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Abstract
We study the dynamics of a population with an age structure whose population range
expands with time, where the adult population is assumed to satisfy a reaction–
diffusion equation over a changing interval determined by a Stefan type free boundary
condition, while the juvenile population satisfies a reaction–diffusion equation whose
evolving domain is determined by the adult population. The interactions between the
adult and juvenile populations involve a fixed time-delay, which renders the model
nonlocal in nature. After establishing the well-posedness of the model, we obtain a
rather complete description of its long-time dynamical behaviour, which is shown to
follow a spreading–vanishing dichotomy. When spreading persists, we show that the
population range expands with an asymptotic speed, which is uniquely determined
by an associated nonlocal elliptic problem over the half line. We hope this work will
inspire further research on age-structured population models with an evolving popu-
lation range.
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1 Introduction

This paper concerns the following nonlocal reaction–diffusion problem with Stefan
type free boundary conditions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = uxx − αu + w(τ, x; t), t > 0, x ∈ (g(t), h(t)),
u(t, g(t)) = u(t, h(t)) = 0, t > 0,
g′(t) = −μux (t, g(t)), t > 0,
h′(t) = −μux (t, h(t)), t > 0,
u(θ, x) = φ(θ, x), θ ∈ [−τ, 0], x ∈ [g(θ), h(θ)],

(P)

where w(τ, x; t) is the solution w(s, x), evaluated at s = τ , of the following initial
boundary value problem

⎧
⎨

⎩

ws = Dwxx − βw, s ∈ (0, τ ], x ∈ (g(s + t − τ), h(s + t − τ)),

w(s, x) ≡ 0, s ∈ (0, τ ], x = g(s + t − τ) or h(s + t − τ),

w(0, x) = f (u(t − τ, x)), x ∈ [g(t − τ), h(t − τ)].
(Q)

Here α, β, μ, D and τ are positive constants and f is a nonlinear function. Clearly
w(τ, x; t) depends on u(t − τ, ·) and g(s), h(s) with s ∈ [t − τ, t]. Therefore (P) is
highly nonlocal.

Such a problem is used here to model the biological invasion of an age-structured
species when the juveniles diffuse in an expanding habitat whose expansion is deter-
mined by the diffusive adults. More precisely, u represents the density of the adult
population, τ is the time length for a newborn to grow to an adult, f is the birth
function and w(τ, x; t) is the density of the newly added adult at time t . A derivation
of problem (P) with the aforementioned biological assumptions will be presented in
the next section.

Problem (P) reduces to some existing problems in the literature when some of the
parameters in {τ, μ, D} are sent to certain limiting values. If τ → 0, thenw(τ, x; t) →
f (u(t, x)) and the model is reduced to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = uxx − αu + f (u), t > 0, x ∈ (g(t), h(t)),
u(t, g(t)) = u(t, h(t)) = 0, t > 0,
g′(t) = −μux (t, g(t)), t > 0,
h′(t) = −μux (t, h(t)), t > 0,
u(0, x) = φ(x), x ∈ [g(0), h(0)],

(1.1)

which was introduced by Du and Lin [9] in 2010, where they revealed a vanishing–
spreading dichotomy when the nonlinearity f is of KPP type. Problem (1.1) has been
extended in several directions (e.g. [7, 10]), and we mention in particular that very
recently, a new phenomenon was found in [5, 8] for (1.1) when the local diffusion term
uxx is replaced by a suitable nonlocal diffusion operator. Our problem (P), however,
is a very different nonlocal problem.

If τ → ∞, then w(τ, x; t) → 0 and the model reduces to a linear problem with
the Stefan free boundary condition.
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A delay induced nonlocal free boundary problem 2063

If D → 0, then w(τ, x; t) → e−βτ f (u(t − τ, x)) and the model becomes a local
free boundary problem with time delay, which was studied recently by Sun and Fang
[22].

If μ → ∞, then the free boundary condition disappears and the model becomes a
nonlocal Cauchy problem in the whole line with time delay:

{
ut = uxx − αu + e−βτ

∫

R
G(τ, y) f (u(t − τ, x − y))dy, t > 0, x ∈ R,

u(θ, x) = φ(θ, x), θ ∈ [−τ, 0], x ∈ R,

(1.2)
where

G(τ, y) := 1√
4πDτ

e− y2

4Dτ .

Model (1.2) was introduced by So et al. [21] in 2001. Further studies on (1.2) can be
found in [2, 11, 16, 17, 19, 28] when f has a monostable structure and in [1, 3, 12,
19, 20, 24, 25, 27] when f is bistable.

Ifμ → 0, then the expanding domain reduces to a fixed one and themodel becomes
a nonlocal problem with zero Dirichlet boundary condition and time delay:

⎧
⎨

⎩

ut = uxx − αu + e−βτ
∫ �
−� K�(τ, x − y) f (u(t − τ, y))dy, t > 0, x ∈ (−�, �),

u(t,±�) = 0, t > 0,
u(θ, x) = φ(θ, x), θ ∈ [−τ, 0], x ∈ (−�, �),

(1.3)
where

K�(τ, x) =
∑

n∈Z
(−1)nG(τ, x − 2n�).

We refer to a survey by Gourely and Wu [13] in 2006 for more details on the research
of (1.3). With f (u) = pue−qu, p, q > 0, problems (1.2) and (1.3) are often called the
diffusive Nicholson blowfly models. For early work on the classical (ODE) Nicholson
blowfly model we refer to [14, 18].

From the above discussions we see that the nonlocal terms in (1.2) and (1.3) are
induced by the joint effect of diffusion (i.e., D > 0) and time delay (i.e., τ > 0).
For our problem (P), except for these two factors, the nonlocal term w(τ, x; t) also
involves the to-be-determined varying domain over a time period of length τ . This is
a main distinct feature of (P).

The first result of this paper is the well-posedness of the problem.

Theorem 1.1 (Well-posedness) Assume that f satisfies

(H)

⎧
⎪⎪⎨

⎪⎪⎩

f (u) ∈ C1([0,∞)), f (0) = 0, f ′(0) > αeβτ ;
f (u) is monotonically increasing in u � 0;
b(u) := f (u)

u is monotonically decreasing in u > 0 and
b(∞) := limu→∞ b(u) ∈ [0, αeβτ ),
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2064 Y. Du et al.

and the initial data (φ(θ, x), g(θ), h(θ)) satisfy

⎧
⎨

⎩

g, h ∈ C1([−τ, 0]), φ ∈ C1,2([−τ, 0] × [g, h]),
φ(θ, x) > 0 for (θ, x) ∈ [−τ, 0] × (g, h),

φ(θ, x) = 0 for θ ∈ [−τ, 0], x = g(θ) or h(θ),

(1.4)

as well as the compatibility condition

[g(θ), h(θ)] ⊂ [g(0), h(0)] for θ ∈ [−τ, 0]. (1.5)

Then for any γ ∈ (0, 1), problem (P) admits a unique solution

(u, g, h) ∈ C (1+γ )/2,1+γ ([0,∞) × [g, h]) × C1+γ /2([0,∞)) × C1+γ /2([0,∞)).

Here and throughout this paper, for constants a < b and functions g(t) < h(t), we
define

[a, b] × [g, h] := {(t, x) : t ∈ [a, b], x ∈ [g(t), h(t)]}.

The sets (a, b) × [g, h], [a, b] × (g, h), etc., are defined similarly.
It follows from (H) that f (s) − αeβτ s = 0 has a unique positive root s = u∗. A

simple example of such a nonlinearity is f (s) = ps
1+qs with p > αeβτ and q > 0.

The second result is on the long-time behaviour of the solution, which is determined
by a dichotomy of spreading and vanishing.

Theorem 1.2 Assume that (H) holds. For any given triple (φ(θ, x), g(θ), h(θ)) satis-
fying (1.4) and (1.5), let (u, g, h) be the solution of (P) with u(θ, x) = σφ(θ, x) in
[−τ, 0] × [g, h] for some σ > 0. Then there exists σ ∗ ∈ [0,∞], depending on the
initial data, with the following properties:

(i) Spreading happens when σ > σ ∗ in the sense that (g∞, h∞) = R and

lim
t→∞ u(t, x) = u∗ locally uniformly in R;

(ii) Vanishing happens when σ � σ ∗ in the sense that (g∞, h∞) is a finite interval
and

lim
t→∞ max

g(t)�x�h(t)
u(t, x) = 0.

(iii) There exists a unique �∗ > 0 independent of the initial data such that σ ∗ = 0 if
and only if h(0) − g(0) � 2�∗. Moreover, σ ∗ < ∞ if b(∞) > 0.

When spreading happens, we will determine the spreading speed of the fronts, by
making use of the nonlinear and nonlocal semi-wave problem

⎧
⎨

⎩

Uξξ + cUξ − αU + ∫ 0
−∞ K(c, ξ, x) f (U (x))dx = 0, ξ < 0,

U (0) = 0, U (−∞) = u∗, U (ξ) > 0, ξ < 0,
−μUξ (0) = c,

(1.6)
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where

K(c, ξ, x) := e−βτ− c2
4D τ− c

2D (ξ−x)[G(τ, ξ − x) − G(τ, ξ + x)
]
, ξ, x � 0,

with G(τ, y) as given before. It follows from Sect. 4 that problem (1.6) admits a
unique solution pair (c,U ) = (c∗,Uc∗

). With the semi-wave established above, we
can construct various super- and subsolutions to estimate the spreading fronts h(t) and
g(t), and obtain the third result of this paper.

Theorem 1.3 (Spreading speed) Assume that (H) holds. Let (u, g, h) be a solution
satisfying Theorem 1.2 (i). Then

− lim
t→∞

g(t)

t
= lim

t→∞
h(t)

t
= c∗, (1.7)

where (c∗,Uc∗
) is the unique solution of (1.6).

The rest of the paper is organised as follows. In Sect. 2, we first explain how
problem (P) can be deduced from some reasonable biological assumptions, and then
we give a few comparison results for (P) to be used later in the paper. The main
technical part of this section is the proof of the well-posedness of (P) (Theorem 1.1),
which follows existing strategies but with considerable changes. Section 3 examines
the long-time behaviour of the solution of (P), which relies on a good understanding
of the corresponding problem over a fixed interval and involves a nonlocal eigenvalue
problem. The latter is treated in Sect. 3.1 while the former is the main task of Sect. 3.2.
Based on these preparations we obtain sufficient conditions for the solution of (P) to
vanish in Sect. 3.3, and obtain sufficient conditions for the spreading to persists in Sect.
3.4, where the spreading–vanishing dichotomy (Theorem 3.6) is also proved. These
pave theway to complete the proof of Theorem 1.2 in Sect. 3.5. The approach in Sect. 3
is based mainly on comparison arguments involving various innovative constructions
of sub- and super-solutions. Section 4 is devoted to finding the spreading speed when
spreading is successful, and is perhaps one of the most innovative parts of the paper.
We first introduce a semi-wave problem based on a heuristic analysis, and we then
prove that the semi-wave problem has a unique solution, namely a semi-wave with
profile Uc∗

and speed c∗. This is the content of Sect. 4.1, where a completely new
approach is used; in particular, it involves the introduction of a sequence of bistable
problems which converge to the monostable problem at hand, and the traveling waves
of these auxiliary bistable problems are used to construct sub-solutions of our semi-
wave problem. In Sect. 4.2, we show that the semi-wave profile Uc∗

can be suitably
modified to produce super- and sub-solutions of problem (P) to eventually give the
spreading speed, which is precisely c∗, as stated in Theorem 1.3.
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2 Model formulation, comparison principle and well-posedness

2.1 Model formulation

To formulate problem (P), we start from the age-structured population growth law

pt + pa = D(a)pxx − d(a)p, (2.1)

where p = p(t, x; a) denotes the density of the concerned species of age a at time t
and location x , D(a) and d(a) denote the diffusion rate and death rate of the species
of age a, respectively.

We assume that the species has the following biological characteristics:

(A1) The species can be classified into two stages according to age: mature and
immature. An individual at time t belongs to the mature class if and only if its
age exceeds the maturation time τ > 0. Within each stage, all individuals have
the same diffusion rate and death rate.

(A2) The immature population moves in space within the habitat of the mature pop-
ulation, but does not contribute to the expansion of the habitat.

The totalmature population u at time t and location x can be represented by the integral

u(t, x) =
∫ ∞

τ

p(t, x; a)da. (2.2)

We assume that the mature population u lives in the habitat [g(t), h(t)], vanishes
outside the habitat, and so

u(t, x) = 0, t > 0, x /∈ (g(t), h(t)); (2.3)

moreover, the habitat expands according to the Stefan type moving boundary condi-
tions:

h′(t) = −μux (t, h(t)), g′(t) = −μux (t, g(t)), t > 0, (2.4)

whereμ is a given positive constant. The equations in (2.4) can be deduced from some
reasonable biological assumptions as in [4], where it is assumed that certain sacrifices
(in terms of population loss at the range boundary) is made by the species in order to
have the population range expanded, with 1/μ proportional to this loss.

By (A2), the immature population also lives in [g(t), h(t)] and vanishes outside of
it. However, the immature population disperses over the population range of the adult
population passively,with no contribution to the expansion of [g(t), h(t)]. Considering
that in many species, the sacrifices made by the species to expand the population
range are mostly for raising/protecting the young by the adults, it appears reasonable
to assume that the young do not contribute to the expansion of the population range.

According to (A1) we may assume tha

D(a) =
{
1, a � τ,

D, 0 � a < τ,
d(a) =

{
α, a � τ,

β, 0 � a < τ,
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where D, α and β are three positive constants. Differentiating both sides of (2.2) in
time yields

ut =
∫ ∞

τ

ptda =
∫ ∞

τ

[−pa + pxx − α p]da
= uxx − αu + p(t, x; τ) − p(t, x;∞). (2.5)

Since no individual lives forever, it is natural to assume that

p(t, x;∞) = 0. (2.6)

To obtain a closed form of the model, one then needs to express p(t, x; τ) in terms
of u. Note that p(t, x; τ) represents the newly matured population at time t , from the
newborns at t −τ . In other words, there is an evolution relation between the quantities
p(t, x; τ) and p(t − τ, x; 0). Such a relation is governed by the growth law (2.1) for
0 < a < τ , and hence it is the time-τ solution map of the following problem

⎧
⎨

⎩

ws = Dwxx − βw, s ∈ (0, τ ], x ∈ (g(s + t − τ), h(s + t − τ)),

w(s, x) = 0, s ∈ (0, τ ], x = g(s + t − τ) or h(s + t − τ),

w(0, x) = p(t − τ, x; 0), x ∈ [g(t − τ), h(t − τ)].
(2.7)

Further, if b(u) is the birth rate function of the mature population and f (u) = b(u)u,
then

p(t − τ, x; 0) = f (u(t − τ, x)).

Thus problem (2.7) can be formulated as an initial boundary value problem
⎧
⎨

⎩

ws = Dwxx − βw, s ∈ (0, τ ], x ∈ (g(s + t − τ), h(s + t − τ)),

w(s, x) = 0, s ∈ (0, τ ], x ∈ {g(s + t − τ), h(s + t − τ)},
w(0, x) = f (u(t − τ, x)), x ∈ [g(t − τ), h(t − τ)].

(2.8)

If we regard (u, g, h) as given and denote the unique solution of (2.8) by w(s, x; t),
then

p(t, x; τ) = w(τ, x; t). (2.9)

Combining (2.3)–(2.6) and (2.9), we are led to the following:

⎧
⎨

⎩

ut = uxx − αu + w(τ, x; t), t > 0, x ∈ (g(t), h(t)),
u(t, x) = 0, t > 0, x ∈ {g(t), h(t)},
u(0, x) = φ(0, x), x ∈ [g(0), h(0)],

(2.10)

and
{
g′(t) = −μux (t, g(t)), h′(t) = −μux (t, h(t)), t > 0,

u(θ, x) = φ(θ, x), θ ∈ [−τ, 0), x ∈ [g(θ), h(θ)].

which are equivalent to problem (P).
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By the maximum principle it is easily seen from (2.10) that g′(t) < 0 < h′(t) for
t > 0, namely the habitat is expanding for t � 0. Therefore it is natural to assume
that

[g(θ), h(θ)] ⊂ [g(0), h(0)] for θ ∈ [−τ, 0],

which is the aforementioned compatibility condition (1.5).

2.2 Comparison principle

In this subsection, we give some comparison principles, which will be used in the rest
of this paper.

Lemma 2.1 Suppose that (H) holds, T ∈ (0,∞), g, h ∈ C1([−τ, T ]), u, w ∈
C(DT ) ∩ C1,2(DT ) with DT := (−τ, T ] × (g, h),

⎧
⎪⎨

⎪⎩

ut � uxx − αu + w(t, x), 0 < t � T , g(t) < x < h(t),

u = 0, g′(t) � −μux , 0 < t � T , x = g(t),

u = 0, h
′
(t) � −μux , 0 < t � T , x = h(t),

where w(t, x) = v(τ, x; t) with v(s, x; t) = v(s, x) satisfying

⎧
⎨

⎩

vs � Dvxx − βv, s ∈ (0, τ ], x ∈ (g(t − τ + s), h(t − τ + s)),
v � 0, s ∈ (0, τ ], x = g(t − τ + s), h(t − τ + s),
v(0, x) � f (u(t − τ, x)), x ∈ [g(t − τ), h(t − τ)].

If (u, g, h) is a solution to (P) with

[g(θ), h(θ)] ⊆ [g(θ), h(θ)] and u(θ, x) � u(θ, x) for θ ∈ [−τ, 0], x ∈ [g(θ), h(θ)],

then

[g(t), h(t)] ⊆ (g(t), h(t)) and u(t, x) � u(t, x) for t ∈(0, T ], x ∈(g(t), h(t)).

Lemma 2.2 Suppose that (H) holds, T ∈ (0,∞), g, h ∈ C1([−τ, T ]), u, w ∈
C(DT ) ∩ C1,2(DT ) with DT = (−τ, T ] × (g, h), and

⎧
⎨

⎩

ut � uxx − αu + w(t, x), 0 < t � T , g(t) < x < h(t),
u � u, 0 < t � T , x = g(t),
u = 0, h

′
(t) � −μux , 0 < t � T , x = h(t),
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where w(t, x) = v(τ, x; t) with v(s, x; t) = v(s, x) satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vs � Dvxx − βv, s ∈ (0, τ ], x ∈ (g(t − τ + s), h(t − τ + s)),

v(s, x) � w(s, x; t), s ∈ (0, τ ], x = g(t − τ + s),

v � 0, s ∈ (0, τ ], x = h(t − τ + s),

v(0, x) � f (u(t − τ, x)), x ∈ (g(t − τ), h(t − τ)),

and

g(t) � g(t) in [−τ, T ], h(θ) � h(θ) in [−τ, 0],
u(θ, x) � u(θ, x) for θ ∈ [−τ, 0], x ∈ [g(0), h(0)],

where (u, g, h) solves (P) and w solves (Q). Then

h(t) � h(t) in (0, T ], u(x, t) � u(x, t) for t ∈ (0, T ] and g(t) < x < h(t).

The proof of Lemma 2.1 is a simple modification of those of Lemma 5.7 in [9] and
Lemma 2.3 in [22], and with some further minor changes of this proof, one obtains
Lemma 2.2.

Remark 2.3 The function u, or the triple (u, g, h), in Lemmas 2.1 and 2.2 is often called
an upper solution to (P). A lower solution can be defined analogously by reversing all
the inequalities. There is a symmetric version of Lemma 2.2, where the conditions on
the left and right boundaries are interchanged.We also have corresponding comparison
results for lower solutions in each case.

2.3 Well-posedness

We employ the Banach and the Schauder fixed point theorems to establish the local
existence of a solution to (P), and prove its uniqueness, we then extend the solution
to all time by an estimate on the free boundaries.

Theorem 2.4 (Local existence) Assume that (H) holds. Then for any γ ∈ (0, 1), there
exists a T > 0 such that problem (P) with the initial data (φ(θ, x), g(θ), h(θ))

satisfying (1.4) and (1.5), admits a unique solution (u, g, h) for t ∈ [0, T ] with

u ∈ W 1,2
p ([0, T ] × [g, h]) ∩ C

1+γ
2 ,1+γ ([0, T ] × [g, h]), g, h ∈ C1+ γ

2 ([0, T ]),

for some p > 1.

Proof We use a change of variable argument to transform problem (P) into a problem
with straight boundaries but a more complicated differential operator as in [6, 9].
Denote g0 := g(0) and h0 := h(0) for convenience, and set l0 := 1

2 (h0 − g0). Let
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ξ1(y) and ξ2(y) be two nonnegative functions in C3(R) such that

ξ1(y) = 1 if |y − g0| <
l0
4

, ξ1(y) = 0 if |y − g0| >
l0
2

, |ξ ′
1(y)| <

6

l0
for y ∈ R;

ξ2(y) = 1 if |y − h0| <
l0
4

, ξ2(y) = 0 if |y − h0| >
l0
2

, |ξ ′
2(y)| <

6

l0
for y ∈ R.

For 0 < T � min
{ h0−g0
16(1+μφx (0,g0)−μφx (0,h0))

, τ
}
, we define

Dg
T = {g ∈ C1([0, T ]) : g(0) = g0, g′(0) = −μφx (0, g0), ‖g′ − g′(0)‖C([0,T ]) � 1},

Dh
T = {h ∈ C1([0, T ]) : h(0) = h0, h′(0) = −μφx (0, h0), ‖h′ − h′(0)‖C([0,T ]) � 1}.

Clearly, DT := Dg
T × Dh

T is a bounded and closed convex set of C1([0, T ]) ×
C1([0, T ]).

For each pair (g, h) ∈ DT , we can define y = y(t, x) for t ∈ [0, T ] through the
identity

x = x(t, y) := y + ξ1(y)(g(t) − g0) + ξ2(y)(h(t) − h0), (2.11)

which clearly changes the set [0, T ] × [g, h] in the (t, x) plane to [0, T ] × [g0, h0] in
the (t, y) plane.

If (u(t, x), g(t), h(t)) solves (P), then with the above defined transformation,

ũ(t, y) := u(t, x(t, y)) = u(t, x)

satisfies
⎧
⎨

⎩

ũt − A(t, y)ũ yy + B(t, y)ũ y = w̃(τ, y; t) − αũ, t ∈ (0, T ], y ∈ (g0, h0),
ũ(t, g0) = ũ(t, h0) = 0, t ∈ (0, T ],
ũ(0, y) = φ(0, y), y ∈ [g0, h0],

(2.12)
and

g′(t) = −μ ũ y(t, g0), h′(t) = −μũ y(t, h0) for t ∈ (0, T ], (2.13)

where

A(t, y) : = [1 + ξ ′
1(y)(g(t) − g0) + ξ ′

2(y)(h(t) − h0)]−2,

B(t, y) : = [ξ ′′
1 (y)(g(t) − g0) + ξ ′′

2 (y)(h(t) − h0)]A(t, y)
3
2 − [ξ1(y)g′(t)

+ξ2(y)h′(t)]A(t, y)
1
2 ,

w̃(τ, y; t) : = w(τ, x(t, y); f (u(t − τ, ·))) = w(τ, x; f (u(t − τ, ·))).
To straighten the boundaries in (Q), we need to extend y(t, x) to t ∈ [−τ, 0). Note

that for t in this range, g(t) and h(t) are given as part of the initial data. Since no free
boundary conditions are involved for t in this range, we simply define

y(t, x) := g0 + x − g(t)

h(t) − g(t)
(h0 − g0) for t ∈ [−τ, 0), x ∈ [g(t), h(t)],
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whose inverse is given by

x = x(t, y) := g(t) + y − g0
h0 − g0

[h(t) − g(t)]. (2.14)

We define

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũ(t, y) := φ(t, x(t, y)) for t ∈ [−τ, 0), y ∈ [g0, h0],
A(t, y) :=

[
h(t)−g(t)
h0−g0

]2
for t ∈ [−τ, 0),

B(t, y) := y−g0
h(t)−g(t) [h′(t) − g′(t)] + h0−g0

h(t)−g(t)g
′(t) for t ∈ [−τ, 0),

w̃(s, y; t) := w(s, x(s + t − τ, y); f (u(t − τ, ·))) for s ∈ [0, τ ], t ∈ [0, T ].
(2.15)

Then w̃(s, y; t) satisfies, for every t ∈ [0, T ],
⎧
⎨

⎩

w̃s − DA(s + t − τ, y)w̃yy + B(s + t − τ, y)w̃y = −βw̃, s ∈ (0, τ ], y ∈ (g0, h0),
w̃(s, g0; t) = w̃(s, h0; t) = 0, s ∈ (0, τ ],
w̃(0, y; t) = f (ũ(t − τ, y)), y ∈ [g0, h0].

(2.16)
Let us note that A(t, y) is Liptschitz continuous in [−τ, T ] × [g0, h0], B(t, y) is

continuous and bounded in ([−τ, T ] \ {0}) × [g0, h0] with a jumping discontinuity at
t = 0.

For anygivenγ ∈ (0, 1) andU (t, y) inC([0, T ]×[g0, h0]), extended to t ∈ [−τ, 0)
by

U (θ, y) = φ(θ, x(θ, y)) for θ ∈ [−τ, 0], y ∈ [g0, h0],

problem (2.16) with f (ũ(t − τ, y)) replaced by f (U (t − τ, y)) has a unique solution

W̃ (s, y; t) in W 1,2
p ([0, τ ] × [g0, h0]) ↪→ C

1+γ
2 ,1+γ ([0, τ ] × [g0, h0]), provided that

p is sufficiently large.
With W̃ obtained above, (2.12) with w̃(τ, y; t) replaced by W̃ (τ, y; t) has a unique

solution Ũ (t, y) in W 1,2
p ([0, T ] × [g0, h0]) ↪→ C

1+γ
2 ,1+γ ([0, T ] × [g0, h0]).

This defines an operator K : C([0, T ] × [g0, h0]) → C
1+γ
2 ,1+γ ([0, T ] × [g0, h0])

by
K[U ](t, y) := Ũ (t, y).

Using the extension trick in [26], the L p estimate, Sobolev embedding theorem and the
Banach fixed point theorem, it can be shown (as in [26]) thatK has a unique fixed point
in a suitable subset of C([0, T ] × [g0, h0]), provided that T > 0 is sufficiently small,
say T ∈ (0, T0]. We denote this fixed point by ũ(t, y), and extend it to t ∈ [−τ, 0] by

ũ(θ, y) = φ(θ, x(θ, y)) for θ ∈ [−τ, 0], y ∈ [g0, h0].

Let us note that with U = ũ, the above obtained W̃ (s, y; t) solves the original
(2.16) and so if we denote this special W̃ (s, y; t) by w̃(s, y; t), then the pair (ũ, w̃)

solves (2.12) (for t ∈ [0, T ]) and (2.16) simultaneously. Moreover,
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‖w̃(·; t)‖
C

1+γ
2 ,1+γ

([0,τ ]×[g0,h0])
� C0 (2.17)

and
‖ũ‖

C
1+γ
2 ,1+γ

([−τ,T ]×[g0,h0])
� C1, (2.18)

where C0 and C1 are positive constants dependent on g|[−τ,0], h|[−τ,0], γ and φ, but
independent of t, T ∈ (0, T0] and (g, h) ∈ DT .

We now define g̃(t) and h̃(t) for t ∈ [0, T ] by
{
g̃(t) := g0 − ∫ t

0 μũ y(s, g0)ds,

h̃(t) := h0 − ∫ t
0 μũ y(s, h0)ds.

Then clearly

g̃′(t) = −μũ y(t, g0), g̃(0) = g0, g̃′(0) = −μφy(0, g0),

and thus g̃′ ∈ C
γ
2 ([0, T ]) and

‖g̃′‖
C

γ
2 ([0,T ]) � μC1 =: C2. (2.19)

Similarly, h̃′ ∈ C
γ
2 ([0, T ]) and

‖h̃′‖
C

γ
2 ([0,T ]) � C2. (2.20)

Therefore, for any T ∈ (0, T0] and any given pair (g, h) ∈ DT , we can define an
operator F by

F(g, h) = (g̃, h̃).

From the above discussions, it is easily seen that F is completely continuous in DT ,
and (g, h) ∈ DT is a fixed point ofF if and only if (ũ, g̃, h̃) solves (2.12) for t ∈ [0, T ].
We will show that if T > 0 is small enough, then F has a fixed point by using the
Schauder fixed point theorem.

Firstly, it follows from (2.19) and (2.20) that

‖h̃′ − h̃′(0)‖C([0,T ]) � C2T
γ
2 , ‖g̃′ − g̃′(0)‖C([0,T ]) � C2T

γ
2 .

Thus if we choose T � T1 := min
{
T0, C

− 2
γ

2

}
, thenF maps the closed convex setDT

into itself. Consequently, F has at least one fixed point by the Schauder fixed point
theorem, which implies that (2.12) has at least one solution (ũ, g̃, h̃) defined in [0, T ].

We now prove the uniqueness of such a solution. Let (ui , gi , hi ) (i = 1, 2) be two
solutions of (P) (for t ∈ [0, T ]), and letwi be the corresponding solutions of (Q), and
set
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ũi (t, y) := ui (t, y + ξ1(y)(gi (t) − g0) + ξ2(y)(hi (t) − h0)),

w̃i (s, y; t) := wi (s, y + ξ1(y)(gi (s + t − τ) − g0) + ξ2(y)(hi (s + t − τ) − h0)).

Then it follows from (2.17)–(2.20) that, for i = 1, 2 and t ∈ [0, T ],

‖w̃i (·; t)‖
C

1+γ
2 ,1+γ

([0,τ ]×[g0,h0])
� C0,

‖ũi‖
C

1+γ
2 ,1+γ

([0,T ]×[g0,h0])
� C1,

‖h′
i‖C γ

2 ([0,T ]) � C2, ‖g′
i‖C γ

2 ([0,T ]) � C2.

Set

ŵ := w̃1 − w̃2, û := ũ1 − ũ2, ĝ(t) := g1(t) − g2(t), and ĥ(t) := h1(t) − h2(t).

Then we find that for any t ∈ [0, T ] (noting that T � T1 � τ ),

⎧
⎪⎪⎨

⎪⎪⎩

ŵs − DA2(s + t − τ, y)ŵyy + B2(s + t − τ, y)ŵy

=F1(s+t−τ, y)−βŵ, s ∈ (0, τ ], y ∈ (g0, h0),
ŵ(s, g0) = ŵ(s, h0) = 0, s ∈ (0, τ ],
ŵ(0, y) = 0, y ∈ [g0, h0],

where

F1 = D(A1 − A2)(w̃1)yy − (B1 − B2)(w̃1)y,

Ai and Bi are the coefficients of problem (2.16) with (gi , hi ) in place of (g, h). We
can apply the L p estimates for parabolic equations to deduce that, for t ∈ [0, T ],

‖ŵ(·; t)‖W 1,2
p ([0,τ ]×[g0,h0]) � C4(‖ĝ‖C1([0,T ]) + ‖ĥ‖C1([0,T ])) (2.21)

with C4 depending on C0, C1 and C2.
It is easy to see that û(t, y) satisfies

⎧
⎨

⎩

ût − A2(t, y)û yy + B2(t, y)û y = F2(t, y) − αû, y ∈ (g0, h0), t ∈ (0, T ],
û(t, g0) = û(t, h0) = 0, t ∈ (0, T ],
û(0, y) = 0, y ∈ [g0, h0],

where

F2 = (A1 − A2)(ũ1)yy − (B1 − B2)(ũ1)y + ŵ.

Thanks to (2.21), we can apply the extension trick of [26], the L p estimates for
parabolic equations, and the Sobolev embedding theorem much as before, to deduce
that

‖û‖
C

1+γ
2 ,1+γ

([0,T ]×[g0,h0])
� C5(‖ĝ‖C1([0,T ]) + ‖ĥ‖C1([0,T ])) (2.22)

123



2074 Y. Du et al.

with C5 depending on C0, C1, C2 and C4, but independent of T ∈ (0, T1].
Since ĥ′(0) = h′

1(0) − h′
2(0) = 0, we have

‖ĥ′‖
C

γ
2 ([0,T ]) = μ‖û y(·, h0)‖

C
γ
2 ([0,T ]) � μ‖û‖

C
1+γ
2 ,1+γ

([0,T ]×[g0,h0])
.

This, together with (2.22), implies that

‖ĥ‖C1([0,T ]) � 2T
γ
2 ‖ĥ′‖

C
γ
2 ([0,T ]) � C6T

γ
2 (‖ĝ‖C1([0,T ]) + ‖ĥ‖C1([0,T ])),

where C6 = 2μC5. Similarly, we have

‖ĝ‖C1([0,T ]) � C6T
γ
2 (‖ĝ‖C1([0,T ]) + ‖ĥ‖C1([0,T ])).

As a consequence, we deduce that

‖ĝ‖C1([0,T ])‖ + ‖ĥ‖C1([0,T ]) � 2C6T
γ
2 (‖ĝ‖C1([0,T ]) + ‖ĥ‖C1([0,T ])).

Hence for

T � T2 := min
{
T1, (4C6)

− 2
γ

}
,

we have

‖ĝ‖C1([0,T ])‖ + ‖ĥ‖C1([0,T ]) � 1

2
(‖ĝ‖C1([0,T ]) + ‖ĥ‖C1([0,T ])).

This shows that ĝ ≡ 0 ≡ ĥ for 0 � t � T ; thus F1 ≡ 0 and F2 ≡ 0, which imply
ŵ ≡ 0 and hence û ≡ 0. Consequently, the local solution of (P) is unique, which
ends the proof of this theorem.

Theorem 2.5 Assume that (H) holds. Then the local solution (u, g, h) of problem (P)
can be extended to all t ∈ (0,∞).1

Proof Fix a γ ∈ (0, 1) and let [0, Tmax ) be the maximal time interval in which the
solution as described inTheorem2.4 exists. In viewofTheorem2.4,wehaveTmax > 0.
Using an indirect argument, we assume that Tmax < ∞.

Thanks to the choice of the initial data, we can use the comparison principle to
bound the solution by the corresponding ODE problems to obtain

u(t, x) � K := u∗ + ‖φ‖L∞([−τ,0]×[g,h]) for t ∈ [0, Tmax ), x ∈ [g(t), h(t)],

1 The uniqueness and regularity of the solution can be easily used to show that the solution over any
bounded time interval [0, T ] depends continuously on the initial data. This fact will be used later in the
paper.
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and for fixed t ∈ (0, Tmax ),

w(s, x; f (u(t − τ, ·))) � f ′(0)K for s ∈ [0, τ ], x ∈ [g(s + t − τ), h(s + t − τ)].

To bound g(t) and h(t), we construct two auxiliary functions

{
ū(t, x) := K

[
2M(h(t) − x) − M2(h(t) − x)2

]

w̄(t, x) := f ′(0)K for (t, x) ∈ [−τ, Tmax ) × [h − M−1, h],

where

M := max

{√
f ′(0)
2

,
2

h(−τ) − g(−τ)
,

4

3K
max−τ�θ�0

‖φ(θ, ·)‖C1([g(θ),h(θ)])

}

.

Clearly

K � ū(t, x) � KM(h(t) − x) for x ∈ [h(t) − M−1, h(t)], t ∈ [−τ, Tmax ),

and

φ(θ, x)� max−τ�θ�0
‖φ(θ, ·)‖C1([g(θ),h(θ)])(h(t)−x) for x ∈[h(θ) − M−1, h(θ)], θ ∈ [−τ, 0].

It thus follows from the definition of M that

ū(θ, x) � φ(θ, x) for x ∈ [h(θ) − M−1, h(θ)], θ ∈ [−τ, 0].

After a simple calculation we obtain

⎧
⎪⎪⎨

⎪⎪⎩

ūt − ūxx + αū − w̄(t, x) � K (2M2 − f ′(0)) � 0, t > 0, x ∈ [h(t) − M−1, h(t)),
ū(t, h(t) − M−1) = K � u(t, h(t) − M−1), t > 0,
ū(t, h(t)) = 0 = u(t, h(t)), t > 0,
ū(θ, x) � u(θ, x), θ ∈ [−τ, 0], x ∈ [h(θ) − M−1, h(θ)],

and for t > 0, w̄(t, x) = v(τ, x) with v(s, x) := eβ(τ−s) f ′(0)K satisfying

⎧
⎨

⎩

vs − Dvxx + βv = 0, s ∈ (0, τ ], x ∈ [h(s + t − τ) − 1
M , h(s + t − τ)),

v(s, x) � w(s, x; f (u(t − τ, x))), s ∈ (0, τ ], x = h(s + t − τ) − 1
M or h(s + t − τ),

v(0, x) = f ′(0)Keβτ � f (ū(t − τ, x)), x ∈ [h(t − τ) − 1
M , h(t − τ)].

So we can apply the comparison principle to deduce that u(t, x) � ū(t, x) for t ∈
(0, Tmax ) and x ∈ [h(t) − M−1, h(t)]. It follows that ux (t, h(t)) � ūx (t, h(t)) =
−2MK , and hence

h′(t) = −μux (t, h(t)) � C0 := 2μMK .
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We can similarly prove −g′(t) � C0 for t ∈ (0, Tmax ).
With the above estimate on h′(t) and g′(t), and the bounds

0 � u � K , 0 � w � f ′(0)K ,

we are able to show that the solution (u, g, h) can be defined beyond t = Tmax .
To do so, we straighten the boundaries of (2.10) via the transformation

ũ(t, y) := u(t, x(t, y))

for t ∈ [0, Tmax ), y ∈ [g0, h0], with x(t, y) given by (2.14). Then ũ satisfies

⎧
⎨

⎩

ũt − A(t)ũ yy + B(t, y)ũ y = w̃(τ, y; t) − αũ, t ∈ (0, Tmax ), y ∈ (g0, h0),
ũ(t, g0) = ũ(t, h0) = 0, t ∈ (0, Tmax ),

ũ(0, y) = φ(0, y), y ∈ [g0, h0],
(2.23)

with A and B given by the formulas in (2.15), and w̃(τ, y; t) := w(τ, x(s, y); f (u(t−
τ, ·))).

Applying the L p theory to (2.23) we obtain ũ ∈ W 1,2
p ([0, T ] × [g0, h0]) for any

p > 1 and T ∈ (Tmax/2, Tmax ), and by the Sobolev embedding theorem we obtain,
for any γ ∈ (0, 1) and some large enough p > 1 depending on γ ,

‖ũ‖W 1,2
p ([0,T ]×[g0,h0]) + ‖ũ‖

C
1+γ
2 ,1+γ

([0,T ]×[g0,h0])
� Cp,γ (2.24)

for some Cp,γ > 0 independent of T ∈ (Tmax/2, Tmax ).
Choose tn ∈ (0, Tmax ) satisfying tn ↗ Tmax , and regard (u(tn − θ, x), g(tn −

θ), h(tn − θ)) for θ ∈ [0, τ ] as the initial data. Due to (2.24) and the properties of g
and h proved earlier, we can repeat the proof of Theorem 2.4 2 to conclude that there
exists s0 > 0 depending on Cp,γ and f but independent of n such that problem (P)
has a unique solution (u, g, h) for t ∈ [tn, tn + s0]. This gives a solution (u, g, h) of
(P) defined for t ∈ [0, tn + s0]. Since tn + s0 > Tmax when n is large, this contradicts
the definition of Tmax , and hence we must have Tmax = ∞, as desired. The proof is
complete.

3 Long time behavior of the solutions

In this section we study the asymptotic behavior of the solutions of (P).

2 Note that in the proof of Theorem 2.4, for the initial function φ(θ, x), we only require
‖φ‖

W1,2
p ([−τ,0]×[g,h]) � C0 for some C0 > 0 independent of p > 1.
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3.1 A nonlocal eigenvalue problem

For any given � > 0, we consider the following eigenvalue problem:

{−ϕ′′ + αϕ − f ′(0)e(λ−β)τ
∫ �

−�
K�(τ, x − y)ϕ(y)dy = λϕ, x ∈ (−�, �),

ϕ(±�) = 0,
(3.1)

where

K�(τ, x) =
∑

n∈Z
(−1)nG(τ, x − 2n�), x ∈ R,

with

G(τ, y) = 1√
4πDτ

e− y2

4Dτ , y ∈ R.

We note that

ψ(t, x; λ, ϕ) := eλt
∫ �

−�

K�(t, x − y)ϕ(y)dy

satisfies

⎧
⎪⎨

⎪⎩

ψt = Dψxx + λψ, t > 0, x ∈ (−�, �),

ψ(t,±�) = 0, t > 0,

ψ(0, x) = ϕ(x), x ∈ [−�, �].

Therefore the first equation in (3.1) can be rewritten as

−ϕ′′ + αϕ − f ′(0)e−βτψ(τ, x; λ, ϕ) = λϕ.

By the Krein–Rutman theorem and the spectral mapping theorems for semigroups,
it follows from [23] that (3.1) possesses a unique principal eigenvalue, namely a real
eigenvalue λ = λ�

1 with a positive eigenfunction ϕ�, which is unique upon normaliza-
tion such as ‖ϕ�‖∞ = 1:

{

−ϕ′′
� + αϕ� − f ′(0)e(λ�

1−β)τ
∫ �

−�
K�(τ, x − y)ϕ�(y)dy = λ�

1ϕ�, x ∈ (−�, �),

ϕ�(±�) = 0.
(3.2)

We have the following conclusions for (λ�
1, ϕ�).

Lemma 3.1 Assume that (H) holds. The principal eigen-pair (λ�
1, ϕ�) of (3.1) has the

following properties:
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(i) ϕ�(x) = cos( π
2� x).

(ii) λ�
1 is decreasing and continuous in � > 0, with λ01 := lim�→0 λ�

1 = ∞ and
λ∞
1 := lim�→∞ λ�

1 < 0.
(iii) There exists a unique constant �∗ = �∗( f ′(0), D, α, β, τ ) > 0 such that the

principal eigenvalue λ�
1 is negative (resp. 0, or positive) when � > �∗ (resp.

� = �∗, or � < �∗).

Proof Let φ�(x) := cos( π
2� x). Clearly φ�(x) > 0 in (−�, �) and φ�(±�) = 0. More-

over, since the unique solution of

⎧
⎪⎨

⎪⎩

ψt = Dψxx , t > 0, x ∈ (−�, �),

ψ(t,±�) = 0, t > 0,

ψ(0, x) = φ�(x), x ∈ [−�, �]
is given by

ψ0(t, x) = e
− Dπ2

4�2
t
φ�(x),

we obtain

ψ(t, x; λ, φ�) = eλtψ0(t, x) = e
λt− Dπ2

4�2
t
φ�(x),

and thus

−φ′′
� + αφ� − f ′(0)e−βτψ(τ, x; λ, φ�) =

[
π2

4�2
+ α − f ′(0)e−βτ− Dπ2

4�2
τ
eλτ

]

φ�.

Therefore (λ, ϕ) = (λ, φ�) will solve (3.1) if

π2

4�2
+ α − f ′(0)e−βτ− Dπ2

4�2
τ
eλτ = λ,

or, equivalently, if

α = F�(λ) := − π2

4�2
+ λ + f ′(0)e−βτ− Dπ2

4�2
τ
eλτ . (3.3)

Clearly F� is strictly increasing and continuous onRwith F�(−∞)=−∞, F�(+∞)=
+∞, Therefore there exists a unique λ = λ(�) ∈ R satisfying

α = F�(λ(�)).

By the uniqueness of the principal eigen-pair (λ�
1, ϕ�), we necessarily have

ϕ� = φ�, λ�
1 = λ(�).

This proves part (i).
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For any fixed λ0 > 0,

lim
�→0

F�(λ0) = −∞ < α.

It follows that λ(�) > λ0 for all small � > 0, which implies lim�→0 λ(�) = +∞.
On the other hand, from

lim
�→∞ F�(0) = f ′(0)e−βτ > α,

we see that for all large � > 0, λ(�) < 0. Moreover, as F∞(λ) := lim�→∞ F�(λ) =
λ + f ′(0)e−βτ eλτ , the limit λ(∞) := lim�→∞ λ(�) exists, and is the unique solution
of α = F∞(λ), which is negative. The conclusions in part (ii) are now proved.

Let us observe that the uniqueness of λ(�) and the continuous dependence of F�(λ)

on � imply that � → λ(�) is continuous. Moreover, the facts that λ → F�(λ) is
strictly increasing and � → F�(λ) is strictly decreasing imply that � → λ(�) is strictly
decreasing. Therefore the conclusions in part (ii) guarantee the existence of a unique
constant �∗ = �∗( f ′(0), D, α, β, τ ) > 0 such that the principal eigenvalue λ(�) is
negative (resp. 0, or positive) when � > �∗ (resp. � = �∗, or � < �∗). Part (iii) is now
proved.

3.2 Positive solutions on bounded intervals

Using Lemma 3.1, we can obtain the asymptotic behavior of the solutions to

⎧
⎨

⎩

vt = vxx − αv + e−βτ
∫ �

−�
K�(τ, x − y) f (v(t − τ, y))dy, t > 0, x ∈ (−�, �),

v(t,±�) = 0, t > 0,
v(θ, x) = ψ(θ, x) �, �≡ 0, θ ∈ [−τ, 0], x ∈ (−�, �).

(3.4)

Lemma 3.2 Suppose (H) holds and let �∗ be given in Lemma 3.1. Then for � > �∗,
the unique solution v(t, x) of problem (3.4) satisfies

lim
t→∞ |v(t, x) −U0(x; �)| = 0 uniformly in (−�, �), (3.5)

where U0(x; �) is the unique positive solution of the following problem

{
Vxx − αV + e−βτ

∫ �

−�
K�(τ, x − y) f (V (y))dy = 0, x ∈ (−�, �),

V (±�) = 0,
(3.6)

which can be shown to satisfy 0 < U0(x; �) < u∗. Moreover, U0(x; �) is strictly
increasing in � and U0(x; �) → u∗ as � → ∞ in L∞

loc(R). When � � �∗, the unique
solution v(t, x) of problem (3.4) satisfies v(t, x) → 0 uniformly in (−�, �) as t → ∞.

Proof We first prove that when � > �∗ the problem (3.6) admits a unique positive
solution. We shall use the sub-supersolution argument to establish its existence. Obvi-
ously, v̄ = u∗ is a supersolution to (3.6). To construct a positive subsolution, we recall
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from Lemma 3.1 that if � > �∗, the principal eigenvalue λ�
1 of (3.1) is negative, whose

corresponding positive eigenfunction is ϕ = cos( π
2� x). Set

v = δϕ for x ∈ [−�, �],

where δ > 0 is small such that

f (s) � f ′(0)eλ�
1τ s for s ∈ [0, δ], v < u∗. (3.7)

A simple calculation yields that for x ∈ (−�, �),

vxx − αv + e−βτ

∫ �

−�

K�(τ, x − y) f (v(y))dy

= −λ�v + e−βτ

∫ �

−�

K�(τ, x − y)
[
f (v(y)) − f ′(0)eλ�

1τ v(y)
]
dy � 0,

thus v is a positive subsolution. Thus, by a standard iteration technique, problem (3.6)
with � > �∗ admits a positive solution.

We then verify the uniqueness of the positive solution to (3.6). Fix � > �∗ and
suppose that problem (3.6) has two different positive solutions v1 and v2. With the
help of the Hopf boundary lemma, we can find M0 > 1 such that

M−1
0 v1 � v2 � M0v1 in (−�, �).

It is easily seen that M0v1 is a supersolution of (3.6) and M−1
0 v1 is a subsolution. As

a result, there exist a minimal and a maximal solution to (3.6) in the order interval
[M−1

0 v1, M0v1], whichwe denote by v∗ and v∗, respectively. Thus v∗ � vi � v∗ � u∗
for i = 1, 2. Hence it suffices to show that v∗ = v∗.

To achieve this goal, let us define

�∗ := sup{� ∈ R : �v∗ � v∗}.

Clearly 0 < �∗ � 1 and �∗v∗ � v∗. We next prove �∗ = 1, which will yield v∗ = v∗.
Suppose for contradiction that �∗ < 1. Then for

η := v∗ − �∗v∗,

it is easy to check that η �, �≡ 0, η(±�) = 0, and η satisfies

η′′ − αη = e−βτ

∫ �

−�

K�(τ, x − y)[�∗ f (v∗(y)) − f (v∗(y))]dy

� e−βτ

∫ �

−�

K�(τ, x − y)[ f (�∗v∗(y)) − f (v∗(y))]dy � 0,
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where the sub-linearity and monotonicity of f (z) for z � 0 are used. Hence we can
use the strong maximum principle and Hopf boundary lemma to deduce that η > 0 in
(−�, �), and η′(−�) > 0 > η′(�). It follows that η � εv∗ for some ε > 0 small, and
hence v∗ � (1 − ε)−1�∗v∗, which contradicts the definition of �∗. Consequently, we
must have �∗ = 1, and the uniqueness conclusion is proved.

In what follows, let us denote by U0(x; �) the unique positive solution of (3.6) for
� > �∗. It follows from the strong maximum principle and Hopf boundary lemma that

0 < U0(x; �) < u∗ in (−�, �) and (U0)x (−�; �) > 0.

Observe that U0(x; �1) is a supersolution of (3.6) provided that �1 > �. On the other
hand, we can choose a small 0 < δ < 1 so that (3.7) holds and δϕ < U0(x; �1) in
(−�, �), where ϕ is the unique positive eigenfunction of (3.1). Furthermore, δϕ is a
subsolution of (3.6). Thus, due to the uniqueness, U0(x; �) < U0(x; �1) in (−�, �).
Hence U0(x; �) is increasing in � for any � > �∗, and U∗(x) := lim�→∞ U0(x; �) �
u∗ is well defined on R. Furthermore, by standard regularity considerations, we see
that v = U∗ satisfies

vxx − αv + e−βτ

∫

R

G(τ, x − y) f (v(y))dy = 0, x ∈ R. (3.8)

As U∗(x) > U0(x; �) > 0 in (−�, �) for each � > �∗, we know that U∗(x) is a
positive solution of (3.8).

We claim that U∗(x) is a constant function. Indeed, the above argument leading
to U0(x; �) � U0(x; �1) for � < �1 can also be used to show that for any x0 ∈ R,
U0(x + x0; �) � U∗(x) for x ∈ [−� − x0, � − x0]. Letting � → ∞ we obtain
U∗(x + x0) � U∗(x) for all x, x0 ∈ R, which implies that U∗(x) is a constant
function. Thus we must have U∗(x) ≡ u∗, which yields that U0(x; �) → u∗ as
� → ∞ in L∞

loc(R).
Next, we prove (3.5). Fix � > �∗. We have

v(τ, x) > 0 in (−�, �) and vx (τ, �) < 0 < vx (τ,−�).

Therefore we can find M > 1 such that

v(x) := M−1U0(x; �) � v(τ, x) � v(x) := MU0(x; �) in [−�, �].

Let v1(t, x) and v2(t, x) be the solution of (3.4) with ψ(θ, x) replaced by v(x) and
by v(x), respectively. It then follows from the comparison principle that

v1(t, x) � v(t + τ, x) � v2(t, x) for (t, x) ∈ (0,∞) × [−�, �]. (3.9)

M > 1 implies that v is a lower solution of (3.6), and v is an upper solution.
It follows that v1(t, x) is increasing in t and v2(t, x) is decreasing in t . There-
fore limt→∞ v1(t, x) = V (x) exists and V (x) is a positive solution of (3.6). As
U0(x; �) is the unique positive solution to this problem, we obtain V = U0.
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Hence limt→∞ v1(t, x) = U0(x; �). Similarly limt→∞ v2(t, x) = U0(x; �). More-
over, a compactness consideration indicates that these convergences are uniform for
x ∈ [−�, �]. Hence (3.5) follows from (3.9).

Finally, it follows from [29, Theorem 2.2] that when � � �∗, the unique solution
v(t, x) of problem (3.4) satisfies v(t, x) → 0 uniformly in (−�, �) as t → ∞.

3.3 Vanishing phenomenon

In this subsection, we study the vanishing phenomenon of (P). First, we give the
following equivalence result.

Lemma 3.3 Assume that (H)holds and let �∗ begiven inLemma3.1. Then the following
three assertions are equivalent:

(i) h∞ or g∞ is finite; (ii) h∞ − g∞ � 2�∗; (iii) ‖u(t, ·)‖L∞([g(t),h(t)]) → 0 as t → ∞.

Proof “(i)⇒(ii)”. Without loss of generality we assume g∞ > −∞ and prove (ii) by
contradiction. Assume that h∞ − g∞ > 2�∗, then for sufficiently large t1 > τ , we
have h(t1 − τ) − g(t1 − τ) > 2�∗.

Now we consider an auxiliary problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut = uxx − αu + w(τ, x; f (u(t − τ, x))), t > t1, x ∈ (k(t), l(t)),
u(t, k(t)) = 0, k′(t) = −μux (t, k(t)), t > t1,
l(t) ≡ h(t1), u(t, l(t)) = 0, t > t1,
k(ϑ) = g(ϑ), l(ϑ) = h(ϑ), u(ϑ, x) = u(ϑ, x), ϑ ∈ [t1 − τ, t1], x ∈ [k(ϑ), l(ϑ)],

(3.10)
where for any t > t1, w(τ, x; f (u(t − τ, x))) is given by the following problem:

⎧
⎨

⎩

ws = Dwxx − βw, s ∈ (0, τ ], x ∈ (k(ω), l(ω)),

w(s, k(ω)) = 0 = w(s, l(ω)), s ∈ (0, τ ],
w(0, x) = f (u(t − τ, x)), x ∈ (k(t − τ), l(t − τ)),

(3.11)

with ω := s + t − τ . Clearly, u is a lower solution of (P). So k(t) � g(t) and
k(∞) > −∞ by our assumption. Using a similar argument as in [7, Lemma 2.2] by
straightening the free boundary one can show that

‖u(t, ·) −U0(· − k(∞) − �; �)‖C1([k(t),l(t)]) → 0 as t → ∞,

where U0(x; �) is the positive solution of (3.6) with � := l(∞)−k(∞)
2 >

h(t1)−k(t1)
2

> �∗. Therefore,

lim
t→∞ k′(t) = lim

t→∞[−μux (t, k(t))] = −μ(U0)x (−�; �) < 0.

This contradicts the assumption k(∞) > −∞.
“(ii)⇒(i)”. When (ii) holds, (i) is obvious.
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“(ii)⇒(iii)”. By the assumption and Lemma 3.2 we see that the unique positive
solution of the following problem

⎧
⎪⎨

⎪⎩

ūt = ūxx − αū + e−βτ
∫ �̃

−�̃
K

�̃
(τ, x − y) f (ū(t − τ, y))dy, t > 0, x ∈ [−�̃, �̃],

ū(t,±�̃) = 0, t > 0,
ū(0, x) �, �≡ 0, x ∈ [−�̃, �̃],

(3.12)
with �̃ := h∞−g∞

2 � �∗, ū(0, x − h∞+g∞
2 ) � u(0, x) in [g(0), h(0)], satisfies ū → 0

uniformly for x ∈ [−�̃, �̃] as t → ∞. The conclusion (iii) now follows from the
comparison principle.

“(iii)⇒(ii)”: We proceed by a contradiction argument. Assume that, for some small
ε > 0 there exists a large number t2 such that h(t)−g(t) > 2�∗ +4ε for all t > t2−τ .
It is known that the eigenvalue problem (3.1), with � = �∗ + ε, admits a negative
principal eigenvalue, denoted by λε, whose corresponding positive eigenfunction is
ϕε = cos( π

2(�∗+ε)
x). Set

v(x) := δϕε(x) for x ∈ [−�∗ − ε, �∗ + ε],

with δ > 0 small such that

f (s) � f ′(0)eλετ s for s ∈ [0, δ].

A direct calculation yields that for x ∈ [−�∗ − ε, �∗ + ε],

vt − vxx + αv − e−βτ

∫ �∗+ε

−�∗−ε

K�∗+ε(τ, x − y) f (v(t − τ, y))dy

= λεv + e−βτ

∫ �∗+ε

−�∗−ε

K�∗+ε(τ, x − y)
[
f ′(0)eλετ v(y) − f (v(y))

]
dy � 0.

Furthermore, one can choose δ sufficiently small such that for x ∈ [−�∗ − ε, �∗ + ε],

0 � δϕε(x) � min[−τ,0]×[−�∗−ε,�∗+ε] u(t2 + θ, x + �∗ + g(t2 + θ) + 2ε),

since the last function is positive for x ∈ [−�∗ − ε, �∗ + ε], which implies that

v(x) � u(t2 + θ, x + �∗ + g(t2 + θ) + 2ε) for θ ∈ [−τ, 0], x ∈ [−�∗ − ε, �∗ + ε].

By the comparison principle we have, for all t > 0,

u(t + t2, �
∗ + g(t2) + 2ε) � v(0) = δϕε(0) > 0,

contradicting (iii).
This proves the lemma.
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Next, we give a sufficient condition for vanishing, which indicates that if the initial
domain and the initial function are both small, then the species dies out eventually.

Lemma 3.4 Suppose (H) holds and let �∗ be given in Lemma 3.1. If h(0)−g(0) < 2�∗
and if ‖φ‖L∞([−τ,0]×[g,h]) is sufficiently small, then vanishing happens for the solution
(u, g, h) of (P).

Proof It suffices to construct an appropriate super solution that converges to 0 as
t → ∞. Without loss of generality, we may assume that g(0) + h(0) = 0.

Set �0 := h(0)−g(0)
2 . For δ > 0 sufficiently small, we define

k(t) := �0
(
1 + δ − δ

2
e−δt), t ≥ −τ. (3.13)

Clearly, k(t) is increasing and

�0 < �0

(

1 + δ − δ

2
eδτ

)

≤ k(t) < �0(1 + δ), t ≥ −τ. (3.14)

For fixed t ≥ 0, it is easily checked that

v̄(s, x) := e
−

(
β+ Dπ2

4k2(t)

)
s
cos

π

2k(t)
x

satisfies ⎧
⎨

⎩

v̄s = Dv̄xx − βv̄, s > 0, x ∈ (−k(t), k(t)),
v̄(s, x) ≡ 0, s > 0, x = ±k(t),
v̄(0, x) = cos π

2k(t) x, x ∈ [−k(t), k(t)].
Since k(t) is increasing, we thus obtain

⎧
⎨

⎩

v̄s = Dv̄xx − βv̄, s ∈ (0, τ ], x ∈ (−k(t − τ + s), k(t − τ + s)),
v̄(s, x) � 0, s ∈ (0, τ ], x = ±k(t − τ + s),
v̄(0, x) � cos π

2k(t−τ)
x, x ∈ [−k(t − τ), k(t − τ)].

For ε > 0, define
ū(t, x) = εe−δt cos

π

2k(t)
x . (3.15)

Next we verify that ū is a super solution of (P) when δ is small enough and ε is
suitably chosen. Indeed, in view of assumption (H) and (3.15), we have

f (ū(t − τ, x)) � f ′(0)ū(t − τ, x) � f ′(0)εe−δ(t−τ)v̄(0, x)

for x ∈ [−k(t − τ), k(t − τ)]. Thus

w̄(s, x; t) := f ′(0)εe−δ(t−τ)v̄(s, x)
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satisfies

⎧
⎨

⎩

w̄s = Dw̄xx − βw̄, s ∈ (0, τ ], x ∈ (−k(t − τ + s), k(t − τ + s)),
w̄(s, x) � 0, s ∈ (0, τ ], x = ±k(t − τ + s),
w̄(0, x) � f (ū(t − τ, x)), x ∈ [−k(t − τ), k(t − τ)].

Moreover, using x tan x ≥ 0 for |x | < π
2 , k

′(t) > 0, (3.3) and (3.14), we can infer
that for (t, x) ∈ (0,+∞) × (−k(·), k(·)),

(ūt − ūxx + αū − w̄(τ, x; t))
(

εe−δt cos
π

2k(t)
x

)−1

=
(
α − δ + π2

4k2(t)
− f ′(0)e−βτ− Dπ2

4k2(t)
τ
)

+ πxk′(t)
2k2(t)

tan
π

2k(t)
x

� α − δ + π2

4k2(t)
− f ′(0)eδτ−βτ− Dπ2

4k2(t)
τ

� α − δ + π2

4�20(1 + δ)2
− f ′(0)e

δτ−βτ− Dπ2

4�20(1+δ)2
τ

= λ
�0
1 − δ − π2

4�20

(

1 − 1

(1 + δ)2

)

− f ′(0)e
δτ−βτ− Dπ2

4�20
τ
(

e
Dπ2

4�20
τ×

(
1− 1

(1+δ)2

)

− e(λ
�0
1 −δ)τ

)

,

which is positive for all small δ > 0 as λ
�0
1 > 0.

Furthermore, for t > 0 we have ū(t,±k(t)) = 0 and −μūx (t, k(t)) = μεπ
2k(t)e

−δt �
μεπ
2�0

e−δt and k′(t) = δ2

2 e
−δt . Thus, choosing ε = �0δ

2

μπ
yields

− μūx (t, k(t)) ≤ k′(t), t > 0. (3.16)

Similarly, −μūx (t,−k(t)) ≥ −k′(t). Therefore, such a ū is a super solution for (P).
Consequently, for initial data (φ, g, h) satisfying the extra condition

0 ≤ φ(θ, x) ≤ �0δ
2

μπ
e−δθ cos

π

2k(θ)
x, (θ, x) ∈ [−τ, 0] × [g, h], (3.17)

the corresponding solution (u, g, h) of (P) satisfies u ≤ ū and−�0(1+δ) < −k(t) ≤
g(t) < h(t) ≤ k(t) < �0(1 + δ).

3.4 Spreading phenomenon

In this subsection, we study the spreading phenomenon of (P) and give some sufficient
conditions for spreading to happen.
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Lemma 3.5 Assume that (H) holds and let �∗ be given in Lemma 3.1. If h(0) − g(0)
� 2�∗, then spreading always happens for the solution (u, g, h) of (P), i.e., −g∞ =
h∞ = ∞ and

lim
t→∞ u(t, x) = u∗ locally uniformly in R, (3.18)

where u∗ is the unique positive root of f (v) − αeβτ v = 0.

Proof Since h(0) − g(0) � 2�∗, from g′(t) < 0 < h′(t) for t > 0 we deduce
h(t) − g(t) > 2�∗ for any t > 0. So the conclusion −g∞ = h∞ = ∞ follows from
Lemma 3.3. In what follows we prove (3.18).

First, we choose an increasing sequence of positive numbers �m such that �m → ∞
as m → ∞ and �m > �∗ for all m � 1. As −g∞ = h∞ = ∞, we can find tm large
such that [−�m, �m] ⊂ (g(t), h(t)) for t � tm − τ . It follows from Lemma 3.2 that
the following problem

⎧
⎨

⎩

ut = uxx − αu + e−βτ
∫ �m
−�m

K�m (τ, x − y) f (u(t − τ, y))dy, t > tm , x ∈ (−�m , �m),

u(t,±�m) = 0, t > tm ,

u(tm + θ, x) = u(tm + θ, x), θ ∈ [−τ, 0], x ∈ [−�m , �m ],

admits a unique positive solution um(t, x), which satisfies

um(t, x) → U0(x; �m) uniformly for x ∈ [−�m, �m] as t → ∞,

where U0(x; �m) is the unique positive solution of (3.6) with � = �m . Moreover, as
�m → ∞, U0(x; �m) → u∗ in L∞

loc(R). By the comparison principle we have

um(t, x) � u(t, x) for t � tm, x ∈ [−�m, �m].

Thus
lim inf
t→∞ u(t, x) � u∗ locally uniformly for x ∈ R. (3.19)

On the other hand, consider the problem

{
ūt = −αū + w̄(τ ; t), t > 0,
ū(θ) ≡ u∗ + ‖φ‖L∞([−τ,0]×[g,h]), θ ∈ [−τ, 0],

where for any t > 0, w̄(s; t) = w̄(s) is the unique solution of

{
w̄s = −βw̄, s ∈ (0, τ ],
w̄(0) = f (ū(t − τ)).

It follows from [15, chap. 4, Theorem 9.4] that the above problem has a unique
solution ū(t) and

ū(t) → u∗ as t → ∞.

123



A delay induced nonlocal free boundary problem 2087

It thus follows from the comparison principle that

lim sup
t→∞

u(t, x) � u∗ locally uniformly for x ∈ R.

Combining this with (3.19) we obtain

lim
t→∞ u(t, x) = u∗ locally uniformly for x ∈ R.

The proof is complete.

Using (3.18) and −g∞ = h∞ = ∞, it is also easy to show that the corresponding
solution w

(
s, x; t) to (Q) satisfies

lim
t→∞ w

(
s, x; t) = f (u∗)e−βs (3.20)

locally uniformly for (s, x) ∈ [0, τ ] × R.
We are now in a position to prove the following spreading–vanishing dichotomy

result.

Theorem 3.6 (Spreading–vanishing dichotomy) Assume that (H) holds and �∗ is
given in Lemma 3.1. Let (u, g, h) be the solution of (P) with the initial data
(φ(θ, x), g(θ), h(θ)) satisfying (1.4) and (1.5). Then one of the following alterna-
tives holds:

(i) Spreading: (g∞, h∞) = R and

lim
t→∞ u(t, x) = u∗ locally uniformly in R,

(ii) Vanishing: (g∞, h∞) is a finite interval with h∞ − g∞ � 2�∗ and

lim
t→∞ max

g(t)�x�h(t)
u(t, x) = 0.

Proof It is easy to see that there are two possibilities: (i) h∞ − g∞ � 2�∗; (ii) h∞ −
g∞ > 2�∗. In case (i), it follows fromLemma3.3 that limt→∞ ‖u(t, ·)‖L∞([g(t),h(t)]) =
0, i.e. vanishing happens. For case (ii), it follows from Lemma 3.5 and its proof that
(g∞, h∞) = R, u(t, ·) → u∗ as t → ∞ locally uniformly in R, i.e. spreading
happens, which ends the proof.

Under an additional condition on f , namely

b(∞) = lim
u→∞ f (u)/u > 0, (3.21)

we can show that spreading happens if the initial function φ(θ, x) is large enough, as
described in the following result.
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Lemma 3.7 Assume that (H) holds. For any given triple (φ(θ, x), g(θ), h(θ)) satis-
fying (1.4) and (1.5), let (u, g, h) be the solution of (P) with u(θ, x) = σφ(θ, x) in
[−τ, 0] × [g, h] for some σ > 0. If (3.21) holds, then there exists σ0 > 0 such that
spreading happens when σ � σ0.

Proof To stress the dependence of the solution (u, g, h) on σ , we will denote it by
(uσ , gσ , hσ ). Recall that

uσ (t, x) = σφ(t, x), gσ (t) = g(t), hσ (t) = h(t) for t ∈ [−τ, 0].

By the comparison principle we easily see that uσ (t, x), hσ (t) and −gσ (t) are all
increasing in σ for fixed t > 0 and x ∈ (gσ (t), hσ (t)). Therefore if spreading happens
for σ = σ1, then spreading happens for all σ � σ1.

Assume by way of contradiction the desired conclusion is false; then by Theorem
3.6 vanishing happens for all σ > 0, and hence

hσ (t) − gσ (t) < 2�∗ for all t � 0 and σ > 0. (3.22)

We now let g∗(t) and h∗(t) be continuous extensions of g(t) and h(t) from [−τ, 0]
to [−τ, τ ], respectively, with the following properties: g∗|[0,τ ], h∗|[0,τ ] ∈ C1([0, τ ]),
they are constant in [0, ε] for some small ε > 0, and

g′∗(t) � 0 � h′∗(t) in (0, τ ], h∗(τ ) − g∗(τ ) > 2�∗.

By the monotonicity of f (u)/u and (3.21), we have

f (u)/u � σ∞ := lim
ξ→∞ f (ξ)/ξ > 0 for any u > 0.

Then for t ∈ [0, τ ], let w∗(s, x; t) denote the unique solution of the initial boundary
value problem

⎧
⎨

⎩

ws = Dwxx − βw, s ∈ (0, τ ], x ∈ (g∗(s + t − τ), h∗(s + t − τ)),

w(s, x) = 0, s ∈ (0, τ ], x ∈ {g∗(s + t − τ), h∗(s + t − τ)},
w(0, x) = σ∞φ(t − τ, x), x ∈ [g∗(t − τ), h∗(t − τ)],

(3.23)
and let u∗(t, x) be the unique solution of

⎧
⎨

⎩

ut = uxx − αu + w∗(τ, x; t), t ∈ (0, τ ], x ∈ (g∗(t), h∗(t)),
u(t, x) = 0, t ∈ (0, τ ], x ∈ {g∗(t), h∗(t)},
u(θ, x) = φ(θ, x), θ ∈ [−τ, 0], x ∈ [g∗(θ), h∗(θ)].

(3.24)

We now define, for any k � 1, t ∈ [0, τ ] and s ∈ [0, τ ],

uk(t, x) := ku∗(t, x), wk(s, x; t) := kw∗(s, x; t).
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Then
⎧
⎨

⎩

(uk)t = (uk)xx − αuk + wk(τ, x; t), t ∈ (0, τ ], x ∈ (g∗(t), h∗(t)),
uk(t, x) = 0, t ∈ (0, τ ], x ∈ {g∗(t), h∗(t)},
uk(0, x) = kφ(0, x), x ∈ [g∗(0), h∗(0)],

and
⎧
⎪⎪⎨

⎪⎪⎩

(wk)s = D(wk)xx − βwk, s ∈ (0, τ ], x ∈ (g∗(s + t − τ), h∗(s + t − τ)),

wk(s, x) = 0, s ∈ (0, τ ], x ∈ {g∗(s + t − τ), h∗(s + t − τ)},
wk(0, x) = kσ∞φ(t − τ, x)
� f (kφ(t − τ, x)) = f (ku∗(t − τ, x)), x ∈ [g∗(t − τ), h∗(t − τ)].

Since w∗ � 0, we can apply the parabolic Hopf boundary lemma to (3.24) to obtain

∂xu∗(t, h∗(t)) < 0 < ∂xu∗(t, g∗(t)) for t ∈ (0, τ ].

Thus we can find δ > 0 such that

∂xu∗(t, h∗(t)) � −δ and ∂xu∗(t, g∗(t)) � δ for t ∈ [ε, τ ].

It follows that, for all large k,

−μ∂xuk(t, h∗(t)) � μkδ � h′∗(t) and − μ∂xuk(t, g∗(t)) � −μkδ � g′∗(t) for t ∈ [ε, τ ].

Since h′∗(t) = g′∗(t) = 0 for t ∈ [0, ε], the above inequalities also hold for t ∈
[0, ε]. Thus we see that (uk, g∗, h∗) forms a lower solution to the problem satisfied
by (uσ , gσ , hσ ) (for t � τ ) with σ = k, for all large k. It follows that

hσ (τ ) − gσ (τ ) � h∗(τ ) − g∗(τ ) > 2�∗ for all large σ,

which contradicts (3.22). Therefore the desired conclusion holds.

3.5 Proof of Theorem 1.2

With the preparation of the previous subsections, we are now ready to complete the
proof of Theorem 1.2.

By Lemma 3.5, we find that spreading happens when h(0) − g(0) � 2�∗, where
�∗ is given in Lemma 3.1. Hence in this case we have σ ∗ = 0 for any given
(φ(θ, x), g(θ), h(θ)) satisfying (1.4) and (1.5).

In what follows we consider the remaining case h(0) − g(0) < 2�∗. Define

� := {
σ0 : vanishing happens for σ ∈ (0, σ0]

}
.

By Lemma 3.4, we see that vanishing happens for all small σ > 0, thus � �= ∅, and

σ ∗ := sup� ∈ (0,+∞].
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If σ ∗ = ∞, then there is nothing left to prove. Suppose σ ∗ ∈ (0,∞). Then by
definition vanishing happens when σ ∈ (0, σ ∗). By the comparison principle we see
that spreading happens for σ > σ ∗.

It remains to prove that vanishing happens when σ = σ ∗. Otherwise it follows
from Theorem 3.6 that spreading must happen when σ = σ ∗ and we can find t0 > 0
such that h(t0) − g(t0) > 2�∗ + 1. By the continuous dependence of the solution of
(P) on its initial values, we find that if ε > 0 is sufficiently small, then the solution
of (P) with u(θ, x) = (σ ∗ − ε)φ(θ, x) in [−τ, 0] × [g, h], denoted by (u∗

ε , g
∗
ε , h∗

ε ),
satisfies

h∗
ε (t0) − g∗

ε (t0) > 2�∗.

But by Lemma 3.5, this implies that spreading happens to (u∗
ε , g

∗
ε , h∗

ε ), a contradiction
to the definition of σ ∗.

Finally, if (3.21) holds, then by Lemma 3.7 we have σ ∗ < ∞. ��

4 Asymptotic spreading speed

Throughout this section we assume that (H) holds and (u, g, h) is a solution of (P)
for which spreading happens.

4.1 A semi-wave problem

Let c � 0. Introducing the transform

(t, x) → (t, ξ) with ξ = ξ(t, x) = x − h(t)

and writing

ũ(t, ξ) = u(t, x), w̃(t, ξ) = w(t, x),

then problem (P) is changed into the following form:

⎧
⎪⎪⎨

⎪⎪⎩

ũt = ũξξ + h′(t)ũξ − αũ + w̃(τ, ξ ; t), t > 0, ξ ∈ (g(t) − h(t), 0),
ũ(t, ξ) = 0, g′(t) = −μũξ (t, ξ), t > 0, ξ = g(t) − h(t),
ũ(t, 0) = 0, h′(t) = −μũξ (t, 0), t > 0,
ũ(θ, ξ) = φ(θ, ξ), θ ∈ [−τ, 0], ξ ∈ (g(θ) − h(θ), 0),

(4.1)
where w̃(s, ξ ; t) = w̃(s, ξ) is the solution to

⎧
⎨

⎩

w̃s = Dw̃ξξ + h′(s + t − τ)w̃ξ − βw̃, s ∈ (0, τ ], ξ ∈ (g(s + t − τ) − h(s + t − τ), 0),
w̃(s, 0) = 0 = w̃(s, ξ), s ∈ (0, τ ], ξ = g(s + t − τ) − h(s + t − τ),

w̃(0, ξ) = f (ũ(t − τ, ξ)), ξ ∈ (g(t − τ) − h(t − τ), 0).
(4.2)
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Since spreading happens, we have

lim
t→∞[g(t) − h(t)] = −∞.

If we heuristically assume that limt→∞ h′(t) = c and there exists U ∈ C2((−∞, 0],
[0,∞)) with U (−∞) = u∗ such that

lim
t→∞ ũ(t, ξ) = U (ξ) locally uniformly in ξ ∈ (−∞, 0],

then letting t → ∞ in (4.1) and (4.2), we obtain a limiting elliptic problem for U in
(−∞, 0]: {

Uξξ + cUξ − αU + W = 0, ξ < 0,
U (0) = 0, U (−∞) = u∗, (4.3)

where W (ξ) = v(τ, ξ) and v(s, ξ) satisfies

⎧
⎨

⎩

vs = Dvξξ + cvξ − βv, s ∈ (0, τ ], ξ < 0,
v(s, 0) = 0, s ∈ (0, τ ],
v(0, ξ) = f (U (ξ)), ξ � 0.

(4.4)

Using the reflection method, we can solve v(τ, ξ) explicitly to obtain

v(τ, ξ) =
∫ 0

−∞
K(c, ξ, x) f (U (x))dx, ξ < 0, (4.5)

where

K(c, ξ, x) := e−βτ− c2
4D τ− c

2D (ξ−x)[G(τ, ξ − x) − G(τ, ξ + x)
]
, ξ, x � 0, (4.6)

and

G(τ, y) := 1√
4Dπτ

e− y2

4Dτ , y ∈ R. (4.7)

Substituting (4.5) into (4.3), we obtain a nonlocal elliptic problem

{
Uξξ + cUξ − αU + ∫ 0

−∞ K(c, ξ, x) f (U (x))dx = 0, ξ < 0,
U (0) = 0, U (−∞) = u∗. (4.8)

Lemma 4.1 The following statements are valid:

(i) For any c � 0, K(c, ξ, x) < e−βτG(τ, ξ + cτ − x) for ξ � 0 and x � 0.
(ii) For any c � 0, K(c, ξ, x) > 0 for ξ < 0 and x < 0, and K(c, ξ, x) = 0 when

xξ = 0.
(iii) If ϕ ∈ L∞((−∞, 0]) is non-increasing, then

∫ 0
−∞ K(c, ξ, x)ϕ(x)dx is non-

increasing in ξ � 0 and c ≥ 0.
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Proof Items (i) and (ii) follow directly from the definition of K. As for item (iii), fix
0 � c1 < c2. Note that

∫ 0
−∞ K(ci , ξ, x)ϕ(x)dx for i = 1, 2 are the time-τ solutions

vi (τ, ξ) of the following problems, respectively:

⎧
⎨

⎩

vis = Dviξξ + civiξ − βvi , s ∈ (0, τ ], ξ < 0,
vi (s, 0) = 0, s ∈ (0, τ ],
vi (0, ξ) = ϕ(ξ), ξ � 0.

(4.9)

Noting that ϕ is non-increasing in ξ � 0, so are vi (τ, ξ), i = 1, 2, thanks to the
parabolic comparison principle. Hence, v := v1 − v2 satisfies

⎧
⎨

⎩

vs − Dvξξ + βv = c1v1ξ − c2v2ξ � c1vξ , s ∈ (0, τ ], ξ < 0,
v(s, 0) = 0, s ∈ (0, τ ],
v(0, ξ) = 0, ξ � 0.

The parabolic comparison principle then infers that v(τ, ξ) � 0, i.e.,
∫ 0
−∞ K(c, ξ, x)

ϕ(x)dx is non-increasing in c � 0. The proof is complete.

Define

c0 := inf
γ>0

λ(γ )

γ
, (4.10)

where λ = λ(γ ) is the unique positive root of the following equation

λ = γ 2 − α + f ′(0)e(Dγ 2−β−λ)τ . (4.11)

It follows from (4.11) and (H) that λ(γ ) is positive at γ = 0 and greater than γ 2 − α

for all large γ . Therefore,

lim
γ↓0

λ(γ )

γ
= ∞ = lim

γ↑∞
λ(γ )

γ
.

Hence, c0 := infγ>0
λ(γ )
γ

is attained at some γ ∗.

Theorem 4.2 Assume that (H) holds. Let c0 be given in (4.10). Then problem (4.8)
admits a unique positive solution (denoted by Uc) if and only if 0 � c < c0. Further,
Uc is continuous in c ∈ [0, c0) and Uc

ξ (ξ) < 0 for ξ � 0. For 0 � c1 < c2 < c0,

Uc1(ξ) > Uc2(ξ) for ξ < 0, 0 < Uc1
ξ (0) < Uc2

ξ (0) and limc↑c0 Uc
ξ (0) = 0.

Proof Assume that Uc(ξ) � 0 for ξ < 0 is a solution of (4.8), then by the strong
maximum principle we can infer that Uc(ξ) > 0 for ξ < 0. The rest of the proof is
divided into five parts.

Part 1. Existence of a positive and decreasing solution when c ∈ [0, c0).
We assume that c ∈ [0, c0) and employ the super and subsolution method. For this

purpose, we first construct a monotone operator.
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Let

M := {all non-increasing functions from (−∞, 0] to [0, u∗]}.

Let λ1 < λ2 be the two distinct roots of λ2 + cλ − α = 0 for c ∈ [0, c0). Clearly,
λ1 < 0 < λ2. Define

Q[ϕ](ξ) : = 1

λ2 − λ1

(
eλ1ξ − eλ2ξ

)
∫ ξ

−∞
e−λ1s

∫ 0

−∞
K(c, s, x) f (ϕ(x))dxds

+ 1

λ2 − λ1
eλ2ξ

∫ 0

ξ

(
e−λ2s − e−λ1s

)
∫ 0

−∞
K(c, s, x) f (ϕ(x))dxds, ξ � 0.

Since f (0) = 0, we have Q[0](ξ) ≡ 0 for ξ � 0. In view of Lemma 4.1 (i), we have

Q[u∗](ξ) � 1

λ2 − λ1

[(
eλ1ξ − eλ2ξ

)
∫ ξ

−∞
e−λ1sds + eλ2ξ

∫ 0

ξ

(
e−λ2s − e−λ1s

)
ds

]
e−βτ f (u∗).

After a simple calculation, we obtain

Q[u∗](ξ) � 1

λ2 − λ1

( 1

λ2
− 1

λ1

)
e−βτ f (u∗) = − 1

λ1λ2
e−βτ f (u∗),

which, combined with λ1λ2 = −α and e−βτ f (u∗) = αu∗, yields

Q[u∗](ξ) � u∗ for ξ � 0.

Hence, it follows from Lemma 4.1 that Q : M → M satisfies

u∗ � Q[u∗] � Q[ϕ1] � Q[ϕ2] � Q[0] = 0 for u∗ � ϕ1 � ϕ2 � 0.

Moreover, it is not difficult to check that

{
(Q[ϕ])′′(ξ) + c(Q[ϕ])′(ξ) − α(Q[ϕ])(ξ) + ∫ 0

−∞ K(c, ξ, x) f (ϕ(x))dx = 0, ξ < 0,
Q[ϕ](0) = 0.

(4.12)
Therefore, a fixed point of Q satisfies the first equation of (4.8).

Next, we construct a lower fixed point for Q. We introduce a family of bistable
problems, the unique traveling wave solutions of which will be used. For ε > 0, we
define

fε(u) :=
{

(1 − ε) f
( u
1−ε

)
, u � 0,

−ε f
( − u

ε

)
, u < 0.

Let

δ0 := 1

2τ
ln

f ′(0)
αeβτ

.
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Since f ′(0) > αeβτ , we have δ0 > 0. Consider the following problem

uε
t = uε

xx − αuε + e−(β+δ0ε)τ

∫

R

G(τ, y) fε(u
ε(t − τ, x − y))dy, t > 0, x ∈ R.

(4.13)
Claim: The following statements are valid:

(i) For ε ∈ (0, 1), e−(β+δ0ε)τ fε(u) = αu admits exactly three roots uε− < 0 < uε+
with the properties that uε+ ↑ u∗ and uε− ↑ 0 as ε ↓ 0, uε+ ↓ 0 and uε− ↓ −u∗

1 < 0
as ε ↑ 1, where u∗

1 is the unique positive root of the equation

f (u) − αe(β+δ0)τu = 0,

whose existence is guaranteed by the choice of δ0 and (H).
(ii) There exist a unique cε and a unique monotone function U ε ∈ C2(R, R) with

U ε(−∞) = uε+, U ε(+∞) = uε−, U ε(0) = 0

such that uε(t, x) := U ε(x − cεt) = U ε(ξ) solves (4.13), that is

U ε
ξξ + cεU ε

ξ −αU ε + e−(β+δ0ε)τ

∫

R

G(τ, y) fε(U
ε(ξ − y+ cετ ))dy = 0, ξ ∈ R.

(4.14)
(iii) cε is continuous in ε ∈ (0, 1), cε � c0, limε→0 cε = c0 and there exists ε1 ∈

(0, 1) such that cε < 0 for ε ∈ (ε1, 1).

Let us postpone the proofs of the claim to Part 5. In the following we construct a
lower fixed point of Q. For lε > 0 to be specified later, we define

U ε(ξ) :=
{
U ε(ξ + lε), ξ < −lε,
0, ξ ∈ [−lε, 0].

By the claim we know that for any c ∈ [0, c0) there exists ε ∈ (0, 1) such that

cε = c.

Then with such an ε we show that U ε(ξ) is a sub-solution of (4.8) provided that lε is
sufficiently large. Set

L[U ε](ξ) := U ε
ξξ + cεU ε

ξ − αU ε +
∫ 0

−∞
K(cε, ξ, x) f (U ε(x))dx .

For ξ > −lε, clearly L[U ε](ξ) = ∫ 0
−∞ K(cε, ξ, x) f (U ε(x))dx � 0. For ξ < −lε,

L[U ε](ξ) = U ε
ξξ (ξ + lε) + cεU ε

ξ (ξ + lε) − αU ε(ξ + lε)

+
∫ −lε

−∞
K(cε, ξ, x) f (U ε(x + lε))dx . (4.15)
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In view of (4.14), and due to U ε(ξ) � 0 for ξ � 0 and the concavity of fε(u) for
u � 0, we have

U ε
ξξ (ξ + lε) + cεU ε

ξ (ξ + lε) − αU ε(ξ + lε)

= −e−(β+δ0ε)τ

∫

R

G(τ, y) fε
(
U ε

(
ξ + lε − y + cετ

))
dy

= −e−(β+δ0ε)τ

∫

R

G
(
τ, ξ + lε + cετ − y

)
fε

(
U ε(y)

)
dy

� −e−(β+δ0ε)τ

∫ −lε

−∞
G

(
τ, ξ + cετ − y

)
fε(U

ε(y + lε))dy

� −e−(β+δ0ε)τ

∫ −lε

−∞
G

(
τ, ξ + cετ − y

)
f (U ε(y + lε))dy.

This, together with (4.15), implies that L[U ε](ξ) � 0 for ξ < −lε provided that

K(cε, ξ, x) � e−(β+δ0ε)τG
(
τ, ξ + cετ − x

)
for ξ, x < −lε,

which, in view of the definitions of K in (4.6) and G in (4.7), is equivalent to

e− (cε)2
4D τ− cε

2D (ξ−x)
[
e− (ξ−x)2

4Dτ − e− (ξ+x)2

4Dτ

]
� e−δ0ετ− (ξ+cετ−x)2

4Dτ for ξ, x < −lε.

The above inequality can be simplified into the form

(
1 − e−δ0ετ − e− ξ x

Dτ

)
e− (ξ+cετ−x)2

4Dτ � 0 for ξ, x < −lε,

which is true provided that 1 − e−δ0ετ − e− (lε)2
Dτ � 0, that is

lε �
√

−Dτ ln
(
1 − e−δ0ετ

)
.

Now we are ready to verify that U ε is a lower fixed point of Q. In view of
L[U ε](ξ) � 0 for ξ ∈ (−∞, 0) \ {−lε}, and U ε

ξ (−lε − 0) � 0 = U ε
ξ (−lε + 0),

we can easily deduce

Q[U ε](ξ) � U ε(ξ) for ξ � 0.

Define the iterative scheme

Un(ξ) := Q[Un−1](ξ) (n � 1), with U 0(ξ) = U ε(ξ) for ξ � 0.

Then {Un} is non-decreasing in n and non-increasing in ξ � 0 with U 0 � Un � u∗
for n � 1. By the monotonicity of Un in n, Un is convergent. Let U∞ ∈ M be the
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limit. Then U 0 � U∞ � u∗. By Lebesgue’s dominated convergence theorem, we
infer that

Q[U∞](ξ) = U∞(ξ) for ξ � 0,

from which we can further infer that U∞(0) = 0 and U∞ ∈ C2((−∞, 0)) with
U∞

ξ (−∞) = 0 = U∞
ξξ (−∞). By (4.12)we see thatU∞(−∞) solves the first equation

in (4.8), that is,

− αU∞(−∞) + lim
ξ→−∞

∫ 0

−∞
K(c, ξ, x) f (U∞(x))dx = 0. (4.16)

Using the explicit form of K, we compute to have

eβτ

∫ 0

−∞
K(c, ξ, x) f (U∞(x))dx

=
∫ 0

−∞
G(τ, ξ + cτ − x) f (U∞(x))dx −

∫ 0

−∞
G(τ, ξ + cτ + x)e

c
D x f (U∞(x))dx

=
∫ ∞
ξ

G(τ, x + cτ) f (U∞(ξ − x))dx −
∫ ξ

−∞
G(τ, x + cτ)e

c
D (x−ξ) f (U∞(x − ξ))dx

:= I (ξ) − I I (ξ).

By Lebesgue’s dominated convergence theorem, we obtain, for any ξ0 < 0,

f (U∞(−∞))

∫ ∞

−∞
G(τ, x)dx � lim sup

ξ→−∞
I (ξ)

� lim inf
ξ→−∞ I (ξ) � f (U∞(−∞))

×
∫ ∞

ξ0

G(τ, x)dx,

and

0 � lim sup
ξ→−∞

I I (ξ) � f (u∗) lim sup
ξ→−∞

∫ ξ

−∞
G(τ, x + cτ)dx = 0,

and hence, (4.16) becomes −αU∞(−∞) + e−βτ f (U∞(−∞)) = 0, from which
we see that U∞(−∞) = 0 or u∗. However, U∞(−∞) � U 0(−∞) = uε+ > 0.
Therefore, U∞(−∞) = u∗.

Thus we have shown thatU∞ is a solution of (4.8). By the elliptic strong maximum
principle, we infer that U∞(ξ) is decreasing in ξ � 0, and positive for ξ < 0.

Part 2. Non-existence when c � c0.

123



A delay induced nonlocal free boundary problem 2097

We employ a sliding argument. It follows from (4.10) and (4.11) that for any c � c0,
there exists γ1 > 0 such that c = λ(γ1)

γ1
. Consequently,

γ 2
1 − cγ1 − α + f ′(0)e(Dγ 2

1 −β−cγ1)τ = 0.

Next we show that for any ε > 0,U
ε
(ξ) := εe−γ1ξ is a supersolution of (4.8). Indeed,

thanks to the inequalities

f (u) � f ′(0)u for u � 0, K(c, ξ, x) � e−βτG(τ, ξ − x + cτ) for ξ � 0 and x � 0,

we have

U
ε

ξξ + cU
ε

ξ − αU
ε +

∫ 0

−∞
K(c, ξ, x) f (U

ε
(x))dx

� U
ε

ξξ + cU
ε

ξ − αU
ε +

∫ 0

−∞
K(c, ξ, x) f ′(0)U ε

(x)dx

� U
ε

ξξ + cU
ε

ξ − αU
ε + e−βτ f ′(0)

∫

R

G(τ, ξ − x + cτ)U
ε
(x)dx

= U
ε
(ξ)

[
γ 2
1 − cγ1 − α + f ′(0)e(Dγ 2

1 −β−cγ1)τ
]

= 0. (4.17)

To employ the sliding method, we assume for the sake of contradiction that U is a
solution of (4.8). Define W̃ ε(ξ) := U

ε
(ξ) − U (ξ) for ξ � 0. Since W̃ ε(−∞) = ∞

and W̃ ε(0) = ε > 0, we may choose ε appropriately such that W̃ ε � 0 and vanishes
at some ξ∗ < 0. Hence, by (4.17) we can infer that for ξ < 0,

W̃ ε
ξξ + cW̃ ε

ξ − αW̃ ε � −
∫ 0

−∞
K(c, ξ, x)

[
f
(
U

ε
(x)

) − f (U (x))
]
dx � 0,

where the monotonicity of f (s) in s � 0 and Lemma 4.1 (iii) are used. By the
elliptic strong maximum principle, we infer that W̃ ε(ξ) ≡ 0 for ξ � 0, leading to a
contradiction. The non-existence is thus proved.

Part 3. Uniqueness when c ∈ [0, c0).
Fix c ∈ [0, c0). Assume that U 1 and U 2 are two positive solutions of (4.8). Then

Ui
ξ (ξ) < 0 for ξ � 0 with Ui (−∞) = u∗ and Ui (0) = 0 for i = 1, 2. Hence, we

can define the number

ρ∗ := inf{ρ � 1 : ρU 1(ξ) > U 2(ξ), ∀ξ < 0}.

We show that ρ∗ = 1. Otherwise, ρ∗ > 1. Define Ṽ := ρ∗U 1 − U 2. Then Ṽ � 0,
Ṽ (0) = 0 and Ṽ (−∞) = (ρ∗ − 1)u∗ > 0. By the concavity of f and ρ∗ > 1, we
have ρ∗ f

(
U 1

)
� f

(
ρ∗U 1

)
, and hence

Ṽξξ + cṼξ − αṼ �
∫ 0

−∞
K(c, ξ, x)

[
f
(
U 2(x)

) − f
(
ρ∗U 1(x)

)]
dx � 0, ξ < 0.
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We may now use the elliptic strong maximum principle and Hopf’s boundary lemma
to deduce that Ṽ � δU 2 in (−∞, 0] for some δ > 0 small, and this infers that

ρ∗

1 + δ
U 1(ξ) � U 2(ξ) ∀ξ < 0,

which contradicts the definition of ρ∗. Therefore, ρ∗ = 1 and U 1(ξ) � U 2(ξ) for
ξ � 0. Exchange the roles of U 1 and U 2, we obtain that U 2(ξ) � U 1(ξ) for ξ � 0.
Therefore, U 1 ≡ U 2 for ξ � 0, and the uniqueness is proved.

Part 4. Monotonicity and continuity of Uc in c ∈ [0, c0) with limc↑c0 Uc
ξ (0) = 0.

First, we prove the monotonicity of Uc in c ∈ [0, c0). Let 0 � c1 < c2 < c0. We
see thatUci

ξ (ξ) < 0 for ξ � 0 withUci (−∞) = u∗ andUci (0) = 0, i = 1, 2. Hence,
we may define

M∗ := inf{M � 1 : MUc1(ξ) > Uc2(ξ), ∀ξ < 0}.

We show that M∗ = 1. Otherwise, M∗ > 1. Define� := M∗Uc1 −Uc2 . Then� � 0,
�(0) = 0 and �(−∞) = (M∗ − 1)u∗ > 0. By direct computations, we have

�ξξ + c1�ξ − α�

= (c2 − c1)U
c2
ξ +

∫ 0

−∞
K(c2, ξ, x) f (Uc2 (x))dx −

∫ 0

−∞
K(c1, ξ, x)M∗ f (Uc1(x))dx

� (c2 − c1)U
c2
ξ +

∫ 0

−∞
K(c2, ξ, x) f (Uc2 (x))dx −

∫ 0

−∞
K(c1, ξ, x) f

(
M∗Uc1(x)

)
dx

� (c2 − c1)U
c2
ξ +

∫ 0

−∞
K(c1, ξ, x)

[
f (Uc2 (x)) − f

(
M∗Uc1(x)

)]
dx � 0,

where the concavity of f (s) in s � 0, themonotonicity ofUc2(ξ) in ξ � 0 and Lemma
4.1 (iii) are used. By a similar argument as in Part 3, we can obtain a contradiction
with the definition of M∗. Thus M∗ = 1 and Uc1(ξ) � Uc2(ξ) for ξ � 0. Repeating
the above argument with M∗ = 1, by the uniqueness of solution to (4.8), the strong
elliptic maximum principle and Hopf boundary lemma, we have

Uc1(ξ) > Uc2(ξ) for ξ < 0 and Uc1(0) = 0 = Uc2(0) with Uc1
ξ (0) < Uc2

ξ (0),

which completes the proof of the monotonicity of Uc in c ∈ [0, c0).
Next, we employ a contradiction argument to show that limc↑c0 Uc

ξ (0) = 0. So
we assume that limc↑c0 Uc

ξ (0) < 0. Then, as c ↑ c0, Uc(ξ) converges to some non-
increasing function U∗(ξ), and U∗ satisfies

{
U∗

ξξ + c0U∗
ξ − αU∗ + ∫ 0

−∞ K(c0, ξ, x) f (U∗(x))dx = 0, ξ < 0,
U∗

ξ (0) < 0 = U∗(0).
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By the monotonicity of U∗ we can infer that U∗(−∞) = u∗ as in Part 1. Therefore,
U∗ is a solution of (4.8) with c = c0, a contradiction to the nonexistence of solution
when c � c0.

Finally, let us prove the continuity of Uc in c ∈ [0, c0). Fix c̄ ∈ (0, c0) and
choose a sequence {cn} ⊂ (0, c0) with cn ↗ c̄ as n → ∞. It follows from Part
3 that Ucn , the unique positive solution of (4.8) with c = cn , is decreasing in n
and Uc̄(ξ) � Ucn (ξ) � u∗ for ξ � 0. Using standard regularity theory for elliptic
equations (up to the boundary), we see that

Ucn → Z locally uniformly in C2((−∞, 0]) as n → ∞,

where Z is a positive solution of (4.8) with c = c̄ and Z � Uc̄. The proved uniqueness
of positive solution to (4.8) in Part 3 yields that Z ≡ Uc̄.

Similarly, fix c ∈ [0, c0) and choose a sequence {c̃n} ⊂ (0, c0) with c̃n ↘ c as
n → ∞. We can obtain that

Uc̃n → Uc locally uniformly in C2((−∞, 0]) as n → ∞,

where Uc̃n and Uc are, respectively, the unique positive solution of (4.8) with c = c̃n
and c = c. Thus the continuity of Uc in c ∈ [0, c0) is proved.

Part 5. Proof of the claim.
Statement (i) follows from direct computations. Statement (ii) follows from [27].

As for statement (iii), the continuity of cε follows from [3]. It then remains to show
that

cε � c0, lim
ε→0

cε = c0, lim
ε→1

cε < 0.

Indeed, by the definition of c0, we see that there exists γ ∗ > 0 such that for any
M > 0, the function ū(t, x) := Meγ ∗(c0t−x) satisfies

−ūt + ūxx − αū + e−βτ f ′(0)
∫

R

G(τ, y)ū(t − τ, x − y)dy = 0

for all (t, x). Choose appropriateM such that ū(0, x) � U ε(x) and ū(0, x0) = U ε(x0)
for some x0. Since fε(s) � f (s) � f ′(0)s for s � 0, we can infer by the comparison
principle that U ε(x − cεt) � ū(t, x) for t > 0 and x ∈ R, and hence, cε � c0 and
the limit c0 := limε→0 cε satisfies c0 � c0. Next, we show that c0 � c0. Denote the
limit (up to subsequence) of U ε as ε → 0 by U 0, then (U 0, c0) satisfies (4.14) with
ε = 0. Since U 0(0) = u∗

2 , we have U
0(−∞) = u∗ and U 0(0) = 0. This implies that

U 0(x − c0t) is a traveling wave solution of ut = uxx − αu + eβτ
∫

R
G(τ, y) f (u(t −

τ, x − y))dy, for which the minimal wave speed had been shown to be c0 (see e.g.
[11]). Hence, c0 � c0. Finally, we show that limε→1 cε < 0. By [3], we know that cε

has the same sign as the integral
∫ uε+
uε−

[
e−(β+δ0ε)τ fε(s) − αs

]
ds. Due to the choice of

δ0 and f ′(0) > αeβτ , we see that f (u)/u = αe(β+δ0)τ has a unique positive root u∗
1.
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Moreover, it is easily seen that, as ε → 1, we have uε+ → 0, uε− → −u∗
1 and

∫ uε+

uε−

[
e−(β+δ0ε)τ fε(s) − αs

]
ds →

∫ u∗
1

0

[
−e−(β+δ0)τ f (s) + αs

]
ds.

Therefore, cε < 0 when ε is close to 1 as −e−(β+δ0)τ f (s) + αs < 0 for s ∈ (0, u∗
1).

Based on Lemma 4.1 and Theorem 4.2, we obtain the following result.

Proposition 4.3 Assume that (H) holds. Let c0 be given in (4.10) andUc be the unique
positive solution of problem (4.8) with c ∈ [0, c0). Set

Wc(ξ) :=
∫ 0

−∞
K(c, ξ, x) f (Uc(x))dx;

then Wc(ξ) is non-increasing in ξ � 0, Wc(−∞) = f (u∗)e−βτ , Wc(0) = 0 >

Wc
ξ (0). Further, Wc(ξ) = v(τ, ξ), where v(s, ξ) satisfies

⎧
⎨

⎩

vs = Dvξξ + cvξ − βv, s ∈ (0, τ ], ξ < 0,
v(s, 0) = 0, s ∈ (0, τ ],
v(0, ξ) = f (Uc(ξ)), ξ � 0.

Theorem 4.4 Assume that (H) holds. Let c0 be given in (4.10). For each μ > 0, there
exists a unique c∗ = c∗

μ ∈ (0, c0) such that −μUc∗
ξ (0) = c∗, where Uc∗

is the unique
positive solution of (4.8) with c replaced by c∗. Moreover, c∗

μ is increasing in μ and

lim
μ→∞ c∗

μ = c0.

Proof By Theorem 4.2, for each c ∈ [0, c0), problem (4.8) admits a unique solution
Uc(ξ) > 0 for ξ < 0 and Uc

ξ (0) < 0. Let us consider the following function

J (c) = Jμ(c) := Uc
ξ (0) + c

μ
for c ∈ [0, c0).

It follows from Theorem 4.2 again that J (c) is continuous and strictly increasing in
c ∈ [0, c0), and limc↑c0 J (c) = c0

μ
> 0. Moreover, J (0) = U 0

ξ (0) < 0. Thus there
exists a unique c∗ = c∗

μ ∈ (0, c0) such that J (c∗) = 0, which means that

−Uc∗
ξ (0) = c∗

μ
.

Next, let us view
(
c∗
μ,

c∗
μ

μ

)
as the unique intersection point of the decreasing curve

y = −Uc
ξ (0) with the increasing line y = c

μ
in the cy-plane, then it is clear that c∗

μ

increases to c0 as μ increases to ∞. The proof is complete.
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4.2 Asymptotic spreading speed

In order to determine the spreading speed, we will construct some suitable sub- and
supersolutions based on the semi-waves.

Theorem 4.5 (Spreading speed) Assume that (H) holds and that spreading happens
for a solution (u, g, h) of (P) as in Theorem 3.6 (i). Let (c∗,Uc∗

) be the unique solution
of (4.8) with −μUc∗

ξ (0) = c∗ and Wc∗
(ξ) := ∫ 0

−∞ K(c∗, ξ, x) f
(
Uc∗

(x)
)
dx. Then

lim
t→∞

h(t)

t
= − lim

t→∞
g(t)

t
= c∗. (4.18)

Proof We will prove (4.18) for h(t) only, since the proof for g(t) is parallel.
For any given small ε > 0, we define

h̄(t) := (1 + 2ε)c∗t + L for t � 0,

ū(t, x) := (1 + 2ε)Uc∗
(x − h̄(t)) for t � 0, x ∈ (−∞, h̄(t)],

w̄(t, x) := (1 + 2ε)Wc∗
(x − h̄(t)) for t � 0, x ∈ (−∞, h̄(t)],

where L > 0 is a constant to be determined.
Recall that Wc∗

(ξ) = V (τ, ξ) where V (s, ξ) is the solution of

⎧
⎨

⎩

Vs = DVξξ + c∗Vξ − βV , s ∈ (0, τ ], ξ < 0,
V (s, 0) = 0, s ∈ (0, τ ],
V (0, ξ) = f (Uc∗

(ξ)), ξ � 0.
(4.19)

Thanks to the monotonicity of Uc∗
(ξ) in ξ � 0 and f (u) in u � 0, respectively, the

parabolic comparison principle implies that the solution V (s, ξ) of (4.19) satisfies

Vξ (s, ξ) � 0 for ξ � 0, s ∈ (0, τ ]. (4.20)

Moreover, it follows from Uc∗
(−∞) = u∗ and (4.19) that

V (s,−∞) = f (u∗)e−βs for s ∈ [0, τ ]. (4.21)

Define, for any fixed t > 0,

v̄(s, x; t) := (1 + 2ε)V (s, x − h̄(s + t − τ)).

Then clearly w̄(t, x) = v̄(τ, x; t), and for x < h̄(s+t−τ) and s ∈ (0, τ ], v̄(s, x; t) =
v̄(s, x) satisfies

v̄s − Dv̄xx + βv̄ = (1 + 2ε)(Vs − h̄′Vξ − DVξξ + βV )

= (1 + 2ε)(Vs − (1 + 2ε)c∗Vξ − DVξξ + βV )

= −2ε(1 + 2ε)Vξ � 0.

123



2102 Y. Du et al.

Moreover,

v̄(s, x) � 0 for x � h̄(s + t − τ), s ∈ (0, τ ],

and

v̄(0, x) = (1 + 2ε)V (0, x − h̄(t − τ) = (1 + 2ε) f (Uc∗
(x − h̄(t − τ)))

� f
(
(1 + 2ε)Uc∗

(x − h̄(t − τ))
)

= f
(
ū(t − τ, x)

)
for x � h̄(t − τ).

As before, a comparison argument involving the corresponding ODE problem
shows that there is T1 > τ large enough such that

u(t + T1, x) � (1 + ε)u∗ for t � 0, x ∈ [g(T1 + t), h(T1 + t)].

As Uc∗
(−∞) = u∗, there exists L > 0 large such that h̄(0) = L > h(T1 + τ) −

g(T1 + τ), and for s ∈ [0, τ ], x ∈ [g(T1 + s), h(T1 + s)],

ū(s, x) � (1 + 2ε)Uc∗
(x − L)

� (1 + 2ε)Uc∗(
h(T1 + τ) − L

)

� (1 + ε)u∗

� u(T1 + s, x).

For t � 0, we have ū
(
t, h̄(t)

) = 0, ū(t, g(T1 + t)) > 0 = u(t + T1, g(T1 + t)), and

h̄′(t) = (1 + 2ε)c∗ = −μ(1 + 2ε)Uc∗
ξ (0) = −μūx (t, h̄(t)).

A direct calculation shows, for t � τ and x ∈ (g(T1 + t), h̄(t)),

ūt − ūxx + αū − w̄(t, x)

= (1 + 2ε)
[ − (1 + 2ε)c∗Uc∗

ξ −Uc∗
ξξ + αUc∗ − Wc∗]

= −2ε(1 + 2ε)c∗U∗
ξ � 0.

We may now use the comparison principle to conclude that

u(t + T1, x) � ū(t, x), h(t + T1) � h̄(t) for t � τ, x ∈ [g(t + T1), h(t + T1)].

As a consequence, we have

lim sup
t→∞

h(t)

t
� lim sup

t→∞
h̄(t − T1)

t
= (1 + 2ε)c∗.
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Letting ε → 0, we immediately obtain

lim sup
t→∞

h(t)

t
� c∗. (4.22)

To obtain a lower bound for h(t)/t , we define, for small ε > 0,

h(t) := (1 − 2ε)c∗t + h(0) for t � 0,

u(t, x) := (1 − 2ε)Uc∗
(x − h(t)) for t � 0, x ∈ [g(0), h(t)],

w(t, x) := (1 − 2ε)Wc∗
(x − h(t)) for t � 0, x ∈ [g(0), h(t)].

SinceWc∗
(ξ) = V (τ, ξ), where V (s, ξ) is the solution of problem (4.19), if we define

v(s, x; t) := (1 − 2ε)V (s, x − h(s + t − τ)),

then w(t, x) = v(τ, x; t) and v(s, x; t) = v(s, x) satisfies, for s ∈ (0, τ ] and x <

h(s + t − τ),

vs − Dvxx + βv = (1 − 2ε)(Vs − h′Vξ − DVξξ + βV )

= (1 − 2ε)(Vs − (1 − 2ε)c∗Vξ − DVξξ + βV )

= 2ε(1 − 2ε)Vξ � 0.

Moreover, due to the definition of v, (4.20) and (4.21),

v(s, h(s + t − τ)) = 0, v(s, g(0)) � (1 − 2ε)V (s,−∞) = (1 − 2ε) f (u∗)e−βs for s ∈ (0, τ ].

and

v(0, x) = (1 − 2ε)V (0, x − h(t − τ) = (1 − 2ε) f (Uc∗
(x − h(t − τ)))

� f
(
(1 − 2ε)Uc∗

(x − h(t − τ))
)

= f
(
u(t − τ, x)

)
for x � h(t − τ).

Since spreading happens, there is T2 � 1 such that h(T2) > (1 − 2ε)c∗τ + h(0),

u(t + T2, x) � (1 − ε)u∗ for t � 0, x ∈ [g(0), h(τ )],

and for t � T2, due to (3.20),

w(s, x; t) � (1 − ε) f (u∗)e−βs for s ∈ [0, τ ], x ∈ [g(0), h(τ )].

Clearly h(T2 + s) � h(T2) > h(τ ) � h(s) for s ∈ [0, τ ]. Moreover, we have that

u(T2 + s, x) � (1 − 2ε)u∗ � u(s, x) for s ∈ [0, τ ], x ∈ [g(0), h(τ )].
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For t � 0, we have u(t, h(t)) = 0, u
(
t + T2, g(0)

)
� (1 − ε)u∗ > u

(
t, g(0)

)
, and

w
(
s, g(0); t + T2

)
� (1 − ε) f (u∗)e−βs

> v(s, g(0)) for s ∈ [0, τ ].

Moreover,

h′(t) = (1 − 2ε)c∗ = −μ(1 − 2ε)Uc∗
ξ (0) = −μux (t, h(t)) for t � 0.

A direct calculation shows that for t � τ and x ∈ [g(0), h(t)),

ut − uxx + αu − w(t, x)

= (1 − 2ε)
[ − (1 − 2ε)c∗Uc∗

ξ −Uc∗
ξξ + αUc∗ − Wc∗]

= 2ε(1 − 2ε)c∗Uc∗
ξ � 0.

Thus we can use the comparison principle to obtain

u(t + T2, x) � u(t, x), h(t + T2) � h(t) for t � τ, x ∈ [g(0), h(t)].

Consequently, we have

lim inf
t→∞

h(t)

t
� lim inf

t→∞
h(t − T2)

t
= (1 − 2ε)c∗.

Letting ε → 0, we immediately obtain

lim inf
t→∞

h(t)

t
� c∗.

This, together with (4.22), yields that

lim
t→∞

h(t)

t
= c∗,

which ends the proof.
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