
𝐿2(Ω) d𝑠 =

𝑡

∫
0

‖‖𝑓ℎ(𝑠) − 𝑓 (𝑠)‖‖2𝐿2(Ω) d𝑠

=

𝑡

∫
0

∑
𝐸∈ℎ

‖‖‖Π0,𝐸𝑓 (𝑠) − 𝑓 (𝑠)‖‖‖2𝐿2(𝐸) d𝑠

≲ ℎ2(𝑘+1) |𝑓 |2
𝐿2(0,𝑡;𝐻𝑘+1(Ω)) .

(3.27)

To bound ‖‖𝜂1‖‖2𝐿2(0,𝑡;𝐿2(Ω)), we recall [11, equation (32)]: for all 𝑡 ∈ (0, 𝑇 ), 
there holds(
𝜂1(𝑡), 𝑣ℎ

)
𝐿2(Ω) ≲ ℎ

𝑘+1 ||𝑢𝑡𝑡(𝑡)||𝐻𝑘+1(Ω) ‖‖𝑣ℎ‖‖𝐿2(Ω) ,
yielding
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‖‖𝜂1(𝑡)‖‖𝐿2(Ω) = sup
0≠𝑣ℎ∈𝑊ℎ

(
𝜂1(𝑡), 𝑣ℎ

)
𝐿2(Ω)‖‖𝑣ℎ‖‖𝐿2(Ω) ≲ ℎ𝑘+1 ||𝑢𝑡𝑡(𝑡)||𝐻𝑘+1(Ω) .

Hence,

‖‖𝜂1‖‖2𝐿2(0,𝑡;𝐿2(Ω)) =
𝑡

∫
0

‖‖𝜂1(𝑠)‖‖2𝐿2(Ω) d𝑠 ≲ ℎ2(𝑘+1) ||𝑢𝑡𝑡||2𝐿2(0,𝑡;𝐻𝑘+1(Ω)) . (3.28)

Finally, to bound ‖‖𝜂2‖‖2𝐿2(0,𝑡;𝐿2(Ω)), we observe that, for all 𝑣ℎ ∈𝑊ℎ there 
holds(
𝜂2(𝑡), 𝑣ℎ

)
𝐿2(Ω) =

(
𝑢𝑡(𝑡), 𝑣ℎ

)
𝐿2(Ω) −𝑚ℎ(∇𝑢𝑡(𝑡), 𝑣ℎ)

=
∑
𝐸∈ℎ

[(
𝑢𝑡(𝑡), 𝑣ℎ

)
𝐿2(𝐸) −𝑚

𝐸
ℎ
(∇𝑢𝑡(𝑡), 𝑣ℎ)

]
=
∑
𝐸∈ℎ

[(
𝑢𝑡(𝑡) − Π0,𝐸𝑢𝑡(𝑡), 𝑣ℎ

)
𝐿2(𝐸) −𝑚

𝐸
ℎ
(∇𝑢𝑡(𝑡) − Π0,𝐸𝑢𝑡(𝑡), 𝑣ℎ)

]
≲
∑
𝐸∈ℎ

(‖‖‖𝑢𝑡(𝑡) − Π0,𝐸𝑢𝑡(𝑡)
‖‖‖𝐿2(𝐸) + ‖‖‖∇𝑢𝑡(𝑡) − Π0,𝐸𝑢𝑡(𝑡)

‖‖‖𝐿2(𝐸))‖‖𝑣ℎ‖‖𝐿2(𝐸) ,
where in the third equality we used that 

(
Π0,𝐸𝑢𝑡(𝑡), 𝑣ℎ

)
𝐿2(𝐸) =

𝑚𝐸
ℎ
(Π0,𝐸𝑢𝑡(𝑡), 𝑣ℎ), and the last inequality follows by the Cauchy Schwarz 

inequality and (3.12). Hence, by using (3.3) and applying Lemma 3.4, 
we obtain

‖‖𝜂2(𝑡)‖‖𝐿2(Ω) = sup
0≠𝑣ℎ∈𝑊ℎ

(
𝜂1(𝑡), 𝑣ℎ

)
𝐿2(Ω)‖‖𝑣ℎ‖‖𝐿2(Ω) ≲ ℎ𝑘+1 ||𝑢𝑡(𝑡)||𝐻𝑘+1(Ω) ,

hence

||𝜂2||2𝐿2(0,𝑡;𝐿2(Ω)) ≲ ℎ2(𝑘+1) ||𝑢𝑡||2𝐿2(0,𝑡;𝐻𝑘+1(Ω)) . (3.29)

The norm of the initial data is derived in [11, equations (33)-(34)]:||𝜃0||21,ℎ ≲ ℎ2𝑘 ||𝑢0||2𝐻𝑘+1(Ω) ,‖‖𝜃𝑡(0)‖‖20,ℎ ≲ ℎ2(𝑘+1) ||𝑧0||2𝐻𝑘+1(Ω) . (3.30)

Combining (3.30), (3.27), (3.28) and (3.29), we obtain

|𝜃(𝑡)|21,ℎ + ‖‖𝜃𝑡(𝑡)‖‖20,ℎ ≲ ℎ2𝑘[ ||𝑢0||2𝐻𝑘+1(Ω) + ℎ2 ||𝑧0||2𝐻𝑘+1(Ω)
+ ℎ2

( |𝑓 |2
𝐿2(0,𝑡;𝐻𝑘+1(Ω)) +

||𝑢𝑡𝑡||2𝐿2(0,𝑡;𝐻𝑘+1(Ω)) + ||𝑢𝑡||2𝐿2(0,𝑡;𝐻𝑘+1(Ω)) )]. (3.31)

Collecting (3.24), (3.25) and (3.31), we conclude (3.23). □

3.5. Algebraic formulation

Now, we introduce the algebraic formulation of (3.15) that will be 
instrumental for the DG discretization in time (see Section 4). To this 
end, we denote with 𝑁ℎ ∶ = dim(𝑊ℎ), and with {𝜑𝑖}

𝑁ℎ
𝑖=1 the set of VE 

basis functions for 𝑊ℎ. We write, for all 𝑡 ∈ (0, 𝑇 )

𝑢ℎ(𝑡, 𝑥) =
𝑁ℎ∑
𝑗=1
𝑈𝑗 (𝑡)𝜑𝑗 (𝑥), (3.32)

where 𝑈𝑗 (𝑡) is the 𝑗-th global DOF of 𝑢ℎ(𝑡). Inserting (3.32) into (3.15)

with 𝑣ℎ = 𝜑𝑖, we obtain the following system of second-order differen-

tial equations

𝑀ℎ�̈�(𝑡) + 𝜈𝑀ℎ�̇�(𝑡) +𝐴ℎ𝐔(𝑡) = 𝐅ℎ(𝑡) (3.33)

where

• 𝐔(𝑡) ∶= [𝑈1(𝑡), … , 𝑈𝑁ℎ (𝑡)]
𝑇 ∈ℝ𝑁ℎ ;

• �̇�(𝑡) ∶= [�̇�1(𝑡), … , �̇�𝑁ℎ (𝑡)]
𝑇 ∈ℝ𝑁ℎ is the vector collecting the DOF of 

the first temporal derivative of 𝑢, i.e., 𝑢ℎ,𝑡(𝑡, 𝑥) =
∑𝑁ℎ
𝑗=1 �̇�𝑗 (𝑡)𝜑𝑗 (𝑥);

• �̈�(𝑡) ∶= [�̈�1(𝑡), … , �̈�𝑁ℎ (𝑡)]
𝑇 ∈ℝ𝑁ℎ is the vector collecting the DOF of 

the second temporal derivative of 𝑢, i.e., 𝑢ℎ,𝑡𝑡(𝑡, 𝑥) =
∑𝑁ℎ
𝑗=1 �̈�𝑗 (𝑡)𝜑𝑗 (𝑥);

• 𝐅ℎ(𝑡) ∶= [𝐹1(𝑡), … , 𝐹𝑁ℎ (𝑡)]
𝑇 ∈ℝ𝑁ℎ with 𝐹𝑖(𝑡) ∶=

(
𝑓ℎ(𝑡), 𝜑𝑖

)
𝐿2(Ω) for all 

𝑖 = 1, … , 𝑁ℎ;
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• 𝑀ℎ, 𝐴ℎ ∈ℝ𝑁ℎ×𝑁ℎ are the mass and stiffness matrices with elements 
given as

for all 𝑖, 𝑗 = 1,… ,𝑁ℎ (𝑀ℎ)𝑖,𝑗 ∶=𝑚ℎ(𝜑𝑗,𝜑𝑖) (𝐴ℎ)𝑖,𝑗 ∶= 𝑎ℎ(𝜑𝑗,𝜑𝑖).
(3.34)

Equation (3.33) is supplemented with the initial conditions 𝐔(0) =𝐔ℎ,0, 
�̇�(0) = 𝐙ℎ,0, where the vector 𝐔ℎ,0 ∈ℝ𝑁ℎ (𝐙ℎ,0 ∈ℝ𝑁ℎ , respectively) col-

lects the DOFs of 𝑢ℎ,0 (𝑧ℎ,0, respectively).

4. DG discretization in time

In this section we first recall the DG (in time) finite dimensional 
space introduced in [49,21], and then we apply the DG time integration 
scheme to (3.33). Let the time interval (0, 𝑇 ] be partitioned into 𝑁𝑇
time-slabs, i.e., (0, 𝑇 ] = ∪𝑁𝑇

𝑛=1𝐼𝑛, with 𝐼𝑛 ∶= (𝑡𝑛−1, 𝑡𝑛] and 0 = 𝑡0 < 𝑡1 <⋯ <
𝑡𝑛 <⋯ < 𝑡𝑁𝑇 = 𝑇 . We denote with 𝜏𝑛 the length of the 𝑛-th time-slab 
𝜏𝑛 ∶= 𝑡𝑛−𝑡𝑛−1, and we collect the elements of the set {𝜏𝑛}

𝑁𝑇
𝑛=1 in the vector 

𝝉 . Moreover, we denote with 
𝝉

the partition of the time interval. Given 
a sufficiently regular function 𝑣, we define the time jump operator at 𝑡𝑛
for any 𝑛 ≥ 0 as

[𝑣]𝑛 ∶= 𝑣(𝑡+𝑛 ) − 𝑣(𝑡
−
𝑛
), (4.1)

where

𝑣(𝑡+
𝑛
) = lim

𝜀→0+
𝑣(𝑡𝑛 + 𝜀), 𝑣(𝑡−

𝑛
) = lim

𝜀→0−
𝑣(𝑡𝑛 + 𝜀).

See Fig. 4.1 for an example of time partition as well as the graphical 
representation of 𝑡−

𝑛−1, 𝑡
+
𝑛−1.

Given 𝑟𝑛 ∈ ℕ, we denote the space of polynomials on 𝐼𝑛 of degree 
less than or equal to 𝑟𝑛 as ℙ𝑟𝑛 (𝐼𝑛), and we define the functional space of 
piecewise polynomials of degree at least 2 on 

𝝉
as

𝑊
𝝉
∶=

{
𝑣 ∈𝐿2(0, 𝑇 ) such that 𝑣|𝐼𝑛 ∈ ℙ𝑟𝑛 (𝐼𝑛)

with 𝑟𝑛 ≥ 2 for all 𝑛 = 1,… ,𝑁𝑇
}
.

(4.2)

Note that the choice 𝑟𝑛 ≥ 2 is due to the presence of the second order 
time derivative in the equation at hand.

Since the unknown of (3.33) is a vector with length 𝑁ℎ, we need 
to introduce the multi-variate version of 𝑊

𝝉
. Given the multi-index 

𝐫 = (𝑟1, … , 𝑟𝑁𝜏 ) ∈ ℕ𝑁𝑇 , with components 𝑟𝑛 ≥ 2 for all 𝑛 = 1, … , 𝑁𝑇 , we 
define

[𝑊
𝝉
]𝑁ℎ ∶=

{
𝐕 = (𝑣1,… , 𝑣𝑁ℎ ) ∈ [𝐿2(0, 𝑇 )]𝑁ℎ ∶ 𝑣𝑗 ∈𝑊𝝉

∀ 𝑗 = 1,… ,𝑁ℎ
}
.

Multiplying (3.33) by a test function �̇� ∈ [𝑊
𝝉
]𝑁ℎ and integrating on 

𝐼𝑛, we get(
𝑀ℎ�̈�, �̇�

)
𝐿2(𝐼𝑛)

+ 𝜈
(
𝑀ℎ�̇�, �̇�

)
𝐿2(𝐼𝑛)

+
(
𝐴ℎ𝐔, �̇�

)
𝐿2(𝐼𝑛)

+𝑀ℎ[�̇�]𝑛 ⋅ �̇�(𝑡+𝑛 ) +𝐴ℎ[𝐔]𝑛 ⋅𝐕(𝑡
+
𝑛
) =

(
𝐅ℎ, �̇�

)
𝐿2(𝐼𝑛)

(4.3)

where the first two terms in the second row of (4.3) are zero since 
𝐔(𝑡) ∈ 𝐶2(0, 𝑇 ), hence they can be added to the equation. Summing over 
all time-slabs, we find the following problem: find 𝐔

𝝉
∈ [𝑊

𝝉
]𝑁ℎ such 

that, for all �̇� ∈ [𝑊
𝝉
]𝑁ℎ there holds

𝑁𝑇∑
𝑛=1

[(
𝑀ℎ�̈�𝝉

, �̇�
)
𝐿2(𝐼𝑛)

+ 𝜈
(
𝑀ℎ�̇�𝝉

, �̇�
)
𝐿2(𝐼𝑛)

+
(
𝐴ℎ𝐔𝝉

, �̇�
)
𝐿2(𝐼𝑛)

]
+
𝑁𝑇 −1∑
𝑛=1

[
𝑀ℎ[�̇�𝝉

]𝑛 ⋅ �̇�(𝑡+𝑛 ) +𝐴ℎ[𝐔𝝉
]𝑛 ⋅𝐕(𝑡+𝑛 )

]
+𝑀ℎ�̇�𝝉

(0+) ⋅ �̇�(0+) +𝐴ℎ𝐔𝝉
(0+) ⋅𝐕(0+)

=
𝑁𝑇∑
𝑛=1

[(
𝐅ℎ, �̇�

)
𝐿2(𝐼𝑛)

]
+𝑀ℎ𝐙ℎ,0 ⋅ �̇�(0+) +𝐴ℎ𝐔ℎ,0 ⋅𝐕(0+),

(4.4)

with the initial conditions 𝐔
𝝉
(0) =𝐔ℎ,0, �̇�𝝉

(0) = 𝐙ℎ,0.



P.F. Antonietti, F. Bonizzoni and M. Verani Computers and Mathematics with Applications 152 (2023) 341–354

Fig. 4.1. (Top) Example of time partition 
𝝉
. (Bottom) Zoom on the time-slabs 𝐼𝑛−1 ∪ 𝐼𝑛.
Let ‖∙‖⋆ ∶ [𝑊
𝝉
]𝑁ℎ →ℝ be defined as

‖𝐕‖2
⋆
∶= 𝜈

𝑁𝑇∑
𝑛=1

‖‖‖𝑀1∕2
ℎ

�̇�‖‖‖2𝐿2(𝐼𝑛)
+ 1

2
(𝑀1∕2
ℎ

�̇�(0+))2 + 1
2

𝑁𝑇 −1∑
𝑛=1

(𝑀1∕2
ℎ

[�̇�]𝑛)2 +
1
2
(𝑀1∕2
ℎ

�̇�(𝑇 −))2

+ 1
2
(𝐴1∕2
ℎ

𝐕(0+))2 + 1
2

𝑁𝑇 −1∑
𝑛=1

(𝐴1∕2
ℎ

[𝐕]𝑛)2 +
1
2
(𝐴1∕2
ℎ

𝐕(𝑇 −))2.

(4.5)

In [21] it is shown that ‖∙‖⋆ is a norm on [𝑊
𝝉
]𝑁ℎ that, from now on, 

will be referred to as energy norm.

Moreover, in [49, Proposition 3.1] it is proved the following stability 
result: if 𝐅 ∈ 𝐿2(0, 𝑇 ), then the unique solution 𝐔

𝝉
∈ [𝑊 𝐫

𝝉
]𝑁ℎ of (4.4)

satisfies

‖‖𝐔𝝉

‖‖⋆ ≲ (‖𝐅‖2𝐿2(0,𝑇 ) + (𝐴1∕2
ℎ

𝐔ℎ,0)2 + (𝑀1∕2
ℎ

𝐙ℎ,0)2
)1∕2

. (4.6)

In addition, the DG scheme is proved to be convergent, according to the 
following result (see [49, Theorem 3.12]).

Theorem 4.1. If 𝐔 is such that 𝐔|𝐼𝑛 ∈ (
𝐻𝑞𝑛 (𝐼𝑛)

)𝑁ℎ with 𝑞𝑛 ≥ 2 for all 
𝑛 = 1, … , 𝑁𝑇 , then

‖‖𝐔−𝐔
𝝉

‖‖2⋆ ≲ 𝑁𝑇∑
𝑛=1

𝜏
2𝛽𝑛−3
𝑛

𝑟
2𝑞𝑛−6
𝑛

‖𝐔‖2
(𝐻𝑞𝑛 (𝐼𝑛))𝑁ℎ

, (4.7)

where 𝛽𝑛 ∶= min{𝑟𝑛 + 1, 𝑞𝑛} and 𝑟𝑛 ≥ 2 for all 𝑛 = 1, … , 𝑁𝑇 .

Corollary 4.2. Let 𝐔 be such that 𝐔|𝐼𝑛 ∈ (𝐻𝑞(𝐼𝑛))𝑁ℎ for all 𝑛 = 1, … , 𝑁𝑇 , 
with 𝑞 ≥ 2. Moreover, let 𝜏𝑛 = Δ𝑡 > 0 and 𝑟𝑛 = 𝑟 ≥ 2 integer, for all 𝑛 =
1, … , 𝑁𝑇 . Then, the estimate (4.7) simplifies as follows:

‖‖𝐔−𝐔
𝝉

‖‖2⋆ ≲ Δ𝑡2𝛽−3

𝑟2𝑞−6

𝑁𝑇∑
𝑛=1

‖𝐔‖2
(𝐻𝑞𝑛 (𝐼𝑛))𝑁ℎ

, (4.8)

where 𝛽 ∶= min{𝑟 + 1, 𝑞}. In particular, ‖‖𝐔−𝐔
𝝉

‖‖⋆ = 𝑂(Δ𝑡𝛽−3∕2) as Δ𝑡 de-

creases to 0.

Remark 4.3. The presented DG method is computationally more expen-

sive than standard “finite difference” time-stepping methods, like, e.g., 
Newmark or leap-frog method, which are typically simpler and faster to 
be implemented. On the other hand, it is worth noticing that it presents 
a few important advantages. First of all, it is of arbitrarily high order, in 
contrast to standard time-stepping methods that are low-order schemes 
(Newmark, e.g., is second order accurate). Moreover, it is uncondition-

ally stable, in contrast to Newmark scheme, which is unconditionally 
stable for appropriate choices of the parameters only.

5. VEM-DG discretization

In this section we present a tensor product-based space-time dis-

cretization of problem (2.2) that combines the VEM presented in Sec-

tion 3 for space discretization, with the DG scheme presented in Sec-

tion 4 for time integration. The mesh  for the space-time domain 
Ω × (0, 𝑇 ] is constructed by tensorizing the polygonal grid ℎ with the 
time interval partition 

𝝉
, namely,  ∶= ℎ ⊗ 

𝝉
. Each element of the 
346
space-time mesh  is the tensor product of the polygonal mesh ℎ with 
𝐼𝑛, i.e.,

 = ∪𝑁𝑇
𝑛=1𝑄𝑛,with 𝑄𝑛 ∶= ℎ ⊗ 𝐼𝑛 for all 𝑛 = 1,… ,𝑁𝑇 . (5.1)

We refer to Fig. 5.1 for an example.

The tensor product of the VE space 𝑊ℎ defined in (3.5) with the DG 
space 𝑊

𝝉
defined in (4.2) gives the following finite-dimensional space

ℎ,𝝉 ∶= {𝑤(𝑥, 𝑡) =𝑤1(𝑥)𝑤2(𝑡)∶ Ω × (0, 𝑇 ]→ℝ such that 𝑤1 ∈𝑊ℎ

and 𝑤2 ∈𝑊𝝉

}
.

(5.2)

Note that, by definition, each 𝑤 ∈ ℎ,𝝉 is continuous in the spatial 
domain but might be discontinuous in the time domain, i.e., discon-

tinuities are allowed along the interfaces ℎ ⊗ {𝑡𝑛}, for 𝑛 = 1, … , 𝑁𝑇 −1.

To derive the tensor product VEM-DG formulation of the problem of 
interest, we start from equation (2.1) in 𝑛 multiplied by a test function 
�̇� = 𝑤1(𝑥)�̇�2(𝑡) ∈ ℎ,𝝉 and we integrate in space and time. Then, we 
integrate by parts with respect to the space variable and we replace the 
𝐿2(Ω)-inner product (∙, ∙)𝐿2(Ω) and the bilinear form 𝑎(∙, ∙) with the VE 
bilinear forms 𝑚ℎ(∙, ∙) and 𝑎ℎ(∙, ∙), respectively. Finally, we add the null 
terms

𝑚ℎ([�̇�]𝑛, �̇�(𝑡+𝑛 )) + 𝑎ℎ([𝑢]𝑛, �̇�(𝑡
+
𝑛
))

and we sum up over all time-slabs. As a result, we get the following 
problem: find 𝑢ℎ,𝝉 ∈ℎ,𝝉 such that, for all 𝑤 ∈ℎ,𝝉 there holds

(𝑢ℎ,𝝉 ,𝑤) =  (𝑤), (5.3)

where the bilinear form ∶ ℎ,𝝉 × ℎ,𝝉 → ℝ and the linear form 
 ∶ ℎ,𝝉 →ℝ are respectively given by

(𝑣,𝑤) ∶=
𝑁𝑇∑
𝑛=1

[
𝑚ℎ(𝑣1,𝑤1)

(
�̈�2, �̇�2

)
𝐿2(𝐼𝑛)

+ 𝜈𝑚ℎ(𝑣1,𝑤1)
(
�̇�2, �̇�2

)
𝐿2(𝐼𝑛)

+ 𝑎ℎ(𝑣1,𝑤1)
(
𝑣2, �̇�2

)
𝐿2(𝐼𝑛)

]
+
𝑁𝑇 −1∑
𝑛=1

[
𝑚ℎ(𝑣1,𝑤1)[�̇�2]𝑛�̇�2(𝑡+𝑛 ) + 𝑎ℎ(𝑣1,𝑤1)[𝑣2]𝑛𝑤2(𝑡+𝑛 )

]
+𝑚ℎ(𝑣1,𝑤1)�̇�2(0+)�̇�2(0+) + 𝑎ℎ(𝑣1,𝑤1)𝑣2(0+)𝑤2(0+),

and

 (𝑤) ∶=
𝑁𝑇∑
𝑛=1

(𝑓ℎ,𝑤)𝐿2(Ω×𝐼𝑛) +𝑚ℎ(𝑧ℎ,0,𝑤1)�̇�2(0+) + 𝑎ℎ(𝑢ℎ,0,𝑤1)𝑤2(0+),

for any 𝑣(𝑥, 𝑡) = 𝑣1(𝑥)𝑣2(𝑡) and 𝑤(𝑥, 𝑡) =𝑤1(𝑥)𝑤2(𝑡).
There holds the following results.

Lemma 5.1. The function ⦀∙⦀∶ 𝐻2(0, 𝑇 ; 𝐻1
0 (Ω)) →ℝ defined as

⦀𝑤⦀2 ∶= 𝜈 𝑁𝑇∑
𝑛=1

∫
𝐼𝑛

‖�̇�‖20,ℎ d𝑡

+ 1
2
‖‖�̇�(0+, ⋅)‖‖20,ℎ + 1

2

𝑁𝑇 −1∑
𝑛=1

‖‖[�̇�]𝑛‖‖20,ℎ + 1
2
‖�̇�(𝑇 −, ⋅)‖20,ℎ

+ 1
2
||𝑤(0+, ⋅)||21,ℎ + 1

2

𝑁𝑇 −1∑
𝑛=1

||[𝑤]𝑛||21,ℎ + 1
2
|𝑤(𝑇 −, ⋅)|21,ℎ

(5.4)
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Fig. 5.1. (a) Polygon 𝐸 ∈ ℎ tensorized with the time-slab 𝐼𝑛. (b) Polygonal mesh ℎ tensorized with 𝐼𝑛−1 ∪𝐼𝑛 , namely, 𝑄𝑛−1 ∪𝑄𝑛. Darker color encodes the increasing 
time instances.
is a norm on 𝐻2(0, 𝑇 ; 𝐻1
0 (Ω)).

Proof. It is clear that the function ⦀∙⦀ satisfies the homogeneity and 
subadditivity properties. Moreover, if 𝑤 = 0, then it immediately fol-

lows that ⦀𝑤⦀ = 0. Therefore, ⦀∙⦀ is a seminorm on 𝐻2(0, 𝑇 ; 𝐻1
0 (Ω)). 

We show that ⦀𝑤⦀ = 0 implies 𝑤 = 0 following the same steps as in the 
proof of [21, Proposition 2].

The fact that ⦀𝑤⦀ = 0 implies that all the terms at the right-hand 
side of (5.4) are zero. In particular, for all 𝑛 = 1, … , 𝑁𝑇 , there holds

∫
𝐼𝑛

‖�̇�‖20,ℎ d𝑡 = 0,

which, in turns, implies �̇� ≡ 0 in Ω × 𝐼𝑛, that is, 𝑤 ≡ 𝐶𝑛 in Ω × 𝐼𝑛 for 
{𝐶𝑛}

𝑁𝑇
𝑛=1 a collection of constants. For 𝑛 = 1, we have 𝑤 ≡ 𝐶1 in Ω × 𝐼1. 

In addition, from

‖‖𝑤(0+, ⋅)‖‖0,ℎ = 0,

we get 𝑤(0+, ⋅) ≡ 0 in Ω. Hence, we conclude 𝐶1 = 0, i.e., 𝑤 ≡ 0 in Ω ×𝐼1.
We proceed now by induction, namely, we assume 𝑤 ≡ 0 in all Ω ×𝐼𝑚

for 𝑚 ≤ 𝑛 − 1, and we show that 𝑤 ≡ 0 in Ω × 𝐼𝑛. From

||[𝑤]𝑛−1||1,ℎ = 0

we get [𝑤]𝑛−1 = 0, i.e., 𝑤(𝑡+
𝑛−1, 𝑥) = 𝑤(𝑡

−
𝑛−1, 𝑥) for a.e. 𝑥 ∈ Ω. Since 

𝑤(𝑡−
𝑛−1, ⋅) ≡ 0 in Ω by assumption, we get 𝑤(𝑡+

𝑛−1, ⋅) ≡ 0 in Ω, which in 
turns implies 𝐶𝑛 = 0. □

Lemma 5.2. For all 𝑤(𝑥, 𝑡) =𝑤1(𝑥)𝑤2(𝑡) ∈ℎ,𝝉 there holds

⦀𝑤⦀2 =(𝑤,𝑤). (5.5)

Proof. Given 𝑤(𝑥, 𝑡) =𝑤1(𝑥)𝑤2(𝑡) ∈ℎ,𝝉 , we have

(𝑤,𝑤) ∶=
𝑁𝑇∑
𝑛=1

[‖‖𝑤1‖‖20,ℎ (�̈�2, �̇�2
)
𝐿2(𝐼𝑛)

+ 𝜈 ‖‖𝑤1‖‖20,ℎ ‖‖�̇�2‖‖2𝐿2(𝐼𝑛)
+ ||𝑤1||21,ℎ (𝑤2, �̇�2

)
𝐿2(𝐼𝑛)

]
+
𝑁𝑇 −1∑
𝑛=1

[‖‖𝑤1‖‖20,ℎ [�̇�2]𝑛�̇�2(𝑡+𝑛 ) + ||𝑤1||21,ℎ [𝑣2]𝑛𝑤2(𝑡+𝑛 )
]

+ ‖‖𝑤1‖‖20,ℎ (�̇�2(0+)
)2 + ||𝑤1||21,ℎ (𝑤2(0+)

)2
.

(5.6)

Integrating by parts, we get(
�̈�2, �̇�2

)
𝐿2(𝐼𝑛)

= −
(
�̇�2, �̈�2

)
𝐿2(𝐼𝑛)

+
(
�̇�2(𝑡−𝑛 )

)2 − (�̇�2(𝑡+𝑛−1)
)2
,

347
which implies

(
�̈�2, �̇�2

)
𝐿2(𝐼𝑛)

= 1
2
(
�̇�2(𝑡−𝑛 )

)2 − 1
2
(
�̇�2(𝑡+𝑛−1)

)2
. (5.7)

Analogously, we derive

(
�̇�2,𝑤2

)
𝐿2(𝐼𝑛)

= 1
2
(
𝑤2(𝑡−𝑛 )

)2 − 1
2
(
𝑤2(𝑡+𝑛−1)

)2
. (5.8)

Inserting (5.7) and (5.8) into (5.6), and performing simple computa-

tions, we derive

(𝑤,𝑤) = 𝜈 ‖‖𝑤1‖‖20,ℎ 𝑁𝑇∑
𝑛=1

‖‖�̇�2‖‖2𝐿2(𝐼𝑛)
+ 1

2
‖‖𝑤1‖‖20,ℎ

[(
�̇�2(0+)

)2 + 𝑁𝑇 −1∑
𝑛=1

(
[�̇�2]𝑛

)2 + (�̇�2(𝑇 −)
)2]

+ 1
2
||𝑤1||21,ℎ

[(
𝑤2(0+)

)2 + 𝑁𝑇 −1∑
𝑛=1

(
[𝑤2]𝑛

)2 + (𝑤2(𝑇 −)
)2]

and we conclude by observing that

‖‖𝑤1‖‖20,ℎ 𝑁𝑇∑
𝑛=1

‖‖�̇�2‖‖2𝐿2(𝐼𝑛) = 𝑁𝑇∑
𝑛=1

∫
𝐼𝑛

𝑚ℎ(�̇�, �̇�) d𝑡 =
𝑁𝑇∑
𝑛=1

∫
𝐼𝑛

‖�̇�‖20,ℎ d𝑡,

and

‖‖𝑤1‖‖20,ℎ (�̇�2(0+)
)2 = ‖‖�̇�(0+, ⋅)‖‖20,ℎ‖‖𝑤1‖‖20,ℎ ([�̇�2]𝑛
)2 = ‖‖[�̇�]𝑛‖‖20,ℎ‖‖𝑤1‖‖20,ℎ (�̇�2(𝑇 −)
)2 = ‖�̇�(𝑇 −, ⋅)‖20,ℎ

as well as

||𝑤1||21,ℎ (𝑤2(0+)
)2 = ‖‖𝑤(0+, ⋅)‖‖20,ℎ||𝑤1||21,ℎ ([𝑤2]𝑛
)2 = ‖‖[𝑤]𝑛‖‖20,ℎ||𝑤1||21,ℎ (𝑤2(𝑇 −)
)2 = ‖𝑤(𝑇 −, ⋅)‖20,ℎ . □

Theorem 5.3 (Well-posedness). There exists a unique solution to the VEM-

DG problem (5.3).

Proof. Lemma 5.2 implies that the bilinear form (∙, ∙) is coercive, 
with coercivity constant 1. The continuity of  follows from Cauchy-

Schwarz inequality and the continuity of the global virtual bilinear 
forms (3.12). □



P.F. Antonietti, F. Bonizzoni and M. Verani Computers and Mathematics with Applications 152 (2023) 341–354
5.1. Algebraic formulation

In this section we derive the algebraic formulation of the fully dis-

crete problem (5.3). We start noticing that the use of DG in time allows 
us to compute the discrete solution separately, one time-slab at a time. 
In particular, given 1 ≤ 𝑛 ≤ 𝑁𝑇 , problem (5.3) restricted to 𝐼𝑛 reads: 
find 𝑢𝑛

ℎ,𝝉
∶= 𝑢ℎ,𝝉 |𝐼𝑛 ∈ 𝑊ℎ ⊗ ℙ𝑟𝑛 (𝐼𝑛) such that, for all 𝑤 ∈𝑊ℎ ⊗ ℙ𝑟𝑛 (𝐼𝑛)

there holds

𝑛(𝑢𝑛ℎ,𝝉 ,𝑤) = 𝑛(𝑤), (5.9)

where

𝑛(𝑣,𝑤) ∶=𝑚ℎ(𝑣1,𝑤1)
(
�̈�2, �̇�2

)
𝐿2(𝐼𝑛)

+ 𝜈𝑚ℎ(𝑣1,𝑤1)
(
�̇�2, �̇�2

)
𝐿2(𝐼𝑛)

+ 𝑎ℎ(𝑣1,𝑤1)
(
𝑣2, �̇�2

)
𝐿2(𝐼𝑛)

+𝑚ℎ(𝑣1,𝑤1)�̇�2(𝑡+𝑛−1)�̇�2(𝑡+𝑛−1)

+ 𝑎ℎ(𝑣1,𝑤1)𝑣2(𝑡+𝑛−1)𝑤2(𝑡+𝑛−1),

and

𝑛(𝑤) ∶= (𝑓ℎ,𝑤)𝐿2(Ω×𝐼𝑛) +𝑚ℎ(�̇�
𝑛−1
ℎ,𝝉

(𝑡−
𝑛−1, ⋅), �̇�(𝑡

−
𝑛−1, ⋅)

+ 𝑎ℎ(𝑢𝑛−1ℎ,𝝉 (𝑡
−
𝑛−1, ⋅),𝑤(𝑡

−
𝑛−1, ⋅),

for any 𝑣(𝑥, 𝑡) = 𝑣1(𝑥)𝑣2(𝑡) ∈𝑊ℎ⊗ℙ𝑟𝑛 (𝐼𝑛) and 𝑤(𝑥, 𝑡) =𝑤1(𝑥)𝑤2(𝑡) ∈𝑊ℎ⊗
ℙ𝑟𝑛 (𝐼𝑛). Note, in particular, that the solution computed for 𝐼𝑛−1 is used 
as initial condition for the current time-slab.

Following the same notation as in Section 3.5, we write 𝑊ℎ =
𝑠𝑝𝑎𝑛{𝜑𝑗}

𝑁ℎ
𝑗=1. Moreover, we denote with {𝜓𝑚}

𝑟𝑛
𝑚=1 a basis for ℙ𝑟𝑛 (𝐼𝑛). 

In the numerical examples, we take Lagrange basis functions with 
Legendre-Gauss-Lobatto nodes [56]. Then, the trial function 𝑢𝑛

ℎ,𝝉
can 

be expressed as linear combination of the tensor product basis function 
{𝜑𝑗𝜙𝑚, 𝑗 = 1, … , 𝑁ℎ, 𝑚 = 1, … , 𝑟𝑛 + 1}, namely

𝑢𝑛
ℎ,𝝉

(𝑥, 𝑡) =
𝑁ℎ∑
𝑗=1

𝑟𝑛+1∑
𝑚=1
𝛼𝑛
𝑗,𝑚
𝜑𝑗 (𝑥)𝜓𝑚(𝑡), (5.10)

where 𝛼𝑛
𝑗,𝑚

∈ℝ for all 𝑗 = 1, … , 𝑁ℎ, 𝑚 = 1, … , 𝑟𝑛+1. Inserting (5.10) into 
(5.9) and taking 𝑤(𝑥, 𝑡) = 𝜑𝑖(𝑥)𝜓𝓁(𝑡), we get

𝐴𝑛𝜶𝑛 = 𝐅𝑛,

where

• 𝜶
𝑛 ∈ℝ𝑁ℎ(𝑟𝑛+1) is the solution vector;

• 𝐴𝑛 ∈ℝ𝑁ℎ(𝑟𝑛+1)×𝑁ℎ(𝑟𝑛+1) has the following structure:

𝐴𝑛 =𝑀ℎ ⊗ (𝑁1 + 𝜈𝑁2 +𝑁4) +𝐴ℎ ⊗ (𝑁3 +𝑁5),

where 𝑀ℎ, 𝐴ℎ ∈ℝ𝑁ℎ×𝑁ℎ are the mass and stiffness matrices defined 
in (3.34), and 𝑁1, 𝑁2, 𝑁3, 𝑁4, 𝑁5 ∈ℝ(𝑟𝑛+1)×(𝑟𝑛+1) are defined as

(𝑁1)𝓁,𝑚 = (�̈�𝑚, �̇�𝓁)𝐿2(𝐼𝑛), (𝑁2)𝓁,𝑚 = (�̇�𝑚, �̇�𝓁)𝐿2(𝐼𝑛),

(𝑁3)𝓁,𝑚 = (𝜓𝑚, �̇�𝓁)𝐿2(𝐼𝑛), (𝑁4)𝓁,𝑚 = �̇�𝑚(𝑡+𝑛−1)�̇�𝓁(𝑡
+
𝑛−1),

(𝑁5)𝓁,𝑚 = 𝜓𝑚(𝑡+𝑛−1)𝜓𝓁(𝑡
+
𝑛−1);

• 𝐅𝑛 ∈ℝ𝑁ℎ(𝑟𝑛+1) is the known vector with elements

(𝐅𝑛)𝑖,𝓁 = (𝑓ℎ,𝜑𝑖𝜓𝓁)𝐿2(Ω×𝐼𝑛) + (𝑀ℎ ⊗𝑁6)𝜶𝑛−1 + (𝐴ℎ ⊗𝑁7)𝜶𝑛−1,

where 𝑁6, 𝑁7 ∈ℝ(𝑟𝑛+1)×(𝑟𝑛+1) are defined as

(𝑁6)𝓁,𝑚 = �̇�𝑚(𝑡−𝑛−1)�̇�𝓁(𝑡
−
𝑛−1), (𝑁7)𝓁,𝑚 = 𝜓𝑚(𝑡−𝑛−1)𝜓𝓁(𝑡

−
𝑛−1).

6. Error analysis

Before stating the convergence result for the tensor product VEM-DG 
method, we introduce the following auxiliary lemma.

Lemma 6.1. Let 𝑢ℎ,𝝉 ∈ ℎ,𝝉 and 𝐔 ∈ [𝑊
𝝉
]𝑁ℎ be the solutions of prob-

lems (5.3) and (4.4), respectively. Then,
348
⦀𝑢ℎ,𝝉⦀ = ‖𝐔‖⋆ .
Proof. We follow the same reasoning as in [21, Proposition 3]. We 
write 𝑢ℎ,𝝉 (𝑥, 𝑡) = 𝑢1(𝑥)𝑢2(𝑡), with 𝑢2 ∈ 𝑊

𝝉
and 𝑢1(𝑥) =

∑𝑁ℎ
𝑗=1𝑈𝑗𝜑𝑗 (𝑥), 

{𝜑𝑗}
𝑁ℎ
𝑗=1 being the VE basis functions. We set 𝐔(𝑡) = [𝑈1, … , 𝑈𝑁ℎ ]

𝑇 𝑤2(𝑡) ∈
[𝑊

𝝉
]𝑁ℎ . By definition (5.4), we have

⦀𝑢ℎ,𝝉⦀2 = 𝜈 𝑁𝑇∑
𝑛=1

∫
𝐼𝑛

‖�̇�‖20,ℎ d𝑡

+ 1
2
‖‖ ̇𝑢ℎ,𝝉 (0+, ⋅)‖‖20,ℎ + 1

2

𝑁𝑇 −1∑
𝑛=1

‖‖[ ̇𝑢ℎ,𝝉 ]𝑛‖‖20,ℎ + 1
2
‖‖ ̇𝑢ℎ,𝝉 (𝑇 −, ⋅)‖‖20,ℎ

+ 1
2
||𝑢ℎ,𝝉 (0+, ⋅)||21,ℎ + 1

2

𝑁𝑇 −1∑
𝑛=1

||[𝑢ℎ,𝝉 ]𝑛||21,ℎ + 1
2
||𝑢ℎ,𝝉 (𝑇 −, ⋅)||21,ℎ .

(6.1)

We observe that

∫
𝐼𝑛

‖�̇�‖20,ℎ d𝑡 = ∫
𝐼𝑛

𝑁ℎ∑
𝑖,𝑗=1

(
𝑈𝑖𝑢2(𝑡)

)
(𝑀ℎ)𝑖,𝑗

(
𝑈𝑗𝑢2(𝑡)

)
d𝑡

= ∫
𝐼𝑛

𝐔(𝑡)𝑇𝑀ℎ𝐔(𝑡) d𝑡 = ‖‖‖𝑀1∕2
ℎ

𝐔‖‖‖2𝐿2(𝐼𝑛) .
Hence, 

𝑁𝑇∑
𝑛=1

∫
𝐼𝑛

‖�̇�‖20,ℎ d𝑡 =
𝑁𝑇∑
𝑛=1

‖‖‖𝑀1∕2
ℎ

𝐔‖‖‖2𝐿2(𝐼𝑛). We now focus on the terms 

in the second line of (6.1). We have

‖‖ ̇𝑢ℎ,𝝉 (0+, ⋅)‖‖20,ℎ = ‖‖𝑢1‖‖20,ℎ (�̇�2(0+))2 = 𝑁ℎ∑
𝑖,𝑗=1

(
𝑈𝑖�̇�2(0+)

)
(𝑀ℎ)𝑖,𝑗

(
𝑈𝑖�̇�2(0+)

)
=
(
𝑀

1∕2
ℎ

�̇�(0+)
)2
,

and, similarly, we find ‖‖ ̇𝑢ℎ,𝝉 (𝑇 −, ⋅)‖‖20,ℎ = (𝑀1∕2
ℎ

�̇�(𝑇 −)
)2

. Moreover,

‖‖[ ̇𝑢ℎ,𝝉 ]𝑛‖‖20,ℎ = ‖‖𝑢1‖‖20,ℎ ([�̇�2]𝑛)2 = 𝑁ℎ∑
𝑖,𝑗=1

(
𝑈𝑖[�̇�2]𝑛

)
(𝑀ℎ)𝑖,𝑗

(
𝑈𝑖[�̇�2]𝑛

)
=
(
𝑀

1∕2
ℎ

[�̇�]𝑛
)2
.

We conclude observing that the terms in the third line of (6.1) can be 
treated analogously. □

Remark 6.2. Lemma 6.1 extends to 𝑒ℎ ∶= 𝑢ℎ−𝑢ℎ,𝝉 , 𝑢ℎ being the solution 
to the semi-discrete problem (3.15).

Theorem 6.3 (Error estimate). Let the assumptions of Theorem 3.6 and 
Theorem 4.1 hold. Then, there holds

⦀𝑢− 𝑢ℎ,𝝉⦀ ≲ 𝑇[ 𝑁𝑇∑
𝑛=1

𝜏
2𝛽𝑛−3
𝑛

𝑟
2𝑞𝑛−6
𝑛

(||𝑢ℎ,0||21,ℎ + ‖‖𝑧ℎ,0‖‖20,ℎ + |𝑓ℎ|2𝐻𝑞𝑛 (0,𝑡;𝐿2(Ω)))
]1∕2

+ 𝑇 ℎ𝑘
[||𝑢0||2𝐻𝑘+1(Ω) + ℎ2 ||𝑧0||2𝐻𝑘+1(Ω) + ℎ2 |𝑓 |2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω))

+ ||𝑢𝑡||2𝐿1(0,𝑇 ;𝐻𝑘+1(Ω)) + ℎ2 ||𝑢𝑡||2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω))
+ ℎ2 ||𝑢𝑡𝑡||2𝐿1(0,𝑇 ;𝐻𝑘+1(Ω)) + ℎ2 ||𝑢𝑡𝑡||2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω))

]1∕2

.

(6.2)

Proof. Let 𝑢ℎ(𝑡) ∈ 𝐶0 (0, 𝑇 ;𝑊ℎ) ∩ 𝐶1 (0, 𝑇 ;𝑊ℎ) be the solution to the 
semi-discrete problem (3.15). Then, we split the error 𝑒 ∶= 𝑢 − 𝑢ℎ,𝝉 =
(𝑢 − 𝑢ℎ) + (𝑢ℎ − 𝑢ℎ,𝝉 ), where 𝑒ℎ ∶= 𝑢 − 𝑢ℎ is the error due to the space 
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approximation by means of the VEM, and 𝑒
𝝉
∶= 𝑢ℎ − 𝑢ℎ,𝝉 is the error due 

to the DG time discretization. By triangular inequality, we have

⦀𝑢− 𝑢ℎ,𝝉⦀ ≤ ⦀𝑒ℎ⦀+ ⦀𝑒𝝉⦀. (6.3)

We start bounding the second contribution to the norm of the error. 
Applying Lemma 6.1 (and Remark 6.2) and Theorem 4.1, we find

⦀𝑒
𝝉
⦀2 ≲ 𝑁𝑇∑

𝑛=1

𝜏
2𝛽𝑛−3
𝑛

𝑟
2𝑞𝑛−6
𝑛

‖𝐔‖2
(𝐻𝑞𝑛 (𝐼𝑛))𝑁ℎ

,

and by definition of the 𝐻𝑞𝑛 (𝐼𝑛)-norm we get

⦀𝑒
𝝉
⦀2 ≲ 𝑁𝑇∑

𝑛=1

𝜏
2𝛽𝑛−3
𝑛

𝑟
2𝑞𝑛−6
𝑛

∫
𝐼𝑛

(‖‖𝑢ℎ(𝑡)‖‖2𝐿2(Ω) +⋯+ ‖‖‖𝜕𝑞𝑛𝑡 𝑢ℎ(𝑡)‖‖‖2𝐿2(Ω)
)

d𝑡,

where 𝜕𝑞𝑛
𝑡
𝑢ℎ is the 𝑞𝑛-th time derivative of 𝑢ℎ. Applying the Poincaré 

inequality, (3.11) and Theorem 3.2, we find

‖‖𝑢ℎ(𝑡)‖‖2𝐿2(Ω) ≲ ||𝑢ℎ(𝑡)||2𝐻1(Ω) ≲
||𝑢ℎ(𝑡)||1,ℎ

≲

(||𝑢ℎ,0||21,ℎ + ‖‖𝑧ℎ,0‖‖20,ℎ + ‖‖𝑓ℎ‖‖2𝐿2(0,𝑡,𝐿2(Ω))) ,
so that

∫
𝐼𝑛

‖‖𝑢ℎ(𝑡)‖‖2𝐿2(Ω) d𝑡 ≲ 𝑇
(||𝑢ℎ,0||21,ℎ + ‖‖𝑧ℎ,0‖‖20,ℎ + ‖‖𝑓ℎ‖‖2𝐿2(0,𝑇 ,𝐿2(Ω))) .

Similarly, applying the Poincaré inequality, (3.11) and Remark 3.3, for 
all 1 ≤ 𝛼 ≤ 𝑞𝑛 integer, we obtain

∫
𝐼𝑛

‖‖‖𝜕𝑞𝑛𝑡 𝑢ℎ(𝑡)‖‖‖2𝐿2(Ω) d𝑡 ≲ 𝑇
‖‖‖𝜕𝑞𝑛𝑡 𝑓ℎ‖‖‖2𝐿2(0,𝑇 ,𝐿2(Ω)) .

Hence, we have shown that

⦀𝑒
𝝉
⦀2 ≲ 𝑇 𝑁𝑇∑

𝑛=1

𝜏
2𝛽𝑛−3
𝑛

𝑟
2𝑞𝑛−6
𝑛

(||𝑢ℎ,0||21,ℎ + ‖‖𝑧ℎ,0‖‖20,ℎ + |𝑓ℎ|2𝐻𝑞𝑛 (0,𝑇 ;𝐿2(Ω))) . (6.4)

We consider now the error due to the VEM approximation in space. 
Recalling that 𝑒ℎ ∈ 𝐶1(0, 𝑇 ; 𝑊ℎ), we have

⦀𝑒ℎ⦀2 = 𝑁𝑇∑
𝑛=1

∫
𝐼𝑛

‖‖�̇�ℎ‖‖20,ℎ d𝑡+ 1
2
‖‖�̇�ℎ(0+)‖‖20,ℎ + 1

2
‖‖�̇�ℎ(𝑇 −)‖‖20,ℎ

+ 1
2
||𝑒ℎ(0+)||21,ℎ + 1

2
||𝑒ℎ(𝑇 −)||21,ℎ .

(6.5)

Since 𝑢ℎ,0 is the interpolant of degree 𝑘 of 𝑢0, thanks to (3.7) there holds

||𝑒ℎ(0+)||1,ℎ = ||𝑢0 − 𝑢ℎ,0||1,ℎ ≲ ℎ𝑘 ||𝑢0||𝐻𝑘+1(Ω) , (6.6)

and similarly, since 𝑧ℎ,0 is the interpolant of degree 𝑘 of 𝑧0

‖‖�̇�ℎ(0+)‖‖0,ℎ = ‖‖𝑧0 − 𝑧ℎ,0‖‖0,ℎ ≲ ℎ𝑘+1 ||𝑧0||𝐻𝑘+1(Ω) . (6.7)

Using (3.11) and Theorem 3.6, we find:

||𝑒ℎ(𝑇 −)||21,ℎ + ‖‖�̇�ℎ(𝑇 −)‖‖20,ℎ = ||𝑢(𝑇 −) − 𝑢ℎ(𝑇 −)||21,ℎ + ‖‖𝑢𝑡(𝑇 −) − 𝑢ℎ,𝑡(𝑇 −)‖‖20,ℎ
≲ ‖‖𝑢(𝑇 −) − 𝑢ℎ(𝑇 −)‖‖2𝐻1(Ω) + ‖‖𝑢𝑡(𝑇 −) − 𝑢ℎ,𝑡(𝑇 −)‖‖2𝐿2(Ω)
≲ ℎ2𝑘

( ||𝑢0||2𝐻𝑘+1(Ω) + ℎ2 ||𝑧0||2𝐻𝑘+1(Ω) + ℎ2 |𝑓 |2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω))
+ ||𝑢𝑡||2𝐿1(0,𝑇 ;𝐻𝑘+1(Ω)) + ℎ2 ||𝑢𝑡||2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω)) + ℎ2 ||𝑢𝑡𝑡||2𝐿1(0,𝑇 ;𝐻𝑘+1(Ω))
+ ℎ2 ||𝑢𝑡𝑡||2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω)) ).

(6.8)
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Finally, thanks to (3.11) and Theorem 3.6, we find:

∫
𝐼𝑛

‖‖�̇�ℎ(𝑠)‖‖20,ℎ d𝑠 = ∫
𝐼𝑛

‖‖𝑢𝑡(𝑠) − 𝑢ℎ,𝑡(𝑠)‖‖20,ℎ d𝑠 ≲ ∫
𝐼𝑛

‖‖𝑢𝑡(𝑠) − 𝑢ℎ,𝑡(𝑠)‖‖2𝐿2(Ω) d𝑠

≲ 𝜏𝑛ℎ
2𝑘
( ||𝑢0||2𝐻𝑘+1(Ω) + ℎ2 ||𝑧0||2𝐻𝑘+1(Ω) + ℎ2 |𝑓 |2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω))

+ ||𝑢𝑡||2𝐿1(0,𝑇 ;𝐻𝑘+1(Ω)) + ℎ2 ||𝑢𝑡||2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω)) + ℎ2 ||𝑢𝑡𝑡||2𝐿1(0,𝑇 ;𝐻𝑘+1(Ω))
+ ℎ2 ||𝑢𝑡𝑡||2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω)) ).

(6.9)

Inserting (6.6), (6.7), (6.8) and (6.9) into (6.5), and using that ∑𝑁𝑇
𝑛=1 𝜏𝑛 =

𝑇 , we obtain

⦀𝑒ℎ⦀2 ≲ 𝑇ℎ2𝑘( ||𝑢0||2𝐻𝑘+1(Ω) + ℎ2 ||𝑧0||2𝐻𝑘+1(Ω) + ℎ2 |𝑓 |2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω))
+ ||𝑢𝑡||2𝐿1(0,𝑇 ;𝐻𝑘+1(Ω)) + ℎ2 ||𝑢𝑡||2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω)) + ℎ2 ||𝑢𝑡𝑡||2𝐿1(0,𝑇 ;𝐻𝑘+1(Ω))
+ ℎ2 ||𝑢𝑡𝑡||2𝐿2(0,𝑇 ;𝐻𝑘+1(Ω)) ).

(6.10)

The final result (6.2) follows from (6.4) and (6.10). □

Corollary 6.4. Let 𝑢 ∈ 𝐶2 (0, 𝑇 ;𝐻1
0 (Ω) ∩𝐻

𝑘+1(Ω)
)
, 𝑢0, 𝑧0 ∈ 𝐻𝑘+1(Ω)

and 𝑢𝑡, 𝑢𝑡𝑡, 𝑓 ∈ 𝐿2 (0, 𝑇 ;𝐻𝑘+1(Ω)), with 𝑘 ≥ 1 integer. Moreover, let 𝑢 ∈
𝐻𝑞

(
𝐼𝑛;𝐻1

0 (Ω)
)

for all 𝑛 = 1, … , 𝑁𝑇 , with 𝑞 ≥ 2, with 𝜏𝑛 = Δ𝑡 > 0 and 
𝑟𝑛 = 𝑟 ∈ℕ for all 𝑛 = 1, … , 𝑁𝑇 . Then,

⦀𝑢− 𝑢ℎ,𝝉⦀ =𝑂(Δ𝑡𝛽−3∕2 + ℎ𝑘)

as Δ𝑡 and ℎ decrease to 0.

7. Numerical tests

All the numerical tests are performed in Matlab, and make use of the 
VEM code available at [50] for spatial discretization. For DG in time, we 
refer to [21]. The meshes are generated using the code Polymesher [51].

7.1. Verification test

As verification test, we consider equation (2.1) on Ω × (0, 𝑇 ] =
(0, 1)2 × (0, 1], where 𝜈 = 1 and the loading term 𝑓 as well as the ini-

tial conditions 𝑢0, 𝑧0 are chosen so that

𝑢𝑒𝑥(𝑡, 𝑥1, 𝑥2) ∶= sin(𝑡2) sin(𝜋𝑥1) sin(𝜋𝑥2) (7.1)

is the unique solution of the problem (see Fig. 7.1).

First, we verify the convergence of the VEM-DG error as the time 
discretization refines. We compute the VEM-DG solution 𝑢ℎ,𝜏 applying 
the VEM of degree 𝑘 = 4 on the Voronoi mesh represented in Fig. 7.2(a), 
coupled with the DG method in time over uniform partitions of [0, 1]
with decreasing length Δ𝑡 of the time-slabs and with varying polynomial 
degree 𝑟 = 1, 2, 3. Note that the case 𝑟 = 1 is not covered by the theory 
of Section 4. In Fig. 7.2(b) we observe the expected decay of the error at 
final time, namely, ⦀𝑢𝑒𝑥(𝑇 ) − 𝑢ℎ,𝝉 (𝑇 )⦀ =𝑂(Δ𝑡𝑟−1∕2) (see Corollary 4.2).

In the second experiment, we study the convergence of the VEM-

DG error as the space discretization refines. To this end, we consider 
the DG approximation of degree 𝑟 = 6 over the uniform partition of 
[0, 1] with Δ𝑡 = 0.1, coupled with the VEM on different Voronoi meshes 
(see Fig. 7.3) and with increasing degree 𝑘 = 1, 2, 3. In Fig. 7.4(a) the 
expected behavior ⦀𝑢𝑒𝑥(𝑇 ) − 𝑢ℎ,𝝉 (𝑇 )⦀ = 𝑂(ℎ𝑘) is observed (see Theo-

rem 3.6).

Finally, in the last experiment, we take 𝑟 = 𝑘 and ℎ ∼ Δ𝑡. The error 
decay is depicted in Fig. 7.4(b), and it is in agreement with (6.2).

7.2. Validation test

The second experiment deals with a more realistic scenario, and 
aims at investigating the performances of the proposed numerical 
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Fig. 7.1. (a) 𝑢𝑒𝑥 at final time 𝑇 = 1; (b) 𝑢𝑒𝑥,𝑡 at final time 𝑇 = 1.

Fig. 7.2. (a) Voronoi mesh with 100 polygonal elements; (b) ⦀𝑢𝑒𝑥(𝑇 ) − 𝑢ℎ,𝝉 (𝑇 )⦀, where 𝑢ℎ,𝝉 is computed using VEM of degree 𝑘 = 4 and DG of increasing degree 
𝑟 = 1, 2, 3.

Fig. 7.3. Voronoi meshes with 50 (top left) 200 (top right) 800 (bottom left) and 3200 (bottom right) elements.
350
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Fig. 7.4. (a) ⦀𝑢𝑒𝑥(𝑇 ) − 𝑢ℎ,𝝉 (𝑇 )⦀, where 𝑢ℎ,𝝉 is computed using DG of degree 𝑟 = 6 on a uniform partition of the time interval with Δ𝑡 = 0.01 and VEM of increasing 
degree 𝑘 = 1, 2, 3. (b) ⦀𝑢𝑒𝑥(𝑇 ) − 𝑢ℎ,𝝉 (𝑇 )⦀, where 𝑢ℎ,𝝉 is computed using DG on a uniform partition of the time interval with Δ𝑡 = 0.1 and VEM on the Voronoi mesh 
with 200 elements (see Fig. 7.3(b), with equal degree in time and space).

Fig. 7.5. (a) Loading term (7.2). (b) Reference solution.
scheme in the non-dissipative case, which is not covered by the the-

ory here developed. In particular, we consider problem (2.1) with 𝜈 = 0, 
initial data 𝑢0 ≡ 0, 𝑧0 ≡ 0 and loading term

𝑓 (𝑡, 𝑥) =
⎧⎪⎨⎪⎩
100 𝑒−

(𝑥−𝑥0)
4

𝑠2 for 𝑡 < 0.1
0 else

(7.2)

representing a smooth impulse centered at 𝑥0 = (0.05, 0.05), with 𝑠 =
0.025 (see Fig. 7.5(a)). For such example, there is no analytical solution. 
Hence, we refer to an overkilled solution computed by means of the 
VEM of degree 2 on a spatial mesh with 3200 elements coupled with 
DG for time discretization, with polynomial degree 2 and Δ𝑡 = 1∕320
(see Fig. 7.5(b)).

In Fig. 7.6 we represent the snapshots at final time 𝑇 = 1 of the ap-

proximated solution obtained by means of the proposed VEM-DG strat-

egy (the parameters for time integration are Δ𝑡 = 1∕20 and 𝑟 = 2), com-

pared with the approximations produced using the Newmark method 
for increasing Δ𝑡. Note that the numerical scheme for the space inte-

gration is the same as in the reference solution. We can observe that 
the discrete solution computed with Newmark is affected by spuri-

ous oscillations. In Fig. 7.7 we report the computed time history of 
the displacement on a receiver located at (0.5, 0.5). It is clear that the 
VEM-DG approximation is more accurate than those computed with the 
Newmark method. Finally, in Fig. 7.8 we represent the history of the 
displacement on a receiver located at (0.5, 0.5) (left) and (0.2, 0.2) (right), 
for varying multiplicative coefficient (chosen equal to 0.1, 1 and 10) in 
front of the stability bilinear forms 𝑆ℎ(∙, ∙) and 𝑅ℎ(∙, ∙). The time inte-

gration is performed by means of Newmark’s method with Δ𝑡 = 1∕80. In 
351
both figures, no substantial difference between the three lines obtained 
by means of Newmark’s method can be appreciated.

Data availability

No data was used for the research described in the article.
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Appendix A. Representation formula for the semi-discrete 
solution

Theorem Appendix A.1. The unique solution to problem (3.15) is given 
by

𝑢ℎ(𝑡) ∶=
𝑁ℎ∑
𝑛=1
𝛾𝑛(𝑡)𝑤

(𝑛)
ℎ
, (A.1)
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Fig. 7.6. Fully discrete solution computed by means of the proposed VEM-DG strategy with Δ𝑡 = 1∕20 and 𝑟 = 2 (a) compared with the numerical approximation 
obtained by means of VEM in space coupled with Newmark for time integration, with Δ𝑡 = 1∕20 (b), Δ𝑡 = 1∕40 (c) and Δ𝑡 = 1∕80 (d).
Fig. 7.7. Computed time history of the displacement on a receiver located at 
(0.5, 0.5). The black line represents the reference solution. The red line rep-

resents the VEM-DG solution. The dashed blue lines represent the solutions 
computed with the Newmark method for increasing Δ𝑡.

where {𝑤(𝑛)
ℎ
}𝑁ℎ
𝑛=1 is the basis of 𝑊ℎ orthonormal with respect to 𝑚ℎ(∙, ∙) ful-

filling, for all 𝑣ℎ ∈𝑊ℎ and for all 𝑛 = 1, … , 𝑁ℎ

𝑎ℎ(𝑤
(𝑛)
ℎ
, 𝑣ℎ) = 𝜆

(𝑛)
ℎ
𝑚ℎ(𝑤

(𝑛)
ℎ
, 𝑣ℎ),

with 0 < 𝜆(1)
ℎ

≤⋯ ≤ 𝜆(𝑁ℎ)
ℎ

, and the 𝑛-th coefficient in the eigen-expansion of 
𝑢ℎ(𝑡) (A.1) is given by

𝛾𝑛(𝑡) ∶= 𝑒−𝜈∕2𝑡
[
𝑚ℎ(𝑢ℎ,0,𝑤

(𝑛)
ℎ
) cos(𝜔(𝑛)

ℎ
𝑡) + 1

𝜔
(𝑛)
ℎ

𝑚ℎ(𝑧ℎ,0,𝑤
(𝑛)
ℎ
) sin(𝜔(𝑛)

ℎ
𝑡)

+ 1
𝜔
(𝑛)
ℎ

𝑡

∫
0

𝑒−𝜈∕2(𝑡−𝑠) sin(𝜔(𝑛)
ℎ
(𝑡− 𝑠))

(
𝑓ℎ(𝑠),𝑤ℎ

)
𝐿2(Ω) 𝑑𝑠

] (A.2)
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where 𝜔(𝑛)
ℎ

∶=
√
𝜆
(𝑛)
ℎ

− 𝜈2

4 , with 𝜈 being small enough so that 𝜆(𝑛)
ℎ

− 𝜈2

4 > 0
for all 𝑛 = 1, … , 𝑁ℎ.

To prove Theorem Appendix A.1 we need two auxiliary results.

Lemma Appendix A.2. Let

𝐹𝑛(𝑡) ∶= 𝑒−𝜈∕2𝑡
(
𝑐𝑛 cos(𝜔

(𝑛)
ℎ
𝑡) +

𝑑𝑛

𝜔
(𝑛)
ℎ

sin(𝜔(𝑛)
ℎ
𝑡)
)
, (A.3)

with 𝑐𝑛, 𝑑𝑛 > 0. Then, there holds

𝐹𝑛(𝑡) + 𝜈�̇�𝑛(𝑡) + 𝜆
(𝑛)
ℎ
𝐹𝑛(𝑡) = 0, (A.4)

where 𝜆(𝑛)
ℎ
, 𝜔(𝑛)
ℎ

have been defined in Theorem 3.2.

Proof. Equation (A.4) follows by observing that

�̇� (𝑡) = 𝑒−𝜈∕2𝑡
[(

− 𝜈
2
𝑐𝑛 + 𝑑𝑛

)
cos(𝜔(𝑛)

ℎ
𝑡) +

(
− 𝜈

2
𝑐𝑛

𝜔
(𝑛)
ℎ

− 𝑐𝑛𝜔
(𝑛)
ℎ

)
sin(𝜔(𝑛)

ℎ
𝑡)

]
,

𝐹 (𝑡) = 𝑒−𝜈∕2𝑡
[(
𝜈2

4
𝑐𝑛 − 𝜈𝑑𝑛 − 𝑐𝑛(𝜔

(𝑛)
ℎ
)2
)
cos(𝜔(𝑛)

ℎ
𝑡)

+
(
𝜈2

4
𝑑𝑛

𝜔
(𝑛)
ℎ

+ 𝜈𝑐𝑛𝜔
(𝑛)
ℎ

−𝜔(𝑛)
ℎ
𝑑𝑛

)
sin(𝜔(𝑛)

ℎ
𝑡)

]
. □

Lemma Appendix A.3. Let

𝐺𝑛(𝑡) ∶=

𝑡

∫
0

𝑔𝑛(𝑡, 𝑠)𝑑𝑠, (A.5)

with
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Fig. 7.8. Computed time history of the displacement on a receiver located at (0.5, 0.5) (a) and at (0.2, 0.2) (b) for varying stability coefficient. The time integration is 
performed by means of Newmark’s method with Δ𝑡 = 1∕80.
𝑔𝑛(𝑡, 𝑠) ∶=
1
𝜔
(𝑛)
ℎ

𝑒−𝜈∕2(𝑡−𝑠) sin(𝜔(𝑛)
ℎ
(𝑡− 𝑠))

(
𝑓ℎ(𝑠),𝑤ℎ

)
𝐿2(Ω) . (A.6)

Then, there holds

�̈�𝑛(𝑡) + 𝜈�̇�𝑛(𝑡) + 𝜆
(𝑛)
ℎ
𝐺𝑛(𝑡) =

(
𝑓ℎ(𝑡),𝑤ℎ

)
𝐿2(Ω) , (A.7)

where 𝜆(𝑛)
ℎ
, 𝜔(𝑛)
ℎ

have been defined in Theorem 3.2.

Proof. We note that

𝑑

𝑑𝑡

𝑡

∫
0

𝑔(𝑠, 𝑡)𝑑𝑠 = 𝑔(𝑡, 𝑡) − 𝑔(0, 𝑡) +

𝑡

∫
0

𝜕

𝜕𝑡
𝑔(𝑠, 𝑡)𝑑𝑠,

𝑑2

𝑑𝑡2

𝑡

∫
0

𝑔(𝑠, 𝑡)𝑑𝑠 = 𝑑
𝑑𝑡

(
𝑔(𝑡, 𝑡) − 𝑔(0, 𝑡)

)
+ 𝜕
𝜕𝑡
𝑔(𝑠, 𝑡)|𝑠=𝑡 − 𝜕

𝜕𝑡
𝑔(𝑠,0)

+

𝑡

∫
0

𝜕2

𝜕𝑡2
𝑔(𝑠, 𝑡)𝑑𝑠.

Equation (A.7) follows by choosing 𝑓 (0) = 0 and observing that

�̇�(𝑡) =

𝑡

∫
0

𝑒−𝜈∕2(𝑡−𝑠)

[
− 𝜈

2𝜔(𝑛)
ℎ

sin(𝜔(𝑛)
ℎ
(𝑡− 𝑠)) + cos(𝜔(𝑛)

ℎ
(𝑡− 𝑠))

]
×
(
𝑓ℎ(𝑠),𝑤ℎ

)
𝐿2(Ω) 𝑑𝑠,

and

�̈�(𝑡) =
(
𝑓ℎ(𝑡),𝑤ℎ

)
𝐿2(Ω) +

𝑡

∫
0

𝑒−𝜈∕2(𝑡−𝑠)
(
𝑓ℎ(𝑠),𝑤ℎ

)
𝐿2(Ω)[

− 𝜈 cos(𝜔(𝑛)
ℎ
(𝑡− 𝑠)) +

(
𝜈2

4𝜔(𝑛)
ℎ

−𝜔(𝑛)
ℎ

)
sin(𝜔(𝑛)

ℎ
(𝑡− 𝑠))

]
𝑑𝑠. □

Proof of Theorem Appendix A.1. Since {𝑤(𝑛)
ℎ
}𝑁ℎ
𝑛=1 is the basis of 𝑊ℎ, it 

is enough to verify that (A.1) fulfills problem (3.15) for all test functions 
𝑣ℎ =𝑤

(𝑛)
ℎ

, with 𝑛 = 1, … , 𝑁ℎ. Observe that

𝑎ℎ(𝑢ℎ(𝑡),𝑤
(𝑛)
ℎ
) =

𝑁ℎ∑
𝑚=1
𝛾𝑛(𝑡)𝑎ℎ(𝑤

(𝑚)
ℎ
,𝑤

(𝑛)
ℎ
)

=

{
0, if 𝑛 ≠𝑚,
𝛾𝑛(𝑡)𝜆

(𝑛)
ℎ

‖‖‖𝑤(𝑛)
ℎ

‖‖‖20,ℎ = 𝜆(𝑛)ℎ 𝛾𝑛(𝑡), if 𝑛 =𝑚,

and, analogously, 𝑚ℎ(𝑢ℎ(𝑡), 𝑤
(𝑛)
ℎ
) = 𝛾𝑛(𝑡). Then,

𝑚ℎ(𝑢ℎ,𝑡𝑡(𝑡),𝑤
(𝑛)) + 𝜈𝑚ℎ(𝑢ℎ,𝑡(𝑡),𝑤

(𝑛)) + 𝑎ℎ(𝑢ℎ(𝑡),𝑤
(𝑛))
ℎ ℎ ℎ
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= 𝑑
2

𝑑𝑡2
𝑚ℎ(𝑢ℎ(𝑡),𝑤

(𝑛)
ℎ
) + 𝜈 𝑑

𝑑𝑡
𝑚ℎ(𝑢ℎ(𝑡),𝑤

(𝑛)
ℎ
) + 𝑎ℎ(𝑢ℎ(𝑡),𝑤

(𝑛)
ℎ
)

= 𝑑
2

𝑑𝑡2
𝛾𝑛(𝑡) + 𝜈

𝑑

𝑑𝑡
𝛾𝑛(𝑡) + 𝜆

(𝑛)
ℎ
𝛾𝑛(𝑡). (A.8)

We conclude that (A.8) =
(
𝑓ℎ(𝑡),𝑤ℎ

)
𝐿2(Ω) by applying Lemma Appendix

A.2, since 𝛾𝑛(𝑡) = 𝐹𝑛(𝑡) + 𝐺𝑛(𝑡), where 𝐹𝑛(𝑡) is of the form (A.3) - the 
constants being fixed so that 𝑢ℎ(𝑡) fulfills the initial conditions 𝑢ℎ(0) =
𝑢ℎ,0, 𝑢ℎ,𝑡(0) = 𝑧ℎ,0, namely,

𝑐𝑛 =𝑚ℎ(𝑢ℎ,0,𝑤
(𝑛)
ℎ
), 𝑑𝑛 =

1
𝜔
(𝑛)
ℎ

𝑚ℎ(𝑧ℎ,0,𝑤
(𝑛)
ℎ
),

and by applying Lemma Appendix A.3, since 𝐺𝑛(𝑡) is of the form 
(A.5)-(A.6). □
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