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A B S T R A C T

Modelling systems with networks has been a powerful approach to tame the complexity of
several phenomena. Unfortunately, the large number of variables to take into consideration
often makes concrete problems difficult to handle. Methods of dimensional reduction are useful
tools to rescale a complex network down to a low-dimensional effective system and thus to
capture its global dynamical features. Here we study the application of the degree-weighted
and spectral reduction methods to an important class of dynamical processes on networks: the
propagation of credit shocks within an interbank network, modelled according to the DebtRank
algorithm. We introduce an effective version of the dynamics, characterized by functions with
continuous derivatives that can be handled by the dimensional reduction. We test the reduction
methods against the full dynamical system in different interbank market settings: homogeneous
and heterogeneous networks generated from state-of-the-art reconstruction methods as well as
networks derived from empirical e-MID data. Our results indicate that, for proper choices of
the bank default probability, reduction methods can provide reliable estimates of systemic risk
in the market, with the spectral reduction better handling heterogeneous networks. Finally, we
provide new insights on the nature and working principles of dimensional reduction methods.

1. Introduction

Network theory provides a natural framework to describe the collective properties of dynamical processes taking place on large
complex systems composed by many interacting entities [1–3]. The interplay between structure and dynamics has a fundamental
role in determining the properties of these systems, such as their resilience – namely the ability to cope with adverse events and
avoid catastrophic systemic consequences [4]. Examples of applications across domains include economic and financial crises [5–
7], blackouts in power grids [8,9], species mass extinctions [10–12] and epidemic outbreaks [13,14]. While much effort has been
devoted to forecast these large-scale events [15–17], no simple and universal method has yet been found because of the inherent
complexity of the problem. Indeed, for a network of 𝑁 nodes the evolution of the nodes’ states is typically governed by 𝑁 coupled
dynamical equations (one for each node) that depend on both the current states and the complex pattern of interactions between
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nodes. Moreover, as the number 𝑁 of nodes grows, the computational cost of solving 𝑁 coupled and often nonlinear equations
increases and could prevent obtaining manageable predictions for the system’s behaviour. However, in many case one is more
interested in deriving information on some global dynamical feature of the network, rather than in the temporal evolution of each
single node. For instance, in epidemiological studies the quantity to monitor is the prevalence of the disease in the population,
rather than the health state of each person. In these cases, a promising approach consists in using dimensional reduction methods
to transform the original 𝑁-dimensional representation of the dynamics into a simplified version with a lower number of effective
variables.

The first attempt to apply dimensional reduction to networks, proposed by Gao et al. [18], consists in collapsing a 𝑁-dimensional
dynamical network into a one-dimensional equation for a global activity variable, defined as the degree-weighted average state of
the network nodes. In this way the nodes with large degree, i.e. large number of links, contribute more to the global variable than
those with a small degree. The underlying idea behind this approach is that the highly connected nodes have more impact on the
dynamics. More recently, Laurence et al. [19] developed an independent approach that relies on the spectral property of the network
under consideration — more precisely, the dominant eigenvalues and eigenvectors of the adjacency matrix. The two approaches
coincide in the case of uncorrelated random networks (i.e., with no degree–degree correlations), while the spectral reduction method
is by definition capable of taking into account the possible degree correlations. A thorough analysis of the two methods performed
by Kundu et al. [20] revealed that the accuracy of the dimensional reduction strongly depends on the coefficient of variation for the
equilibrium value of the relevant state variable across the nodes. This quantity in turn is determined by the dynamical system under
consideration, but it is generally higher for scale-free networks than for regular or Poissonian networks. Dimensional reduction has
also been extended to the case of node-dependent dynamical functions, though this approach works well mainly for homogeneous
systems [21].

Both the degree-weighted and the spectral reduction have been tested on classic dynamical models in the fields of biology,
ecology, epidemiology, neuroscience and population dynamics [18–20], and have been recently applied to several contexts such
as mutualistic ecosystems [22], spreading dynamics [23] and synchronization [24]. Surprisingly, up to now dimensional reduction
has not been used in the field of financial networks [7,25], despite it currently representing one of the most successful application
areas of statistical physics to socio-economic problems (see for instance [26–31]). A paramount example is provided by the solvency
contagion dynamics, which can arise as a consequence of the bilateral exposures among financial institutions (banks, from now
on). Indeed, while these links allows banks to cope with liquidity fluctuations and transfer risk, they can also become channels
through which distress can spread, turning an idiosyncratic shock into a systemic one. Solvency contagion played a major role
in the Global Financial Crisis of 2007/08 [32] and thus received large attention from the literature (we remand the reader to
recent reviews [33–35]). A general dynamical model for solvency contagion is represented by the DebtRank algorithm [36–38],
which describes the following situation. When a bank suffers some losses (for instance, when one of its assets is devalued), its
creditworthiness deteriorates. As a consequence, its lenders (or counterparties) reassess the value of their claims towards the bank
and thus book losses; therefore, their creditworthiness deteriorates, and so forth. As explained below, the stability of an interbank
network depends on the spectral radius of the so-called leverage matrix [39], obtained by dividing each interbank exposure by the
equity (i.e., the net value) of the creditor bank. However no simple relationship exists between the topology of the network and the
spectral radius of the leverage matrix.

In this work we aim to fill the gap described above, by performing a detailed study of the application of dimensional reduction
(both in its degree-weighted [18] and spectral [19] version) to the DebtRank dynamics. We consider different topological settings of
the network, both homogeneous and heterogeneous graphs generated from state-of-the-art statistical physics methods [40], as well
as networks derived from empirical e-MID data. The aim of our work is to investigate whether dimensional reduction techniques
can provide a sufficiently reliable description of the DebtRank dynamics. The paper is organized as follows. In Section 2 we review
the two methods of dimensional reduction used in our study. In Section 3 we describe the DebtRank algorithm and how to apply
reduction methods in this context. Section 4 describes how we generate artificial networks and run simulations of the dynamical
system. Section 5 presents the results of our investigation, as obtained by comparing the full network simulations of DebtRank and
its dimensional reductions for different network settings. Finally, in Section 6 we draw the conclusions of our work.

2. Dimensional reduction of complex networks dynamics

A network is defined by a set of 𝑁 nodes and the set of the links between them. We consider directed weighted networks
and denote with 𝑤𝑖𝑗 the weight of the link from node 𝑗 to node 𝑖 (with 𝑤𝑖𝑗 = 0 if the link does not exist). The 𝑁 × 𝑁 matrix of
link weights is the adjacency matrix 𝑊 , while the (weighted) out-degree and in-degree of node 𝑖 are the amount of outgoing and
incoming connections, respectively 𝑘𝑜𝑢𝑡𝑖 =

∑

𝑗 𝑤𝑗𝑖 and 𝑘𝑖𝑛𝑖 =
∑

𝑗 𝑤𝑖𝑗 .
A dynamical process on a network can be described by assigning to each node 𝑖 a real-valued, time dependent variable 𝑥𝑖,

representing its current ‘‘state’’. The state of each node affects the evolution of the state of its neighbours according to the underlying
weighted topology of the network. We consider dynamical processes that can be described by a set of 𝑁 equations (one for each
node) of the form

𝑑𝑥𝑖
𝑑𝑡

= 𝐹 (𝑥𝑖) +
𝑁
∑

𝑗=1
𝑤𝑖𝑗 𝐺(𝑥𝑖, 𝑥𝑗 ). (1)

In Eq. (1), 𝐹 and 𝐺 are differentiable functions that describe the self-interaction and pairwise interaction between nodes, respectively.
2

Solving such a system of 𝑁 coupled differential equations can be problematic. A slight non-linearity in the interactions prevents the
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use of analytical approaches, whereas a numerical solution becomes very time consuming as 𝑁 increases. Methods of dimensional
reduction can thus be used to find a small set of variables that well describe the global properties of dynamical system but whose
temporal evolution is easier to derive. We now introduce the two algebraic protocols at the basis of the dimensional reduction
methods proposed in the literature and explain how they allow obtaining a simplified representation of the dynamical process
described by Eq. (1).

2.1. Degree-Weighted Reduction (DWR)

This reduction procedure builds on the simple idea that the higher the degree of a node, the higher its impact on the dynamical
process [18]. The method is based on the following single global variable:

𝑅(𝑡) =
∑𝑁
𝑖=1 𝑘

𝑜𝑢𝑡
𝑖 𝑥𝑖(𝑡)

∑𝑁
𝑖=1 𝑘

𝑜𝑢𝑡
𝑖

(2)

namely the sum of the states of the nodes, weighted by their out-degree. The dynamics of this variable can be reduced to a single
equation:

�̇� = 𝐹 (𝑅) + 𝛼 𝐺(𝑅,𝑅), (3)

where the control parameter

𝛼 =
∑𝑁
𝑖=1 𝑘

𝑜𝑢𝑡
𝑖 𝑘𝑖𝑛𝑖

∑𝑁
𝑖=1 𝑘

𝑜𝑢𝑡
𝑖

(4)

encodes the information on the network topology. For a complete derivation of the above equations, we refer the reader to the
supplementary information of [18].1

2.2. Spectral Reduction (SR)

The one-dimensional version of this reduction protocol relies on the spectral properties of the adjacency matrix [19]. As in the
DWR method, a single reduced variable is introduced as a linear combination of the states:

𝑅(𝑡) =
𝑁
∑

𝑖=1
𝑎𝑖 𝑥𝑖(𝑡), (5)

where 𝑎 is the dominant eigenvector of 𝑊 ⊤, corresponding to the spectral radius 𝛼: ∑𝑗 𝑤𝑗𝑖𝑎𝑗 = 𝛼𝑎𝑖, ∀𝑖. When this eigenvector is
ormalized, such that ∑𝑖 𝑎𝑖 = 1, the dominant eigenvalue can be also expressed as

𝛼 =
𝑁
∑

𝑖=1
𝑘𝑖𝑛𝑖 𝑎𝑖. (6)

y defining

𝛽 =
∑𝑁
𝑖=1 𝑘

𝑖𝑛
𝑖 𝑎

2
𝑖

𝛼
∑𝑁
𝑖=1 𝑎

2
𝑖

(7)

one arrives at

�̇�(𝑡) = 𝐹 (𝑅) + 𝛼 𝐺(𝛽𝑅,𝑅). (8)

In this case the network structure is encoded into two parameters: the dominant eigenvalue of the adjacency matrix 𝛼 and the
parameter 𝛽, which can be interpreted as a measure of the heterogeneity of the network, as shown in Appendix. For full derivation
of the method we remand to [19], where the authors also show that for uncorrelated random networks the DWR variable 𝑅 of
q. (2) is an approximation of the SR variable of Eq. (5), while the parameter 𝛽 reduces to 1. Therefore, the DWR formalism can
e regarded as a special case of the SR procedure when applied to uncorrelated random graphs.

. Dimensional reduction of the DebtRank dynamics

.1. Definition of DebtRank

We now discuss the applicability of the dimensional reduction method to financial contagion modelled through the DebtRank
ynamics [36,37]. As mentioned in the introduction, this algorithm is designed to capture the dynamics of solvency contagion within
n interbank network of bilateral exposures. This system is represented as a weighted directed network of 𝑁 banks, where the generic

1 In [18] the quantities 𝑅 and 𝛼 are denoted by 𝑥 and 𝛽 , respectively. Here instead we follow the unified notation of [19].
3
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link 𝑖→ 𝑗 represents the value of the interbank asset from the lender bank 𝑖 to the borrower bank 𝑗, commonly denoted as 𝐴𝑖𝑗 . For
every interbank asset 𝐴𝑖𝑗 in the balance sheet of bank 𝑖 there is a corresponding interbank liability 𝐿𝑗𝑖 = 𝐴𝑖𝑗 in the balance sheet
f bank 𝑗. The difference between the total assets and total liabilities (both from the interbank market and from external sources)
f a bank represents its equity, or net value. In the literature on financial contagion, the equity is a proxy of financial health: bank
is active or solvent when its equity 𝐸𝑖 is positive, while it defaults as soon as 𝐸𝑖 vanishes (as it will not be able to repay its debts

n full).
Starting from interbank assets and equity values at time 𝑡 = 0, the DebtRank dynamics is triggered by exogenous shocks that

ause the devaluation of the external assets and consequent decrease of equity for some banks at 𝑡 = 1. As a consequence, in the
ext time step 𝑡 = 2 the market value of the loans towards the shocked banks decreases, causing equity losses for the creditor banks,
nd so forth. The DebtRank assumes that assets devaluations are linear in equity losses, therefore such iterations can be described
s follows:

𝐴𝑖𝑗 (𝑡 + 1) =

⎧

⎪

⎨

⎪

⎩

𝐴𝑖𝑗 (𝑡)
𝐸𝑗 (𝑡)

𝐸𝑗 (𝑡 − 1)
if 𝑗 ∈ (𝑡 − 1)

𝐴𝑖𝑗 (𝑡) = 0 otherwise
(9)

where (𝑡− 1) is the set of active (i.e., non-defaulted) banks at 𝑡− 1. Here the first case means that when the ‘‘welfare’’ of a bank 𝑗
reduces, its probability of insolvency increases, and the market value of a loan 𝐴𝑖𝑗 decreases proportionally. This causes an effective
loss in the portfolio of the creditor bank 𝑖. The second case ensures that if 𝑗 has defaulted the value of its obligations has vanished
and cannot decrease further.

The DebtRank dynamics is framed in terms of the relative loss of equity of each bank 𝑖:

ℎ𝑖(𝑡) = 1 −
𝐸𝑖(𝑡)
𝐸𝑖(0)

. (10)

Starting from Eq. (9), the dynamical equation for these variables can be cast as (see [36,37] for full details):

ℎ𝑖(𝑡 + 1) = min
[

1, ℎ𝑖(𝑡) +
𝑁
∑

𝑗=1
𝛬𝑖𝑗 [ℎ𝑗 (𝑡) − ℎ𝑗 (𝑡 − 1)]

]

(11)

where 𝛬 is the leverage matrix, defined as

𝛬𝑖𝑗 =
𝐴𝑖𝑗 (0)
𝐸𝑖(0)

. (12)

We remark that the presence of the min(1, ⋅) operator in Eq. (11) ensures that the equity of a bank cannot become negative. Indeed
according to the same equation, each bank 𝑗 propagates shocks at time 𝑡 + 1 by mean of its last state variation: ℎ𝑗 (𝑡) − ℎ𝑗 (𝑡 − 1).
Hence if the bank has defaulted at 𝑡− 1, then because of the minimum operator we have ℎ𝑗 (𝑡) = ℎ𝑗 (𝑡− 1) = 1 and the bank does not
ontribute further to equity losses, independently from the leverage matrix. That is, the defaults that take place during the dynamics
re incorporated in the state variables and in the dynamical equation, while the leverage matrix of the network remains at its initial
tate and does not need to be updated.

The initial conditions of the dynamics are given, for each bank 𝑖, by ℎ𝑖(0) (equal to 0 by definition) and ℎ𝑖(1), representing the
ractional decrease of equity due to the initial shock. Once these are set, Eq. (11) can be iterated to get the equilibrium values
ℎ∗𝑖 }

𝑁
𝑖=1.

.2. Application of dimensional reduction methods

In order to apply dimensional reduction techniques to the DebtRank dynamics we have to start from Eq. (11), which, analogously
o Eq. (1), involves a sum on the second index of the involved matrix. Such a common feature holds despite two different choices
f notation. In the case of Eq. (1), node 𝑖 is influenced by another node 𝑗 when a direct path 𝑗 → 𝑖 exists, thus 𝑤𝑖𝑗 represents the
eight of this path. Eq. (11) instead involves paths 𝑖 → 𝑗 generated by an active loan 𝐴𝑖𝑗 from bank 𝑖 to bank 𝑗, however financial

hocks still propagate (backwards) from bank 𝑗 to bank 𝑖. Therefore, the two formulations are consistent.
To have Eq. (11) in the form of Eq. (1), we use as state variables the variation of equity losses: 𝛥ℎ(𝑡) = ℎ(𝑡) − ℎ(𝑡 − 1). We get:

𝛥ℎ𝑖(𝑡 + 1) = min
[

1 − ℎ𝑖(𝑡),
∑

𝑗
𝛬𝑖𝑗𝛥ℎ𝑗 (𝑡)

]

. (13)

ote that the minimum operator acts on a defaulted bank 𝑖 by selecting the null term: 1−ℎ𝑖(𝑡) ≡ 0. By introducing a default indicator
unction 𝜃𝑖(𝑡), which is equal to 1 if ℎ𝑖(𝑡) = 1 and to 0 otherwise, Eq. (13) can be rewritten as 𝛥ℎ𝑖(𝑡+ 1) = (1 − 𝜃𝑖(𝑡))

∑

𝑗 𝛬𝑖𝑗𝛥ℎ𝑗 (𝑡). To
btain a differentiable expression, we can replace 𝜃𝑖(𝑡) with the default probability of bank 𝑖 at time 𝑡, 𝑝𝑖(𝑡). As typically assumed
n the DebtRank literature [39,41], we take 𝑝𝑖(𝑡) to be a generic monotonic function of ℎ𝑖(𝑡) with extremes 𝑝𝑖 = 0 when ℎ𝑖 = 0
nd 𝑝𝑖 = 1 when ℎ𝑖 = 1. Therefore we can write 𝑝𝑖(𝑡) = 𝑝[ℎ𝑖(𝑡)] and use it as a smooth substitute for the default indicator function,
pproximating Eq. (13) as:

𝛥ℎ𝑖(𝑡 + 1) ≃
(

1 − 𝑝[ℎ𝑖(𝑡)]
)

∑

𝛬𝑖𝑗𝛥ℎ𝑗 (𝑡) (14)
4

𝑗
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(naturally, the validity of this approximation depends on how closely the function 𝑝 resembles the step function 𝜃). As the above
xpression is now in the form of Eq. (1), we can define the single variable 𝑅(𝑡) =

∑

𝑖 𝑎𝑖ℎ𝑖(𝑡) representing the weighted sum of
ndividual losses in the system at a given time, where the weights contained in vector 𝑎 will depend on the reduction method
normalized out-degree values for DWR and eigenvector centralities for SR). The DWR is then obtained from Eq. (14) by replacing
ach ℎ term with 𝑅 and 𝛬𝑖𝑗 by 𝛼 defined in Eq. (4), obtaining

𝛥𝑅(𝑡 + 1) =
(

1 − 𝑝[𝑅(𝑡)]
)

𝛼𝛥𝑅(𝑡). (15)

nstead to obtain the SR we impose that 𝑎 is the dominant eigenvector of 𝛬⊤ and 𝛼 its associated eigenvalue. We then substitute in
q. (14) each ℎ𝑖 with 𝛽𝑅, each ℎ𝑗 with 𝑅 and 𝛬𝑖𝑗 by 𝛼, obtaining2

𝛥𝑅(𝑡 + 1) =
(

1 − 𝑝[𝛽𝑅(𝑡)]
)

𝛼𝛥𝑅(𝑡). (16)

.3. The continuum approximation

Let us assume that the time steps of the dynamics are significantly smaller than its whole duration. We can thus substitute the
iscrete variations with the time derivatives (we discuss the SR case here):

𝑑𝑅(𝑡 + 1)
𝑑𝑡

= [1 − 𝑝(𝛽𝑅(𝑡))]𝛼
𝑑𝑅(𝑡)
𝑑𝑡

. (17)

ow we can expand the l.h.s. to the first order around time 𝑡:

𝑑𝑅(𝑡)
𝑑𝑡

+
𝑑2𝑅(𝑡)
𝑑𝑡2

= [1 − 𝑝(𝛽𝑅(𝑡))]𝛼
𝑑𝑅(𝑡)
𝑑𝑡

. (18)

enoting by 𝑃 the primitive of 𝑝 we get

𝑑
𝑑𝑡

[

𝑅 + 𝑑𝑅
𝑑𝑡

− 𝛼
(

𝑅 −
𝑃 (𝛽𝑅)
𝛽

)]

= 0 (19)

hence the quantity in squared brackets is a constant of the dynamics. We can compare its value at generic time 𝑡 with its initial
value at 𝑡 = 0. Introducing simple initial conditions 𝑅(0) = 0 and 𝑅(1) = 𝑅1, and using 𝑑𝑅∕𝑑𝑡|𝑡=0 = 𝑅1 we get:

𝑅 + 𝑑𝑅
𝑑𝑡

− 𝛼
(

𝑅 −
𝑃 (𝛽𝑅)
𝛽

)

= 𝑅1 + 𝛼
𝑃 (0)
𝛽

. (20)

It is now easy to find a closed equation for the stationary state 𝑅∗ of the system, by imposing the vanishing of the derivatives:

𝑅∗(1 − 𝛼) + 𝛼
𝛽
𝑃 (𝛽𝑅∗) = 𝑅1 +

𝛼
𝛽
𝑃 (0). (21)

To choose a proper function 𝑃 (𝑅) we require that, when 𝑅1 → 1 (the initial condition is full default), then also 𝑅∗ → 1 for any value
f 𝛼:

1 − 𝛼 + 𝛼
𝛽
𝑃 (𝛽) = 1 + 𝛼

𝛽
𝑃 (0). (22)

his provides the condition 𝑃 (𝛽) = 𝑃 (0)+𝛽 (to the same conclusion one arrives requiring 𝑅∗ → 1 when 𝛼 → ∞). We thus can choose
any primitive function that is compatible with the above condition, such as 𝑃 (𝑅) = 𝑃 (0) + 1

𝛽𝑅
2 and thus 𝑝(𝑅) = 2

𝛽𝑅. The problem
of this conclusion is that, for any chosen power, the parameter 𝛽 disappears from the dynamical equation. Indeed in this case the
continuum equation becomes:

𝑅 + 𝑑𝑅
𝑑𝑡

− 𝑅(1 − 𝑅)𝛼 = 𝑅1 (23)

hich can be solved analytically, leading to

𝑅(𝑡) = 𝑄
𝛼
tanh

[

𝑄 𝑡 + arctanh 1
𝑄

(

𝛼𝑅1 +
1 − 𝛼
2

)]

+ 𝛼 − 1
2𝛼

(24)

where

𝑄 =
(

𝛼𝑅1 +
(1 − 𝛼)2

4

)1∕2
. (25)

4. Numerical simulations

To test the accuracy of reduction methods on the DebtRank algorithm we need two ingredients: (1) the underlying topology of
the dynamical process, that is, a weighted graph and a list of equities that represent a financial network, and (2) the full dynamical
simulations as benchmark.

2 With respect to Eq. (8), this formulation is obtained by posing 𝐹 (𝑅) ≡ 0 (no self-interaction) and 𝐺(𝛽𝑅,𝑅) = [1 − 𝑝(𝛽𝑅)]𝛥𝑅.
5
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4.1. Model-generated networks

Due to confidentiality constraints imposed by financial institutions, one seldom has detailed empirical information on interbank
etworks. Hence we follow the typical approach in the literature of reconstructing interbank markets from aggregate balance sheet
ata, namely the total interbank assets 𝐴𝑖 =

∑

𝑗 𝐴𝑖𝑗 and liabilities 𝐿𝑖 =
∑

𝑗 𝐿𝑖𝑗 for each bank 𝑖. Here in particular we employ the
econstruction procedure proposed in [40], which is grounded on statistical physics concepts applied to networks [42,43]. The
dvantage of using artificially generated input data is that they allow us to explore the effectiveness of reduction methods on
etworks with different values of 𝛼 and 𝛽.

We thus start from a set of values for {𝐴𝑖, 𝐿𝑖}𝑁𝑖=1, extracted from a given distribution (as explained below). From this input we
an generate a single network instance, placing a weight on each link 𝑖 → 𝑗 according to a ‘‘degree-corrected gravity model’’:

𝑤𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝐴𝑖𝐿𝑗
𝛺𝑝𝑖𝑗

with probability 𝑝𝑖𝑗 =
𝑧𝐴𝑖𝐿𝑗

1+𝑧𝐴𝑖𝐿𝑗

0 otherwise
(26)

where 𝑧 > 0 is a parameter that sets the density of the binary structure and 𝛺 =
√

(
∑

𝑖 𝐴𝑖)(
∑

𝑖 𝐿𝑖) is a normalization constant. We tune
𝑧 for each generated network in order to obtain a link density around 10% (the typical values observed in interbank markets [44]).

As described in [40], this procedure can be used to generate an ensemble of networks, where on average the reconstructed node
strengths equal the input interbank assets and liabilities: ⟨∑𝑗 𝑤𝑖𝑗⟩ = 𝐴𝑖 and ⟨

∑

𝑗 𝑤𝑗𝑖⟩ = 𝐿𝑖 ∀𝑖. At last, to obtain values for the equities
we exploit the strong correlation between the strength of a node and its equity, as measured from real balance sheets data [45]3:

𝐸𝑖 ≃
[

1
2 (𝐴𝑖 + 𝐿𝑖)

]𝜓
(27)

where the slope is set to 𝜓 = 0.8.

4.2. Empirical interbank networks

We also employ networks constructed using empirical interbank transaction data from the electronic Market of Interbank Deposits
(e-MID). As shown in [46,47], this data provide a valuable proxy for the whole structure of interbank relationships. Additionally it
represents an unique instance of publicly available data; as such, it has been extensively analysed in the literature (we remand the
reader to several papers, such as [48–51], describing the structure of the network).

The dataset consists of all the interbank transactions finalized on e-MID from January 1999 to September 2012. For each
contract we have information about the amount exchanged, the date and time, the IDs of the lender and of the borrower banks, the
interest rate and the contract maturity. In order to have information about the underlying ‘‘latent’’ network of preferential lending
relationships, data must be aggregated over a long time scale [44]. Here we aggregate data at the yearly level, so that 𝑤𝑖𝑗 represents
he gross loan from bank 𝑖 to bank 𝑗 in a given year. After obtaining the adjacency matrix 𝑊 , we obtain the leverage matrix using
quity values derived from Eq. (27). The number of banks participating in the market varies in time, decreasing from 215 in year
999 to 124 in year 2011.

.3. Dynamical simulations

Once we have a network topology, either generated or empirical as described above, we can compute the control parameter 𝛼,
iven by Eq. (4) for DWR and the spectral radius of the transposed leverage matrix for SR. In order to explore a range of 𝛼 parameters,
e follow the procedure used in [19]: we start from the seed network 𝑊0 (with parameter 𝛼0) and multiply its adjacency matrix by a
lobal rescaling parameter 𝑟 = 𝛼∕𝛼0 to obtain a new matrix 𝑊 , where 𝛼 is the target control parameter. Note that this transformation
oes not affect the dominant eigenvector (𝑎 ≡ 𝑎0 by definition) nor the parameter 𝛽 of the SR. Indeed from Eq. (7) we get:

𝛽 =
∑

𝑖 𝑘
𝑖𝑛
𝑖 𝑎

2
𝑖

𝛼
∑

𝑖 𝑎
2
𝑖

=
∑

𝑖 𝑟(𝑘
𝑖𝑛
0 )𝑖𝑎

2
𝑖

𝑟𝛼0
∑

𝑖 𝑎
2
𝑖

= 𝛽0.

To carry out DebtRank simulations on each network 𝑊 , we start from a macroeconomic shock scenario for which each bank 𝑖 is
initially healthy (ℎ𝑖(0) = 0) and then suffers from a fractional decrease of equity at 𝑡 = 1: ℎ𝑖(1) = ℎ1.4 We initialize all our simulations
with ℎ1 = 0.005, corresponding to a 0.5% devaluation of all equities (a realistic value often used in the literature [36,37,53]). We
then apply Eq. (11) iteratively and at each time step we compute 𝑅(𝑡) = ∑

𝑖 𝑎𝑖ℎ𝑖(𝑡). The dynamics stops at 𝑡∗ when the states at time
∗ and 𝑡∗ + 1 are sufficiently similar. More precisely, we use the stop condition |𝑅(𝑡∗ + 1) − 𝑅(𝑡∗)| < 10−3.

3 This relation is obtained in [45] as best fit between empirical values of banks’ equity and total interbank exposures. The underlying idea is that the bigger
he bank, the more it can be exposed on the interbank market (in terms of both assets 𝐴 and liabilities 𝐿) and also the higher its equity buffer 𝐸. However,

banks use the interbank market either as a means to invest (lending) or as a source or liquidity (borrowing), so the variable that correlates best with equity is
𝐴 for some banks and 𝐿 for others; the use of the half-sum of the two variables resolves this ambiguity and leads to high correlation with equity.

4 A shock proportional to the bank’s equity can be read as a macroeconomic factor that hits all banks in the system, such as rising loan losses during a
6

recession [52,53].
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Fig. 1. Dimensional reduction of DebtRank dynamics on homogeneous networks. The plot shows the steady states of the reduced variable 𝑅∗ (the relative
quity loss in the system) as a function of the spectral radius 𝛼 of the leverage matrix, in the case of a homogeneous network with 𝛽 ≃ 1.0 obtained with
q. (29). Black solid line: full simulation of the DebtRank dynamics. Coloured dotted lines: DWR with default probability 𝑝(ℎ) = ℎ𝑞 . Coloured dashed lines: SR
ith default probability 𝑝(ℎ) = ℎ𝑞 . Brown solid line: continuum approximation of Eq. (25) with linear default probability.

In the next section we will compare simulation results with predictions from dimensional reduction methods: the steady states
f Eq. (15) for DWR and Eq. (16) for SR. In both cases we will use a highly nonlinear function5

𝑝(ℎ) = ℎ𝑞 (28)

o model the probability of bank failure as a function of the distress level (the original DebtRank dynamics is recovered in the limit
→ ∞). We also add to the comparison the prediction of the continuum approximation for a linear default probability, given by
q. (25).

. Results

.1. Homogeneous networks

We now report results in the case of a homogeneous system, where in the context of dimensional reduction ‘‘homogeneous’’
eans a network setting with 𝛽 ≃ 1. This is achieved in the network generation framework described above by using a list of
omogeneous total interbank assets and liabilities. In particular we can use i.i.d. binomial variables: ∀𝑖,

𝐴𝑖 = 𝐿𝑖 ∼ 𝐵(𝑁, 𝜋) (29)

ith 𝑁 = 200 (a number of banks similar to the empirical e-MID case discussed below) and 𝜋 = 0.1.
Fig. 1 shows the stationary state of the dynamics obtained on a homogeneous network (𝛽 ≃ 1.0) for different values of the

ontrol parameter 𝛼. Simulation data on the full implementation of the DebtRank dynamics features an abrupt transition for 𝛼 ≃ 1.
ndeed, we know that the necessary condition for the convergence of Eq. (11) to values ℎ∗𝑖 < 1 ∀𝑖 is that the spectral radius of
he leverage matrix is smaller than 1; otherwise, the dynamic leads to the default of at least one bank [37,39]. In the case of a
omogeneous system, banks have similar balance sheets and leverage values, and thus tend to default for similar values of 𝛼. Such
steep transition is completely absent in the prediction of the continuum approximation and dimensional reduction with linear

efault probability. Indeed this assumption only works for values of 𝛼 < 1. Capturing the behaviour of the unstable region 𝛼 > 1
nstead requires a default probability that is highly non-linear in the equity losses ℎ. A good agreement with the full dynamics is in
act recovered starting at 𝑞 = 8. As expected for a homogeneous system, for this choice both the DWR and SR provide similar and
ccurate results.

.2. Heterogeneous networks

We then move to the study of more heterogeneous systems with 𝛽 > 1. This is achieved using a heterogeneous list of total
nterbank assets and liabilities, which can be obtained similarly to Eq. (29) as

𝐴𝑖 = 𝐿𝑖 = 𝑥𝜈 where 𝑥 ∼ 𝐵(𝑁, 𝜋) (30)

5 The assumption that default probability is a convex function of the relative equity loss comes from the argument that 𝑝(ℎ) will be barely affected by small
7

quity losses (as those due to daily fluctuations), while when a bank is close to default, even a small increment of ℎ can make a huge difference [39].
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r

Fig. 2. Dimensional reduction of DebtRank dynamics on heterogeneous networks, for varying 𝛼. (a) Relation between 𝜈 and the resulting 𝛽 of a network
generated by Eq. (30) (which does not depend on the parameter 𝑧 setting the link density of the network). (b) Steady states of the reduced variable 𝑅∗ as
a function of the spectral radius 𝛼 of the leverage matrix, for a heterogeneous network with different 𝛽 obtained with Eq. (30) with 𝜈 = 2, 𝜈 = 5 and 𝜈 = 7,
espectively.

Fig. 3. Dimensional reduction of DebtRank dynamics on heterogeneous networks, for varying 𝛽. Plots show the steady states of the reduced variable 𝑅∗

as a function of the heterogeneity 𝛽 of the network, for different values of the control parameter 𝛼. Networks have been generated using Eq. (30), tuning the
exponent 𝜈 ∈ [0, 10]. Cloud of points: results of the full DebtRank dynamics. Dashed and dotted lines: solutions of the SR and DWR, respectively, with 𝑝(ℎ) = ℎ𝑞

with 𝑞 = 5 and 𝑞 = 8 (left and right panel, respectively). Note that the choice 𝑞 = 8 leads in general to a better agreement between SR and simulation results
for small values of 𝛽, where the method is well defined, whereas smaller powers like 𝑞 = 5 are more accurate for larger 𝛽.

i.e. as powers of binomial variable, ∀𝑖 (we again use 𝑁 = 200 and 𝜋 = 0.1). As shown in Fig. 2(a), by changing the exponent 𝜈 it is
possible to increase the heterogeneity of the network, in terms of the coefficient 𝛽 of the output leverage matrix. Fig. 2(b) shows
the stationary state of the dynamics, as a function of 𝛼, for heterogeneous network obtained using different values of 𝜈. Notably,
also for high values of 𝛽 the SR approach remains accurate for a wide range of 𝛼 values, in particular around the transition at 𝛼 = 1,
while the DWR behaviour is independent of 𝛽 and thus leads to inaccurate results for 𝛽 > 1.

The same picture is obtained by plotting the steady states of the reduced variable 𝑅 as a function of the heterogeneity parameter
𝛽, for different values of the control parameter 𝛼. As Fig. 3 shows, the SR solutions with nonlinear default probabilities are in
good agreements with the cloud of points, corresponding to full DebtRank simulations for an ensemble of networks with various
𝛽. On the contrary, the accuracy of DWR predictions decays with increasing 𝛽, since the method does not account for the network
8

heterogeneity.
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Fig. 4. Dimensional reduction of DebtRank dynamics on power-law networks, for varying 𝛼. (a) Relation between 𝜈 and the resulting 𝛽 of a network
generated by Eq. (31) (which does not depend on the link density). (b) Steady states of the reduced variable 𝑅∗ as a function of the spectral radius 𝛼 of the
leverage matrix, for a heterogeneous network with different 𝛽 obtained with Eq. (31) with 𝜈 = 1, 𝜈 = 1.5 and 𝜈 = 2, respectively.

Note how, for high values of 𝛼, the lines corresponding to the steady state of the SR as a function of 𝛼 (Fig. 2) or as a function
of 𝛽 (Fig. 3) become irregular. This is due to the iterative solution of the reduced Eq. (16), which is well defined only until 𝑅 ≤ 𝛽−1,
otherwise the term 1−𝑝(𝛽𝑅) becomes negative – while in the DebtRank dynamics the total amount of stress can only increase. Hence
when the iterations would reach 𝑅 > 𝛽−1 we effectively stop them; however the stopping time 𝑡∗ decreases with 𝛼, as the latter
represents the amount of the increment in 𝑅 at each time step. Indeed if for a specific 𝛼 we have at 𝑡∗ that 𝑅 ≡ 𝛽−1, if we increase 𝛼
by a tiny amount then the stopping time will decrease by one, where 𝑅 will be smaller than the previous value. Increasing 𝛼 further

ill lead to an increase of 𝑅 until 𝑡∗ decreases again and 𝑅 drops, and so on.

.3. Power-law networks

We also considered an alternative method to generate even more heterogeneous networks: drawing total interbank assets and
iabilities directly from a power-law distribution, with exponent −3𝜈: ∀𝑖,

𝐴𝑖 = 𝐿𝑖 = 𝑦𝜈 where 𝑃 (𝑦) ∼ 𝑦−3 (31)

again using a network of size 𝑁 = 200 and 𝑦𝑚𝑖𝑛 = 3. Also in this case, as shown in Fig. 4(a), by changing the exponent 𝜈 we can
increase the heterogeneity of the network in terms of the parameter 𝛽 of the output leverage matrix. Figs. 4(b) and 5 show the
stationary states of the dynamics, respectively as a function of 𝛼 and 𝛽, for heterogeneous network obtained using the above input
with different values of 𝜈. Notably, also for high values of 𝛽 the SR approach remains accurate for a wide range of 𝛼 values, in
particular around the transition at 𝛼 = 1, while this is not the case for DWR. However, in the lower range of 𝛽 values a bifurcation
of the stationary states occurs. This means that a third structural parameter may be necessary to properly reduce the dynamics.

5.4. e-MID data

Finally we consider empirical networks from e-MID transaction data. As shown in Fig. 6, these networks are characterized by
small heterogeneity values (𝛽 ≃ 1), so that both DWR and SR can properly capture the transition of the systemic risk variable, with
SR systematically performing better. However, after the transition the real simulations do not converge to 𝑅 = 1, corresponding
to full default. This is due to the presence in the data of some bank with zero out-degree (i.e., no lending), which by definition
cannot suffer losses and go bankrupt. These banks amount to 1% of the total in 1999, a percentage that grows to 2% in 2003 and
2007 and reaches 8% in 2011, where the number of banks is also halved (124 in 2011 versus 215 in 1999). The size of these banks
determines the maximal amount of relative equity loss in the system; however spectral reduction methods cannot take this aspect
into account.

6. Conclusions

In this work we studied how spectral reduction techniques – both the degree-weighted reduction by [18] and the spectral
9

reduction by [19] – can be applied to the DebtRank dynamics [36,37], which models a solvency contagion process on an interbank
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Fig. 5. Dimensional reduction of DebtRank dynamics on power-law networks (BA), for varying 𝛽. Plots show the steady states of the reduced variable 𝑅∗

as a function of the heterogeneity 𝛽 of the network, for different values of the control parameter 𝛼. Networks have been generated using Eq. (31), tuning the
exponent 𝜈 ∈ [0, 2.5]. Cloud of points: results of the full DebtRank dynamics. Dashed and dotted lines: solutions of the SR and DWR, respectively, with 𝑝(ℎ) = ℎ8.

Fig. 6. Dimensional reduction of DebtRank dynamics on empirical e-MID networks. Plots show the steady states of the reduced variable 𝑅∗ as a function
f the spectral radius of the leverage matrix, for e-MID network data in various representative years.

etwork. We introduced an effective differentiable version of the dynamics that can be handled by reduction methods, and
ested the derived reduced equation on homogeneous and heterogeneous financial networks that we generated by state-of-the-
rt reconstruction procedures [40], as well as on empirical e-MID networks. We found that the spectral reduction systematically
utperforms the degree-weighted one thanks to the presence of an additional parameter, 𝛽, which relates to the heterogeneity of
he network. Indeed 𝛽 is the main parameter that affects the accuracy of the spectral reduction, allowing to obtain a remarkable
greement between the behaviour of the reduced variable and that of the full dynamical system. We remark that the higher
erformance of spectral reduction with respect to the degree-weighted counterpart can be expected, given that the former method
epresents a network with two parameters while the latter only uses one. Therefore we believe that future efforts in the foundational
10
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theory of reduction techniques should be aimed at finding general procedures to encode networks in a richer parameter set to be
used within the reduced equations.

Our results have both theoretical and practical implications. Firstly, we showed that reduction techniques can be successfully
pplied to solvency contagion described by the DebtRank algorithm. Such a dynamical system is defined by functions with
iscontinuous derivatives and thus has a more general form than Eq. (1) – the system typically considered in the literature.
mprovements in this direction would consist in using default probability functions derived from more principled financial
rguments, as well as testing other contagion mechanisms featuring threshold or step functions [7]. Secondly, we better clarified
ow the spectral radius 𝛼 of the leverage matrix determines the stability properties of the system. Indeed previous results reported

the existence of two regimes: for |𝛼| < 1, the shock is progressively damped and the dynamics converges to the fixed point 𝛥ℎ(𝑡) = 0,
while for |𝛼| > 1 the initial shock is amplified and at least one bank will default [37,39]. Here we report a more definite pattern
that is reminiscent of a second-order phase transition: at least for the considered case of a delocalized initial shock, the total equity
loss is negligible for values of 𝛼 < 1, dramatically increases around the critical point 𝛼 ≃ 1 and then monotonically grows with 𝛼.
Moreover, we showed that the shape of the transition depends on the degree of heterogeneity of the network, thus contributing to
the growing literature on network sensitivity of systemic risk (see for instance [45,54]). Further analysis of localized initial shocks
represents an interesting avenue for future research.

Practical implications are also twofold. On the one hand, as already mentioned, microscopic financial network data is very
often privacy-protected and/or difficult to collect in real time, whence the use of statistical methods to reconstruct the network
using aggregate node-level information [42,43]. Despite their recognized effectiveness, these methods cannot guess every single
link of the network, but are arguably more capable of capturing its main spectral properties – which, as we have seen, is a sufficient
ingredient to infer the systemic risk of the underlying real network. On the other hand, when empirical data is available, dimensional
reduction methods are useful when dealing with a large number of nodes. This is not the typical case of interbank markets at the
national level (where 𝑁 is of the order of hundreds), but becomes relevant for financial networks on a continental or even global
scale, with multiple layers of exposures and/or different contagion channels (see for instance [55–57]). Furthermore, the operating
principle of the DebtRank algorithm is at the basis of shock propagation dynamics recently developed for supply chains between
individual firms [58,59], which have many more nodes and therefore require much longer simulation times; testing the effectiveness
of spectral reduction in this area is certainly a promising direction for future research.
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Appendix. Topological interpretations of the 𝜶 and 𝜷 parameters of the spectral reduction

The power method allows to efficiently compute the dominant eigenvector of a matrix, by repeated applications of the matrix
itself to an arbitrary starting vector (which must not be orthogonal to the eigenvector). Consider for simplicity an undirected and
unweighted graph, and let 𝑊 be its (symmetric) adjacency matrix. If 𝑊 is primitive, by the Perron–Frobenius Theorem we know
that its dominant eigenvalue 𝛼 is a positive real number, with the corresponding eigenvector having only positive components. We
can thus use the power method with a starting vector of ones, so that at the 𝑛th iteration the element (𝑊 𝑛)𝑖𝑗 gives the number of
possible paths of length 𝑛 starting from 𝑖 and ending in 𝑗, while 𝜇𝑖(𝑛) =

∑

𝑗 (𝑊 𝑛)𝑖𝑗 is the total number of paths of length 𝑛 starting
from node 𝑖. Consequently, the (normalized) dominant eigenvector of 𝑊 satisfies:

𝑎𝑖 = lim
𝑛→∞

𝜇𝑖(𝑛)
∑

𝑗 𝜇𝑗 (𝑛)
∀𝑖. (A.1)

Hence the dominant eigenvector (and thus the SR method) values a node proportionally to the number of infinitely long paths
starting from that node. On the other hand, by using degree weights the DWR takes into account only paths of length 1. Therefore,
SR and DWR can be seen as laying at the extremes of the power method:

𝑣(0) = 1⃗
𝑊
←←←←←←←←←←←→ 𝑣(1) = �⃗�

⏟⏟⏟
𝐴
←←←←←←←←→ 𝑣(2)

𝑊
←←←←←←←←←←←→ …

𝐴
←←←←←←←←→ 𝑣(∞) = 𝑎

⏟⏞⏟⏞⏟
. (A.2)
11
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Fig. A.7. Geometrical construction to understand the meaning of the 𝛽 parameter.

Note that the degree only represents a local centrality measure, failing to provide information on which nodes are actually connected.
In contrast, the dominant eigenvector yields a more refined centrality metric since it contains the information on how each node is
connected with the rest of the network [19]. In particular, using Eq. (A.1) the dominant eigenvalue can be expressed as:

𝛼 = lim
𝑛→∞

∑

𝑖 𝜇𝑖(𝑛 + 1)
∑

𝑖 𝜇𝑖(𝑛)
. (A.3)

Thus, 𝛼 is the ratio between paths of length 𝑛 + 1 and 𝑛 in the graph, in the limit of infinite paths length.
On the other hand, the parameter 𝛽 defined in Eq. (7) can be interpreted as a measure of the network’s heterogeneity. First, by

defining 𝑏𝑖 = 𝑎2𝑖 ∕(
∑

𝑗 𝑎
2
𝑗 ) ∀𝑖 we can combine Eqs. (6) and (7) to rewrite 𝛽 as

𝛽 =
∑𝑁
𝑖=1 𝑏𝑖𝑘

𝑖𝑛
𝑖

∑𝑁
𝑖=1 𝑎𝑖𝑘

𝑖𝑛
𝑖

(A.4)

Consider again for simplicity an undirected and unweighted graph, and take any two nodes that we label as 1 and 2. Fig. A.7 depicts
a two-dimensional space where we can represent relevant vectors associated to these two nodes. In particular we can represent the
vector of degrees, �⃗� = (𝑘1, 𝑘2), the bisector (1, 1), as well as the components of the dominant eigenvector 𝑎 and of the vector �⃗� defined
above. If these latter two vectors are normalized (so that 𝑎1 + 𝑎2 = 𝑏1 + 𝑏2 = 1),6 graphically their heads lie on the line 𝑥2 = 1 − 𝑥1.
We further note that when 𝑎1 < 𝑎2 we have

𝑏1
𝑏2

=
𝑎21
𝑎22

<
𝑎1
𝑎2

< 1. (A.5)

In this case, walking on the line 𝑥2 = 1 − 𝑥1, vector 𝑎 lies between �⃗� and the bisector. Since Eq. (A.4) says that 𝛽 is the projection
of the vector �⃗� on �⃗� over the projection of 𝑎 on �⃗�, we have the following three cases.

• To have 𝛽 = 1, the two projections should be equal, which can happen only if �⃗� is parallel to the bisector: the two nodes have
the same degree and the network is homogeneous.

• We have 𝛽 > 1 as soon as �⃗� is on the same side of 𝑎 and �⃗� with respect to the bisector, which means 𝑘1 < 𝑘2. The larger this
difference (that is, the more the network is heterogeneous), the higher the value of 𝛽.

• Finally, to have 𝛽 < 1 we would need 𝑘1 > 𝑘2, which is an uncommon and peculiar situation for which node degree is not
representative of its eigenvector centrality.

6 The same argument holds in the case of the 𝐿 -norm, 𝑎2 + 𝑎2 = 𝑏2 + 𝑏2 = 1.
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