
A finite state machine approach to nano-satellite SW design:
the HERMES case study

Margherita Piccinin�, Andrea Brandonisio�, Andrea Colagrossi�†, Giovanni Zanotti�, Stefano Silvestrini�

and Michèle Lavagna�

�Politecnico di Milano - Via La Masa 34, Milano, Italy
margherita.piccinin@polimi.it · andrea.brandonisio@polimi.it · andrea.colagrossi@polimi.it ·

giovanni.zanotti@polimi.it · stefano.silvestrini@polimi.it · michelle.lavagna@polimi.it
†Corresponding author

Abstract
In recent years, the number of launched small satellites, has exponentially grown, thanks to their low cost

and modularity. Nevertheless, the software of such platforms still requires remarkable mission-specific tai-

loring efforts. In this paper, a linear, flexible and modular Finite State Machine (FSM) approach for nano-

satellites software design is proposed, capable of being easily tailored to the specific mission and tuned

according to variations of requirements and functionalities. The proposed FSM structure is composed of

three major macro-modes, offering a time-driven mode and a scheduled mode for nominal operations, with

a cyclic and basic safe mode, potentially applicable to every generic nano-satellite mission. The presented

method has been used for the SW design of the HERMES mission, a 6 CubeSats constellation financed

by Italian Ministry of University and Research (MUR), the Italian Space Agency (ASI) and the European

Community (EC). HERMES FSM is presented in the paper, as case study for the method application.

1. Introduction

The Space community interest in small-sized spacecraft increased considerably in recent years, being the number of

launched nano-satellites and CubeSats growing with an exponential trend in the last decade. According to current

figures, until 1st January 2023 the total number of launched nano-satellites is 2138, with a forecast of about other 2000

nano-satellites to be launched in the next 6 years.1 Small platforms are born with the idea of building a low cost solution

and of allowing a quick development time. However, with the consolidation of small spacecraft technologies, they are

being used to achieve more and more complex mission objectives. Indeed, their applications span from interplanetary

CubeSats to Earth satellites for science, technological demonstrations and remote sensing. In particular, Low Earth

Orbit (LEO) constellations offer the possibility to exploit a distributed instrument architecture, otherwise impossible

to reach with just one satellite. With small-sized satellites, mega constellations have also become possible. Due to the

increasing complexity of such missions, and to achieve high value mission goals it is not sufficient to simply assemble

Commercial Off-The-Shelf (COTS) components, but customised and tailored solutions are often necessary.

A fundamental aspect for the success of such missions consists into the design of reliable on-board software,

which is a vital element of the platform and in charge of performing Fault Detection Isolation and Recovery (FDIR)

functions.2 The definition of the software logic and routine workflows is a task with large complexity, as it involves

major design choices and has a large impact on the whole system functioning.

The problem of nano-satellites software design is not new and, in literature, different approaches can be found,

often relying on a Finite State Machine (FSM) to execute the mission functionalities in a deterministic manner.3–5

However, there is still the lack of a consolidated and broadly recognised framework for designing the logic underlying

the on-board software. Currently, it can be still observed a tight bond among the mission needs and the specific solutions

that are consequently adopted in the software architecture. On the other hand, the nano-satellite market would benefit

from a linear, modular and easily adaptable software framework.

With the purpose of making some steps forward in this direction, a multi-disciplinary and systematic approach

to break down the software design process into effective steps is proposed and described in the paper. The proposed

solutions and the adopted concepts tackle the typical challenges that can be found in many CubeSats LEO missions,

such as the need of performing an automatic LEOP (Launch and Early Operation Phase) in a short pre-defined time,

operating the platform via on-ground scheduled commands, and the necessity of a highly reliable software managing

the low-cost components of the satellite. The described approach is then applied to the High Energy Rapid Modular

Copyright© 2023 by First Author. Posted on line by the EUCASS association with permission.

DOI: 10.13009/EUCASS2023-342

Aerospace Europe Conference 2023 – 10 EUCASS – 9 CEAS

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

Ensemble of Satellites (HERMES) mission, funded by Italian Ministry of Research (MUR), the Italian Space Agency,

(ASI) and the European Commission (EC), as a case study.6, 7

HERMES space segment is composed of a LEO constellation of six nano-satellites, with the objective of detec-

tion, localisation and communication to ground of energetic astrophysical transients. To achieve such complex objec-

tives, the on-board software is executed by two different OBCs on the spacecraft (i.e., OBC-MAIN and OBC-ADCS),

while interfacing with other spacecraft’s components, as the payload, the power module, the radios, the sensors and the

actuators. Each OBC is driven by a dedicated software (i.e., SW-MAIN and SW-ADCS), which is structured according

to its own FSM. The two pieces of software are interfaced by means of structured data commands and monitoring

parameters, with a "master-slave" logical architecture.

The paper has therefore three main contributions:

• A general and effective approach for nano-satellite’s software design is proposed, presenting design guidelines

and a clear strategy to include FDIR functions.

• The proposed FSM-based method for the design and implementation of the on-board software can be easily

standardised and applied to different scenarios and space missions, improving the flexibility and the modularity

of classical FSMs.

• The method is applied to the HERMES mission, highlighting the main specific design challenges and presenting

the results up to the formal verification of the software FSM in the framework of a validated environment.

The paper is structured as follows. After presenting a survey of nano-satellite software design approaches in

Section 2, a structured and general method for small-spacecraft mission software design is proposed in Section 3.

Then Section 4 introduces the HERMES case study, presenting the specific challenges and the adopted solutions

of this application case while applying the proposed method for software design. The achievements are shown in

Section 5, including the FSM verification and some multi-disciplinary analyses in support to the design choices.

Finally, conclusions are drawn in Section 6.

2. Survey of nano-satellite software design approaches

Many nano-satellite software design approaches are founded on the principle of separating the on-board software in

different layers to encapsulate different abstraction levels. This decision is frequently linked to the exploitation of one

operating system (OS) in the fundamental levels. Commonly, third-party available OS are used, like FreeRTOS or

GNU/Linux. The latter requires powerful on-board processors, and it is selected whenever high-level programming

language or features available only in GNU/Linux are necessary.8–10 However, if the design approach allows for low-

level programming language, or limited performance OBCs are available, or saving processing resources is a mission

requirement, an OS for embedded systems is preferred (e.g., FreeRTOS).11

In general, nano-satellites’ flight software is required to be modular, extensible, flexible, robust and capable to

handle on-board failures. These qualities are commonly implemented in the upper abstraction layer, which contains

the main application software. This can be formalised and designed following a FSM approach or a component-based

and service-oriented architecture. FSM provides a straightforward and neat implementation once all the mission’s

functional requirements are available, but it is typically less prone to include changes and follow the development

process, indulging on modifications that affect the evolution of the states and transitions. On the contrary, centralised

and decentralised architectures based on components and services, if well organised, are more flexible supporting

incremental development and updated requirements.

2.1 FSM-based approaches

Finite state machines are defined as abstract computation models that at one time can be in exactly one of a finite

number of states. The FSM changes from one state to another are driven by specified inputs, and they are denoted as

transitions. To define a FSM, the full list of its states, the initial state and the inputs triggering each transition shall

be declared. Then, a FSM allows to follow the operations of a spacecraft, transitioning among the different mission

modes with different functionalities. Very simple spacecraft are entirely based on a hierarchical FSM, driving the entire

on-board software,12 while more complex architectures contain the FSM in the upper application layer.8, 13 In any case,

a very structured hierarchical FSM, from one side makes the software design very plain and linear, customised for

the specific mission modes, on the other end it requires deep and extensive modifications if any alteration is needed.

In order to overcome such problems, hierarchical decomposition methods are being study in the field of automata

theory.14

2

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

A FSM-based approach allows the support of formal validation and verification of the main software architecture.

Indeed, the field of FSM formal specification and verification is very rich and consolidated.15, 16 Furthermore, standard

and codified FSM description languages exists and are very well documented, like SDL (Specification and Description

Language)17 and, moreover, dedicated validation tools exist.18 In the context of satellite on-board software formal

verification, the ESA tool OpenGEODE, which is included in the TASTE environment,19 provide a valuable example

and useful instrument to validate the developed FSM.

2.2 FDIR methods

Spacecraft FDIR (Fault Detection, Isolation and Recovery) methods are at the base of on-board health monitoring

and management systems. These techniques are fundamental for the reliability, availability and safety of a space

mission. They are addressed and studied since the very beginning of the space era, because of the intrinsic problem

of maintenance in space. Indeed, to minimise the risk of major failures, which may be caused by small initial issues

associated to apparently negligible symptoms, it is paramount to quickly detect any anomaly occurring on-board,

stopping its propagation to other system’s components or subsystems.2

The rapid progress in on-board computational power supported the transfer of FDIR functions from the ground

to the flight segment and the enhancement of the spacecraft on-board autonomy.20 This is very common also in

nano-satellite missions, not because of outstanding computing performance is available, but because an increased

spacecraft autonomy is closely linked to a reduction in operating costs. Thus, there is a strong requirement to implement

FDIR functions on-board modern nano-satellites, and this is commonly achieved by inserting these functionalities into

dedicated software modules.

The nano-satellites’ FDIR functions are typically very simple and their main requirements are focused on the

reliability and the low computational burden. Often, they are based on sequential monitoring of primary parameters

that are compared to thresholds, or on cross-checking of error and status flags. The detection of any anomaly in these

monitoring steps is frequently directly associated to a transition to safe mode.21 Then, nano-satellite missions are

often equipped only with fault detection capabilities. The possibility to include an intermediate layer of autonomous

failure isolation and recovery, before the transition to safe mode requiring ground intervention, is remarkably useful

and may lead to a great improvement in the system performance and objectives.22 The design of such complex soft-

ware functionalities may benefit from a model-based design approach, achieving a monolithic component dedicated

to the specific system configuration.23 In alternative, it may be founded on a modular structure embedded in the FSM

architecture. The separate software modules implement the distinct detection, isolation and recovery functions, and

are strongly interconnected with the primary FSM. Moreover, these can be formally verified with the same approach

adopted for the whole FSM, and their testing is directly performed at overall software level.24, 25 This last approach is

the one also used in this research work.

2.3 Lessons learnt

The proposed approach to develop and implement a nano-satellite software with a linear and modular FSM structure

tries to summarise the lesson learnt from previous nano-satellite missions. The method allows a formal verification

of the entire on-board software in terms of system functionalities and components, including the possible transitions

between the different software elements. Moreover, the distinct software states and modules can directly contain

the fault detection, isolation and recovery blocks for a synergic integration of nominal and non-nominal phases. These

characteristics have been proven to be effective in facilitating a positive outcome of the space mission.26–28 Particularly,

the modularity of such architecture, facilitating software updates and patches, and the close integration of FDIR routines

with the primary software level, enabler of a thorough ground verification and testing of nominal and non-nominal

transitions, are considered as best-practices leading to successful space missions. Furthermore, the limitation of the

hierarchy levels in the FSM structure, in favour of a more linear architecture, reduces the possibilities of unforeseen

anomalous transitions and facilitates the complete testing of all the software elements. These benefits are also suggested

from real on-orbit experiences and lesson learned from previous missions.

3. Proposed finite state machine-based method

3.1 Method overview

The proposed approach for FSM design, is schematised in Fig. 1. First, starting from missions’ typical high-level func-

tionalities, the fundamental FSM macro-modes, such as LEOP, nominal routine (NOM) and hard safe mode (HSAFE),

3

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

Figure 1: Step-based strategy for the design of general-purposed CubeSat mission definition.

are identified and the connecting transitions among them are defined. Then, the logic underlying each mode is described

accounting for either the relevant requirements to be satisfied, the mission’s operations and the actual functioning of

the spacecraft’s components. Secondly, in order to check the compatibility with the spacecraft’s design and operations,

the logic’s design is supported and consolidated with analyses involving the spacecraft subsystems, such as the attitude

determination and control (ADCS), the power generation and management, and the on-board data handling. During

such process, particular attention is paid to the design of the nano-satellite’s FDIR and to its translation into the FSM

logic, which shall be achieved by means of monitoring functions that perform the Fault Detection (FD) and the soft

safe (SSAFE) routines, which are devoted to the Fault Identification (FI) and, possibly,fault correction. Afterwards, the

derived FSM logic is represented in detail with the Specification and Description Language (SDL), which allows the

formal verification of the FSM and bridges the high-level definition to the final on-board software implementation.

3.2 Identification of general software functionalities

Despite of mission-specific objectives, a large number of functionalities need to be always granted by a general nano-

satellite’s on-board software. These include not only common low-level tasks, such as the boot and start-up of the sys-

tem, the communication with peripherals and the monitoring of on-board components, but most importantly high-level

functionalities. The latter range from on-board tasks as communication with ground, power generation, distribution and

storage, and (for the more complex nano-satellites’ missions) the attitude determination and control of the spacecraft;

up to operational functionalities, related to the the ground planning and operation of the satellites, which are tightly

related to the mission phases.

3.3 Proposed high-level software structure

Derivation of a generic backbone software structure In this section, a generally applicable backbone structure for

a nano-satellite on-board software is proposed, adopting a FSM-based approach. In the framework of FSM approaches,

the software backbone structure can be defined as the software modes themselves.

The key insight that leads to the definition of the FSM modes is the identification of the very different underlying

working principles that are required to accomplish the various high-level software functionalities. In other words, the

FSM modes can be found by clustering together functionalities that can be satisfied by implementing a software piece

based on the same drivers. It is important to highlight that such identification process focuses on high-level software

functions only, because it is noticed that the low-level functionalities should be always present throughout the whole

software functioning.

For a small-sized spacecraft software, three high-level functionalities groups based on similar working principles

are identified:

1. Tasks that shall be accomplished only once during the mission, i.e. at the beginning of the operations in space,

for which a complete autonomy of the satellite is mandatory, because the system is not ready yet to communicate

with ground.

2. Tasks that need to be repeatedly performed, for which the ground control and planning is desirable.

3. Tasks that can possibly be performed repeatedly during the mission, but that depend on contingencies and thus

can not be planned or that cannot be handled immediately by the ground mission control.

FSM backbone states description From the above high-level clustering, it is found that a nano-satellite software

can be structured upon three fundamental software macro-modes, which are here called LEOP, NOM and HSAFE.

4

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

1. The LEOP mode includes the operations that start with the spacecraft first switch-on in space that must be

executed only once (such as system boot, appendages deployment and initial detumbling). The driving principle

here is the one-time successful execution of a sequence of tasks. Moreover, due to the fact that in this phase

batteries are the main power source, such tasks shall be completed within a reduced time-framework. It is thus

proposed to base such mode on time-tagged commands that shall be repeated until the success assessment of any

single task or expiration of the allocated time-out. Such software mode should be employed during the first part

of the LEOP mission phase.

2. The NOM mode implies a regular communication with ground, hence it should be typically used during the

spacecraft commissioning and during all nominal mission phases. It is here proposed to base the NOM mode

upon scheduled commands, uploaded by ground during communication windows. Each command is paired with

a scheduled time at which the on-board software triggers its execution. The sequence should be scheduled by

ground keeping in mind the most proper sequence of operations for the platform (e.g. required attitude pointing

and control mode, ground stations visibility windows, payload operational mode). These scheduled command

can be either low-level, commanding basic functionalities and actions, or high-level, commanding automatic

sequences of basic commands that achieve a more complex system action.

3. The HSAFE mode, instead, consists of automatic routines to follow when an error has been detected and identi-

fied without being able to recover the failure or, more generally, when a ground contact is immediately desirable

and the system shall survive at the best, while trying to achieve the such communication. The HSAFE is driven

by the maximisation of the spacecraft survivability, thus increasing the probability to communicate with ground

and of maintaining a positive power balance.

Transitions among FSM states The entry and exit transitions of these three major software states are now described.

• The LEOP mode is entered if the time is below a threshold from the the first switch-on of the on-board computer

in space. Such threshold should be defined and consolidated by means of analyses and tests. The LEOP mode is

exited when the time is above this time threshold, with a transition to the HSAFE mode. This is due to the fact

that the HSAFE mode guarantees a positive power balance, while maintaining the basic system functionalities

and maximising the chances to get the first ground contact.

• The entrance to the NOM mode can be only commanded by ground, thanks to a communication contact hap-

pening in the HSAFE state and requiring the upload of a schedule. On the contrary, exiting from NOM mode is

dictated by contingencies, i.e. failures and non-nominal situations detected and identified on-board, triggering

the transition to the HSAFE mode.

• As already said, the HSAFE mode can be entered from both LEOP and NOM via on-board events and can be

exited with a transition to NOM via ground intervention only.

The major advantage in exploiting such macro-modes is the possibility to develop a modular and linear FSM,

that, contrary to hierarchical structures, is portable to different missions and more easily adaptable to the specific

requirements.

3.4 Entailment of FDIR functionalities into the FSM

The big challenge of nano-satellite missions consists in achieving the mission objectives with a low cost design, which

implies taking more risks. Indeed, the probability and severity of failures are often higher than in larger scale missions,

due to different reasons, such as lack of redundancies, low design margins on power and telemetry budgets or reduced

test campaigns that typically characterise small size spacecraft.

For this reason, particular attention shall be paid to the design of the nano-satellite’s FDIR and to its translation

and entailment into the FSM. For small spacecraft, the FDIR strategy shall be designed to grant the safety and the

reliability of the system minimising on-board recovery actions and untracked autonomous transitions, while putting

the system into a hard safe mode that maximises both the power budget margin the attempts to communicate to ground

for intervention.

It is here proposed to include each FDIR function in the software FSM by means of monitors and SSAFE

routines, as follows.

• FD. Some monitors shall continuously check the system variables that are necessary for the correct functioning

of the platform. Such monitors shall be differentiated according to the FSM mode.

5

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

• FI. In case some failure is detected by the monitors, some dedicated routines, here called SSAFE, shall be in

charge for the Fault Identification. The extreme exit condition of the SSAFE procedure is to request the entire

system to transition into HSAFE, where the nominal functioning of the platform is stopped to fast and safely

communicate with ground.

• FR. The FR functions are part of the SSAFE routines. Once an anomaly is isolated, the software can au-

tonomously try to solve the possible problems arisen, usually and when possible, trying to reboot the error-related

component. Only few other autonomous FR actions should be kept on-board, i.e. only when an immediate inter-

vention is necessary to avoid a catastrophic loss of the system. In all the other cases, the FR shall be performed

with the ground in the loop. For this purpose, the system stays in the HSAFE mode, while waiting for ground

commands.

The FDIR monitors and routines run during all system modes, with the only exception of the LEOP. Indeed such

phase is inherently designed to perform tasks accomplishment checks and it continuously tries to re-issue such tasks

until success. In parallel to the schedule, during the NOM mode, parameters monitors and SSAFE routines are also

included. It is important to underline that in HSAFE mode, the monitors and SSAFE routines are still active. The

proposed SSAFE approach has the advantage of granting attempts of failure isolation and recovery autonomously, in

certain conditions, before interrupting the current tasks and waiting for ground intervention. In this way, on one hand a

prompt recovery can be attempted immediately at the failure time and on the other hand some simple failure cases can

be overcome, having a positive impact on the mission operations.

3.5 Approach for detailed software design

After having clarified the general software structure and the entailment of FDIR functionalities, this section tackles the

approach to be followed for the detailed design of the software. In this case, mission-specific factors heavily affect the

design output, but still the approach to adopt during the detailed design can be standardised, by exposing the major

parameters of interest in the SW. Some general guidelines for the detailed design are here provided.

The detailed design shall start from the knowledge of the functioning of the nano-satellite COTS components,

in order to understand which parameters can be monitored and which commands can be provided. All the missing or

custom desired software pieces shall be addressed to in very early design stages.

Besides the design, implementation and testing of the low-level software components, the FSM routines shall

be verified following a multi-disciplinary approach, in order to keep an holistic view over the mission software, but at

the same time accounting for subsystem-specific needs. The detailed design shall be based on system engineering and

shall be performed with multiple iterations, in order to account for mission-specific components, tasks and operations.

It is also suggested to perform multi-disciplinary analyses in the domain of different subsystems, to be related

to the expected software behaviour. In particular, attitude determination and control simulations, power budgets and

housekeeping telemetry budgets. Some major common FSM-related trade-offs involving multiple subsystems are here

identified as:

• definition of priorities and timing of the LEOP mode tasks sequence;

• selection of a restricted set of parameters to monitor and related SSAFE routines;

• definition of events to log and related severity.

The output of the detailed FSM design, shall be the clear schematics of the different modes, the monitored

parameter lists and the schematics of the SSAFE routines.

3.6 Software implementation and verification

Once the conceptual definition of the FSM and FDIR have been detailed, the state machine can be implemented in the

Opengeode environment, an open-source graphical editor developed by the European Space Agency (ESA), contained

inside the TASTE package. In such a way, it is possible to directly identify possible faults and formal errors in the

prototype logics, thus relying on a more accurate and with wider coverage FSM verification.

This tool exploits the SDL language needed for the formal description of finite state machines, in a safe and

robust manner. Up to now, OpenGEODE is a technology demonstrator tool, therefore can only be used to describe and

preliminary verify the implementation of the FSM. Being based on the SDL language, that has a defined syntax and

semantics, the tool can perform several checks on the formal design of the state transitions, input and output parameters,

and procedures’ calling and definition.

6

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

During the code development and deployment, it is important to foresee testing techniques to inject failures, both

hardware and software, into the system.

4. The HERMES case study

In the following section the HERMES mission case study is presented, starting from a brief explanation of the mission

itself. Afterwards, the FSM approach developed and defined in the previous section is applied to the HERMES re-

quirements, and the following outcome in terms of FSM design is described. In particular, it will be visible how all the

steps defined in the proposed method can be easily shaped for the specific request of a single CubeSat mission, without

losing the generality aspects that characterised the method, making it usable for various kinds of missions. The section

is divided into four subsections, describing the HERMES mission and its main requirements, the software high-level

structure, the FDIR functionality, and finally the detailed design.

Figure 2: CAD description of the HERMES CubeSat’s platform.

4.1 The HERMES mission

The High Energy Rapid Modular Ensemble of Satellites (HERMES) mission, is a CubeSat mission aimed to contributes

to the so called Multi-Messenger Astrophysics. The HERMES’ space segment is composed of a Low Earth Orbit (LEO)

constellation of six nano-satellites. Each of them is a 3U CubeSat carrying a novel miniaturised detector sensitive to X

and gamma-rays. Indeed, the mission aims at detecting and localising energetic astrophysical transients, such as short

gamma-ray bursts (GRB), which are the electromagnetic counterparts of gravitational wave events. Once the detector

detects the GRB, the system shall promptly communicate the localised event to ground. The constellation development

is both funded by Italian Ministry of University and Research (MUR), the Italian Space Agency (ASI) and the European

Community (EC).6 Starting from these very high level requirements, needed by the spacecraft scientific payload, the

main objective of the development of the HERMES platform can be summarised in the test and validation of the design

of a robust and reliable CubeSat platform, equipped with a flexible and configurable attitude determination and control

(ADCS) system, and a potential continuous and active link with ground. The HERMES’ platform is shown in Fig. 2.

4.2 HERMES software high-level design with proposed method

Following the steps of the method proposed in Sec. 3, here the high level functionalities and design are described. As

proposed in Sec. 3.3, the HERMES’ software high level structure is divided into three main modes, LEOP, NOM, and

HSAFE, grouping the three main functionality principles proposed for CubeSat’s software. The LEOP mode is the

one aimed to boot the system, the ADCS system, and the main communication system, in order to rapidly obtain the

first contact with ground. Moreover, it is dedicated to the deployment of the folded appendages (e.g., communication

antennas and solar arrays) and to detumble the satellite. NOM is the mode in which the platform performs attitude

manoeuvres, commands the scientific payload, connects to ground with all the communication systems, and monitors

the satellite critical parameters. On the other hand, the HSAFE mode is dedicated to avoid any waste of power, to fast

7

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

communicate with ground, to control the ADCS to maximise the power generation or to handle non nominal situation,

such as tumbling or unexpected wheel saturation. To achieve the very complex mission’s objectives, the on-board

software for the HERMES nano-satellites is executed by two different OBCs on the spacecraft, namely OBC-MAIN

and OBC-ADCS. The OBC-MAIN is the interface between all the spacecraft’s components, as the scientific payload,

the power and telecommunication modules, and the OBC-ADCS itself. Differently, the OBC-ADCS interfaces with all

the attitude determination sensors and control actuators.

Figure 3: HERMES’ software high-level structure.

The software running in each of the two OBCs, named SW-MAIN and SW-ADCS respectively, is structured

according to its own FSM, that still follows the functionalities presented before. The two are interfaced by means

of structured data commands and monitoring parameters, with a master-slave logical architecture. Specifically, the

SW-ADCS is subordinated to the requests and commands defined by the SW-MAIN. This high-level structure can be

depicted in Fig. 3. It can be noticed that both software’s FSM reflect the same architecture defined by the three main

modes: LEOP, NOM and HSAFE. The only exception is the lack the LEOP mode for SW-ADCS, useless because

subordinated to the SW-MAIN. The master-slave relation is justified by the fact that SW-ADCS exchanges with SW-

MAIN counterpart monitors and data, while only receiving commands.

In Fig. 3, the transaction between modes with their relative entry and exit conditions are defined exactly as those

presented in the general-purpose methodology of Sec. 3.3: HSAFE is used as the LEOP exit condition, since it is

designed to be power positive and to look for a ground contact; while the first schedule upload allows transition to

NOM mode.

4.3 HERMES software detailed design with proposed method

In order to be compliant with the FDIR functionalities described in Sec. 3.4, also the HERMES FDIR strategy is based

on the concept of the SSAFE routines. To recap, the SSAFE object is a continuous monitor, that runs during both the

NOM and the HSAFE phase of the mission, and is in charge of continuously checking HERMES vitals parameters

in order to detect possible failures or errors in the system. Afterwards, it tries to solve the problem, with simple FR

procedures, otherwise, request the entire system in HSAFE.

In the next paragraphs, each of the software’s modes will be briefly analysed more in detail following the ap-

proach defined in Sec. 3.5, in order to generate as output the clear schematics of the modes’ architecture , the overall

monitor parameters list, and consequently the schematics of the SSAFE routines. The description will be divided

between the two software’s design: SW-MAIN and SW-ADCS.

4.3.1 HERMES SW-MAIN finite state machine

The FSM of the HERMES SW-MAIN is divided into three main modes: LEOP, NOM and HSAFE. The design of each

mode is hereby briefly described.

8

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

LEOP mode. As proposed in Sec 3.3 every operation in the SW-MAIN LEOP mode is time tagged. Nominally,

the correct operational order is the one schematised in Fig. 4, and described in the following list. It is important to

understand that, since the process is time-tagged, all the operations can happen only in a defined time slot, within which

the SW attempts cyclically to execute each task, as visible again in Fig. 4.

Figure 4: SW-MAIN LEOP mode operational schematic.

• At first, the OBC-MAIN board switches on and performs its automatic power-up and boot procedure.

• Once the OBC is operative, it waits until the end of the short slot 1, it boots the UHF board (one of the three

HERMES’ telecommunication systems) and then it deploys the two antennas. If the boot and deployment com-

plete successfully, the UHF is commissioned and the board starts sending a beacon message to ground in order

to acquire the first contact.

• After the UHF operation, the LEOP mode boots the OBC-ADCS board.

• Then, if the boot is successful the software commands the ADCS to activate the detumbling mode, in order

to detumble the spacecraft before trying the deployment of the solar arrays, that shall not sustain high angular

velocities.

• When the time slot 2 is concluded, even if the ADCS has not managed to completely detumble the satellite, the

SW commands the deployment of the spacecraft’s solar arrays. This is because the risk of opening the solar

panels at high tumbling rate is minor of the one associated to running a long detumbling mode on battery with

folded panels.

Once this process is concluded, the OBC system automatically enters the HSAFE mode. The LEOP mode is

constructed to fast and safely execute the solar panels deployment: indeed, without them, the survival of the platform

is practically impossible and therefore, the mission may be completely lost. This underlines the importance of having

a LEOP phase that is time tagged and not event tagged in order to ensure the panels deployment at the defined time,

even if all the previous operations have failed.

NOM mode. The SW-MAIN nominal mode is based on the considerations done in Sec. 3.3, i.e. the software operates

following the commands present in a defined and delivered schedule, which is periodically uploaded from ground

during the satellites’ operations. The scheduled commands do not correspond to a single action, but they will be

implemented as Scripted Commands. Such scripts can be classified into two groups: Routine Scripted Commands, that

will be used mainly during the nominaloperations, and the Commissioning Scripted Commands, that will be employed

only during the commissioning phase. The main concepts of the Routine Scripted Commands operation are listed in

the following:

• Manoeuvre commands: used to command a manoeuvre to the ADCS. The inputs to this script include the guiding

polynomial and the preferred actuator.

• Start, make, and stop observation commands: used to enter and exit the scientific observation mode exploiting

the scientific payload and the Iridium system as a low latency communication channel.

• Data transfer commands: used to transfer data from the scientific payload to the OBC-MAIN internal memory.

9

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

• Start, make, and stop communication window commands: used to handle ground communication windows.

Input arguments include the communication channels to be used and the ground stations to communicate with.

Nominally with SBAND telecommunication system.

Differently, the NOM mode Commissioning Scripted Commands activities can be summarised as:

• Full commissioning of ADCS subsystem.

• Full commissioning of Telemetry Tracking and Command (TT&C) subsystem.

• Full commissioning of Electric Power Subsystem (EPS).

• Full commissioning of the Payload.

These or additional scripted commands can be uploaded and modified from ground, thus guaranteeing flexible

operations. Moreover, the schedule can also contain basic low-leve actions and functionalities to be executed. As

mentioned before, meanwhile the Scripted Commands are executed in the NOM state, the SSAFE monitor and routines

are included and periodically run to grant the FDIR functionalities of the SW-MAIN and the entire HERMES system.

HSAFE mode. As introduced before, some nominal monitors can lead the system to enter the HSAFE mode, due

to components’ errors or failures. The logical architecture of the HSAFE mode has a tree structure, where system

checks determine branches, which finally can lead to possible actions. Two main parameters manage the functioning

of the HSAFE process: the battery voltage and the ADCS status. The battery voltage is necessary to understand

the level of power that is still available in the platform, while the ADCS status can have different output in terms of

direct SW-ADCS requests or availability status, determining the operating mode of the satellite. In Fig. 5, the logical

scheme of the HSAFE mode is described. When the system enters HSAFE, the on-board computer powers off all

HERMES’ telecommunication systems, puts the ADCS in standby and the payload in power-save mode. In case of

errors coming from the ADCS or the payload, their shut-down is enforced by calling the respective procedures. After

such operations, which constitute the initialisation phase of HSAFE, the process enters the main central loop, which is

based on the continuous check of battery voltage and ADCS status, and that can be exited only by a ground command.

Depending on the battery and ADCS status, the process may lead to five different branches (as in Fig. 5) depend-

ing on the status of its sensors and actuators: fatal error, detumbling, desaturation, safe or nominal ADCS branches.

The battery status can directly lead to the fatal error branch if its status is below a certain voltage threshold. If the

battery is in critical condition, no operations are performed because the entire system will be automatically shut-down.

In all other cases, the main operation of the FSM is selecting the best available communication instrument in order to

connect with ground as fast as possible.

Figure 5: SW-MAIN HSAFE mode operational schematic.

4.3.2 HERMES SW-ADCS finite state machine

The FSM of the HERMES SW-ADCS is divided into two main modes: NOM and HSAFE. The design of each mode

is hereby briefly described.

10

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

NOM mode. The SW-ADCS NOM mode provides the nominal interaction between the ADCS algorithms and the

monitors and SSAFE routines of the ADCS COTS components. The software is designed to have two main parts, the

ADCS algorithm, and the ADCS SSAFE monitors. The first one is dedicated to the spacecraft GNC, and its operative

mode is directly commanded by the SW-MAIN schedule, while the latter reads the algorithm generated flag to safely

monitor ADCS software, sensors, and actuators. If an error or failure occurs and the relative SSAFE procedure does not

manage to solve it, it directly exposes the error to the SW-MAIN, that will switch mode to HSAFE. The architecture

reflects the master-slave interaction defined in Sec. 4.2. The logical architecture scheme is depicted in the right side of

Fig. 6.

Figure 6: SW-ADCS NOM and HSAFE modes operational schemes.

HSAFE mode. The SW-ADCS HSAFE mode still provides the coupling between ADCS algorithms, monitors and

SSAFE routines, with an additional element, active only in this mode, aimed to select the correct ADCS operative mode,

following the requests and instruction of the SW-MAIN HSAFE tree logic. Once the SW-MAIN system switches to

HSAFE mode, even if the transition is not caused by an ADCS failure, also the ADCS-SW switches to its HSAFE

mode. Here the software is composed of three actors: the usual ADCS algorithm, the ADCS SSAFE monitors and the

ADCS-HSAFE logic, as described in the left side of Fig. 6. The first does not change with respect to NOM phase, still

requesting the mode command and exposing flags. The monitors, in HSAFE mode, slightly change, but still outcome

the ADCS status and the modes availability and request a different set of macro-modes (set of modes characterised

by the same subset of sensors and actuators). The new element, instead, is the ADCS-HSAFE logic, that becomes

the bridge between the SW-MAIN HSAFE mode and the ADCS algorithm. Indeed, the HSAFE procedure reads the

monitor macro-mode requests, if present, and tells the macro-mode to the ADCS-HSAFE; here, depending on the

macro-modes availability the first compatible mode is then commanded to the ADCS algorithm.

5. Results

In this section, some results of different analyses are reported, in order to highlight how the presented and implemented

methods are exploited to drive the design of the on-board software.

5.1 Inter-disciplinary analyses

In support to the FSM design, multi-disciplinary analyses were carried-out, most importantly regarding the ADCS and

EPS subsystems. Due to the limited available on-board resources, a crucial challenge for the HERMES mission was to

select and correctly scheduling the different operating modes in relation to the SW architecture. The two subsystems

models were run in open-loop, accounting for the FSM structure as the high level SW commands of the subsystems

modes.

11

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

(a) Angular velocity. (b) Battery voltage.

Figure 7: Montecarlo simulation during LEOP (50 runs).

Example of simulation impacting on the FSM design. An example of analysis that affected the FSM design is here

reported, where multi-disciplinary Montecarlo simulations of the LEOP phase have been carried-out. In Fig. 7a the

angular rate of the satellite during the LEOP is depicted, while in Fig. 7b the corresponding batteries voltage is shown.

The general success rate of the simulations is 96% and the statistical values of the final angular velocity are

reported in 1. The detumbling is always successfully completed. The batteries final state of charge is reported in Table

1 as well, showing that the batteries are effectively recharged during the sun pointing phase. As shown in Figure 7b,

Table 1: LEOP final angular velocity and battery voltage.

Variable mean std (1σ)
ωx [◦/s] 3.00e-04 9.00e-04

ωy [◦/s] -1.00e-04 7.00e-04

ωz [◦/s] 1.60e-03 9.30e-03

V-BATT [V] 15.595 0.495

the satellite relies on batteries at the beginning of the LEOP, while in almost all the cases the batteries are recharged as

soon as the solar arrays are deployed.

The major outcome from the analyses was the consolidation and verification of operation sequence and the need

to of adopting strategies to eliminate the failure cases in which the batteries voltage drops down below the critical

value, like:

• earlier deployment of the solar arrays;

• reduced communications for power save before the LEOP end.

5.2 FSM implementation and verification in OpenGEODE

Following the steps of the proposed method for the FSM design, the last passage consists in the development and

implementation of the FSM and FDIR routines in SDL within the OpenGEODE environment, which allows the formal

verification of the logical architecture, as briefly introduced in Sec. 3.6. Using SDL language for these kind of tasks

can be very useful since the language is formally completed, and therefore, it can be directly used to generate the

simulation or target code. The SDL language relies on four main aspects: structure, communication, behaviour, and

data.

• The structure of the system is made by different function blocks that can be further decomposed in other blocks.

The lowest level of block is instead defined with a series of one or more processes, describing the actual opera-

tions of the FSM.

• Blocks and sub-blocks are connected through communication channels that carry internal or external signals,

depending if the communication must occur between blocks of the same or different levels respectively.

12

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

• The process inside each low level block describes all the action that the system shall perform. It could consists in

reading external input, sending messages, taking actions (cycle, assignment), making decision or call procedures.

• All the variables defined in the process must follow a syntax, which supports pre-defined data types (e.g. integer,

float, boolean, string, ...)

This simple and well-defined formalism makes the SDL language reliable for the sizing of robust software.

Indeed, being HERMES a 3U CubeSat mission, the on-board software needs to be simple and reliable. Therefore, the

choice of OpenGEODE as editing tool is useful to reduce the complexity of the state chain, streamlining the checking

parameters selection and the procedures definition. This is why all the HERMES FSM modes and SSAFE routines,

defined in Sec. 4, have a verified OpenGEODE formulation: each of these are based on inner procedures which are

again implemented and verified with OpenGEODE.

Figure 8: OpenGEODE implementation of the SW-MAIN LEOP mode, with a inside look at the Solar Array deploy-

ment state.

An example of the formalisation of HERMES’ finite state machine in OpenGEODE is shown in Fig. 8, that

presents the verified SW-MAIN LEOP mode. As explained in Sec. 3.6, the overall FSM implementation in Open-

GEODE is used as formal verification of the logical architecture designed for the different modes of the two satellite’s

software, that is, therefore, formally verified. The next step, instead, may be related to the direct translation of the

OpenGEODE’s SDL code in the final FSM coded in the real spacecraft’s OBC systems.

6. Conclusion

In conclusion, three main objectives have been satisfied by the work presented in the paper:

• A specific step-based strategy for the design of general-purposed nano-satellite mission software functionalities

has been defined.

• An easy way to structure the FSM for this kind of missions has been proposed.

• A simple and yet effective way to formally verify the design of the FSM has been analysed and proved.

At last, the paper proposes an effective architecture for the HERMES’ mission software, based on the presented

FSM design approach, also including the satellite’s FDIR strategy. A multi-disciplinary simulator is used to help

verifying the LEOP sequence and tuning some parameters to ensure the CubeSat survivability. Finally, each FSM part

is defined in SDL, with the OpenGEODE tool, and formally verified.

13

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

7. Acknowledgments

The authors would like to acknowledge the entire HERMES project consortium, composed of the Italian Space Agency

(ASI), Italian Institute of Astrophysics (INAF), Politecnico di Milano, Cagliari University, National Institute of Higher

Mathematics (INdAM), Skylabs Technology, Deimos Space, Nova Gorica University, Tübingen University, Loránd

Eötvös University, Aalta Lab, C3S Electronics.

The authors want to acknowledge the Italian Ministry of University and Research (MUR), the Italian Space

Agency (ASI) and the European Commission for the funding of the HERMES project.

References

[1] E. Kulu, “Nanosatellite launch forecasts-track record and latest prediction,” in 36th Annual Small Satellite Con-
ference 2022, 2022.

[2] M. Tipaldi and B. Bruenjes, “Spacecraft health monitoring and management systems,” in 2014 IEEE Metrology
for Aerospace (MetroAeroSpace), pp. 68–72, IEEE, 2014.

[3] K. V. de Souza, Y. Bouslimani, and M. Ghribi, “Flight software development for a cubesat application,” IEEE
Journal on Miniaturization for Air and Space Systems, vol. 3, no. 4, pp. 184–196, 2022.

[4] I. Latachi, T. Rachidi, M. Karim, and A. Hanafi, “Reusable and reliable flight-control software for a fail-safe and

cost-efficient cubesat mission: Design and implementation,” Aerospace, vol. 7, no. 10, p. 146, 2020.

[5] S. Buckner, C. Carrasquillo, M. Elosegui, and R. Bevilacqua, “A novel approach to cubesat flight software devel-

opment using robot operating system (ros),” in 34th Annual AIAA/USU Small Satellite Conference, 2020.

[6] F. Fiore, L. Burderi, M. Lavagna, R. Bertacin, Y. Evangelista, R. Campana, F. Fuschino, P. Lunghi, A. Monge,

B. Negri, et al., “The hermes-technologic and scientific pathfinder,” in Space Telescopes and Instrumentation
2020: Ultraviolet to Gamma Ray, vol. 11444, pp. 214–228, SPIE, 2020.

[7] A. Colagrossi and M. Lavagna, “Fault tolerant attitude and orbit determination system for small satellite plat-

forms,” Aerospace, vol. 9, no. 2, p. 46, 2022.

[8] S. Johl, E. Glenn Lightsey, S. M. Horton, and G. R. Anandayuvaraj, “A reusable command and data handling

system for university cubesat missions,” in 2014 IEEE Aerospace Conference, pp. 1–13, 2014.

[9] M. Schmidt and K. Schilling, “An extensible on-board data handling software platform for pico satellites,” Acta
Astronautica, vol. 63, no. 11, pp. 1299–1304, 2008.

[10] C. Mitchell, J. Rexroat, S. A. Rawashdeh, and J. Lumpp, “Development of a modular command and data handling

architecture for the kysat-2 cubesat,” in 2014 IEEE Aerospace Conference, pp. 1–11, 2014.

[11] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz, “An architecture-tracking approach to evaluate a modular

and extensible flight software for cubesat nanosatellites,” IEEE Access, vol. 7, pp. 126409–126429, 2019.

[12] P. Fiala and A. VobornÃk, “Embedded microcontroller system for pilsencube picosatellite,” in 2013 IEEE 16th
International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 131–134,

2013.

[13] J. Guo, J. Bouwmeester, and E. Gill, “In-orbit results of delfi-n3xt: Lessons learned and move forward,” Acta
Astronautica, vol. 121, pp. 39–50, 2016.

[14] O. Biggar, M. Zamani, and I. Shames, “Modular decomposition of hierarchical finite state machines,” arXiv
preprint arXiv:2111.04902, 2021.

[15] A. R. Flora-Holmquist and M. G. Staskauskas, “Formal validation of virtual finite state machines,” in Proceedings
of 1995 IEEE Workshop on Industrial-Strength Formal Specification Techniques, pp. 122–129, IEEE, 1995.

[16] D. Lee and M. Yannakakis, “Testing finite-state machines: State identification and verification,” IEEE Transac-
tions on computers, vol. 43, no. 3, pp. 306–320, 1994.

[17] P. Poizat, “Sdl: a language based on extended finite state machines with abstract data types,” Software Specifica-
tion Methods: An Overview Using a Case Study, pp. 147–164, 2001.

14

DOI: 10.13009/EUCASS2023-342

A FINITE STATE MACHINE APPROACH TO NANO-SATELLITE SW DESIGN

[18] S. C. P. F. Fabbri, J. C. Maldonado, and M. Delamaro, “Proteum/fsm: a tool to support finite state machine

validation based on mutation testing,” in Proceedings. SCCC’99 XIX International Conference of the Chilean
Computer Science Society, pp. 96–104, IEEE, 1999.

[19] I. Dragomir, M. Bozga, I. Ober, D. Silveira, T. Jorge, E. Alana, and M. Perrotin, “Formal verification of space

systems designed with taste,” arXiv preprint arXiv:2111.10132, 2021.

[20] M. Tipaldi and L. Glielmo, “A survey on model-based mission planning and execution for autonomous space-

craft,” IEEE Systems Journal, vol. 12, no. 4, pp. 3893–3905, 2017.

[21] L. Franchi, L. Feruglio, R. Mozzillo, and S. Corpino, “Model predictive and reallocation problem for cubesat

fault recovery and attitude control,” Mechanical Systems and Signal Processing, vol. 98, pp. 1034–1055, 2018.

[22] M. Tipaldi, S. Silvestrini, V. Pesce, and A. Colagrossi, “Chapter eleven - FDIR development approaches in space

systems,” in Modern Spacecraft Guidance, Navigation, and Control (V. Pesce, A. Colagrossi, and S. Silvestrini,

eds.), pp. 631–646, Elsevier, 2023.

[23] J. S. Lobo, P. Ghiglino, S. L. Escobedo, M. S. Rivo, and K. Robotics, “Design of a model-based failure detection

isolation and recovery system for cubesats,” 2019.

[24] M. C. Vitelli, M. Tipaldi, and L. Troiano, “A domain specific language oriented to fault detection, isolation and

recovery,” in 2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR), pp. 343–348,

IEEE, 2013.

[25] O. Durou, V. Godet, L. Mangane, D. Pérarnaud, and R. Roques, “Hierarchical fault detection, isolation and

recovery applied to cof and atv avionics,” Acta Astronautica, vol. 50, no. 9, pp. 547–556, 2002.

[26] C. Gonzalez, C. Rojas, A. Becerra, J. Rojas, T. Opazo, and M. Diaz, “Lessons learned from building the first

chilean nano-satellite: The suchai project,” 2018.

[27] J. Scharnagl, R. Haber, V. Dombrovski, and K. Schilling, “Netsat - challenges and lessons learned of a formation

of 4 nano-satellites,” Acta Astronautica, vol. 201, pp. 580–591, 2022.

[28] A. Slavinskis, M. Pajusalu, H. Kuuste, E. Ilbis, T. Eenmäe, I. Sünter, K. Laizans, H. Ehrpais, P. Liias, E. Kulu,

et al., “Estcube-1 in-orbit experience and lessons learned,” IEEE aerospace and electronic systems magazine,

vol. 30, no. 8, pp. 12–22, 2015.

15

DOI: 10.13009/EUCASS2023-342

