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In this short survey, we describe some recent developments on the modeling of prop-
agation by reaction-differential equations with free boundaries, which involve local as
well as nonlocal diffusion. After the pioneering works of Fisher, Kolmogorov–Petrovski–
Piskunov (KPP) and Skellam, the use of reaction–diffusion equations to model propaga-
tion and spreading speed has been widely accepted, with remarkable progresses achieved
in several directions, notably on propagation in heterogeneous media, models for inter-
acting species including epidemic spreading, and propagation in shifting environment
caused by climate change, to mention but a few. Such models involving a free boundary
to represent the spreading front have been studied only recently, but fast progress has
been made. Here, we will concentrate on these free boundary models, starting with those
where spatial dispersal is represented by local diffusion. These include the Fisher–KPP
model with free boundary and related problems, where both the one space dimension
and high space dimension cases will be examined; they also include some two species
population models with free boundaries, where we will show how the long-time dynam-
ics of some competition models can be fully determined. We then consider the nonlocal
Fisher–KPP model with free boundary, where the diffusion operator Δu is replaced by a
nonlocal one involving a kernel function. We will show how a new phenomenon, known
as accelerated spreading, can happen to such a model. After that, we will look at some
epidemic models with nonlocal diffusion and free boundaries, and show how the long-
time dynamics can be rather fully described. Some remarks and comments are made
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at the end of each section, where related problems and open questions will be briefly
discussed.

Keywords: Reaction–diffusion equation; free boundary; local and nonlocal diffusion;
propagation speed.

Mathematics Subject Classification 2020: 35K20, 35R09, 35R36, 92D25, 92D30

1. Introduction

Propagation occurs naturally in the real world, albeit appearing in many different
forms. For example, the spreading of infectious diseases, the invasion of exotic
species, and the spreading of bush fires all involve a certain form of propagation. It
has been observed that many common features of the propagation phenomena can
be captured by reaction–diffusion models.

In a pioneer paper of 1937, Fisher [72] used a simple reaction–diffusion equation
of the form

ut −Duxx = au(1 − u), t > 0, x ∈ R (1.1)

to model the spreading of an advantageous gene in a population, where u(t, x)
stands for the density of the subpopulation that carries the advantageous gene at
time t and spatial location x. It is assumed that individuals in the population move
in space randomly following the rule of Brownian motion, which is represented by
the term Duxx in (1.1), with D known as the diffusion rate. The population growth
is determined by the logistic growth term au(1 − u), with a representing the net
growth rate of the population.

Fisher observed that for any constant c ≥ c0 := 2
√
aD, Eq. (1.1) has a special

solution of the form u(t, x) = V (ct− x), which he called “wave of stationary form”
advancing with velocity c. Obviously, V satisfies the following ODE:

DV ′′ − cV ′ + aV (1 − V ) = 0.

Fisher claimed that c0 should be the actual spreading speed of the advantageous
gene in the environment. Such a special solution is nowadays called a traveling wave
solution with speed c, and the associated V is called the wave profile function.

In another 1937 paper [98], Kolmogorove, Petrovski and Piskunov (KPP), inde-
pendently of Fisher, studied the same gene spreading problem by a similar equation

ut −Duxx = f(u), t > 0, x ∈ R, (1.2)

where f(u) is a C1 function satisfying

f(0) = f(1) = 0 < f(u) ≤ f ′(0)u ∀u ∈ (0, 1), f ′(1) < 0.

They proved that for c ≥ c0 := 2
√
f ′(0)D, Eq. (1.2) has a solution of the form

u(t, x) := Vc(ct− x) (with V ′
c > 0, Vc(−∞) = 0, Vc(∞) = 1), and no such solution
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exists if c < c0. Moreover, the solution of (1.2) with initial condition

u(0, x) =

⎧⎨
⎩

1 for x < 0,

0 for x ≥ 0,

converges to the traveling wave solution with the minimal speed c0 in the following
sense:

lim
t→∞ |u(t, x) − Vc0([c0 + o(1)]t− x)| = 0 uniformly in x ∈ R.

Let us note that if one takes f(u) = au(1 − u), then the result of Fisher is
recovered, and the last conclusion is supportive to Fisher’s claim that c0 is the
spreading speed of the new gene in the population.

The first real-world evidence for constant speed spreading appeared in a 1951
paper by Skellam [120], where it was demonstrated, using published data on the
spreading of muskrats in Europe during 1905–1927, that the range radius of the
maskrats increases linearly in time. More precisely, using a map obtained by
J. Ulbrich (1930), Skellam calculated the area of the muskrat’s range A(t), took
its square root and plotted it against the time t (in years), and found that the data
points lay on a straight line, namely the function t→√A(t) is linear (see below).

(a) (b)

Note that the range radius R(t) for the area A(t) is determined by

A(t) = πR(t)2, or R(t) =
1√
π

√
A(t).

Thus Skellam’s observation says: The range radius of the maskrats increases linearly
in time. Or worded in another way: The spreading of muskrates has a constant speed.

Subsequently, data on the spreading of many other species were used to show
similar spreading behavior, including those for the spread of Himalayan thar in
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South Island of New Zealand during 1936–1966, the spread of house finch in North
America during 1956–1973, and the spread of Japanese beetle in North America
during 1916–1941, to mention but a few. All these gave strong support to Fisher’s
claim on the existence of a constant spreading speed c0, based on the reaction–
diffusion model (1.1).

Fisher’s claim on the spreading speed was convincingly proved by D. G. Aronson
and H. F. Weinberger in the late 1970s. In [5], they considered the following equation
in R

N (N ≥ 1):

ut −DΔu = f(u), (1.3)

where Δu = ux1x1+· · ·+uxNxN is the Laplacian operator. Among other things, they
showed that if f(u) behaves like that in the models of Fisher and KPP mentioned
above, and if the initial function u0(x) is non-negative and has nonempty compact
support, then the unique solution u(t, x) of (1.3) with initial condition u(0, x) =
u0(x) is defined for all t > 0 and satisfies, for any small ε > 0,{

u(t, x) → 1 uniformly for x ∈ {x ∈ R
N : |x| ≤ (c0 − ε)t},

u(t, x) → 0 uniformly for x ∈ {x ∈ R
N : |x| ≥ (c0 + ε)t}, as t→ ∞,

(1.4)

where c0 := 2
√
f ′(0)D.

The behavior of u described in (1.4) indicates that, for all large time, outside
of the ball of radius [c0 + o(1)]t (centered at the origin), the population density is
close to 0, while inside the ball of radius [c0 + o(1)]t, the population density is close
to 1. Therefore, one may interpret such a behavior biologically by saying that the
population spreads with asymptotic speed c0. When f(u) = au(1 − u), we have
c0 = 2

√
aD, as claimed by Fisher !

The above convergence result (1.4) of Aronson and Weinberger has been
improved. If the initial function u0 is radially symmetric, then u is radially sym-
metric in x (i.e. u = u(t, |x|)) and the following holds:

lim
t→∞

∣∣∣∣u(t, |x|) − Vc0

(
c0t− N + 2

c0
D ln t+ C − |x|

)∣∣∣∣ = 0 (1.5)

for some constant C, uniformly in x ∈ R
N .

If u0 is not radially symmetric, then it follows from a simple comparison argu-
ment and the above result on radial solutions that, for any small ε > 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u(t, x) → 1 uniformly for x ∈

{
x ∈ R

N : |x| ≤ c0t−
(
N + 2
c0

D + ε

)
ln t
}
,

u(t, x) → 0 uniformly for x ∈
{
x ∈ R

N : |x| ≥ c0t−
(
N + 2
c0

D − ε

)
ln t
}
.
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This phenomenon is widely known as the logarithmic shift in the Fisher–KPP
spreading.

Remarks. • When N = 1, the logarithmic shift term in (1.5) has coefficient 3/c0,
which was first obtained by Bramson [14] by a probabilistic method for a prob-
lem concerning branching Brownian motion; it is now known as the Bramson
correction term.

• For N ≥ 2, (1.5) follows from Gärtner [75] (again by a probabilistic method). See
[118] for further results with an analytic approach.

These classical works have inspired extensive further research in several
directions, including extensive works on propagation in various heterogeneous envi-
ronments, and on situations where the dispersal of the species is not governed by
Brownian motion (local diffusion) but by suitable nonlocal diffusions. In this paper,
we will look at a sample of the recent works on extending these classical results to
equations with free boundaries, and new findings.

To see how free boundaries may arise naturally in these kind of models, let
us look at a shortcoming of (1.3) as a model for propagation. As in the above-
mentioned famous work of Skellam [120], the spreading behavior of a species is often
measured by the expansion of its population range as time increases. Naturally, the
population range at time t of a species modeled by (1.3) is given by

Ω(t) := {x ∈ R
N : u(t, x) > 0}.

However, by the strong maximum principle for parabolic equations, we have
u(t, x) > 0 for all x ∈ R

N once t > 0, and therefore Ω(t) ≡ R
N for all t > 0,

although Ω(0) is bounded.
To circumvent this problem and obtain a spreading speed from (1.4), one may

nominate a small positive constant δ and use

Ωδ(t) := {x : u(t, x) > δ}
as an approximation of the population range at time t; then (1.4) guarantees that
Ωδ(t) is a bounded set for all time t > 0, and moreover, its boundary ∂Ωδ(t) = {x :
u(t, x) = δ} moves to infinity at the asymptotic speed c0 in all radial directions,
regardless of the choice of δ ∈ (0, 1) and the initial function u0.

Thus (1.3) can be used to successfully determine the spreading speed but it is
not adequate to locate the spreading front, although the latter may provide crucial
information in many applications. For example, in the spreading of an epidemic, it
is important to obtain an accurate estimate of the spreading front. Unfortunately,
in such a situation, models of the form (1.3) become inadequate.

To overcome this shortcoming of (1.3), Du and Lin [46] introduced a free bound-
ary version of the Fisher equation (1.1), where the same equation for u(t, x) is sat-
isfied for x over a changing interval (g(t), h(t)), representing the population range
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at time t, together with the boundary condition u(t, x) = 0 for x ∈ {g(t), h(t)}, and
free boundary conditions

h′(t) = −μux(t, h(t)), g′(t) = −μux(t, g(t)) for some fixed μ > 0.

They showed that this modified model always has a unique solution and as time
goes to infinity, the population u(t, x) exhibits a spreading-vanishing dichotomy,
namely it either vanishes or converges to 1; moreover, in the latter case, a finite
spreading speed can be determined. So, the modified model retains the desired
features of (1.1), but does not have its shortcomings. This work has motivated
considerable further research, and the “spreading-vanishing dichotomy” discovered
in [46] has been shown to occur in a variety of similar models; see, for example,
extensions to equations with a more general nonlinear term f(u) ([48, 92, 94], etc.),
extensions to equations with advection ([81, 91, 134], etc.), extensions to systems of
population or epidemic models ([1, 47, 61, 108, 128, 133], etc.), and development of
numerical methods for treating some of these free boundary problems ([109, 110,
116], etc.).

In this paper, we will give a brief account of a selection of these results, as
well as some more recent works where the diffusion operator Duxx is replaced by a
nonlocal diffusion operator.

For almost every model considered here, there is a corresponding version over
the entire space of the spatial variable x, where no free boundary is imposed. Some
of the works on such models are discussed here for comparison purposes, but most
of the important works on such models are not mentioned; a proper account of the
vast literature on the research of these models deserves a review of a much bigger
scale, well beyond the scope of this paper.

The rest of this paper is organized as follows. In Sec. 2, we consider the Fisher–
KPP model with free boundary and related problems, where both the one space
dimension and high space dimension cases are discussed. In Sec. 3, we consider
some two species population models, and show how the long-time dynamics of some
competition models with free boundary can be determined. Section 4 considers the
nonlocal Fisher–KPP model with free boundary, where the diffusion operator Duxx

is replaced by a nonlocal diffusion operator involving a kernel function, and a new
phenomenon, known as accelerated spreading, will be examined. In Sec. 5, we look
at some epidemic models with nonlocal diffusion and free boundary, and show how
their long-time dynamics can be rather fully described. At the end of each section,
some remarks and comments are made, where related problems and open questions
are discussed.

We hope this short survey can provide the reader a glimpse of the current
research on reaction–diffusion models with free boundary used to understand the
propagation phenomena.
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2. The Free Boundary Problem for the Fisher–KPP Model
and Beyond

2.1. The one space dimension case

We consider the following free boundary version of (1.2), with f(u) covering more
general nonlinearities, to be specified in what follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Duxx + f(u), g(t) < x < h(t), t > 0,

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

g′(t) = −μux(t, g(t)), t > 0,

h′(t) = −μux(t, h(t)), t > 0,

u(0, x) = u0(x), −h0 ≤ x ≤ h0,

−g(0) = h(0) = h0,

(2.1)

where x = g(t) and x = h(t) are the moving boundaries to be determined together
with u(t, x), μ is a given positive constant, f : [0,∞) → R is a C1 function satisfying

f(0) = 0.

The initial function u0 belongs to X (h0) for some h0 > 0, where

X (h0) :=
{
φ ∈ C2([−h0, h0]) : φ(−h0) = φ(h0) = 0, φ′(−h0) > 0, φ′(h0) < 0,

φ(x) > 0 in (−h0, h0)
}
.

For any given h0 > 0 and u0 ∈ X (h0), by a (classical) solution of (2.1) on the
time-interval [0, T ] we mean a triple (u(t, x), g(t), h(t)) belonging to C1,2(GT ) ×
C1([0, T ])×C1([0, T ]), such that all the identities in (2.1) are satisfied pointwisely,
where

GT :=
{
(t, x) : t ∈ (0, T ], x ∈ [g(t), h(t)]

}
.

The nonlinear function f(u) is assumed to be of the standard monostable,
bistable or combustion type.
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More precisely, f is a C1 function and satisfies one of the following three sets
of conditions:

(fM) (Monostable): f(0) = f(1) = 0, f(u) > 0 in (0, 1), f(u) < 0 in (1,∞),
f ′(0) > 0 > f ′(1).

(fB) (Bistable): There exists θ ∈ (0, 1) such that f(0) = f(θ) = f(1) = 0, f(u) < 0
in (0, θ), f(u) > 0 in (θ, 1), f(u) < 0 in (1,∞), f ′(0) < 0, f ′(1) < 0 and∫ 1

0 f(u)du > 0.
(fC) (Combustion): There exists θ ∈ (0, 1) such that f(u) = f(1) = 0 for u ∈ [0, θ],

f(u) > 0 in (θ, 1), f(u) < 0 in (1,∞), f ′(1) < 0.

Problem (2.1) with f(u) taking the Fisher nonlinearity au(1 − u) (which is a
special monostable type function) was first considered by Du and Lin [46], as a
model for the spreading of a new species. In the case f(u) ≡ 0, (2.1) reduces to
the well-known one-phase Stefan problem [19, 73, 97], where u(t, x) represents the
temperature of water in the water region (g(t), h(t)), which is surrounded by ice.
In such a case, the free boundary condition can be deduced from the law of energy
conservation under phase transformation in the process of ice melting, and is known
as the Stefan condition. However, in the biological setting, very few first principles
are available to guide the modeling process. Nevertheless, if u(t, x) represents the
population density of a biological species in (2.1), the free boundary condition can
be deduced from the assumption that k units of the species is lost per unit volume
at the front [15], which gives μ = D/k.

The method in [46] shows that under very general assumptions on f including
(fM), (fB) and (fC) as special cases, (2.1) has a unique solution defined for all
t > 0a. Moreover, the Hopf lemma for parabolic equations implies g′(t) < 0 < h′(t)
and hence ⎧⎨

⎩
h∞ := lim

t→+∞h(t) ∈ (h0,+∞],

g∞ := lim
t→+∞ g(t) ∈ [−∞,−h0)

always exist.
In the following, we will focus on the long-time dynamics of (2.1), with f being

one of the three types of nonlinearities (fM), (fB) and (fC).

2.1.1. The monostable case

Theorem 2.1 (Dichotomy [48]). Assume that f is of monostable type. Then
one of the following happens :

(i) Spreading: (g∞, h∞) = R
1 and

lim
t→∞u(t, x) = 1 locally uniformly in R

1.

aThe smoothness requirement for the initial function, namely u0 ∈ C2([−h0, h0]), can be consid-
erably relaxed. It is enough to require u0 ∈ C([−h0, h0]); see [36].
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(ii) Vanishing: (g∞, h∞) is a finite interval with length no bigger than π/
√
f ′(0)

and

lim
t→∞ max

g(t)≤x≤h(t)
u(t, x) = 0.

Theorem 2.2 (Sharp threshold [48]). In Theorem 2.1, if u0 = σφ with φ ∈
X (h0), then there exists σ∗ = σ∗(h0, φ) ∈ [0,∞] such that

(i) Vanishing happens when 0 < σ ≤ σ∗.
(ii) Spreading happens when σ > σ∗.
(iii) σ∗ satisfies⎧⎪⎪⎨

⎪⎪⎩
σ∗ = 0 if 2h0 ≥ π/

√
f ′(0),

σ∗ ∈ (0,∞] if 2h0 < π/
√
f ′(0),

σ∗ ∈ (0,∞) if 2h0 < π/
√
f ′(0) and if f is globally Lipschitz.

2.1.2. The bistable case

Theorem 2.3 (Trichotomy [48, 49]). Assume that f is of bistable type. Then
one of the following three cases must happen:

(i) Spreading: (g∞, h∞) = R
1 and

lim
t→∞u(t, x) = 1 locally uniformly in R

1.

(ii) Vanishing: (g∞, h∞) is a finite interval and

lim
t→∞ max

g(t)≤x≤h(t)
u(t, x) = 0.

(iii) Transition: (g∞, h∞) = R
1 and there exists x0 ∈ [−h0, h0] such that

lim
t→∞ |u (t, x) − v∞(x + x0)| = 0 locally uniformly in R

1,

where v∞ is the unique positive solution to

v′′ + f(v) = 0 (x ∈ R
1), v′(0) = 0, v(−∞) = v(+∞) = 0.

Theorem 2.4 (Sharp threshold [48]). In Theorem 2.3, if u0 = σφ for some
φ ∈ X (h0), then there exists σ∗ = σ∗(h0, φ) ∈ (0,∞] such that

(i) Vanishing happens when 0 < σ < σ∗.
(ii) Spreading happens when σ > σ∗.
(iii) Transition happens when σ = σ∗.
(iv) There exists ZB > 0 such that σ∗ < ∞ if h0 ≥ ZB, or if h0 < ZB and f is

globally Lipschitz.
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2.1.3. The combustion case

Theorem 2.5 (Trichotomy [48]). Assume that f is of combustion type. Then
one of the following occurs:

(i) Spreading: (g∞, h∞) = R
1 and

lim
t→∞ u(t, x) = 1 locally uniformly in R

1.

(ii) Vanishing: (g∞, h∞) is a finite interval and

lim
t→∞ max

g(t)≤x≤h(t)
u(t, x) = 0.

(iii) Transition: (g∞, h∞) = R
1 and

lim
t→∞u(t, x) = θ locally uniformly in R

1.

Theorem 2.6 (Sharp threshold [48]). In Theorem 2.7, if u0 = σφ for some
φ ∈ X (h0), then there exists σ∗ = σ∗(h0, φ) ∈ (0,∞] such that

(i) Vanishing happens when 0 < σ < σ∗.
(ii) Spreading happens when σ > σ∗.
(iii) Transition happens when σ = σ∗.
(iv) There exists ZC > 0 such that σ∗ < ∞ if h0 ≥ ZC , or if h0 < ZC and f is

globally Lipschitz.

Remarks. (a) In Theorems 2.2, 2.4 and 2.6, exactly when σ∗ 
= ∞ is still an open
question. By [48], σ∗ = ∞ if h0 is small and f(u) ∼ −up for p > p0 with some
p0 > 2.

(b) For the corresponding Cauchy problem (namely (5.11) in one space dimen-
sion), in the bistable and combustion cases, similar properties as described in
Theorems 2.4 and 2.6 were conjectured by Kanel [90], and proved for special
initial functions by Zlatŏs [146], and for general initial functions by Du and
Matano [51].

(c) The corresponding Cauchy problem of (2.1) can be viewed as the limiting
problem of (5.11) as μ → ∞; see Sec. 2.2 for a more general conclusion.

2.1.4. Spreading profile

When spreading happens to (2.1), for all three types of nonlinearities, the spreading
speed and profile are determined by the following two theorems.

Theorem 2.7 (Semi-wave [48]). Suppose that f is of monostable, bistable or
combustion type. Then for any μ > 0 there exists a unique solution pair (c, q) =
(c∗0, qc∗0 ) to {

q′′ − cq′ + f(q) = 0, q > 0 in (0,∞),

q(0) = 0, q(∞) = 1, q′(0) = c/μ.
(2.2)
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We call qc∗0 a semi-wave with speed c∗0. It determines the spreading profile of
(2.1), as described in the following result.

Theorem 2.8 (Spreading profile [53]). Assume spreading happens to (2.1) with
f of monostable, bistable or combustion type. Then there exist constants C1 and C2

such that ⎧⎨
⎩

lim
t→∞ h′(t) = c∗0, lim

t→∞[h(t) − c∗0t] = C1,

lim
t→∞ g′(t) = −c∗0, lim

t→∞[g(t) + c∗0t] = C2,⎧⎪⎨
⎪⎩

lim
t→∞ max

x∈[0,h(t)]
|u(t, x) − qc∗0 (h(t) − x)| = 0,

lim
t→∞ max

x∈[g(t),0]
|u(t, x) − qc∗0 (x− g(t))| = 0.

Here, (c∗0, qc∗0 ) is given by Theorem 2.7.

2.1.5. Transition speed

In the transition cases of Theorems 2.4 and 2.6, it turns out that although −g(t)
and h(t) converge to ∞ as t → ∞, their rates of growth are sublinear in time, as
described below.

Theorem 2.9 (Transition speed [49]). In the transition case of Theorem 2.4
where f is bistable, there exists c1 > 0 such that

−g(t), h(t) = [c1 + o(1)]ln t as t→ ∞;

and in the transition case of Theorem 2.6 where f is of combustion type, there exists
c2 > 0 such that

−g(t), h(t) = [c2 + o(1)]
√
t as t→ ∞.

In Theorem 2.9, c1 = 1/
√|f ′(0)| and c = c2 > 0 is the unique solution to

2cec2
∫ c

0

e−s2
ds = μθ.

The proofs of the results in this section are based on subtle constructions of
upper and lower solutions in general, and in several places, including the sharp
threshold results and the transition speed estimates, the so-called “zero number
argument” [49] based on Angenent [4] has played a crucial role.

2.2. The case of high space dimensions

The corresponding free boundary problem (2.1) in space dimension N ≥ 2 has the
form ⎧⎪⎪⎨

⎪⎪⎩
ut −DΔu = f(u) for x ∈ Ω(t), t > 0,

u = 0 and ut = μ|∇xu|2 for x ∈ ∂Ω(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0.

(2.3)
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Here, Ω(t) ⊂ R
N is the population range at time t, with Ω(0) = Ω0, and we assume

that Ω0 is a bounded domain with smooth boundary, u0 ∈ C1(Ω0) is positive in
Ω0, and u0|∂Ω0 = 0. As for (2.1), we restrict f to be one of the three types of
nonlinearities: monostable, bistable or combustion type.

We note that in (2.3), both u(t, x) and Ω(t) are unknowns. The physical meaning
of the free boundary condition is: Each point x ∈ ∂Ω(t) moves in the direction of the
outer normal to ∂Ω(t) at x, with velocity μ|∇xu(t, x)|. In the spherically symmetric
setting, where

∂Ω(t) = {x : |x| = h(t)} and u = u(t, r), r = |x|,
this can be simplified to h′(t) = −μur(t, h(t)).

While the free boundary condition is meaningful when ∂Ω(t) is C1, in general,
such smoothness is not guaranteed for all t > 0 even if the initial data (u0,Ω0) are
sufficiently smooth. As in the classical Stefan problem, (2.3) has to be understood
in a certain weak sense. It was proved by Du and Guo [40] that (2.3) has a unique
weak solution defined for all t > 0 (see [35] for some new development).

2.2.1. Basic results for (2.3)

The regularity of the free boundary of (2.3) is a difficult technical issue. By further
developing techniques of Kinderlehrer and Nirenberg [97] and Cafarelli [19] used to
treat the classical one phase Stefan problem, and combining them with the reflection
argument as used in Matano [114], Du et al. [52] were able to obtain C2+α regularity
of the free boundary away from the convex hull of Ω0, provided that f is C1+α near
u = 0, namely

f ∈ C1+α([0, δ]) for some small δ > 0.

It is easy to find examples that singularity of the free boundary occurs inside the
convex hull of Ω0. The regularity and long-time dynamical behavior of the solution
to (2.3) are described as follows.

Theorem 2.10 ([52]). Let (u(t, x),Ω(t)) be the weak solution of (2.3). Then the
following conclusions hold :

(1) Ω(t) is expanding: Ω0 ⊂ Ω(t) ⊂ Ω(s) if 0 < t < s.
(2) ∂Ω(t)\(convex hull of Ω0) is C2+α if f(u) is C1+α near u = 0.
(3) Dichotomy: Let Ω∞ := ∪t>0Ω(t). Then one of the following happens :

(a) Ω∞ is a bounded set and limt→∞ ‖u(t, ·)‖L∞(Ω(t)) = 0;
(b) Ω∞ = R

N and for all large t, ∂Ω(t) is a C2+α (provided that f(u) is C1+α

near u = 0) closed hypersurface contained in the spherical shell{
x ∈ R

N : 0 ≤ |x| −M(t) ≤ π

2
diam(Ω0)

}
,

where M(t) is a continuous function satisfying limt→∞M(t) = ∞.
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Reaction diffusion models with free boundaries

The following result indicates that (1.3) is the limiting problem of (2.3) as
μ→ ∞.

Theorem 2.11 (Limiting problem [40]). If the solution (u,Ω(t)) of (2.3) is
denoted by (uμ,Ωμ(t)) to stress its dependence on μ, then as μ→ ∞,

Ωμ(t) → R
N (∀ t > 0), uμ → U in C1,2

loc ((0,∞) × R
N ),

where U is the unique solution of (1.3) with U(0, x) =
{

u0(x), x ∈ Ω0,
0, x �∈ Ω0.

When Ω∞ = R
N in Theorem 2.10, the asymptotic profile of (u(t, x),Ω(t)) as

t → ∞ depends on f(u). If f is monostable, then spreading happens (namely
u(t, x) → 1 as t→ ∞) in such a case for Ω∞, and if f is bistable or is of combustion
type, simple sufficient conditions can be easily obtained to guarantee spreading to
happen. However, sharp threshold results as in Theorems 2.4 and 2.6 are not easy
to obtain in the high dimension case here, due to the existence of more complicated
stationary solutions in high space dimensions (see [50] for more details). When
spreading happens, we have the following result on the profile of the solution to
(2.3) as t→ ∞.

Theorem 2.12 (Logarithmic shift [54]). Suppose u0 and Ω0 are radially sym-
metric in (2.3), and thus

u = u(t, |x|),
Ω(t) =

{
x ∈ R

N : |x| < h(t)
}
.

Then, when spreading happens and t→ ∞,{
u(t, |x|) − qc∗0 (h(t) − |x|) → 0 uniformly in x,

h(t) − [c∗0t− (N − 1)c∗1D ln t] → C = C(u0) ∈ R,
(2.4)

where (c∗0, qc∗0 ) is given in Theorem 2.7, and c∗1 > 0 is given by

c∗1 =
1
ζc∗0

, ζ = 1 +
c∗0

μ2
∫∞
0 q′c∗0 (z)

2e−c∗0zdz
.

Remarks. (a) If the radial symmetry assumption on u0 and Ω0 in Theorem 2.12 is
dropped, then by a simple comparison argument, there exist constants C1 ≤ C2

such that, for all large t

∂Ω(t) ⊂ {C1 ≤ |x| − [c∗0t− (N − 1)c∗1D ln t
] ≤ C2

}
.

(b) Note the difference between (2.4) and the estimates in Theorem 2.8 for the case
of one space dimension; now h(t)− c∗0t is no longer bounded and is of the order
−(N − 1)c∗1D ln t as t → ∞. Such an error term is often called a logarithmic
shift: u(t, r) approaches a shifted version of the semi-wave qc∗0 (c

∗
0t − r), where

r = |x|.
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2.2.2. Comparison of (1.3) and (2.3)

Let us now compare the behavior of (1.3) and (2.3) in the case f(u) is a Fisher–KPP
type function, which are viewed as models for the spreading of a new species. The
above results indicate that (2.3) retains the main features of the classical model
(1.3), but also exhibits a number of differences, and Theorem 2.11 shows that (1.3)
can be viewed as the limiting problem of (2.3) as μ → ∞. We summarize in what
follows their similarities and differences.

Similarities: When spreading happens, (1.3) and (2.3) share the following asymp-
totic behaviors:

(i) Shape of fronts: In both models, the fronts can be approximated by spheres.
(ii) Spreading speed: The fronts go to infinity at some constant asymptotic speeds

(c0 and c∗0, respectively).

Differences:

(i) Location of front:

— The front in (2.3) is located at the free boundary.
— (1.3) does not give the precise location of the front.

(ii) Success of spreading:

— (1.3) gives consistent success of spreading: Spreading succeeds whenever
the non-negative initial function u0(x) is not identically zero.

— (2.3) yields a spreading-vanishing dichotomy: For “large” initial function
u0, spreading happens; for “small” u0, vanishing happens.b

(iii) Logarithmic shift:

— The (approximate) front of (1.3) propagates behind the moving sphere
{x ∈ R

N : x = c0t} by a distance of the order N+2
c0

D ln t; see (1.5).

— The front of (2.3) propagates behind the moving sphere {x ∈ R
N : |x| =

c∗0t} by a distance of the order (N − 1)c∗1D ln t (when spreading happens).

In particular, when dimension N = 1, logarithmic shifting happens for (1.3)
but not for (2.3).

2.3. Further remarks and comments

There are many related works on a number of variations of (2.1) and (2.3). We only
mention and comment on a small selection of them below.

In [92, 94], Yamada and collaborators considered a new kind of f(u) for (2.1),
called a “positive bistable” nonlinearity, which arises in some population problems.

bBy [50], if u0(x) = σφ(x) with σ > 0 regarded as a parameter, then there exists σ∗ such that
spreading happens when σ > σ∗ and vanishing happens when σ ∈ (0, σ∗].
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The long-time dynamics of (2.1) with such a nonlinearity becomes more compli-
cated, exhibiting two kinds of spreading behavior, involving a “propagating terrace”
consisting of a semi-wave and a normal traveling wave.

When f(u) behaves like up with p > 0, solutions of (2.1) may blow up in finite
time, and its dynamical behavior is very different from those discussed above; see
[70, 77, 145] for further details.

Similar to Berestycki et al. [11, 12], where the results of Aronson and Weinberger
[5] were extended to heterogeneous media, for the free boundary model (2.1) with
a Fisher–KPP nonlinearity, results of [46] have been extended to several types of
heterogeneous environments. For time-periodic environment, the results for (2.1)
have been extended in [41], where the Fisher–KPP type nonlinearity is assumed to
depend periodically on time. For space periodic environment, a similar extension
has been done in [45]. For almost-periodic environment in time or in space, see
[101, 102, 104, 106] by Liang, Shen and their collaborators.

In [36, 37], (2.1) with f a Fisher–KPP type nonlinearity subjected to simultane-
ous time-periodic and space-periodic perturbations was considered. It was proved
that the model still determines a spreading speed, but not by proving the existence
of an associated semi-wave as in [41] or [45]; instead, the proof relied on extending
a dynamical systems approach of Weinberger [135], further developed by Liang and
Zhao [105]. The existence of a semi-wave-type solution in this setting remains open.

To understand the influence of climate change on ecological invasion, [42, 62, 88,
89] considered (2.1) in a variety of shifting environments, where a Fisher–KPP type
of nonlinearity was perturbed by a shifting function in the form f = u[a(x+ct)−u],
where c is a given constant representing the speed of the shifting environment.
Depending on the behavior of the shifting function a(x), several new behaviors of
the long-time dynamics have been found.

When a drifting term is added to the first equation of (2.1), representing the
effect of flowing water in the river for instance, interesting new behavior also arises;
see [81, 91, 124] and references therein.

When time delay is incorporated into (2.1), the reaction term may become
nonlocal, though the main feature of the long-time dynamics can be retained; some
recent research in that direction can be found in [38, 123].

In [66], (2.1) with μ < 0 was considered, which provides a model with a receding
front. Other variations of the free boundary condition can be found in [7, 17, 18],
where the front can both recede or invade depending on the population density or
the environment.

When uxx in (2.1) is replaced by the porous medium operator (um)xx (m > 1) or
a more general operator of a similar form, with the free boundary conditions suitably
modified accordingly, semi-wave solutions have been obtained in [67, 68] by Fadai
and Simpson. When the natural free boundary of the porous medium problem is
used, the long-time dynamics has been determined by Audrito and Vasquez [68]
and Du, Quiros and Zhou [59].
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In [109, 110, 116], numerical methods have been developed for the simulation
of (2.1), (2.3) and related free boundary models.

In high space dimension, if Ω0 in (2.3) is unbounded, the dynamical behavior
may change drastically. When Ω0 is roughly an infinite cone, the dynamics of (2.3)
was examined in [35], and semi-waves with curved fronts have been obtained in
[39]. Much remains to be understood in this direction.

3. Some Diffusive Competition Models with Free Boundaries

In the real world, almost every species interacts with some other species, and com-
petition is a common relationship between different species. In this section, we look
at some models for the dynamics of two competing species.

When two competing species invade into unlimited space, the following Lotka–
Volterra competition system has been widely used to understand their dynamical
behavior: {

ut = d1Δu+ u(a1 − b1u− c1v), x ∈ R
N , t > 0,

vt = d2Δv + v(a2 − b2v − c2u), x ∈ R
N , t > 0,

(3.1)

where u(t, x) and v(t, x) denote the population densities of the two competing
species at time t and spatial location x; the positive constants di, ai, bi and ci
(i = 1, 2) are the diffusion rates, intrinsic growth rates, intra-specific competition
rates, and inter-specific competition rates, respectively.

For mathematical analysis, the number of parameters in (3.1) can be reduced.
By using the scalings

û(x, t) :=
b1
a1
u

(√
d2

a2
x,

t

a2

)
, v̂(x, t) :=

b2
a2
v

(√
d2

a2
x,

t

a2

)
,

d :=
d1

d2
, α :=

a1

a2
, a :=

a1c2
a2b1

, b :=
a2c1
a1b2

,

and then omitting the hat signs, system (3.1) can be rewritten into the following
simpler form: {

ut = dΔu+ αu(1 − u− bv), x ∈ R
N , t > 0,

vt = Δv + v(1 − v − au), x ∈ R
N , t > 0.

(3.2)

The system (3.2) has four constant equilibrium solutions (u, v) = (0, 0),
(1, 0), (0, 1) and (u∗, v∗), where (u∗, v∗) =

(
1−b
1−ab ,

1−a
1−ab

)
is meaningful only when

(1−a)(1− b) > 0. For the corresponding ODE problem, namely when the solutions
are functions of t only, it is well known that the asymptotic behavior of the solution
with initial functions u(0), v(0) > 0 can be classified into the following four cases:

(i) If 0 < b < 1 < a, then

lim
t→∞(u(t), v(t)) = (1, 0).
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Reaction diffusion models with free boundaries

(ii) If 0 < a < 1 < b, then

lim
t→∞(u(t), v(t)) = (0, 1).

(iii) If a, b ∈ (0, 1), then

lim
t→∞(u(t), v(t)) = (u∗, v∗).

(iv) If a, b > 1, then (depending on the initial condition)

lim
t→∞(u(t), v(t)) = (1, 0) or (0, 1) or (u∗, v∗).

Cases (i) and (ii) are known as the weak–strong competition cases (u strong and
v weak in case (i)). Case (iii) is called the weak competition case and case (iv) is
referred to as the strong competition case.

To use (3.2) to describe the spreading behavior, one typically assumes that the
initial populations u(x, 0) and v(x, 0) are positive in a bounded region of R

N , and
then uses the diffusive system to see how the populations evolve as time t increases.
In the weak–strong competition case, say in case (i), the evolution of

(
u(x, t), v(x, t)

)
can often be explained by a traveling wave solution of the system with a certain
speed c > 0. This speed c is usually interpreted as the invading speed of u (and
retreating speed of v). The dynamics can be more complex though; see [79] for a
very recent study of this case in space dimension N = 1.

As a population model for propagation, (3.2) has a similar shortcoming to (1.3),
namely, although the initial population ranges may be assumed to be bounded
regions in space, that is, both {x ∈ R

N : u(x, 0) > 0} and {x ∈ R
N : v(x, 0) > 0}

are bounded sets, once t > 0, the population ranges {x ∈ R
N : u(x, t) > 0} and

{x ∈ R
N : v(x, t) > 0} coincide with R

N . Therefore (3.2) is not adequate to describe
the evolution of the range boundaries of the species.

Similar to the one species Fisher–KPP model, free boundaries have been intro-
duced to (3.2) to represent the spreading front.

3.1. Invasion into the territory of a native competitor

In Du and Lin [47], the following model was investigated:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − dΔru = αu(1 − u− bv), t > 0, r ∈ [0, s1(t)),

vt − Δrv = v(1 − v − au), t > 0, r ≥ 0,

ur(t, 0) = vr(t, 0) = 0, t > 0,

u(t, r) = 0, t > 0, r ≥ s1(t),

s′1(t) = −μ1ur(t, s1(t)), t > 0,

s1(0) = s01, u(0, r) = u0(r), r ∈ [0, s01],

v(0, r) = v0(r), r ≥ 0,

(3.3)
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with {
u0 ∈ C2([0, s01]), u′0(0) = u0(s01) = 0, u0(r) > 0 in [0, s01),

v0 ∈ C2([0,∞)) ∩ L∞(0,∞), v′0(0) = 0, v0(r) > 0 in [0,∞).

Here, Δr denotes the radial Laplacian ∂rr+ N−1
r ∂r in R

N (N ≥ 1), and (3.3) models
the dynamics of a species u invading into the habitat of an existing species v in a
spherically symmetric setting, with r = |x|, x ∈ R

N . In this model, v is regarded
as already established in the environment, while u’s population range is given by
{x : |x| < s1(t)}. If v ≡ 0 in (3.3), then we are back to the single species problem
(2.3) (with radial symmetry). Assuming radial symmetry avoids the technically
difficult regularity issue, enabling us to concentrate on the long-time dynamics of
the model.

The following four theorems are from [47].

Theorem 3.1 (Existence and uniqueness [47]). Problem (3.3) has a unique
solution (u(t, r), v(t, r), s1(t)) and it is defined for all t > 0.

Theorem 3.2 (Weak invader [47]). If u is an inferior competitor, namely a <
1 < b, then the invasion of u always fails, in the sense that

lim
t→∞(u(t, ·), v(t, ·)) = (0, 1) in L∞

loc([0,∞)).

Theorem 3.3 (Strong invader [47]). If u is a superior competitor, namely a >
1 > b, then the invasion of u is determined by a dichotomy, namely exactly one of
the following two alternatives hold :

(i) (Invasion success) limt→+∞ s1(t) = +∞ and

lim
t→+∞

(
u(t, ·), v(t, ·)) = (1, 0) in [L∞

loc([0,∞))]2.

(ii) (Invasion failure) limt→+∞ s1(t) < +∞ and

lim
t→+∞ ‖u(t, ·)‖L∞([0,s1(t)]) = 0, lim

t→∞ v(t, ·) = 1 in L∞
loc([0,∞)).

Theorem 3.4 (Criteria for the dichotomy [47]). There exists R∗ =
R∗(d, a, b) > 0, determined by an eigenvalue problem, such that, in Theorem 3.3, the
invasion of u always succeeds when s01 ≥ R∗. If s01 < R∗, then there exists μ∗ ≥ 0,
depending on (u0, v0), such that u invades successfully if and only if μ1 > μ∗.

When the invasion of u is successful, the spreading speed of u has been deter-
mined by Du et al. [61].

Theorem 3.5 (Spreading speed [61]). Suppose that a > 1 > b,

inf
r≥0

v0(r) > 0,
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and u invades successfully. Then there exists a unique cμ1 > 0 such that

lim
t→+∞

s1(t)
t

= cμ1 .

Moreover, cμ1 is strictly increasing in μ1 and

c0 := lim
μ→+∞ cμ1 < +∞.

We call cμ1 the spreading speed of u governed by (3.3). The key step in the proof
of Theorem 3.4 is to determine cμ1 , which is much more difficult to do than the
determination of the spreading speed in the single species case considered in the
previous section.

First, we need a result of Kan-on [93] on the following traveling wave problem:⎧⎪⎪⎨
⎪⎪⎩
cΨ′ − dΨ′′ = αΨ(1 − Ψ − bΦ), Ψ′ > 0, ξ ∈ R,

cΦ′ − Φ′′ = Φ(1 − Φ − aΨ), Φ′ < 0, ξ ∈ R,

(Ψ,Φ)(−∞) = (0, 1), (Ψ,Φ)(∞) = (1, 0).

(3.4)

Proposition 3.6 (Traveling wave [93]). Suppose that a > 1 > b. Then there
exists a unique constant

c0 ∈ [2
√
αd(1 − b), 2

√
αd]

such that problem (3.4) has a solution when c ≥ c0 and it has no solution when
c < c0.

Remark. It is well known that c0 is the spreading speed of u governed by the
corresponding Cauchy problem (3.2).

The spreading speed cμ1 for (3.3) is determined by the following associated
semi-wave problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cψ′ − dψ′′ = αψ(1 − ψ − bϕ), ψ′ > 0 (∀ ξ > 0),

cϕ′ − ϕ′′ = ϕ(1 − ϕ− aψ), ϕ′ < 0 (∀ ξ ∈ R),

ψ ≡ 0 (∀ ξ ≤ 0), ψ(+∞) = 1,

ϕ(−∞) = 1, ϕ(+∞) = 0.

(3.5)

Theorem 3.7 (Semi-wave and cµ1 [61]). Assume that a > 1 > b, and c0 is
given in Proposition 3.6. Then (3.5) has a unique solution

(ψ, ϕ) ∈ [C(R) ∩ C2([0,∞))
]× C2(R)

for each c ∈ [0, c0), and it has no such solution for c ≥ c0. Furthermore, if we
denote the unique solution by (ψc, ϕc) (c ∈ [0, c0)), then the following conclusions
hold :

(i) If 0 ≤ c1 < c2 < c0, then

ψ′
c1

(0) > ψ′
c2

(0), ψc1(ξ) > ψc2(ξ) (∀ ξ > 0), ϕc1(ξ) < ϕc2(ξ) (∀ ξ ∈ R).
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(ii) The operator c �→ (ψc, ϕc) is continuous from [0, c0) to C2
loc([0,+∞))×C2

loc(R).
Moreover,

lim
c→c0

(ψc, ϕc) = (0, 1) in C2
loc([0,+∞)) × C2

loc(R).

(iii) For each μ1 > 0, there exists a unique c = cμ1 ∈ (0, c0) such that

μ1ψ
′
c(0) = c.

Moreover,

μ1 �→ cμ1 is strictly increasing and lim
μ→+∞ cμ1 = c0.

For each c ∈ [0, c0), the solution pair (ψc, ϕc) in Theorem 3.7 generates a trav-
eling wave

(ũ(t, x), ṽ(t, x)) := (ψc(ct− x), ϕc(ct− x)),

which satisfies⎧⎪⎪⎨
⎪⎪⎩
ũt − dũxx = αũ(1 − ũ− bṽ), t > 0, −∞ < x < ct,

ṽt − ṽxx = ṽ(1 − ṽ − aũ), t > 0, x ∈ R,

ũ(t, x) = 0, t > 0, ct ≤ x < +∞.

We note that when c = cμ1 , one has the extra identity

c = −μ1ũx(t, ct).

We call (ψcμ1
, ϕcμ1

) the semi-wave associated to (3.3).

3.2. Simultaneous invasion of two competitors

We now consider the case that two competitors invade a new territory simultane-
ously. Such a situation was examined in [63, 64, 82, 83, 95], and is modeled by a
variation of (3.3), which has the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − dΔru = αu(1 − u− bv), t > 0, r ∈ [0, s1(t)),

vt − Δrv = v(1 − v − au), t > 0, r ∈ [0, s2(t)),

ur(t, 0) = vr(t, 0) = 0, t > 0,

u(t, r) = 0, t > 0, r ≥ s1(t),

v(t, r) = 0, t > 0, r ≥ s2(t),

s′1(t) = −μ1ur(t, s1(t)), t > 0,
s′2(t) = −μ2vr(t, s2(t)), t > 0,
s1(0) = s01, u(0, r) = u0(r), r ∈ [0, s01],

s2(0) = s02, v(0, r) = v0(r), r ∈ [0, s02]

(3.6)
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with d, α, a, b, μ1, μ2, s
0
1, s

0
2 positive constants, and⎧⎨

⎩
u0 ∈ C2([0, s01]), u′0(0) = u0(s01) = 0, u0(r) > 0 in [0, s01),

v0 ∈ C2([0, s02]), v′0(0) = v0(s02) = 0, v0(r) > 0 in [0, s02).
(3.7)

Here, u(t, r) and v(t, r) denote the population densities of two competing species at
time t and location r = |x| in R

N , respectively; their respective population ranges
at time t are {x : |x| < s1(t)} and {x : |x| < s2(t)}. So, they invade into the
environment through the expansion of their population ranges simultaneously.

We will focus on the following weak–strong competition case:

(H) : a > 1 > b.

So, u is the superior competitor and v the inferior competitor.
When dimension N = 1, Guo and Wu [83] showed that under (H), the dynamics

of this problem can have four possibilities:

(i) the two species vanish eventually, namely⎧⎨
⎩

lim
t→∞ si(t) <∞ for i = 1, 2,

lim
t→∞(u(t, r), v(t, r)) = (0, 0) uniformly in r;

(ii) the species u vanishes eventually, and v spreads successfully;
(iii) the species v vanishes eventually, and u spreads successfully;
(iv) both species spread successfully.

Further results for the N = 1 case can be found in [112, 130] by Wang and
collaborators. However, the mechanism for the situation (iv) to occur and the precise
spreading profile of the two species when (iv) does occur, were not fully understood.

Let s∗μ2
be the spreading speed of v in the absence of u in (3.6), as determined

by Theorem 2.7 in the previous section, and let cμ1 be given by Theorem 3.7, which
arises from the model (3.3). It turns out that they are important for the dynamics
of (3.6).

In Du and Wu [63], it was shown that at least one species must vanish when cμ1 >

s∗μ2
. If cμ1 < s∗μ2

and certain conditions on the initial functions are satisfied, the
following spreading profile for the two species in the coexistence case (iv) (with N ≥
1) was obtained in [63], which was subsequently named chase-and-run coexistence
in [95]:

u spreads at speed cμ1 , and v spreads at speed s∗μ2
> cμ1 .

In such a case, the inferior species v outruns the superior u, and survives in the
long run; see Theorem 3.8 and Figs. 2 and 3 for a more precise description of this
phenomenon.
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Unfortunately, the sufficient conditions on the initial data in [64] guaranteeing
the chase-and-run coexistence are rather restrictive. For example, it requires that
μ1 is sufficiently small and (u0, v0, s

0
1, s

0
2) satisfies{‖u0‖L∞ ≤ 1, s01 ≥ S∗ for some S∗ > 0,

v0(·) ≥ 1 in [r0, r0 + L] for some large r0 > s01 and L > 0.

Question. Can other coexistence state happen when the initial data are varied?

For convenience, we will name the chase-and-run coexistence as case (iv)(a).

3.2.1. Numerical simulation result

To help to find an answer to this question, Khan et al. [95] numerically investigated
the problem (3.6) by looking at initial functions u0(r;λ1) and v0(r;λ2) which vary
continuously with the parameters λ1 and λ2, respectively. The simulations suggest
that only the four outcomes (i)–(iv)(a) can be observed, implying that chase-and-
run coexistence is the only possible state for the two species to live together in the
long run.

In the numerical simulation, the parameters are given by (d, a, b, α, μ1, μ2) =
(2, 2, 0.5, 2, 0.1, 1), dimension N = 2, and the initial functions are

u0(r, λ1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if r ∈
[
0,
λ1π

2

]
,

sin(r/λ1), if r ∈
[
λ1π

2
, λ1π

]
,

v0(r, λ2) =

{
sin ε, if r ∈ [0, ελ2],

sin(r/λ2), if r ∈ [ελ2, λ2π],

where ε = arcsin(0.1).
A large number of values of (λ1, λ2) are chosen and for each pair of these values,

the solution of (3.6) is calculated until it exhibits a clear pattern for its large-
time behavior. The simulation result shows that the checked region in the (λ1, λ2)
plane can be divided into four parts, with each one yielding a particular long-time
behavior of the solution, showing no new behaviors; see Fig. 1.

In Figs. 2 and 3, an example of the chase-and-run coexistence behavior captured
by the numerical simulation is displayed.

3.2.2. Further theoretical results

In a recent work of Du and Wu [64], it is rigorously proved that there are exactly
five types of long-time dynamical behaviors for (3.6) under the condition a > 1 > b:

apart from (i)–(iv)(a), there exists a fifth case,
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(a) (λ1, λ2) ∈ [0.01, 3.0]2. (b) (λ1, λ2) ∈ [0.01, 1.0]2.

Fig. 1. Change of longtime dynamical behavior in the 2D radial case as (λ1, λ2) varies.

Fig. 2. (Color online) Profiles of u(t, r) (blue curve) and v(t, r) (red curve) with (λ1, λ2) =
(10, 10.28) at time t = 0, 50, 100, 150, 200, showing clear traveling wave behavior for large t.

Fig. 3. (Color online) Corresponding behavior of s1(t) (blue curve) and s2(t) (red curve), showing
linear growth in time for both.

which we may name it as case (iv)(b), where⎧⎨
⎩

both species spread successfully, and their spreading fronts

are kept within a finite distance to each other all the time.

We conjecture that this new case can happen only when a parameter takes an
exceptional value, and that is why it has eluded the numerical observations in [95].
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In order to find all the possible coexistence cases, instead of looking at the initial
functions directly, we consider the long time behavior of s2(t)− s1(t), which clearly
has three possibilities:

(S1) lim supt→∞
(
s2(t) − s1(t)

)
= ∞,

(S2) lim inft→∞
(
s2(t) − s1(t)

)
= −∞,

(S3) lim supt→∞
∣∣s2(t) − s1(t)

∣∣ <∞.

We will show that under the following assumptions (which are almost necessary in
order to obtain a co-existence state)

a > 1 > b, cμ1 < s∗μ2
, s1(∞) = ∞, (3.8)

we have⎧⎨
⎩

(S1) ⇒ case (iv)(a) (chase-and-run coexistence),

(S2) ⇒ case (iii) (vanishing of v with u spreading successfully).

We will also show that case (S3) can definitely occur. Note that due to s1(∞) = ∞,
clearly (S3) ⇒ s2(∞) = ∞, and hence both species spread successfully; this is the
new fifth case (iv)(b) mentioned earlier.

Theorem 3.8 (Chase-and-run coexistence [64]). Assume that (3.8) holds. If
(S1) happens, then the unique solution (u, v, s1, s2) of (3.6) satisfies

lim
t→∞

s1(t)
t

= cμ1 , lim
t→∞

s2(t)
t

= s∗μ2
> cμ1 ,

and for every small ε > 0,⎧⎪⎪⎨
⎪⎪⎩

lim
t→∞ sup

r∈[0,(cμ1−ε)t]

[|u(r, t) − 1| + |v(r, t)|] = 0,

lim
t→∞ sup

r∈[(cμ1+ε)t,(s∗
μ2

−ε)t]

|v(r, t) − 1| = 0.

Theorem 3.9 (Vanishing of v [64]). Assume (3.8) holds. If (S2) happens, then
the unique solution (u, v, s1, s2) of (3.6) satisfies s2(∞) <∞ and

lim
t→∞[s1(t) − (s∗μ1

t− cN logt)] = �, lim
t→∞ s′1(t) = s∗μ1

,

where � ∈ R depends on the initial data, and cN > 0 depends on the space dimension
N but not the initial data; moreover,⎧⎪⎪⎨

⎪⎪⎩
lim

t→∞ sup
r∈[0,s1(t)]

|u(r, t) − q∗(s1(t) − r)| = 0,

lim
t→∞ sup

r∈[0,s2(t)]

|v(r, t)| = 0,

where q∗ is the unique semi-wave for u with s = s∗μ1
.

The next result shows that (S3) (as well as (S1) and (S2)) can indeed happen
when the initial functions are chosen properly.
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Reaction diffusion models with free boundaries

For fixed (u0, v0, s
0
1, s

0
2) satisfying v′0(r) ≤ 0, we define

v̂σ(r) := σv0

( r
σ

)
, σ > 0.

Clearly σ → v̂σ(r) is continuous and monotone increasing.
Let (uσ, vσ, sσ

1 , s
σ
2 ) be the unique solution of (3.6) with initial data

uσ(r, 0) = u0(r), sσ
1 (0) = s01, vσ(r, 0) = v̂σ(r), sσ

2 (0) = σs02.

Suppose that

s01 ≥ S∗ := R∗
√

d

α(1 − b)
, (⇒ sσ

1 (∞) = ∞ ∀σ > 0), (3.9)

where R∗ is such that the first Dirichlet eigenvalue of −Δ over the ball {x ∈ R
N :

|x| < R∗} equals 1.
We also assume

s∗μ1
< s∗μ2

. (⇒ cμ1 < s∗μ2
). (3.10)

Note that s∗μ1
and s∗μ2

are independent of σ, and (3.10) holds for all small μ1 > 0
when μ2 > 0 is fixed.

We now consider the solution (uσ, vσ, sσ
1 , s

σ
2 ) as σ varies, and the following result

indicates that (S3) definitely occurs for some value of σ.

Theorem 3.10 (New case (iv)(b) [64]). Suppose that a > b > 1, s01 ≥ S∗ and
s∗μ1

< s∗μ2
. Then there exist 0 < σ∗ ≤ σ∗ <∞ such that

(i) (S1) happens to (uσ, vσ, sσ
1 , s

σ
2 ) when σ > σ∗,

(ii) (S2) happens to (uσ, vσ, sσ
1 , s

σ
2 ) when σ < σ∗,

(iii) (S3) happens to (uσ, vσ, sσ
1 , s

σ
2 ) when σ∗ ≤ σ ≤ σ∗.

Remarks. (a) We believe that σ∗ = σ∗, and so (S3) is an exceptional case, which
happens only when σ takes the special value σ∗ = σ∗, as a transition case
between (S1) and (S2). This is perhaps why such a case has not been observed
in the numerical simulations of [95].

(b) Moreover, we conjecture that for σ = σ∗ = σ∗,

lim
t→∞

sσ
1 (t)
t

= lim
t→∞

sσ
2 (t)
t

= s∗, lim
t→∞[sσ

2 (t) − sσ
1 (t)] = �∗

for some constants s∗ ∈ (cμ1 ,min{s∗μ1
, s∗μ2

}) and �∗ > 0 independent of the
initial data.

(c) Note that, for the single species Fisher–KPP model (2.3) and the competition
model with a native competitor (3.6), there is no transition case.
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3.3. Further remarks and comments

In [125], a competition model of the form (3.3) with an extra advection term was
considered, which models the invasion of two competing mosquitoes. In [111], (3.3)
with different competition interaction terms was used to model the spreading of
Wolbachia infection in the mosquito population. In both works, some rough esti-
mates of the spreading speed were obtained, but the precise spreading speeds were
not determined.

Predator–prey is another common relationship between species, and two species
predator–prey models have attracted extensive research. For similar reasons as
mentioned for the competition model (3.2) above, free boundary has been intro-
duced to predator–prey models to represent the spreading front. Generally speaking,
predator–prey models are more difficult to treat than the competition counterpart,
due to the lack of a certain order preserving property enjoyed by the competition
models. We refer to [128, 131, 141] for some of the recent works on predator–prey
models with free boundary. To determine the precise spreading speed in such models
is a difficult task, which still remains open.

Cooperative relationship is also a commonly observed interaction type between
species, and many epidemic models belong to this category. Models with free bound-
ary for cholera spreading were investigated in [1, 143], and those for West Nile
virus spreading were considered in [105, 133]. These models also possess an order-
preserving property, which helped to have the precise spreading speeds determined
[133, 143].

Some of the reaction–diffusion systems with free boundary mentioned above
were considered in heterogeneous environment in the literature, but generally speak-
ing, the understanding of the effect of the influence of heterogeneity on the dynamics
is still rather poor, not yet reaching the depth achieved for the single species Fisher–
KPP model mentioned in Sec. 3.3. A recent analysis for the competition model (3.6)
in time-periodic or space-periodic environment based on numerical simulation can
be found in [96].

Reaction–diffusion systems with free boundary in high space dimension without
radial symmetry (as in (2.3)) are largely untouched so far in the literature. Such
a case for (3.6) was considered by numerical simulation in [95], suggesting several
properties similar to the single species case, but very little rigorous analysis is
available so far.

There is another kind of free boundary problems for two interacting species,
where the population ranges of the two species are separated by a free boundary,
of the form ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut − d1uxx = f(u), x < s(t),

vt − d2vxx = g(v), x > s(t),

s′(t) = μ1ux(t, s(t)) − μ2vx(t, s(t)).
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Reaction diffusion models with free boundaries

Here, x = s(t) is the free boundary. Such a problem over a finite interval [a, b]
with s(t) ∈ (a, b) was first considered by Mimura et al. [113], subsequent works
motivated by a variety of questions can be found in [23, 24, 32, 66, 80, 140] and the
references therein.

4. The Nonlocal Fisher–KPP Model with Free Boundaries

In both (1.3) and (2.3), the spatial dispersal of the species is represented by the
diffusion term DΔu, which means that the dispersal of the population follows the
rule of Brownian motion, as in a random walk. While this is a reasonable approx-
imation of the actual dispersal in many situations, it is increasingly recognized
that such an approximation is not good enough in general [115]; for example, long-
distance dispersal occurs widely in the spreading process of many species (such
as spreadings caused by seeds or insects carried to new environment by modern
ways of transportation), but it is not captured by such diffusion models based on
Brownian motion, which is local in nature; henceforth they will be called local
diffusion models. In the literature, several diffusion operators of nonlocal nature
have been used to replace the term DΔu, and in the past 10–20 years exten-
sive research on nonlocal versions of (1.3) and related equations has been done
([3, 8–10, 26, 30, 31, 117, 122, 135, 136, 139], etc.), and fast progress is still being
made. Research on the nonlocal version of (2.3) has just started, and we will look
at some recent works on this and some related problems here.

We will focus on nonlocal diffusion operators of the form

Lu := d

[∫
RN

J(x− y)u(t, y)dy − u(t, x)
]
,

where J : R
N → [0,∞) is a continuous function satisfying

∫
RN J(x)dx = 1. Roughly

speaking, J(x− y) represents the probability of an individual jumping from spatial
location x to y. One may replace J(x − y) by a more general function K(x, y) on
R

N × R
N , but we will only consider the simpler case J(x − y) here, and assume

further J(x) depends only on |x|.
For simplicity, we start by looking at some results on (1.3) and (2.3) with the

local diffusion term DΔu replaced by Lu in space dimension 1, and with f(u) the
special Fisher–KPP function

f(u) = au(1 − u), a > 0.

The nonlocal Fisher–KPP model is given by⎧⎪⎨
⎪⎩
ut = d

∫
R

J(x− y)u(t, y)dy − du(t, x) + f(u) for x ∈ R, t > 0,

u(0, x) = u0(x) ≥, 
≡ 0 for x ∈ R.

(4.1)

The behavior of the kernel function J(x) at ±∞ turns out to play a pivotal
role on the propagation determined by (4.1). The kernel function J(x) is called
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thin-tailed if there exists λ > 0 such that∫
R

eλxJ(x)dx <∞.

Otherwise it is called fat-tailed. Thus any J(x) with compact support is thin-tailed,
and J(x) = ξe−μ|x| (ξ, μ > 0) is thin-tailed, but J(x) = η(1 + |x|)−μ (η, μ > 0) is
fat-tailed.

When the convolution kernel in (4.1) is thin-tailed, much of the basic theory for
(1.1) is retained (see, for example [8–10, 26, 30, 31, 117, 122, 135, 136, 139] and
the references therein). On the other hand, accelerated spreading happens when the
kernel function is fat-tailed.

The following result follows from Weinberger [135].

Theorem 4.1. Let u(t, x) be the solution of (4.1) with f(u) = au(1 − u). Then
limt→∞ u(t, x) = 1 locally uniformly for x ∈ R. Moreover, for any given δ ∈ (0, 1),
the level set

Lδ(t) := {x ∈ R : u(t, x) = δ}
satisfies

lim
t→∞

supLδ(t)
t

= lim
t→∞

inf Lδ(t)
−t

=

{
c∗ ∈ (0,∞) if J is thin-tailed,

∞ if J is fat-tailed.

This result indicates that the spreading speed of u is finite if and only if J is thin-
tailed. Moreover, in such a case, the spreading speed c∗ can be similarly obtained
by the associated traveling wave solutions, as in the local diffusion case. When the
spreading speed is ∞, one says that accelerated spreading happens. Examples of
fat-tailed J were given in [74] such that supLλ(t) and −inf Lλ(t) behave like

eαt(α > 0) with J(x) ∼ |x|σ (σ < −2),

or

tβ(β > 1) with J(x) ∼ e−|x|1/β

.

Other examples of accelerated spreading can be found in [2, 13, 16, 69, 71, 121,
138], etc.

Similar to the corresponding local diffusion case, (4.1) has the shortcoming that
the natural population range {x ∈ R :u(t, x) > 0} is the entire space R once t > 0. In
order to model the precise spreading front, one naturally considers a free boundary
version of (4.1).

2230001-28

B
ul

l. 
M

at
h.

 S
ci

. 2
02

2.
12

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
66

.2
54

.1
04

 o
n 

07
/3

0/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



April 2, 2022 8:20 WSPC/1664-3607 319-BMS 2230001

Reaction diffusion models with free boundaries

4.1. The nonlocal Fisher–KPP model with free boundaries in one

space dimension

In Cao et al. [20], the following nonlocal version of (2.3) was proposed:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d

∫ h(t)

g(t)

J(x− y)u(t, y)dy − du(t, x) + f(u), g(t) < x < h(t), t > 0,

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

h′(t) = μ

∫ h(t)

g(t)

∫ +∞

h(t)

J(x − y)u(t, x)dydx, t > 0,

g′(t) = −μ
∫ h(t)

g(t)

∫ g(t)

−∞
J(x− y)u(t, x)dydx, t > 0,

u(0, x) = u0(x), h(0) = −g(0) = h0, x ∈ [−h0, h0],

(4.2)

where x = g(t) and x = h(t) are the moving boundaries to be determined together
with u(t, x), which is always assumed to be identically 0 for x ∈ R\[g(t), h(t)] (and
so
∫

R
J(x− y)u(t, y)dy =

∫ h(t)

g(t) J(x− y)u(t, y)dy).
The initial function u0(x) satisfies u0 ∈ C([−h0, h0]), and

u0(−h0) = u0(h0) = 0, u0(x) > 0 in (−h0, h0),

so [−h0, h0] represents the initial population range of the species.
The kernel function J : R → R is continuous and non-negative, and has the

properties

(J) : J(0) > 0,
∫

R

J(x)dx = 1, J(x) = J(−x), sup
R

J <∞.

Recall that we are taking the special Fisher–KPP nonlinearity f(u) = au(1 − u).
The meaning of the free boundary conditions can be understood as follows: The

total population mass moved out of the range [g(t), h(t)] at time t through its right
boundary x = h(t) per unit time is given by

d

∫ h(t)

g(t)

∫ ∞

h(t)

J(x− y)u(t, x)dydx.

As we assume that u(t, x) = 0 for x 
∈ [g(t), h(t)], this quantity of mass is lost in
the spreading process of the species. We may call this quantity the outward flux
at x = h(t) and denote it by Jh(t). Similarly, we can define the outward flux at
x = g(t) by

Jg(t) := d

∫ h(t)

g(t)

∫ g(t)

−∞
J(x− y)u(t, x)dydx.
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Then the free boundary conditions in (4.2) can be interpreted as saying that the
expanding rate of the front is proportional to the outward flux (by a factor μ/d):

g′(t) = −μJg(t),

h′(t) = μJh(t).

For a plant species, seeds carried across the range boundary may fail to establish
due to numerous reasons, such as isolation from other members of the species caus-
ing poor or no pollination, or causing overwhelming attacks from enemy species.
However, some of those not very far from the range boundary may survive, which
results in the expansion of the population range. The free boundary condition here
assumes that this survival rate is roughly a constant for a given species. For an ani-
mal species, a similar consideration can be applied to arrive at these free boundary
conditions.

Note that for most species, the living environment involves many factors, not
only the resources such as food or nutrient supplies. For example, complex interac-
tions of the concerned species with many other species in the same spatial habitat
constantly occur, yet it is impossible to include all of them (even the majority of
them) into a manageable model, and best treat them, or rather their combined
effects, as part of the environment of the concerned species.

These free boundary conditions were proposed independently in [29], where
(4.2) with f(u) ≡ 0 was studied, which then has very different long-time dynamical
behavior from our case f(u) = au(1 − u).

We now describe the main results for (4.2).

Theorem 4.2 (Existence and Uniqueness [20]). Problem (4.2) has a unique
solution (u, g, h) defined for all t > 0.

Theorem 4.3 (Spreading-vanishing dichotomy [20]). Let (u, g, h) be the
unique solution of problem (4.2). Then one of the following alternatives must
happen:

(i) Spreading: limt→+∞(g(t), h(t)) = R and limt→+∞ u(t, x) = 1 locally uniformly
in R,

(ii) Vanishing: limt→+∞(g(t), h(t)) = (g∞, h∞) is a finite interval and

lim
t→+∞ ‖u(t, ·)‖L∞([g(t),h(t)]) = 0.

Theorem 4.4 (Spreading-vanishing criteria [20]).

(α) If d ≤ f ′(0) = a, then spreading always happens.
(β) If d > f ′(0) = a, then there exists a unique �∗ > 0 such that spreading always

happens if 2h0 ≥ �∗; and for 2h0 ∈ (0, �∗), there exists a unique μ∗ > 0 so that
spreading happens exactly when μ > μ∗.

2230001-30

B
ul

l. 
M

at
h.

 S
ci

. 2
02

2.
12

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
03

.1
66

.2
54

.1
04

 o
n 

07
/3

0/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



April 2, 2022 8:20 WSPC/1664-3607 319-BMS 2230001

Reaction diffusion models with free boundaries

These results are similar to that for the local diffusion model in [46], but
case (α) in the spreading-vanishing criteria does not happen in the local diffusion
case.

When spreading happens to (4.2), the spreading speed was determined in Du
et al. [50]. In contrast to the local diffusion model (2.3), now accelerated spread-
ing may happen. The threshold condition on the kernel function J(x) governing
this is

(J1) :
∫ ∞

0

xJ(x)dx < +∞.

Let us first note that if J(x) := ξ(1 + |x|)α with ξ > 0 and α > 2, then
(J) and (J1) hold but J(x) is not thin-tailed. On the other hand, it can be eas-
ily shown that for any J(x) satisfying (J) and having the thin-tail property, (J1)
holds.

Theorem 4.5 (Spreading speed [43]). Suppose (J) is satisfied, and spreading
happens to the unique solution (u, g, h) of (4.2). Then

lim
t→∞

h(t)
t

= − lim
t→∞

g(t)
t

=

⎧⎨
⎩
ĉ0 ∈ (0,∞) if (J1) is satisfied,

∞ if (J1) is not satisfied.

The spreading speed ĉ0 is determined by semi-wave solutions to (4.2). These
are pairs (c, φ) determined by the following two equations:⎧⎪⎪⎨

⎪⎪⎩
d

∫ 0

−∞
J(x− y)φ(y)dy − dφ(x) + cφ′(x) + f(φ(x)) = 0, x < 0,

φ(−∞) = 1, φ(0) = 0,

(4.3)

and

c = μ

∫ 0

−∞

∫ +∞

0

J(x− y)φ(x)dydx. (4.4)

Theorem 4.6 (Semi-wave [43]). Suppose (J) holds. Then (4.3)–(4.4) have a
solution pair (c, φ) = (ĉ0, φ0) with φ0 ∈ C1((−∞, 0]) and φ′0 ≤ 0 if and only if (J1)
holds. Moreover, when (J1) holds, the solution pair is unique, and ĉ0 > 0, φ′0(x) < 0
for x ≤ 0.

By Theorems 4.1 and 4.5, the relationship between (J1) and the “thin-tail”
property indicates that, accelerated spreading is less likely to happen to (4.2) than
to (4.1).

Similar to the local diffusion case, problem (4.1) is the limiting problem of (4.2)
when μ→ ∞.
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Theorem 4.7 (Limiting problem [43]). If the solution (u, g, h) of (4.2) is
denoted by (uμ, gμ, hμ) to stress its dependence on μ, then as μ→ ∞,

−gμ(t), hμ(t) → ∞ (∀ t > 0), uμ → U in L∞
loc((0,∞) × R),

where U is the unique solution of (4.1) with U(0, x) =
{u0(x), x ∈ [−h0, h0],

0, x �∈ [−h0, h0].

When spreading happens to (4.2), further estimates on the spreading rate can
be obtained provided that the behavior of the kernel function J(x) near infinity is
suitably specified. We will write

η(t) ∼ ξ(t) if and only if c1ξ(t) ≤ η(t) ≤ c2ξ(t)

for some positive constants c1 ≤ c2 and all t in the concerned range. The following
result follows from Du and Ni [57], where it is assumed that

J(x) ∼ |x|−α for |x| � 1, (4.5)

and so

(J) ⇔ α > 1, and (J1) ⇔ α > 2.

Theorem 4.8 (Spreading rate [57]). Suppose (J) is satisfied, and spreading
happens to the unique solution (u, g, h) of (4.2). If additionally (4.5) holds, then
for t� 1, we have

ĉ0t+ g(t), ĉ0t− h(t) ∼ 1 if α > 3,

ĉ0t+ g(t), ĉ0t− h(t) ∼
⎧⎨
⎩

ln t if α = 3,

t3−α if 3 > α > 2,

−g(t), h(t) ∼
⎧⎨
⎩
t ln t if α = 2,

t
1

α−1 if 2 > α > 1.

Remarks. For the corresponding fixed boundary problems of (4.1) and (1.3), it
is well known [3, 27, 28, 119] that, over any finite time interval [0, T ], the unique
solution u of the local diffusion problem (1.3) is the limit of the unique solution of
the nonlocal problem (4.1) as ε → 0, when the kernel function J in the nonlocal
problem is replaced by

J̃ε(x) =
C

ε2
Jε(x) :=

C

ε3
J
(x
ε

)
with a suitable positive constant C, provided that J has compact support, f and
the common initial function are all smooth enough. In Du and Ni [56], it was shown
that (2.1) is the limiting problem of a slightly modified version of (4.2).
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4.2. The nonlocal Fisher–KPP model with free boundary

in high space dimensions

The radially symmetric version of (4.2) in R
N (N ≥ 2) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d

∫
Bh(t)

J(|x − y|)u(t, |y|)dy − du+ f(u), t > 0, x ∈ Bh(t),

u = 0, t > 0, x ∈ ∂Bh(t),

h′(t) =
μ

|∂Bh(t)|
∫

Bh(t)

∫
RN\Bh(t)

J(|x − y|)u(t, |x|)dydx, t > 0,

h(0) = h0, u(0, |x|) = u0(|x|), x ∈ Bh0 ,

(4.6)

where Bh(t) = {x ∈ R
N : |x| < h(t)}, and u = u(t, |x|) is radially symmetric. The

initial function u0 satisfies⎧⎨
⎩
u0 is radial and continuous in Bh0 ,

u0 > 0 in Bh0 , u0 = 0 on ∂Bh0 .

As before, for simplicity, we assume

f(u) = au(1 − u).

Our basic assumptions on the kernel function J(|x|) are

(J) J ∈ C(R+) ∩ L∞(R+), J ≥ 0, J(0) > 0,
∫

RN

J(|x|)dx = 1.

For r := |x| with x ∈ R
N and ρ > 0, define

J̃(r, ρ) = J̃(|x|, ρ) :=
∫

∂Bρ

J(|x− y|)dSy. (4.7)

Then (4.6) can be rewritten into the equivalent form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(t, r) = d

∫ h(t)

0

J̃(r, ρ)u(t, ρ)dρ− du + f(u), t > 0, r ∈ [0, h(t)),

u(t, h(t)) = 0, t > 0,

h′(t) =
μ

hN−1(t)

∫ h(t)

0

∫ +∞

h(t)

J̃(r, ρ)rN−1u(t, r)dρdr, t > 0,

h(0) = h0, u(0, r) = u0(r), r ∈ [0, h0].

(4.8)

(Here a universal constant is absorbed by μ).
We now describe the main results on (4.6) obtained in Du and Ni [58]. The first

three theorems are almost identical to the corresponding ones for (4.2).
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Theorem 4.9 (Existence and uniqueness [58]). Suppose (J) is satisfied. Then
problem (4.6), or equivalently (4.8), admits a unique positive solution (u, h) defined
for all t > 0.

Theorem 4.10 (Spreading-vanishing dichotomy [58]). Suppose (J) is satis-
fied. Let (u, h) be the solution of (4.6). Then one of the following alternatives must
occur :

(i) Spreading: limt→∞ h(t) = ∞ and

lim
t→∞u(t, |x|) = 1 locally uniformly in R

N .

(ii) Vanishing: limt→∞ h(t) = h∞ <∞ and

lim
t→∞u(t, |x|) = 0 uniformly for x ∈ Bh(t).

Theorem 4.11 (Spreading-vanishing criteria [58]). In Theorem 4.10,

(1) if d ≤ f ′(0) = a, then spreading always happens,
(2) if d > f ′(0) = a then there exists L∗ > 0 such that

(i) for h0 ≥ L∗, spreading always happens,
(ii) for 0 < h0 < L∗, there is μ∗ > 0 such that spreading happens if and only if

μ > μ∗.

Here, L∗ is independent of u0 and is determined by some eigenvalue problem,
but μ∗ depends on u0.

Major difficulties arise when we try to determine the spreading rate. Many of
these difficulties are unique for the nonlocal problem here, which do not arise in the
corresponding local diffusion case. Indeed, the relationship of J(|x|) and J̃ given by
(4.7) is rather complicated, which can be more explicitly expressed by

J̃(r, ρ) = ωN−123−N ρ

rN−2

∫ ρ+r

|ρ−r|
(
[
(ρ+ r)2 − η2

]
[η2 − (ρ− r)2])

N−3
2 ηJ(η)dη.

Therefore, it is difficult to find out how the spreading rate of (4.7) is determined
by J .

To overcome this difficulty, we introduce an intermediate function as follows.
For any ξ ∈ R, define

J∗(ξ) :=
∫

RN−1
J(|(ξ, x′)|)dx′, (4.9)

where x′ = (x2, . . . , xN ) ∈ R
N−1. Condition (J) implies⎧⎪⎨

⎪⎩
J∗ ∈ C(R) ∩ L∞(R) is non-negative, even, J∗(0) > 0,∫

R

J∗(ξ)dξ =
∫

RN

J(|x|)dx = 1.
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Moreover,

J∗(ξ) = ωN−1

∫ ∞

|ξ|
J(r)r(r2 − ξ2)(N−3)/2dr,

∫ ∞

0

J∗(ξ)ξdξ =
ωN−1

N − 1

∫ ∞

0

J(r)rNdr,

where ωk denotes the area of the unit sphere in R
k.

It turns out that the spreading speed of (4.6) can be easily described by making
use of J∗, via a careful analysis of the relationship between J∗ and J̃ through the
above expressions. We can prove the following result.

Theorem 4.12 (Spreading speed [58]). Assume the conditions in Theorem 4.10
are satisfied, and spreading happens to (4.6). Then

lim
t→∞

h(t)
t

=

⎧⎨
⎩
ĉ0 if J∗ satisfies (J1),

∞ if J∗ does not satisfy (J1),

where ĉ0 is given by Theorem 4.6 with J replaced by J∗.

For kernel functions J(x) with certain specific properties, we can obtain more
accurate description on the behavior of h(t). We now look at two rather general
classes of J , one as an example satisfying (J1), the other not satisfying (J1).

(a) J has compact support and hence satisfies (J1).

Theorem 4.13 (Logarithmic shift [58]). Suppose the conditions in Theo-
rem 4.10 hold, and moreover the kernel function J has compact support. If spreading
happens, then

c0t− h(t) ∼ ln t for t� 1.

In contrast, we note that in dimension 1, when J has compact support, it follows
from [57] that

c0t− h(t) ∼ 1 for t� 1.

(b) J(r) ∼ r−β for r � 1, with β ∈ (N,N + 1] and hence (J1) is not satisfied.

Theorem 4.14 (Rate of accelerated spreading [58]). Suppose the conditions
in Theorem 4.10 are satisfied, and there exists β ∈ (N,N +1] such that J(r) ∼ r−β
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for all large r. If spreading happens, then for all large t,

h(t) ∼
⎧⎨
⎩
t

1
β−N if β ∈ (N,N + 1),

t ln t if β = N + 1.

It is interesting to compare the result here with that for the case N = 1, where
from Theorem 4.8 we have

h(t) ∼
⎧⎨
⎩
t

1
β−1 if β ∈ (1, 2),

t ln t if β = 2.

Remark. If J(r) ∼ r−β for r � 1, and β > N + 1, then (J1) holds, and it is an
interesting question to determine the rate of ĉ0t− h(t) for t � 1. At the moment,
we only have some partial results for this case.

4.3. Further remarks and comments

Another well-studied nonlocal diffusion operator is the fractional Laplacian (−Δ)s

(0 < s < 1). For the Cauchy problem⎧⎨
⎩
ut + (−Δ)su = f(u) for t > 0 and x ∈ R

N ,

u(0, x) = u0(x) ≥ 0 for x ∈ R
N ,

with f(u) of Fisher–KPP type, it was shown in [16] by Cabré and Roquejoffre that
accelerated spreading happens with rate given by e[c+o(1)]t for some c > 0 depending
on N and s. Souganidis and Tarfulea [121] further proved that such a result remains
valid when f also depends periodically on x. We note that the corresponding kernel
function of (−Δ)s is given by

J(|x|) = |x|−(N+2s),

which does not satisfy our basic condition (J) in Sec. 4.2 above. It would be inter-
esting to see what happens to (4.6) if the kernel function J is allowed to behave
like the kernel function of the fractional Laplacian. A related work with f ≡ 0 can
be found in [34].

The corresponding version of (4.6) without radial symmetry is yet to be con-
sidered.

5. Two Nonlocal Epidemic Models with Free Boundaries

5.1. A nonlocal West Nile virus model

The West Nile virus (WNv) is the cause of an infectious disease endemic in many
parts of the world. WNv spreads primarily through interacting bird and mosquito
populations, with birds acting as hosts and mosquitoes as vectors.
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Let H(t, x) denote the density of the infective bird population (host), V (t, x)
denote the population density of the infective mosquitos (vector), and the popula-
tion range of H and V be represented by the interval [g(t), h(t)]. Then the spreading
of the WNv can be modeled by the following system [55]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ht = d1L1[H ] + a1(e1 −H)V − b1H, x ∈ (g(t), h(t)), t > 0,

Vt = d2L2[V ] + a2(e2 − V )H − b2V, x ∈ (g(t), h(t)), t > 0,

H(t, x) = V (t, x) = 0, x = g(t) or h(t), t > 0,

g′(t) = −μ
∫ h(t)

g(t)

∫ g(t)

−∞
J1(x − y)H(t, x)dydx, t > 0,

h′(t) = μ

∫ h(t)

g(t)

∫ ∞

h(t)

J1(x− y)H(t, x)dydx, t > 0,

g(0) = −h0, h(0) = h0,

H(0, x) = u0
1(x), V (0, x) = u0

2(x), x ∈ [−h0, h0],

(5.1)

where for i ∈ {1, 2}, ai, bi, ei, di > 0, and

Li[w] =
∫ h(t)

g(t)

Ji(x− y)w(t, y)dy − w(t, x).

The initial functions u0
i (x) (i = 1, 2) satisfy⎧⎨

⎩
u0

i ∈ C([−h0, h0]), u0
i (−h0) = u0

i (h0) = 0,

0 < u0
i (x) ≤ ei for x ∈ (−h0, h0), i = 1, 2.

(5.2)

The kernel functions Ji : R → R (i = 1, 2) satisfy

(J) : Ji ∈ C(R) ∩ L∞(R) is non-negative, symmetric, Ji(0) > 0,∫
R

Ji(x)dx = 1, i = 1, 2.

In this model, the dispersals of the infected birds and mosquitoes are governed
by the nonlocal diffusion operators d1L1[H ] and d2L2[V ], respectively, and it is
assumed that during the epidemic period the total bird population (infective plus
uninfective) is a constant e1 and the total mosquito population is a constant e2. It
is also assumed that the range of the disease [g(t), h(t)] is primarily determined by
the infective birds.

The corresponding ODE model of (5.1), also known as the Ross–Macdonold
model due to the pioneering works of Ross and Macdonald on malaria, whose
spreading mechanism is similar to that of WNv, has been studied by many people.
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The long-time behavior in this case is completely determined by the reproduction
number given by

R0 :=
√
a1a2e1e2
b1b2

. (5.3)

(Note that R0 > 1 if and only if a1a2e1e2 > b1b2). More precisely, if (H(t), V (t))
is the solution of this ODE system with 0 < H(0) ≤ e1 and 0 < V (0) ≤ e2, then as
t→ ∞,

(H(t), V (t)) →
⎧⎨
⎩

(0, 0) if R0 ≤ 1,

(H∗, V ∗) if R0 > 1,

where

(H∗, V ∗) :=
(
a1a2e1e2 − b1b2
a1a2e2 + b1a2

,
a1a2e1e2 − b1b2
a1a2e1 + a1b2

)
. (5.4)

is the unique positive equilibrium of the ODE system.
The reaction–diffusion version of (5.1), namely⎧⎨

⎩
Ht = d1Hxx + a1(e1 −H)V − b1H, x ∈ R, t > 0,

Vt = d2Vxx + a2(e2 − V )H − b2V, x ∈ R, t > 0,
(5.5)

was considered by Lewis et al. [99]. If the initial function pair (H0, V0) ∈ C(R) ×
C(R) has nonempty compact supports, and satisfies 0 ≤ H0 ≤ e1, 0 ≤ V0 ≤ e2,
then, as t → ∞,

(H(t, x), V (t, x)) →
⎧⎨
⎩

(0, 0) if R0 ≤ 1,

(H∗, V ∗) if R0 > 1.

Moreover, when R0 > 1, (H,V ) → (H∗, V ∗) can be characterized by a traveling
wave solution with minimal speed c∗ > 0, indicating that the virus spreads with
speed c∗.

The local diffusion version of (5.1) was first considered by Lin and Zhu [108],
where (d1L1[H ], d2L2[V ]) is replaced by (d1Uxx, d2Vxx), and the free boundary
conditions are replaced by

g′(t) = −μHx(t, h(t)), h′(t) = −μVx(t, h(t)).

It was proved in [108] that the problem has a unique solution which is defined for
all t > 0, and when R0 ≤ 1, the virus always vanishes eventually, i.e.

lim
t→∞[h(t) − g(t)] <∞ and lim

t→∞(H(t, x), V (t, x)) = (0, 0). (5.6)

If R0 > 1, then a spreading-vanishing dichotomy holds: Either (5.6) holds, or the
virus spreads successfully, namely,⎧⎪⎨

⎪⎩
lim

t→∞h(t) = − lim
t→∞ g(t) = +∞ and

lim
t→∞(H(t, x), V (t, x)) = (H∗, V ∗).
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Moreover, there is a critical length L∗ > 0 so that either the range size h(t) − g(t)
reaches L∗ at some finite time t0 ≥ 0, and then spreading happens, or h(t) − g(t)
stays below this critical length L∗ for all time, in which case vanishing occurs. The
spreading speed was determined by Wang et al. [133].

For the nonlocal model (5.1), the following three theorems have been proved in
Du and Ni [55].

Theorem 5.1 (Existence and uniqueness [55]). Suppose (J) holds, and the
initial functions satisfy (5.2). Then problem (5.1) admits a unique positive solution
(H,V, g, h) defined for all t > 0.

Theorem 5.2 (Spreading-vanishing dichotomy [55]). Assume (J) holds, and
the initial functions satisfy (5.2). Let (H,V, g, h) be the solution of (5.1), and denote

g∞ := lim
t→∞ g(t) and h∞ := lim

t→∞h(t).

Then one of the following alternatives must occur :

(i) Spreading: (g∞, h∞) = R and

lim
t→∞(H(t, x), V (t, x)) = (H∗, V ∗) locally uniformly in R.

(ii) Vanishing: (g∞, h∞) is a finite interval and

lim
t→∞(H(t, x), V (t, x)) = (0, 0) uniformly for x ∈ [g(t), h(t)].

Theorem 5.3 (Spreading-vanishing criteria [55]). Assume (J) holds, and the
initial functions satisfy (5.2). Let (H,V, g, h) be the solution of (5.1), and R0 be
given by (5.9).

(i) If R0 ≤ 1, then vanishing always happens.
(ii) If R0 > 1 and one of the following conditions holds :

(I)
a1a2e1e2

(b1 + d1)(b2 + d2)
≥ 1,

(II)
a1a2e1e2

(b1 + d1)(b2 + d2)
< 1, h0 ≥ L∗,

then spreading always happens, where L∗ is a fixed constant depending on
(ai, bi, di, ei, Ji)(i = 1, 2).

(iii) If R0 > 1 and

(III)
a1a2e1e2

(b1 + d1)(b2 + d2)
< 1, h0 < L∗, then

(1) for any given initial datum (u0
1, u

0
2) satisfying (5.2), there exists μ∗ > 0

such that vanishing happens for 0 < μ ≤ μ∗ and spreading happens for
μ > μ∗,

(2) for fixed μ > 0 and sufficient small initial datum (u0
1, u

0
2), vanishing hap-

pens.
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When spreading happens, the spreading rate will be determined in Sec. 5.3, by a
unified approach which also covers the epidemic model in the following subsection.

5.2. A nonlocal epidemic model for cholera

Cholera affects an estimated 3–5 million people worldwide and causes 28,800–
130,000 deaths a year [137]. It is an infection of the small intestine by some strains
of the bacterium Vibrio cholerae, spread mostly by unsafe water and unsafe food
that has been contaminated with human feces containing the bacteria. Most cholera
cases in developed countries are a result of transmission by food, while in devel-
oping countries it is more often water. Food transmission can occur when people
harvest seafood such as oysters in waters infected with sewage, as Vibrio cholerae
accumulates in planktonic crustaceans and the oysters eat the zooplankton.

A nonlocal diffusion model for the spread of cholera is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1L1[u] − au+ cv, t > 0, x ∈ (g(t), h(t)),

vt = d2L2[v] − bv +G(u), t > 0, x ∈ (g(t), h(t)),

u(t, x) = v(t, x) = 0, t > 0, x = g(t) or h(t),

g′(t) = −μ
∫ h(t)

g(t)

∫ g(t)

−∞
J [u, v](t, x, y)dydx, t > 0,

h′(t) = μ

∫ h(t)

g(t)

∫ +∞

h(t)

J [u, v](t, x, y)dydx, t > 0,

g(0) = −h0, h(0) = h0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ [−h0, h0],

(5.7)

where

J [u, v](t, x, y) := αJ1(x − y)u(t, x) + (1 − α)J2(x− y)v(t, x) for some α ∈ [0, 1],

u(t, x) denotes the population density of the infective agents, v(t, x) denotes the
population density of the infective humans, the interval [g(t), h(t)] represents the
epidemic region, and a, b, c, μ, h0, d1 > 0, d2 ≥ 0 are given constants, G(z) :=
βz/(1 + z), β ∈ (0, ab/c), or more generally, it can be any function satisfying⎧⎪⎪⎪⎨

⎪⎪⎪⎩
G ∈ C1([0,∞)), G(0) = 0, G′(z) > 0 for z ≥ 0,

[
G(z)
z

]′
< 0 for z > 0 and lim

z→+∞
G(z)
z

<
ab

c
.

The initial functions u0 and v0 are assumed to be continuous over [−h0, h0], positive
in (−h0, h0) and 0 at ±h0. Note that the nonlocal diffusion operators Li (i = 1, 2)
are defined as in the previous subsection.
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Reaction diffusion models with free boundaries

The corresponding ODE model was proposed by Capasso and Paveri-Fontana
[21] to describe the cholera epidemic which spread in the European Mediterranean
regions in 1973. Subsequently, Capasso and Maddalena [22] considered the following
diffusive model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = dΔu− au+ cv, t > 0, x ∈ Ω,

vt = −bv +G(u), t > 0, x ∈ Ω,

∂u

∂n
+ αu = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(5.8)

with Ω ⊂ R
N bounded, representing the epidemic region. Note that in this model

the mobility of the infective humans is ignored and assumed to be 0.
It is shown that the number

R̃0 :=
cG′(0)

(a+ dλ1)b

is a threshold value for the long-time dynamical behavior of (5.8): the epidemic will
eventually tend to extinction if 0 < R̃0 ≤ 1, and there is a globally asymptotically
stable endemic state if R̃0 > 1, where λ1 is the first eigenvalue of

−Δφ = λφ in Ω,
∂φ

∂n
+ αφ = 0 on ∂Ω.

The local diffusion version of (5.7) with d2 = 0 was first studied by Ahn et al. [1].
They proved a spreading-vanishing dichotomy for its long-time dynamical behavior:
The unique solution (u, v, g, h) satisfies one of the following:

(i) Vanishing:

lim
t→∞(g(t), h(t)) = (g∞, h∞) is finite and lim

t→∞(u, v) = (0, 0).

(ii) Spreading:

lim
t→∞(g(t), h(t)) = R and R0 > 1, lim

t→∞(u, v) = (K1,K2),

where

R0 :=
cG′(0)
ab

, (5.9)

and (K1,K2) are uniquely determined by

G(K1)
K1

=
ab

c
, K2 =

G(K1)
b

.

Furthermore,

(i) if R0 ≤ 1, then vanishing happens;
(ii) if R0 ≥ 1 + d

a

(
π

2h0

)2, then spreading happens;
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(iii) if 1+ d
a

(
π

2h0

)2
> R0 > 1, then vanishing happens for small initial data (u0, v0),

and spreading happens for large initial data.

When spreading happens, the spreading speed of the local diffusion model in
[1] was established by Zhao et al. [143]. Corresponding results for the case d2 > 0
were established recently by Wang and Du [132].

The following three theorems on the dynamics of (5.7) are taken from [144] (for
the case d2 = 0) and [25] (for the case d2 > 0).

Theorem 5.4 (Global existence and uniqueness [25, 144]). Suppose that
(J) holds. Then problem (5.7) admits a unique solution (u(t, x), v(t, x), g(t), h(t))
defined for all t > 0.

Theorem 5.5 (Spreading-vanishing dichotomy [25, 144]). Let (u, v, g, h) be
the unique solution of (5.7). Then one of the following must happen:

(i) Spreading: limt→∞(g(t), h(t)) = R (and necessarily R0 > 1),

lim
t→+∞(u(t, x), v(t, x)) = (K1,K2) locally uniformly in R.

(ii) Vanishing: limt→∞(g(t), h(t)) = (g∞, h∞) is a finite interval,

lim
t→∞(u(t, x), v(t, x)) = (0, 0)uniformly in x .

Theorem 5.6 (Spreading-vanishing criteria [25, 144]). In Theorem 5.5, the
dichotomy is completely determined as follows:

(a) If R0 ≤ 1, then vanishing always occurs.
(b) If R0 > 1, then spreading always occurs if one of the following holds:

(I)
cG′(0)

(d1 + a)(d2 + b)
≥ 1,

(II)
cG′(0)

(d1 + a)(d2 + b)
< 1 and h0 ≥ L∗,

where L∗ > 0 is critical length depending on a, b, c, d1, d2, J1, J2 but independent
of the initial data (u0, v0).

(c) If R0 > 1 and

(III)
cG′(0)

(d1 + a)(d2 + b)
< 1 and h0 < L∗, then

(i) For any given admissible initial datum (u0, v0), there exists μ∗ > 0 such
that vanishing happens when 0 < μ ≤ μ∗, and spreading happens when
μ > μ∗.

(ii) For fixed μ > 0 and sufficiently small initial datum (u0, v0), vanishing
occurs.

For (5.1) and (5.7), when spreading happens, the spreading rate is determined
in the following subsection, by a unified approach of Du and Ni [57].
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Reaction diffusion models with free boundaries

5.3. Spreading rate for a general nonlocal cooperative system

with free boundaries

We consider the following general system which will contain (5.1) and (5.7) as
special cases:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tui = diLi[ui] + fi(u1, . . . , um), 1 ≤ i ≤ m0, t > 0,

x ∈ (g(t), h(t)),

∂tui = fi(u1, u2, . . . , um), m0 < i ≤ m, t > 0,

x ∈ (g(t), h(t)),

ui(t, g(t)) = ui(t, h(t)) = 0, 1 ≤ i ≤ m, t > 0,

g′(t) = −
∫ h(t)

g(t)

∫ g(t)

−∞

m0∑
i=1

μiJi(x− y)ui(t, x)dydx, t > 0,

h′(t) =
∫ h(t)

g(t)

∫ ∞

h(t)

m0∑
i=1

μiJi(x− y)ui(t, x)dydx, t > 0,

ui(0, x) = ui0(x), 1 ≤ i ≤ m, x ∈ [−h0, h0],

(5.10)

where 1 ≤ m0 ≤ m, and for i ∈ {1, . . . ,m0},

Li[v] :=
∫ h(t)

g(t)

Ji(x− y)v(t, y)dy − v(t, x),

di > 0, μi ≥ 0 and
m0∑
i=1

μi > 0.

The initial functions satisfy, for 1 ≤ i ≤ m,

ui0 ∈ {u ∈ C([−h0, h0]) : u(±h0) = 0, u > 0 in (−h0, h0)
}
. (5.11)

The kernel functions Ji(x) (i = 1, . . . ,m0) satisfy

(J) : Ji ∈ C(R) ∩ L∞(R) is non-negative, even, Ji(0) > 0,∫
R

Ji(x)dx = 1 for 1 ≤ i ≤ m0.

To describe the assumptions on the function

F = (f1, . . . , fm) ∈ [C1(Rm
+ )]m

with

R
m
+ := {x = (x1, . . . , xm) ∈ R

m : xi ≥ 0 for i = 1, . . . ,m},
we introduce some notations about vectors in R

m.
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Notations about vectors in R
m:

(i) For x = (x1, . . . , xm) ∈ R
m, we simply write (x1, . . . , xm) as (xi). For x = (xi),

y = (yi) ∈ R
m,

x � (�) y means xi ≥ (≤) yi for 1 ≤ i ≤ m,

x � (≺) y means x � (�) y but x 
= y,

x �� (≺≺) y means xi > (<) yi for 1 ≤ i ≤ m.

(ii) If x � y, then [x, y] := {z ∈ R
m : x � z � y}.

(iii) Hadamard product: For x = (xi), y = (yi) ∈ R
m,

x ◦ y = (xiyi) ∈ R
m.

(iv) Any x ∈ R
m is viewed as a row vector, namely a 1×m matrix, whose transpose

is denoted by xT .

Irreducible matrix and principal eigenvalue.
An m × m matrix A = (aij), with m ≥ 2, is called reducible if the index set
{1, . . . ,m} can be split into the union of two subsets S and S′ with r ≥ 1 and
m − r ≥ 1 elements, respectively, such that aij = 0 for all i ∈ S and j ∈ S′. A
is called irreducible if it is not reducible. If D is a diagonal m×m matrix, clearly
A+D is irreducible if and only if A is irreducible.

If A is irreducible and all its off-diagonal elements are non-negative, then for
σ > 0 large A + σIm is a non-negative irreducible matrix, where Im denotes the
m ×m identity matrix. By the Perron–Frobenius theorem, A + σIm has a largest
eigenvalue λ̃1 = λ̃1(σ) which is the only eigenvalue that corresponds to a positive
eigenvector v1��0: (A+σIm)v1 = λ̃1v1. Hence Av1 = λ1v1 with λ1 = λ̃1−σ, which
is the largest eigenvalue of A and is independent of σ. We will call λ1 the principal
eigenvalue of A.

A 1 × 1 matrix is irreducible if and only if its sole element is not 0.

Assumptions on F :

(f1) (i) F (u) = 0 has only two roots in R
m
+ : 0 = (0, 0, . . . , 0) and u∗ =

(u∗1, u∗2, . . . , u∗m)��0.
(ii) ∂jfi(u) ≥ 0 for i 
= j and u ∈ [0, û], where either û = ∞ meaning

[0, û] = R
m
+ , or u∗≺≺û ∈ R

m; which implies that (5.10) is a cooperative
system in [0, û].

(iii) The matrix ∇F (0) is irreducible with principal eigenvalue positive, where
∇F (0) = (aij)m×m with aij = ∂jfi(0).

(iv) If m0 < m then ∂jfi(u) > 0 for 1 ≤ j ≤ m0 < i ≤ m and u ∈ [0,u∗].
(f2) F (ku) ≥ kF (u) for any 0 ≤ k ≤ 1 and u ∈ [0, û].
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(f3) The matrix ∇F (u∗) is invertible, u∗∇F (u∗) � 0 and for each i ∈ {1, . . . ,m},
either

(i)
∑m

j=1 ∂jfi(u∗)u∗j < 0, or
(ii)
∑m

j=1 ∂jfi(u∗)u∗j = 0 and fi(u) is linear in [u∗ − ε01,u∗] for some small
ε0 > 0, where 1 = (1, . . . , 1) ∈ R

m.

(f4) The set [0, û] is invariant for

Ut = D ◦
∫

R

J(x− y) ◦ U(t, y)dy −D ◦ U + F (U), t > 0, x ∈ R,

(5.12)

and the equilibrium u∗ attracts all the nontrivial solutions in [0, û]; namely,
U(t, x) ∈ [0, û] for all t > 0, x ∈ R if U(0, x) ∈ [0, û] for all x ∈ R, and
limt→∞ U(t, ·) = u∗ in L∞

loc(R) if additionally U(0, x) 
≡ 0.

In (5.12) we used the convention that di = 0 and Ji ≡ 0 for m0 < i ≤ m, and

D = (di), J(x) = (Ji(x)).

These assumptions imply⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(5.12) is cooperative in [0, û], and monostable,

u∗ is the unique stable equilibrium of (5.12),

which is the global attractor of (5.12) in [0, û]\{0}.
It can be shown that (5.10) with initial data satisfying (5.11) and U(0, x) ∈ [0, û]

has a unique positive solution (U(t, x), g(t), h(t)) defined for all t > 0.
We say spreading happens if, as t→ ∞,⎧⎨

⎩
(g(t), h(t)) → R,

U(t, ·) → u∗ component-wise in L∞
loc(R),

and we say vanishing happens if⎧⎪⎨
⎪⎩

(g(t), h(t)) → (g∞, h∞) is a finite interval,

max
x∈[g(t),h(t)]

|U(t, x)| → 0.

We suppose spreading happens for (5.10) and aim to determine the spreading
speed. We will need the following key condition:

(J1):
∫ ∞

0

xJi(x)dx <∞ for every i ∈ {1, . . . ,m0} with μi > 0.

We will show that if (J1) is satisfied, then the spreading speed is finite, otherwise
it is infinite, namely accelerated spreading happens if (J1) is not satisfied.
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The proof relies on the associated semi-wave problem to (5.10), namely (5.13)
and (5.14) with unknowns (c,Φ(x)):⎧⎪⎪⎨
⎪⎪⎩
D ◦
∫ 0

−∞
J(x− y) ◦ Φ(y)dy −D ◦ Φ + cΦ′ + F (Φ) = 0, −∞ < x < 0,

Φ(−∞) = u∗, Φ(0) = 0,

(5.13)

c =
m0∑
i=1

μi

∫ 0

−∞

∫ ∞

0

Ji(x− y)φi(x)dydx, (5.14)

where D = (di), J = (Ji), Φ = (φi).
If (c,Φ) solves (5.13), we say that Φ is a semi-wave solution to (5.12) with

speed c. This is not to be confused with the semi-wave to (5.10), for which the
extra equation (5.14) should be satisfied, yielding a semi-wave solution of (5.12)
with a desired speed c = c0, which determines the spreading speed of (5.10).

To fully understand the semi-wave solutions to (5.12), we also need to examine
the associated traveling wave problem for (5.12). A differentiable function Ψ is
called a traveling wave solution of (5.12) with speed c if Ψ satisfies⎧⎪⎨

⎪⎩
D ◦
∫ ∞

−∞
J(x − y) ◦ Ψ(y)dy −D ◦ Ψ + cΨ′ + F (Ψ) = 0, x ∈ R,

Ψ(−∞) = u∗, Ψ(∞) = 0.

(5.15)

We are interested in semi-waves and traveling waves which are monotone and
with positive speed. It turns out that for any fixed speed c > 0, either a semi-wave
or traveling wave exists.

Theorem 5.7 (Semi-wave versus traveling wave [57]). Suppose (J) and
(f1) − (f4) hold. Then there exists C∗ ∈ (0,∞] such that (5.13) has a monotone
solution if and only if 0 < c < C∗, and (5.15) has a monotone solution if and only
if c ≥ C∗.

Therefore a monotone traveling wave with some positive speed c exists if and
only if C∗ <∞. We will show that C∗ <∞ if and only if the following condition is
satisfied:

(J2):
∫ ∞

0

eλxJi(x)dx <∞ for some λ > 0 and every i ∈ {1, . . . ,m0}.

We have the following refinements of the conclusions in Theorem 5.7.

Theorem 5.8 (Semi-wave with the desired speed [57]). Under the conditions
of Theorem 5.7, the following hold :

(i) For 0 < c < C∗, (5.13) has a unique monotone solution Φc = (φc
i ), and

lim
c↗C∗

Φc(x) = 0 locally uniformly in (−∞, 0].

(ii) C∗ 
= ∞ if and only if (J2) holds.
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(iii) The system (5.13)–(5.14) has a solution pair (c,Φ) with Φ(x) monotone if and
only if (J1) holds. When (J1) holds, there exists a unique c0 ∈ (0, C∗) such
that (c,Φ) = (c0,Φc0) solves (5.13) and (5.14).

It is easily checked that (J2) ⇒ (J1), but (J1) 
⇒ (J2); e.g. if Ji(x) = ξi(1 +
|x|)−ηi with ξi > 0, ηi > 2 for 1 ≤ i ≤ m0, then (J1) holds but (J2) does not.

Our first result on the spreading speed of (5.10) is the following theorem.

Theorem 5.9 (Spreading speed [57]). Suppose the conditions in Theorem 5.7
are satisfied, (U, g, h) is a solution of (5.10) with U(0, x) ∈ [0, û], and spreading
happens. Then the following conclusions hold for the spreading speed :

(i) If (J1) is satisfied, then the spreading speed is finite:

− lim
t→∞

g(t)
t

= lim
t→∞

h(t)
t

= c0 with c0 from Theorem 5.8(iii).

(ii) If (J1) is not satisfied, then accelerated spreading happens :

− lim
t→∞

g(t)
t

= lim
t→∞

h(t)
t

= ∞.

Under further conditions on F and the kernel functions, the conclusions in
Theorem 5.9 can be sharpened. For α > 0, we introduce the condition

(Jα):
∫ ∞

0

xαJi(x)dx <∞ for every i ∈ {1, . . . ,m0}.

Theorem 5.10 (Sharp estimate of the spreading rate [57]). In Theorem 5.9,
suppose additionally

(i) (Jα) holds for some α ≥ 2.
(ii) F is C2 and u∗[∇F (u∗)]T≺≺0.

Then there exist positive constants θ, C and t0 such that, for all t > t0 and x ∈
[g(t), h(t)],

|h(t) − c0t| + |g(t) + c0t| ≤ C,⎧⎨
⎩
U(t, x) � [1 − ε(t)]

[
Φc0(x− c0t+ C) + Φc0(−x− c0t+ C) − u∗],

U(t, x) � [1 + ε(t)]min{Φc0(x− c0t− C), Φc0(−x− c0t− C)},

where ε(t) := (t+ θ)−α,

Further estimates on g(t) and h(t) can be obtained if we narrow down more on
the class of kernel functions {Ji : i = 1, . . . ,m0}. We will write

η(t) ≈ ξ(t) if C1ξ(t) ≤ η(t) ≤ C2ξ(t)

for some constants 0 < C1 ≤ C2 and all t is the concerned range.
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Our next two theorems are about kernel functions satisfying, for some γ > 0,

(Ĵγ) : Ji(x) ≈ |x|−γ for |x| � 1 and i ∈ {1, . . . ,m0}.
Note that for kernel functions satisfying (Ĵγ),

(J) ⇔ γ > 1, (J1) ⇔ γ > 2.

The next result determines the orders of accelerated spreading when γ ∈ (1, 2].

Theorem 5.11 (Rate of accelerated spreading [57]). In Theorem 5.9, if addi-
tionally the kernel functions satisfy (Ĵγ) for some γ ∈ (1, 2], then for t� 1,

−g(t), h(t) ≈ t ln t if γ = 2,

−g(t), h(t) ≈ t1/(γ−1) if γ ∈ (1, 2).

For kernel functions satisfying (Ĵγ), clearly (Jα) holds if and only if γ > 1 +
α. Therefore, the case γ > 3 is already covered by Theorem 5.10. The following
theorem is concerned with the remaining case γ ∈ (2, 3], which indicates that the
result in Theorem 5.10 is sharp.

Theorem 5.12 (Order of spreading shift [57]). In Theorem 5.9, suppose addi-
tionally the kernel functions satisfy:

(i) (Ĵγ) for some γ ∈ (2, 3],
(ii) F is C2 and

F (v) − v[∇F (v)]T��0 for 0≺≺v � u∗. (5.16)

Then for t� 1,

c0t+ g(t), c0t− h(t) ≈ ln t if γ = 3,

c0t+ g(t), c0t− h(t) ≈ t3−γ if γ ∈ (2, 3).

Remarks. (a) When m = 1, (5.16) reduces to F (v) > F ′(v)v for 0 < v ≤ u∗, which
is satisfied if, e.g. F (v) = av − bvp (a, b > 0, p > 1).

(b) (5.1) satisfies all the conditions in Theorems 5.10–5.12 with û = (e1, e2).
(c) (5.7) satisfies all the conditions in Theorems 5.10 and 5.11 with û = ∞, except

(5.16) in Theorem 5.12.

The proofs of Theorems 5.10–5.12 rely on the following estimates.

Theorem 5.13 (Estimate of the semi-wave [57]). Suppose that F satisfies
(f1) − (f4) and the kernel functions satisfy (J), and Φ(x) = (φi(x)) is a monotone
solution of (5.13) for some c > 0. Then the following conclusions hold :

(i) (Jα) holds ⇒∑m
i=1

∫ −1

−∞
[
u∗i − φi(x)

]|x|α−1dx <∞,

which implies 0 < u∗i − φi(x) ≤ C|x|−α for all x < 0.

(ii) (Jα) does not hold ⇒∑m
i=1

∫ −1

−∞
[
u∗i − φi(x)

]|x|α−1dx = ∞.

(iii) If (J2) holds, then there exist positive constants C and β such that

0 < u∗i − φi(x) ≤ Ceβx for all x < 0, i ∈ {1, . . . ,m}.
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5.4. Remarks and comments

In [60], a general two species Lotka–Volterra system with nonlocal diffusion and
free boundary was considered. It is expected that a similar spreading-vanishing
dichotomy would hold as in the corresponding local diffusion model. However, a
technical difficulty arises in proving the vanishing case. As a result, extra assump-
tions on the kernel functions were made in [60] in order to obtain the desired results.
Moreover, in the spreading case, the long-time dynamics was well understood only
for the weak competition and weak predation cases. Part of the difficulty was caused
by the lack of regularity improvement of the nonlocal diffusion operator. Some new
ideas and techniques are required to overcome the difficulties here. The spreading
speed for this kind of models is not considered yet in the literature, although much
progress has been achieved for models discussed in Secs. 5.1–5.3.

In [103, 127], some two species models with free boundary and hybrid diffu-
sions were considered by Wang and collaborators, where one species disperses via
a nonlocal diffusion operator but the other disperses via a local diffusion operator.

There are too many questions that remain to be answered in this promising
area; for example, the models in high space dimension, with more general kernels,
etc. are still very poorly understood. Generally speaking, there is vast room to be
explored in this fertile field of nonlocal diffusion models.
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