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A B S T R A C T

Asset prices are stale. We define a measure of systematic (market-wide) staleness as the
percentage of small price adjustments across multiple assets. A notion of idiosyncratic (asset-
specific) staleness is also established. For both systematic and idiosyncratic staleness, we provide
a limit theory based on joint asymptotics relying on increasingly-frequent observations over a
fixed time span and an increasing number of assets. Using systematic and idiosyncratic staleness
as moment conditions, we introduce novel structural estimates of systematic and idiosyncratic
measures of liquidity obtained from transaction prices only. The economic signal contained in
the structural estimates is assessed by virtue of suitable metrics.

1. Introduction

Asset prices do not update as frequently as one may believe. In particular, they do not update as often as one would assume
given traditional modeling in continuous time. The lack of updating may have a component which is systematic and, therefore,
pervasive across stocks. We argue that lack of price updates, and their cross-sectional correlation structure, can be economically
just as informative as long spells of erratic price dynamics as induced by volatility or jumps, i.e., virtually the exclusive focus of
the current, successful high-frequency literature (see, e.g., the rich review in Aït-Sahalia and Jacod, 2014). Hence, the provision of
a methodological framework designed to model price staleness – and shed light on its economic content – appears warranted.

Staleness is related to lack of volume or low volume (Bandi et al., 2020). It must therefore carry information about frictions in the
trading process and their determinants, such as the extent of liquidity. In light of this premise, this article begins with a definition of
notions of systematic (market-wide) staleness and idiosyncratic (asset-specific) staleness for which we formulate estimators, continues
with the provision of a limit theory for the proposed estimators and concludes with the discussion of novel staleness-based structural
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measurements of systematic and idiosyncratic liquidity using transaction prices only. These structural estimates are shown to contain
revealing economic signal.

Intuitively, systematic staleness is defined as lack of (large) price updates across many assets. In this sense, it represents pervasive
declines of normal market activity. Idiosyncratic staleness, on the other hand, is asset-specific and may therefore occur in the
absence of market-wide effects. Our proposed estimators of systematic and idiosyncratic staleness make solely use of high-frequency
transaction prices for a cross-section of stocks and are constructed based on price adjustments smaller than a suitable, vanishing
(in the limit) threshold. The estimates are functionals of two frequencies: the frequency of joint stale prices across multiple assets
‘‘multivariate staleness’’) and the frequency of stale prices for individual assets (‘‘univariate staleness’’). While multivariate staleness
ill be shown to be a consistent estimator of systematic staleness, an appropriately-defined nonlinear functional of multivariate

taleness and univariate staleness will define a consistent estimator of idiosyncratic staleness for each asset.
We study the limiting properties of our proposed estimators for systematic staleness and idiosyncratic staleness in an asymptotic

nvironment in which the number of observations increases without bound (over a fixed time span) jointly with the number of
ssets. This is done under a null hypothesis in which the underlying price processes evolve as a vector semi-martingale with some
asset-specific or idiosyncratic) likelihood of repeated prices. The alternative is one in which there is both a likelihood of systematic
taleness (not allowed under the null) and a likelihood of idiosyncratic staleness (allowed under the null) around, again, a driving
emi-martingale price process. We show convergence in probability of the estimates (under both the null and the alternative) to
the probability of) systematic and idiosyncratic staleness (whether zero or not) as well as, under the null, root-𝑛 weak convergence
o asymptotically normal random variables with estimable limiting variances.

Staleness is in contradiction with traditional (frictionless) approaches to the modeling of asset prices. Our interest in notions
f staleness is, therefore, justified by price formation processes which account for the microstructure of market dynamics (as
n, e.g., Kyle, 1985, and Glosten and Milgrom, 1985). To this extent, we estimate structurally (using both notions of staleness
s moment conditions) a microstructure model featuring market makers (learning from trades), uninformed traders as well
s informed traders (modulating their trading decisions on the basis of the magnitude of execution costs). In the model, the
nformed traders compare the size of execution costs to deviations between the efficient price (assumed to be known, given their
nformation set) and the mid-quote of the bid/ask prices. Should these deviations be smaller (in absolute value) than the size of
xecution costs, the informed traders will opt out of trades, thereby leading to low volume, lack of price updates and, therefore,
taleness.

In the model, execution costs have a systematic and an idiosyncratic component. The systematic component has an interpretation
n terms of the ‘‘shadow cost’’ of capital, or funding liquidity, as in Brunnermeier and Pedersen (2009). The idiosyncratic component
as, instead, an interpretation in terms of asset-specific effective spread, which we formalize explicitly. In order to provide support
or this logic in the data, we compare our structural estimates of funding costs to old and new proxies of the same quantity.1 The
ame is done with our structural estimates of effective spreads, which are compared to bid–ask spreads as well as to traditional
easures of effective spreads and realized spreads, both cross-sectionally and in the time series.2

We conclude this Introduction with an important observation. There is an empirical finance literature which employs low-
requency measures of staleness (such as the number of zeros in the data over a specific time period) as liquidity proxies (e.g.,
esmond, 2005; Bekaert et al., 2007). Even though the simplicity of these measures and their logic justifies doing so, accepted
heories of price formation imply that – at the minimum – the interplay between liquidity (as represented by the cost(s) of execution),
earning, information asymmetries and efficient price volatility is bound to affect them and add noise to signal. In light of this, we
o not proxy for liquidity directly using the proposed staleness measures. Instead, the staleness measures assist in the extraction
f liquidity proxies from the estimation of a suitable structural pricing model. Our proposed high-frequency structural approach
s shown (both in the data and in simulation) to yield revealing signal(s) and provide effective identification of liquidity-related
uantities, as well as of other features of the price formation process. In our framework, structural identification builds crucially
n the informational content of preliminary high-frequency estimates of systematic and idiosyncratic staleness, estimates for which
he present article provides both a definition and a limiting theory under joint asymptotics.

We proceed as follows. Section 2 introduces multivariate and univariate staleness, i.e., the inputs of systematic and idiosyncratic
taleness. Section 3 contains asymptotic results for multivariate and univariate staleness leading to estimators of systematic and
diosyncratic staleness whose asymptotic properties are discussed in a joint infill/large cross-section asymptotic environment. While
he relation between systematic and idiosyncratic volatility is well-understood (see, e.g., Herskovic et al., 2016), the corresponding
taleness measures are novel and, hence, deserving of a purely descriptive analysis. Using 250 NYSE-listed stocks, we provide such an
nalysis in Section 4. Among other results, we show that systematic staleness is positively correlated with the mean of idiosyncratic
taleness and the dynamics of idiosyncratic staleness are suggestive of the presence of a common factor. Both findings are reminiscent
f analogous results in the volatility literature. We also show that both systematic staleness and the mean of idiosyncratic staleness
re strongly negatively correlated with mean volumes, a fact which provides empirical support for the link between staleness and
rading dynamics. Section 5 details a market microstructure model with asymmetries in information which we estimate structurally
sing systematic and idiosyncratic staleness as moment conditions. Day-by-day estimation of the model leads to daily proxies of
ffective spreads and funding liquidity, among other quantities. In Section 6, we compare these structural liquidity measures to

1 Papers devoted to the analysis of systematic liquidity are, inter alia, Chordia et al. (2000, 2001), Hasbrouck and Seppi (2001), Pastor and Stambaugh (2003),
Kamara et al. (2008), Næs et al. (2011), Fontaine and Garcia (2012) and Hu et al. (2013).

2 Papers devoted to the analysis of idiosyncratic liquidity are, inter alia, Roll (1984), Lesmond et al. (1999), Amihud (2002), Hasbrouck (2004, 2009)
2

nd Holden (2009). Goyenko et al. (2009) provide a rich discussion, empirical comparisons and new estimators.
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an array of existing proxies. Section 7 evaluates their economic content using a cross-sectional pricing metric. Section 8 concludes.
Appendix A contains proofs. Appendix B provides Monte Carlo simulations.

2. Definitions

We begin with preliminaries. We define and justify univariate and multivariate staleness. These measures will be the key
ngredients of the proposed estimators.

efinition 2.1. A smoother is an integrable function  (⋅) ∶ R+ → (0, 1] with a bounded first derivative and such that  (0) = 1.

efinition 2.2. Let 𝑡 ∈ [0, 1] and let 𝐗𝑡 be a vector of 𝑁 real-valued stochastic processes whose 𝑞th component is denoted by the
rocess 𝑋(𝑞)

𝑡 . For all 𝑞 = 1,… , 𝑁 , let 𝛩(𝑞,𝑁)
𝑡,𝑛 be a threshold defined as

𝛩(𝑞,𝑁)
𝑡,𝑛 ≐ ℎ(𝑁)

𝑛 𝜉(𝑞)𝑡,𝑛 , (1)

here 𝜉(𝑞)𝑡,𝑛 is a bounded positive adapted stochastic process on [0, 1] and ℎ(𝑁)
𝑛 is a positive double sequence of real numbers

nfinitesimal both in 𝑛 and 𝑁 .3 Assume that each of the 𝑁 processes 𝑋(𝑞)
𝑡 and the threshold 𝛩(𝑞,𝑁)

𝑡,𝑛 are observed on the evenly-spaced
ime grid 𝑡𝑗,𝑛 = 𝑗 𝛥𝑛 with 𝛥𝑛 = 1∕𝑛 and 𝑗 = 0,… , 𝑛. Denote by

(

𝑋(𝑞)
𝑗 𝛥𝑛

)

𝑗=0,…,𝑛
and

(

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

)

𝑗=0,…,𝑛
the 𝑞th process and the threshold

ampled on the grid. Finally, let  (⋅) ∶ R+ → (0, 1] be the smoother in Definition 2.1.
The univariate staleness estimator of the generic 𝑞th process at frequency 𝛥𝑛 is defined as

U(𝑞)
𝑛 ≐ 𝛥𝑛

𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

. (2)

The 𝑁-multivariate staleness estimator at frequency 𝛥𝑛 is defined as

M(𝑁)
𝑛 ≐ 𝛥𝑛

𝑛
∑

𝑗=1

𝑁
∏

𝑞=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

1∕𝑁

. (3)

Notwithstanding the use of a smooth function  (|𝑥|), instead of an indicator function I{|𝑥|≤1}, Eq. (2) coincides with the notion of
idle time4 presented and studied in Bandi et al. (2017). (Here, and throughout the article, we denote by I{𝐴} the indicator function
associated with the set 𝐴.) Replacing  (|𝑥|) with I{|𝑥|≤1}, however, clarifies the logic of this estimator. If all of the price adjustments
were below the threshold (a case of extreme staleness), thenU(𝑞)

𝑛 would be exactly 1. On the other hand, if all of the price adjustments
ere outside of the threshold, the indicator would be zero, and the measure would be zero. Intermediate cases of sluggish price
djustments would give rise to values between 0 and 1. While the selection criterion implied by the indicator has a binary nature
since the price changes are either inside or outside the threshold), a smooth kernel would give rise to continuous transitions. The
ame logic would, however, apply. In light of these observations, the interpretation of M(𝑁)

𝑛 in Eq. (3) as a multivariate staleness
stimator is natural. The estimator measures the joint probability of stale price updates.

We will show that M(𝑁)
𝑛 directly identifies our notion of systematic staleness (defined in Hypothesis 𝐴 below) when 𝑁, 𝑛→ ∞

ointly (c.f., Theorem 1). Our proposed notion of idiosyncratic staleness (defined in Hypothesis 0 below) will, instead, require the
se of a functional of M(𝑁)

𝑛 and U(𝑞)
𝑛 for consistent estimation, again as 𝑁, 𝑛→ ∞ jointly (c.f., the Corollary to Theorem 1).

. Systematic and idiosyncratic staleness: limit theory

We assume existence of an efficient price vector process satisfying the following assumption.

ssumption 1 (The Efficient Price Vector Process). There exist 𝑁 real-valued (logarithmic) efficient price processes
{

𝑋(𝑞)
𝑡 ; 𝑡 ≥ 0; 𝑞 = 1,… , 𝑁

}

,

efined on the usual probability space
(

𝛺, ,
(

𝑡
)

𝑡≥0 ,P
)

(Protter, 2004) each of which is a Brownian semimartingale

𝑑𝑋(𝑞)
𝑡 = 𝜇(𝑞)𝑡 𝑑𝑡 + 𝜎(𝑞)𝑡 𝑑𝑊 (𝑞)

𝑡 ,

3 Because of the presence of the term 𝜉(𝑞)𝑡,𝑛 , the definition of the threshold allows, e.g., for dependence on the spot volatility of the underlying efficient price
process (defined in Assumption 1), something which is conceptually and empirically important.

4 Bandi et al. (2017) define, without reference to volume levels, their measure of staleness as idle time or, in its demeaned version, excess idle time. In Bandi
et al. (2020), the adopted nomenclature distinguishes between lack of price updates without conditioning on volume and lack of price updates conditional on
the absence of volume. Specifically, the word ‘‘staleness’’ is associated with lack of price updates, whereas the word ‘‘idleness’’ (resp. ‘‘near idleness’’) is used to
define lack of price updates without volume (resp. with very limited volume). While Bandi et al. (2020) show that the two notions are very closely related (in
that staleness is associated with declines in trading activity), we abide strictly by the latter nomenclature and use the terminology staleness when information on
volumes is not provided. As a consequence, for clarity, Eq. (2) is defined as (an estimator of) ‘‘univariate staleness’’ rather than as (an estimator of) ‘‘univariate
3

idle time’’. The same reasoning applies to Eq. (3).
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where 𝑊 (𝑞)
𝑡 is a standard  -Brownian motion and 𝜇(𝑞)𝑡 and 𝜎(𝑞)𝑡 > 0 are cádlág  -adapted bounded processes satisfying the differentiability

conditions in Bandi and Renò (2017). For each pair
(

𝑊 (𝑞)
𝑡 ,𝑊 (𝑘)

𝑡

)

of Brownian motions, with 𝑞 ≠ 𝑘, there exists a process 𝜌(𝑞,𝑘)𝑡 ∈ [−1, 1]
such that

E𝑡
[

𝑑𝑊 (𝑞)
𝑡 𝑑𝑊 (𝑘)

𝑡

]

= 𝜌(𝑞,𝑘)𝑡 𝑑𝑡.

We now turn to the frictional process. Under the null, we allow for some likelihood of repeated prices. If a price is not repeated,
the underlying efficient price in Assumption 1 is observed. Since, under the null, only idiosyncratic staleness is allowed, the likelihood
of repeated prices is modeled as being independent across assets.

Hypothesis 0 (The Observed Price Process Under the Null). The collection of 𝑁 observed (logarithmic) price processes
{

𝑋(𝑞)
𝑗 𝛥𝑛

; 𝑗 = 0,… , 𝑛; 𝑞 = 1,… , 𝑁
}

on the time grid 𝑡𝑗,𝑛 = 𝑗 𝛥𝑛 is such that 𝑋(𝑞)
0 = 𝑋(𝑞)

0 and, for 𝑗 = 1,… , 𝑛,

𝑋(𝑞)
𝑗 𝛥𝑛

= 𝑋(𝑞)
𝑗 𝛥𝑛

(

1 − 𝐵(𝑞)
𝑗,𝑛

)

+ 𝐵(𝑞)
𝑗,𝑛 𝑋

(𝑞)
(𝑗−1)𝛥𝑛

, (4)

where 𝐵(𝑞)
𝑗,𝑛, with 𝑞 = 1,… , 𝑁 , are 𝑁 triangular arrays of 𝑡𝑗 -measurable Bernoulli variates. These variates are so that

𝑝(𝑞)𝑛 ≐ P
[

𝐵(𝑞)
𝑗,𝑛 = 1

]

= E
[

𝐵(𝑞)
𝑗,𝑛

]

→
𝑛→∞

𝑝(𝑞)∞ ∈ (0, 1)

and are pairwise independent, that is, for all 𝑖1 ≠ 𝑖2 and for all 𝑗, 𝑘 = 1,… , 𝑛,

P
[

𝐵(𝑖1)𝑗,𝑛 = 𝑎, 𝐵(𝑖2)𝑘,𝑛 = 𝑏
]

= P
[

𝐵(𝑖1)𝑗,𝑛 = 𝑎
]

P
[

𝐵(𝑖2)𝑘,𝑛 = 𝑏
]

,

with 𝑎 ∈ {0, 1} and 𝑏 ∈ {0, 1}. Also,5

V

[

1
𝑛

𝑛
∑

𝑗=1
𝐵(𝑞)
𝑗,𝑛

]

→
𝑛→∞

0 𝑞 = 1,… ., 𝑁, V

[

1
𝑛

𝑛
∑

𝑗=1

𝑁
∏

𝑞=1
𝐵(𝑞)
𝑗,𝑛

]

→
𝑛→∞

0 ∀𝑁. (5)

oreover, for each 𝑗 = 1,… , 𝑛, and each 𝑞 = 1,… , 𝑁 , let 𝑓 (𝑞)
𝑗 be the number of consecutive flat trades before instant 𝑡𝑗−1,𝑛 = (𝑗 − 1) 𝛥𝑛

for the 𝑞th process. We assume that 𝐹 (𝑞)
𝑛 ≐ max𝑗=1,…,𝑛 𝑓

(𝑞)
𝑗 is such that6

𝐹 (𝑞)
𝑛 log 𝑛
𝑛𝛼

𝑝
⟶
𝑛→∞

0, 𝑞 = 1,… , 𝑁, (6)

with 𝛼 < 1∕2.

For each asset, the null allows for staleness with probability equal to 𝑝(𝑞)𝑛 . Since the Bernoulli variates are independent across
assets, the type of staleness captured by the null is purely idiosyncratic. The probability of staleness (whether idiosyncratic or, as
presented below, systematic) is assumed to be frequency-specific, a modeling device which replicates the dependence on frequency of
the likelihood of price updates (or lack thereof) which has been observed in the data (Bandi et al., 2020). We note that the pricing
model employed by Phillips and Yu (2023) to study realized variance can be expressed as the model in Eq. (4) with independent
(over time) Bernoulli variates and a constant, rather than frequency-specific, probability of repeated prices.

The null in the present article corresponds to the alternative in Bandi et al. (2017). Bandi et al. (2017) provide a framework to
test for absence of staleness. Should absence of staleness be rejected, something that Bandi et al. (2017) and Bandi et al. (2020)
do forcefully for the market and a cross-section of stocks respectively, staleness should (at least in its idiosyncratic version) be a
feature of the data generating process under the null. We take this view here.

The alternative hypothesis is, instead, constructed to allow for the presence of a systematic staleness component. This systematic
component represents the substantive core of this article’s contribution. In what follows, the superscript (𝖲) stands for ‘‘systematic.’’
Next, we formulate the alternative.

Hypothesis 𝐴 (The Observed Price Process Under the Alternative). There exists a triangular array of Bernoulli variates 𝐶 (𝖲)
𝑗,𝑛 such that

the observed price process sampled on the evenly-spaced time grid 𝑡𝑗,𝑛 = 𝑗 𝛥𝑛 is given by

𝑋(𝑞)
𝑗 𝛥𝑛

=
(

1 − 𝐶 (𝖲)
𝑗,𝑛

) (

𝑋(𝑞)
𝑗 𝛥𝑛

(

1 − 𝐵(𝑞)
𝑗,𝑛

)

+𝑋(𝑞)
(𝑗−1)𝛥𝑛

𝐵(𝑞)
𝑗,𝑛

)

+ 𝐶 (𝖲)
𝑗,𝑛 𝑋

(𝑞)
(𝑗−1)𝛥𝑛

, (7)

ith 𝑋(𝑞)
0 = 𝑋(𝑞)

0 for 𝑞 = 1,… , 𝑁. The variates 𝐶 (𝖲)
𝑗,𝑛 are independent of 𝐵(𝑞)

𝑗,𝑛 for all 𝑗 = 1,… , 𝑛 (and for all 𝑞 = 1,… , 𝑁) and

𝑝(𝖲)𝑛 ≐ P
[

𝐶 (𝖲)
𝑗,𝑛 = 1

]

= E
[

𝐶 (𝖲)
𝑗,𝑛

]

→
𝑛→∞

𝑝(𝖲)∞ ∈ (0, 1) .

5 The conditions in Eq. (5), and the analogous conditions in Eq. (8) and (9), are trivially satisfied if the Bernoulli variates are temporally independent. With
hese conditions, we are solely excluding extreme forms of dependence.

6 The condition in Eq. (6) is easily satisfied by iid Bernoulli sequences since, in this case, 𝐹 (𝑞) = 𝑂 (log 𝑛) (Schilling, 1990).
4
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Also,

V

[

1
𝑛

𝑛
∑

𝑗=1
𝐶 (𝖲)
𝑗,𝑛

]

→
𝑛→∞

0, (8)

and

V

[

1
𝑛

𝑛
∑

𝑗=1
𝐶 (𝖲)
𝑗,𝑛𝐵

(𝑞)
𝑗,𝑛

]

→
𝑛→∞

0 𝑞 = 1,… ., 𝑁, V

[

1
𝑛

𝑛
∑

𝑗=1
𝐶 (𝖲)
𝑗,𝑛

𝑁
∏

𝑞=1
𝐵(𝑞)
𝑗,𝑛

]

→
𝑛→∞

0 ∀𝑁. (9)

Finally, we assume 𝐶 (𝖲)
𝑗,𝑛 is such that the property on the maximum of consecutive flat trades in Eq. (6) is satisfied.

Under the alternative, when 𝐶 (𝖲)
𝑗,𝑛 = 1, 𝑋(𝑞)

𝑗 𝛥𝑛
= 𝑋(𝑞)

(𝑗−1)𝛥𝑛
for all 𝑞 = 1,… , 𝑁 . When 𝐶 (𝖲)

𝑗,𝑛 = 0, the observed price process 𝑋(𝑞)
𝑗 𝛥𝑛

may
or may not equal 𝑋(𝑞)

(𝑗−1)𝛥𝑛
depending on the idiosyncratic Bernoulli variates 𝐵(𝑞)

𝑗,𝑛. Thus, the alternative has a hierarchical structure.
Prices may repeat themselves due to systematic effects. If they do not, there continues to be an asset-specific likelihood of repeated
prices due to idiosyncratic effects. We denote by 𝑝(𝖲)𝑛 the frequency-specific probability of systematic staleness.

Because (systematic and/or idiosyncratic) Bernoulli shocks drive the limiting results under both the null and the alternative, one
could dispense with the use of a threshold 𝛩(𝑞,𝑁)

𝑡,𝑛 (see Eq. (1)) in the definition of both U(𝑞)
𝑛 and M(𝑁)

𝑛 . While the use of a threshold
adds technical subtleties to the proofs, we believe it is warranted for two reasons. First, it preserves the applicability of the estimators
in situations in which the null model is continuous (as in Bandi et al., 2017) and the null hypothesis of absence of staleness is tested.
Second, empirically, it allows the estimates to capture near staleness, rather than solely exact staleness, irrespective of the null model.
We emphasize that, should one dispense with the use of a threshold, Assumption 1 could be relaxed to an assumption of ‘‘existence’’
of the continuous (vector) efficient price process without emphasis on its dynamic evolution, and all of our results would go through
unchanged.7

We note that, without a threshold, we would be measuring joint and individual ‘‘zero’’ returns. There is a successful literature in
finance which has used zero low-frequency returns as proxies for liquidity (e.g., Lesmond, 2005; Bekaert et al., 2007). In the absence
of a threshold, our work may be viewed as making four contributions to the literature on ‘‘zeros’’. First, we provide high-frequency
multidimensional and unidimensional counterparts for these (low-frequency) estimates in continuous time. Second we illustrate
how our high-frequency estimates can be re-combined to obtain genuinely systematic and idiosyncratic measures. Third, we offer
an inferential theory for these measures. Finally, after recognizing that accepted market microstructure models provide a logical link
between ‘‘zeros’’ and liquidity, we discuss how they do so in imperfect ways due to the presence of additional effects (learning and
asymmetric information, inter alia). We, however, document how our measures can be used to extract structural information about
liquidity, jointly with an array of other quantities. The latter contribution is logically related with the LOT measure of Lesmond
et al. (1999) who, differently from our approach in Section 5, use low-frequency ‘‘zeros’’ and Probit-type estimation on a threshold
model for returns to identify deeper parameters representing percentage transaction costs.

We now turn to notions of consistency for both multivariate and univariate staleness. The threshold will be required to vanish at
a faster rate than the modulus of continuity of the underlying Brownian shocks. The requirement is intuitive. Should the condition
not be satisfied, then the Brownian updates would be deemed to be ‘‘small,’’ something which would be contrary to the type of
friction-induced staleness that we are aiming to capture.

Theorem 1 (The Systematic Staleness Estimator). Under Assumption 1 and if, for a fixed 𝑁 , ℎ(𝑁)
𝑛 in Eq. (1) of Definition 2.2 is such that

ℎ(𝑁)
𝑛

√

𝑛→ 0, we have, as 𝑛→ ∞, that

U(𝑞)
𝑛

𝑝
⟶

{

𝑝(𝑞)∞ under 0
𝑝(𝖲)∞ + (1 − 𝑝(𝖲)∞ )𝑝(𝑞)∞ under 𝐴

, 𝑞 = 1,… , 𝑁,

and

M(𝑁)
𝑛

𝑝
⟶

{

∏𝑁
𝑞=1 𝑝

(𝑞)
∞ under 0

𝑝(𝖲)∞ + (1 − 𝑝(𝖲)∞ )
∏𝑁

𝑞=1 𝑝
(𝑞)
∞ under 𝐴

.

In addition, if ℎ(𝑁)
𝑛 is such that

ℎ(𝑁)
𝑛 ∼

𝛽𝑁1+𝜂

𝑛𝛾
with 𝑛 ∼ 𝑎𝑁 (10)

and

0 < 𝛽 < 1, 𝜂 > 1, 𝛾 > 1
2
, 𝑎 > 1, (11)

e have, as 𝑁 → ∞, that

M(𝑁)
𝑛

𝑝
⟶

{

0 under 0
𝑝(𝖲)∞ under 𝐴

. (12)

7 In particular, one could easily accommodate rich forms of market microstructure noise without affecting the asymptotic findings. We analyze the finite-sample
5

mpact of frictions on our smoother-based estimates in Appendix B.
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Proof. See Appendix A.

Under the null, each estimator U(𝑞)
𝑛 (with 𝑞 = 1,… , 𝑁) is consistent for the corresponding idiosyncratic probability of staleness.

Similarly, for any fixed 𝑁 , the product estimator M(𝑁)
𝑛 is consistent for the product of these probabilities (given the independence

of the driving Bernoulli variates).
Under the alternative, the unconditional (limiting, for 𝑛 → ∞) probability of staleness for each individual stock is given by

P(𝑞)(staleness) = 𝑝(𝖲)∞ +
(

1 − 𝑝(𝖲)∞

)

𝑝(𝑞)∞ . Specifically, staleness could be induced by systematic effects (whose limiting probability is 𝑝(𝖲)∞ ).
If it is not induced by systematic effects, there is a chance 𝑝(𝑞)∞ that it may be induced by idiosyncratic effects. Each U(𝑞)

𝑛 is consistent
for P(𝑞)(staleness). For any fixed 𝑁 , the product estimator is analogously consistent for P(𝑝𝑟𝑜𝑑)(staleness) = 𝑝(𝖲)∞ +

(

1 − 𝑝(𝖲)∞

)

∏𝑁
𝑞=1 𝑝

(𝑞)
∞ .

Thus, for a fixed 𝑁 , univariate and multivariate staleness do not permit separation of systematic and idiosyncratic staleness.
However, taking also limits with respect to an increasing number of assets (i.e., as 𝑁 → ∞, jointly with 𝑛 → ∞) is effective –
under conditions – in identifying 𝑝(𝖲)∞ . Theorem 1, in fact, states that, as 𝑛,𝑁 → ∞ jointly and at the right rate, M(𝑁)

𝑛 is a consistent
estimator of the probability of systematic staleness under both the null (in which case such probability is zero) and the alternative.
A consequence of Theorem 1, spelled out in the following corollary, is that the idiosyncratic probabilities of staleness 𝑝(𝑞)∞ can, also,
be estimated consistently both under the null and the alternative.

We note that, because the number of intra-period observations 𝑛 is modeled as a function of the number of assets 𝑁 in Eq. (10),
from now on we will dispense with the statement ‘‘𝑁, 𝑛→ ∞ jointly’’ and just write ‘‘𝑁 → ∞,’’ in order to avoid clutter.

Corollary to Theorem 1 (The Idiosyncratic Staleness Estimator(s)). Under Assumption 1, Eqs. (10) and (11), as 𝑁 → ∞, Slutsky’s theorem
implies that

Id(𝑞,𝑁)
𝑛 ≐

U(𝑞)
𝑛 −M(𝑁)

𝑛

1 −M(𝑁)
𝑛

𝑝
⟶ 𝑝(𝑞)∞ , (13)

under both 0 and 𝐴, for all 𝑞 = 1,… , 𝑁.

We now turn to the limiting distributions of both M(𝑁)
𝑛 and Id(𝑞,𝑁)

𝑛 for 𝑞 = 1,… , 𝑁.

Theorem 2 (Weak Convergence of the Systematic and Idiosyncratic Staleness Estimators). Let Assumption 1 hold. Assume independence of
𝐶 (𝖲)
𝑗,𝑛 and 𝐵

(𝑞)
𝑗,𝑛 across 𝑗 values. Let, also, ℎ

(𝑁)
𝑛 be defined as in Eqs. (10) and (11) of Theorem 1 with

√

𝑎 < 1∕𝑝∞∞ (14)

and

𝑎 > 1∕𝑝∞
∞
, (15)

where 𝑝∞∞ = lim sup𝑁→∞ max𝑞=1,…,𝑁 𝑝
(𝑞)
∞ ∈ (0, 1) and 𝑝∞

∞
= lim inf𝑁→∞ min𝑞=1,…,𝑁 𝑝

(𝑞)
∞ ∈ (0, 1) with

(

𝑝∞∞
)2 < 𝑝∞

∞
. Then, under 0, as

→ ∞, we have that

Z(𝑁)
𝑛 ≐

M(𝑁)
𝑛 − 𝑃 (𝑁)

𝑛

𝜎(𝑁)
𝑛

𝑑
⟶ N (0, 1) , (16)

where

𝑃 (𝑁)
𝑛 ≐

𝑁
∏

𝑞=1
𝑝(𝑞)𝑛 , 𝜎(𝑁)

𝑛 ≐
⎛

⎜

⎜

⎜

⎝

𝑃 (𝑁)
𝑛 −

(

𝑃 (𝑁)
𝑛

)2

𝑛

⎞

⎟

⎟

⎟

⎠

1∕2

.

Under 𝐴, as 𝑁 → ∞, we instead have that

Z(𝑁)
𝑛

𝑝
⟶ ∞. (17)

lso, under 0, as 𝑁 → ∞,

⎛

⎜

⎜

⎜

⎝

𝑛

𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

⎞

⎟

⎟

⎟

⎠

1∕2

(

Id(𝑞,𝑁)
𝑛 − 𝑝(𝑞)𝑛

) 𝑑
⟶ N (0, 1) , (18)

nd, under 𝐴, as 𝑁 → ∞,

⎛

⎜

⎜

⎜

⎝

𝑛
(

1 − 𝑝(𝖲)𝑛
)

𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

⎞

⎟

⎟

⎟

⎠

1∕2

(

Id(𝑞,𝑁)
𝑛 − 𝑝(𝑞)𝑛

) 𝑑
⟶ N (0, 1) . (19)

roof. See Appendix A.
6
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Limiting variance estimation is discussed in a remark.

emark 1. Using Theorem 1, it is immediate to derive the feasible versions of the central limit theorems stated in Theorem 2.
pecifically, Eqs. (13) and (16) imply that, under 0,

√

𝑛
M(𝑁)

𝑛 −
∏𝑁

𝑞=1 Id
(𝑞,𝑁)
𝑛

√

∏𝑁
𝑞=1 Id

(𝑞,𝑁)
𝑛 −

(

∏𝑁
𝑞=1 Id

(𝑞,𝑁)
𝑛

)2

𝑑
⟶ 𝑁 (0, 1) .

Under both 0 and 𝐴, given Eqs. (12), (13), (18) and (19), we have that

⎛

⎜

⎜

⎜

⎝

𝑛
(

1 −M(𝑁)
𝑛

)

Id(𝑞,𝑁)
𝑛

(

1 − Id(𝑞,𝑁)
𝑛

)

⎞

⎟

⎟

⎟

⎠

1∕2

(

Id(𝑞,𝑁)
𝑛 − 𝑝(𝑞)𝑛

) 𝑑
⟶ 𝑁 (0, 1) .

The relation between systematic and idiosyncratic volatility has been studied (see, e.g., Herskovic et al., 2016, and the references
herein). The corresponding staleness measures are novel and, hence, deserving of a preliminary descriptive analysis, to which we
ow turn. The accuracy of the reported limiting results is evaluated in Appendix B by simulation.

. A descriptive look at staleness

We employ a dataset whose constituents are the 250 most liquid (in terms of average transaction volume during the period
onsidered) NYSE-listed stocks. We are focusing on large and liquid stocks, i.e., the universe of stocks which should be affected by
taleness the least. Because our goal is to illustrate the informational content of staleness, our emphasis on the most liquid NYSE-listed
tocks leads to conservative implications and is, therefore, economically revealing about the relevance of staleness, in general. For
ach stock, we have trades from January 2006 to December 2014.

Idiosyncratic and systematic staleness are computed, for each day, using 10-second returns constructed from transaction prices
sing previous tick interpolation. The number of 10-second returns 𝑛 per day is, therefore, 2,340 and the number of days 𝑁𝐷 is
,265. The thresholds are chosen as 𝛩(𝑞,𝑁)

𝑡,𝑛 = 𝛩(𝑞)
𝑛 = 𝛼 𝜎(𝑞)∕𝑛1∕2, for all 𝑞 = 1, 2,… , 𝑁 , where 𝛼 = 1

10 and 𝜎(𝑞) is the estimated volatility
ver the day for the stock indexed by 𝑞 (i.e., the square root of 5-minute daily realized variance). The smoother  (⋅) = exp(− |⋅|) is
mployed to obtain all estimates.

For each day 𝑑 = 1,… , 𝑁𝐷 in the sample, we proceed in the following way. Let 𝑡𝑗,𝑛 = 𝑗𝛥𝑛 = 𝑗∕𝑛, 𝑗 = 0,… , 𝑛, be the 10-second
partition for the day [𝑑 − 1, 𝑑]. At each instant 𝑡𝑗,𝑛 we compute the product

𝜁𝑑,𝑗 ≐
𝑁𝑑,𝑗
∏

𝑞=1

⎛

⎜

⎜

⎝

|

|

|

𝑋𝑗∕𝑛 −𝑋(𝑗−1)∕𝑛
|

|

|

𝛩(𝑞)
𝑛

⎞

⎟

⎟

⎠

1∕𝑁𝑑,𝑗

=
𝑁𝑑,𝑗
∏

𝑞=1
exp

⎛

⎜

⎜

⎝

−
|

|

|

𝑋𝑗∕𝑛 −𝑋(𝑗−1)∕𝑛
|

|

|

𝑁𝑑,𝑗 𝛩
(𝑞)
𝑛

⎞

⎟

⎟

⎠

,

where 𝑁𝑑,𝑗 is the number of stocks available8 in the time interval [𝑡𝑗−1,𝑛, 𝑡𝑗,𝑛] of day 𝑑. We estimate systematic staleness for day 𝑑
by computing

𝑝(𝖲)𝑑 ≐ 1
𝑛𝑑

𝑛𝑑
∑

𝑗=1
𝜁𝑑,𝑗 I{𝑁𝑑,𝑗≥60

}, 𝑛𝑑 ≐
𝑛
∑

𝑗=1
I{𝑁𝑑,𝑗≥60

}, (20)

where, in order to reduce finite-sample distortions, we have imposed to consider only the instants of the 10-second partition during
which at least 60 stocks are available.9

Having estimated 𝑝(𝖲)𝑑,∞ for day 𝑑 by virtue of 𝑝(𝖲)𝑑 we derive, for each available asset, the corresponding estimate of 𝑝(𝑞)𝑑,∞ using
q. (13). More precisely, we compute the estimator

𝑝(𝑞)𝑑 ≐
U

(𝑞)
𝑑,𝑛 − 𝑝

(𝖲)
𝑑

1 − 𝑝(𝖲)𝑑
, 𝑞 = 1,… , 𝑁, (21)

where U
(𝑞)
𝑑,𝑛 is the day 𝑑 rounding-adjusted10 percentage of stale returns at the 10-second frequency.

8 The cross section may vary from day to day due to rare missing stocks.
9 This precautionary rule is far from binding. With the exception of a handful of days in the sample, we discard, on average, only 0.17% of the returns in

he 10-second partition.
10 On a 10-second partition, rounding may inflate the percentage of zero returns, thereby inducing a bias in the estimation of the idiosyncratic probability of

taleness. In light of this observation, we adopt the procedure described in Bandi et al. (2020) to purge the observed percentage of stale returns from finite-sample
7

ontaminations due to rounding. We discuss rounding explicitly in Appendix B.
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Fig. 1. (Top panel.) Daily time series of 𝑝(𝖲)𝑑 . (Bottom panel.) Daily time series of mean𝑞𝑝
(𝑞)
𝑑 , i.e. the mean, across all stocks, of daily idiosyncratic staleness. The

diosyncratic staleness estimates are adjusted for rounding using the procedure in Bandi et al. (2020). The red lines are the 5th and the 95th percentiles of the
ross-sectional estimates. (For interpretation of the references to color in this caption, the reader is referred to the web version of this article.)

Fig. 1 plots values of 𝑝(𝖲)𝑑 in the top panel and cross-sectional averages of 𝑝(𝑞)𝑑 in the bottom panel.11 We do not report standard
rrors as they are extremely tight. In the idiosyncratic case, we however report, along with the cross-sectional averages, the 5th
nd the 95th percentiles of the cross-sectional values. Systematic staleness features a low-frequency upward trend directly related
o the low-frequency downward trend in average volume over the same time period. Because the low-frequency trend in average
olume is known to be due to factors (like reductions in bank’s proprietary trading) other than increased illiquidity,12 we remove
he trend when conducting structural estimation in the next section. Systematic staleness also appears to be more volatile in recent
eriods. We do not find compelling evidence suggesting that this increased volatility is due to volatility spill-overs from volume. We,
owever, recall that the systematic staleness estimator is, in essence, a sample frequency intended to measure a daily probability.
ts variability, as an estimator, is therefore bound to increase as the underlying true probability – and its estimate – rise towards
.5, something which is consistent with the documented increases in more recent times.

The series are persistent (with first-order autocorrelations near 90%) and highly correlated (with correlation equal to 87%).
able 1 displays the regression coefficients associated with past daily staleness, past staleness over a week (i.e., the average over
he past 5 days) and past staleness over a month (i.e., the average over the past 22 days), along with the corresponding 𝑡-statistics,

11 In principle, one could extract systematic staleness from an index, like the S&P 500. After doing so, we found an 𝑅2 between the staleness of the index
and our notion of systematic staleness of 1.7%. Theoretically, while times of market-wide staleness (as implied by our measure) must necessarily be associated
with staleness of the index, the index could be stale even when individual assets are not because of suitable cancellations in its portfolio structure. Consistent
with this observation, we document larger values of staleness for the S&P 500 index impacting levels as well as dynamics (as evidenced by the low 𝑅2) relative
to our measure.

12
8

We thank the Editor for pointing this out to us.
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Table 1
HAR estimates. We estimate a HAR model for systematic staleness and for the cross-sectional average
of idiosyncratic staleness. The parameters correspond to the intercept as well as to past daily, weekly
and monthly values of the series. T-statistics are in the last column.

Panel A: 𝑝(𝖲)𝑑
Parameters Values 𝑡-stats

𝛽0 0.001∗∗∗ 3.289
𝛽𝑑 0.353∗∗∗ 7.298
𝛽𝑤 0.403∗∗∗ 5.385
𝛽𝑚 0.223∗∗∗ 4.536

Panel B: mean𝑞𝑝
(𝑞)
𝑑

Parameters Values 𝑡-stats

𝛽0 0.007∗∗ 2.165
𝛽𝑑 0.591∗∗∗ 17.454
𝛽𝑤 0.280∗∗∗ 6.356
𝛽𝑚 0.116∗∗∗ 3.629

∗∗∗, ∗∗ and ∗ denote significance at the 1% level, the 5% level and the 10% level, respectively.

Table 2
HAR estimates with volume and variance. We estimate a HAR model for systematic staleness and for
the cross-sectional average of idiosyncratic staleness. The first four parameters correspond to the intercept
as well as to past daily, weekly and monthly values of the series. The last two parameters correspond
to the one-day lagged (logarithm of the) daily cross-sectional average of dollar-weighted volume and the
one-day lagged (logarithm of the) daily cross-sectional average of 5-minute realized variance, respectively.
T-statistics are in the last column.
Panel A: 𝑝(𝖲)𝑑
Parameters Values 𝑡-stats

𝛽0 0.008∗∗∗ 5.607
𝛽𝑑 0.326∗∗∗ 6.844
𝛽𝑤 0.386∗∗∗ 5.267
𝛽𝑚 0.208∗∗∗ 4.322
𝛽𝖽𝗐𝗏 −1.589∗∗∗ −5.725
𝛽𝗏 −0.831∗∗ −2.379

Panel B: mean𝑞𝑝
(𝑞)
𝑑

Parameters Values 𝑡-stats

𝛽0 0.001 0.217
𝛽𝑑 0.602∗∗∗ 16.636
𝛽𝑤 0.280∗∗∗ 6.371
𝛽𝑚 0.112∗∗∗ 3.439
𝛽𝖽𝗐𝗏 0.410 0.546
𝛽𝗏 1.510 1.430

∗∗∗, ∗∗ and ∗ denote significance at the 1% level, the 5% level and the 10% level, respectively.

for both measures. In the regressions, persistence is, therefore, captured by virtue of the (heterogeneous auto-regressive) HAR model
proposed by Corsi (2009). The estimates have a familiar (from the volatility literature) look. The 𝑅2s are close to 85% for systematic
staleness and 93% for mean idiosyncratic staleness. Some observations are in order:

1. The substantial correlation between systematic staleness and mean idiosyncratic staleness (87%) is reminiscent of the equally
large correlation between systematic volatility and mean idiosyncratic volatility (see, e.g., Herskovic et al., 2016, Fig. 5, Panel
A).

2. The persistent dynamics of mean idiosyncratic staleness are suggestive of the presence of a common factor in idiosyncratic
staleness. This is, again, reminiscent of analogous findings in the volatility literature (Herskovic et al., 2016).

In Fig. 2 we plot systematic staleness (top panel) and mean idiosyncratic staleness (bottom panel) against mean daily dollar-
weighted volume. Volume is strongly negatively correlated with both measures. The correlation coefficient is, in both cases, around
−70%. This finding is in line with the logic behind both measures: the lower volume, the smaller the price updates, the larger
staleness. The microstructure model presented in Section 5 provides a structural justification for changing levels of trading activity,
whether systematic or idiosyncratic. In the model, decreased trading (as induced, e.g., by higher execution costs) will translate into
more price staleness. This effect is strongly in the data, as also suggested by the color-coded break-down by year in Fig. 2.

Fig. 3 plots systematic staleness (top panel) and mean idiosyncratic staleness (bottom panel) against the logarithm of mean
5-minute realized variance. The correlation between both notions of staleness and variance is negative and larger than −80%,
particularly in the case of idiosyncratic staleness. Once more, the microstructure model in Section 5 provides a framework to
conceptualize this effect. Because realized variance is designed to measure the variance of the underlying efficient price and the
efficient price is defined as a conditional expectation of future payoffs given all available information, high efficient price variance
is symptomatic of changes in the information set of the informed agents. In the model, all else equal, these changes in information
may lead to trades. In particular, the larger the changes, the further away efficient prices will be from mid-quotes (for every level
of execution costs), the more likely information-based trades. Trading, however, reduces staleness.

It is well-known that volume and variance are correlated. Our sample is no exception. The correlation between (mean, across
stocks) log volume and (mean, across stocks) log variance is about 60%. In order to separate variance effects from volume effects,
we add both variables (with a lag) to the HAR specification estimated previously. The results are in Table 2.

In the next section, we discuss a microstructure model which provides a framework to (1) rationalize our notions of systematic
and idiosyncratic staleness and (2) extract structural information from their measurements.
9
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Fig. 2. (Top panel.) Scatter plot of the logarithm of daily systematic staleness vs. the logarithm of daily mean dollar-weighted volume. (Bottom panel.) Scatter
lot of the logarithm of daily mean idiosyncratic staleness vs. the logarithm of daily mean dollar-weighted volume.

. Micro-founding price staleness

We consider an 𝑁-variate price formation process in which private information (and its interaction with illiquidity, through
xecution costs) plays a key role in driving transaction prices, in the spirit of Kyle (1985) and Glosten and Milgrom (1985). In a
utshell, if the value of the information signal is larger than execution costs, informed traders will act on it and trade. Otherwise,
hey will choose not to trade, thereby leading to price staleness.

Empirically, we will show how measured (systematic and idiosyncratic) staleness from the data can be put to work to identify
ey features of the assumed price formation process, to which we now turn.

.1. The price formation process

The model has three sets of 𝑁-variate prices: unobserved efficient prices, mid-points of bid/ask prices (i.e., mid-quotes) and
transaction prices. Let 𝑡 be a discrete-time index running across 10-second intervals13 and let 𝑞 = 1,… , 𝑁 be, as earlier, the

13 We note that, in Section 2, 𝑡 defined a continuous-time index running across a trading day of length 1, i.e., 𝑡 ∈ 0, 1 .
10
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Fig. 3. (Top panel.) Scatter plot of the logarithm of daily systematic staleness vs. the logarithm of 5-minute daily realized variance. (Bottom panel.) Scatter plot
of the logarithm of daily mean idiosyncratic staleness vs. the logarithm of 5-min daily realized variance.

index denoting stocks. The latent efficient (logarithmic) price process is assumed to be unpredictable given past information and is
expressed as follows:

e𝑞,𝑡 = e𝑞,𝑡−1 + 𝛽𝑞 𝜎𝖬
√

𝛥 𝜀𝖬,𝑡 + 𝜎(e)𝑞
√

𝛥 𝜀(e)𝑞,𝑡 , (22)

where the 𝜀(e)𝑞,𝑡 s are zero mean, unit variance, white noise shocks independent across stocks and the 𝜀𝖬,𝑡s are zero mean, unit variance,
white noise shocks common across stocks. The quantities 𝜎(e)𝑞

√

𝛥 and 𝜎𝖬
√

𝛥 define the standard deviations of the same shocks (over
any 10-second interval 𝛥). The efficient prices are private information.

The mid-points of bid/ask prices are, instead, common knowledge. Consistent with the work of Hasbrouck and Ho (1987)
and Amihud and Mendelson (1987), the mid-quotes evolve as

m𝑞,𝑡 = m𝑞,𝑡−1 + 𝛿𝑞
(

e𝑞,𝑡 −m𝑞,𝑡−1
)

+ (1 − 𝛿𝑞)𝜎(m)
𝑞

√

𝛥 𝜀(m)
𝑞,𝑡 , (23)

with the initial conditions m𝑞,0 = e𝑞,0, where the 𝜀(m)
𝑞,𝑡 s are, again, zero mean, unit variance, white noise shocks independent across

stocks and independent of the efficient price shocks. The quantity 𝜎(m)
𝑞

√

𝛥 defines the 10-second standard deviation of the shocks
o mid-quotes.

The market maker reacts to the order flow. The partial adjustment model in Eq. (23) captures his/her learning (and price setting
ehavior) without modeling directly the direction of the order flow. The efficient price is unobserved to him/her but, if e −m > 0
11

𝑞,𝑡 𝑞,𝑡−1
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(resp. e𝑞,𝑡 −m𝑞,𝑡−1 < 0), the market maker is more likely to receive buy (resp. sell) orders (the behavior of the informed traders will
later justify this statement). Hence, the mid-quote will be adjusted upward (resp. downward). The speed of this adjustment (i.e., the
speed of learning of the market maker) is given by 𝛿𝑞 . The closer 𝛿𝑞 to one, the faster the market-maker learns and the closer the
mid-quote is to the unobserved efficient price. Consistent with this logic, when 𝛿𝑞 = 0, the mid-quotes are random walks independent
of the efficient prices. When 𝛿𝑞 = 1, instead, the mid-quotes track the efficient prices exactly. Relative to the mid-quote specification
in Bandi et al. (2017), the current specification permits a more transparent interpretation of the role of 𝛿𝑞 . We note that the expected
mid-quote coincides with the expected efficient price, i.e., E

[

m𝑞,𝑡
]

= E
[

e𝑞,𝑡
]

.
We assume that informed traders arrive to the market with a fixed probability which, following Bandi et al. (2017), is dubbed

AIT (Probability of Arrival of Informed Traders). At any point in time 𝑡, trading is conducted by an informed trader, rather than
by a noise trader, if 𝑈𝑡 ≤ PAIT, where the 𝑈𝑡s are iid shocks uniformly distributed in (0, 1). By definition, the informed traders know
he prevailing values of the efficient price processes e𝑞,𝑡, for all 𝑞 = 1,… , 𝑁 , and make their decision (to buy, sell or remain idle)

by comparing the wedge between mid-quotes and efficient prices to the cost of execution 𝑐𝑞 .14 We think of 𝑐𝑞 as the half spread 𝑠𝑞
plus per-trade funding costs 𝑓 , i.e., 𝑐𝑞 = 𝑠𝑞 + 𝑓 . As in Brunnermeier and Pedersen (2009), 𝑓 may be viewed as the ‘‘shadow cost’’
of capital. Importantly, it is assumed to be the same across assets and, therefore, systematic in nature. Because this parameter is
designed to capture market-wide ability to raise funds, the assumption of constancy across assets is warranted. The spread 𝑠𝑞 is,
instead, idiosyncratic. While a literal reading of the model would relate it to the half bid/ask spread (an interpretation that may
now be helpful to understand the logic of the model), a more formal interpretation in terms of (scaled) effective spread is provided
in Section 6. Because trades can occur within the quoted bid/ask spread, our formalization will be more reflective of the actual costs
incurred by traders as compensation for immediacy. We refer the reader to Roll (1984) for an early discussion and to Hasbrouck
(2009) for a subsequent approach and references.15

We now turn to the determination of transaction prices. If 𝑈𝑡 ≤ PAIT, trading – or lack thereof – is due to information. Informed
traders will trade only when they receive compensation for both the cost of immediacy 𝑠𝑞 and the cost of funding 𝑓 . Specifically, if
|

|

|

e𝑞,𝑡 −m𝑞,𝑡
|

|

|

≤ 𝑐𝑞 = 𝑠𝑞 + 𝑓 , informed traders do not trade and prices are stale. If, instead, |e𝑞,𝑡 −m𝑞,𝑡| > 𝑐𝑞 , the observed traded prices
are

p𝑞,𝑡 = m𝑞,𝑡 + 𝑠𝑞I{e𝑞,𝑡−m𝑞,𝑡>𝑐𝑞
} − 𝑠𝑞I{e𝑞,𝑡−m𝑞,𝑡<−𝑐𝑞

}. (24)

Informed traders only trade in the ‘‘right’’ direction, i.e., they buy when the mid-quote is ‘‘sufficiently’’ lower than the efficient
price and they sell when the mid-quote is ‘‘sufficiently’’ higher. This behavior justifies the assumed reaction of the market maker,
as represented by the partial adjustment model in Eq. (23). If trades are uninformed (that is, if 𝑈𝑡 ≥ PAIT), we write

p𝑞,𝑡 = m𝑞,𝑡 + 𝜂𝑞,𝑡𝑠𝑞 ,

where 𝜂𝑞,𝑡 can be either +1 or −1 with equal likelihood and 𝑠𝑞 represents, again, the cost of immediacy for the 𝑞th asset.
We emphasize that the model can give rise to systematic staleness through the market-wide funding cost 𝑓 or through increases

in PAIT, for all levels of execution costs. It could also give rise to idiosyncratic staleness through, e.g., changes in the asset-specific
spreads 𝑠𝑞 . While we do not model explicitly a common (market-wide) factor in the spreads 𝑠𝑞 , we will let the proposed staleness
measures identify it, for each day in our sample. For further discussions of a single-asset version of the model without any distinction
between market-wide and idiosyncratic effects, a distinction which represents the substantive core of this article, we refer the reader
to Bandi et al. (2017).

While rich, the model specification can be extended. One may allow for the presence of intermittent noise trading, something
which is unconventional in microstructure theory (with notable exceptions, such as the work of Easley and O’Hara, 1992) but
empirically believable. Because efficient prices would be unobservable to these (noise) traders, they would not compare deviations
between efficient prices and mid-quotes to execution costs. They would, instead, respond to the absolute size of the execution costs,
as opposed to their relative size, and opt out of trades when the absolute size is large. Their decisions would, however, also lead
o lower volume, and increased staleness, as a function of higher costs of execution. Lack of trading on the part of all traders
as the potential to yield enhanced signal about the cost of trading (be it idiosyncratic or systematic) and less loading on PAIT.
ecause the evaluation of the trigger for noise trade inaction is, however, not obvious (what is a ‘‘large’’ execution cost in absolute
erms?), and no guidance is offered by the existing literature, in this article we follow the literature convention of only allowing for
nformation-based inaction. A second extension has to do with PAIT. This probability, itself, could be asset specific, rather common
cross stocks. A stock-specific PAIT would, of course, add parameters to the model specification (149 additional parameters in our
ase, c.f. Section 5.2) and render identification more cumbersome. Also, because we are interested in systematic effects, it would
e meaningful for us to model a systematic component of PAIT but this choice would entail ambiguities in model specification on
hich microstructure theory and empirical evidence provide, again, no guidance. Relatedly, one may view the current (common
cross stocks) PAIT as an average (across stocks) probability of arrival. We emphasize that having a single PAIT does not imply
hat the probability of informed trading is the same across stocks. Given, in fact, their arrival (which is controlled by PAIT), the
nformed traders may or may not decide to trade. Thus, the probability of informed trading is stock-specific and time-varying. A
hird, potential, extension relates the magnitude of the spreads 𝑠𝑞 to the amount of information-based trading. While we could specify

them as being a function of the distance between mid-quotes and efficient prices (a larger distance being, as discussed, conducive

14 The informed traders ‘‘know’’ the efficient prices because these prices are conditional expectations of future cash flows given their information set.
15 The notion of effective spread is important to regulators as well. SEC’s Reg NMS Rule 605 requires market venues to provide estimates of effective spreads.
12
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to more information-based trading), the same effects are currently captured non-parametrically. As we detail in Section 5.2, we,
in fact, produce daily estimates (time-varying across days) of all quantities (including 𝑠𝑞). The daily 𝑠𝑞 estimates are expected to
e affected by everything that drives the specialist’s decisions, from the probability of informed trading (which depends on PAIT,
fficient price volatility and more) to the specialist’s learning.

.2. Structural estimation

The 𝑁-variate model contains 5𝑁 + 3 structural parameters: 𝛽𝑞 , 𝜎
(e)
𝑞 , 𝜎(m)

𝑞 , 𝛿𝑞 and 𝑠𝑞 , for 𝑞 = 1,… , 𝑁 , plus 𝜎𝖬, PAIT and 𝑓 .
or each stock, we estimate the 𝛽𝑞s using a rolling window of 22 days, thereby reducing the number of structural parameters to
𝑁 + 3.16

After quality cuts on the initial set of stocks,17 the model is estimated on 150 stocks. Using the selected stocks, we identify the
arameters by simulated method of moments (Gourieroux et al., 1993, and Duffie and Singleton, 1993). Specifically, for each stock
nd for each day in the sample, we compute nine stock-specific realized measures:

1. 10-second and 300-second realized variances,
2. 10-second auto-correlations at lags 1, 4, 8 and 16,
3. 10-second, 30-second and 1-minute idiosyncratic staleness measures, as defined in Eq. (21).

For each day in the sample, we also compute the following economy-wide realized measures:

4. 10-second, 30-second and 1-minute systematic staleness, computed as in Eq. (20),
5. The mean of the means (time-series and cross-sectional) of the 300-second realized variances.

The 9𝑁 + 4 daily realized measures are used as moment conditions and matched to the corresponding daily moments simulated
from data. To generate simulated data, all model’s shocks in Section 5.1 are drawn from a Gaussian distribution.

Importantly, because both the empirical and the simulated moments are defined for each day in the sample, something that
only estimates based on high-frequency data can afford, they lead to daily estimates of the parameters of interest and, therefore,
daily time series of the same parameters. These daily time series are helpful to understand dynamics, interactions and feedback
effects. In Fig. 4, we report 10-day moving averages of the daily estimates of all model parameters. For all of the non-systematic
quantities, we also report the 10th and 90th largest value associated with the 150 assets used for estimation. The estimates of the
‘‘variance’’-related parameters (𝜎(e)𝑞 , 𝜎(m)

𝑞 and 𝑠𝑞) have a familiar pattern with apparent increases around the 2008/2009 financial
crisis. Consistent with their economic logic, we document a similar increase for PAIT and 𝑓 .

The proposed identification method is evaluated in Appendix B by simulation. Here, we provide further details regarding the
ole played by our suggested staleness measures. Each of the realized moments is, of course, a nonlinear function of the set of
arameters and is, therefore, responsive to them. We show that the realized staleness measures are key to the identification of the
eep parameters associated with granular trading dynamics, from PAIT to the speed of learning of the market maker, 𝛿𝑞 , to the

‘‘shadow’’ cost, 𝑓 . For illustration, in Fig. 5 we plot the objective function of the model as a function of all model parameters,
considered one-by-one. These parameters are varied across the horizontal axis keeping all other parameters fixed at their (time-
series and cross-sectional) average. The moments to be matched are those of data artificially generated (for 10 assets) with values
which are reported, in all panels, as vertical blue dotted lines. Specifically, we report the average (across 100 simulations) of two
different objective functions: one (represented by the black continuous line) obtained including all of the staleness moments (i.e., the
systematic staleness measure and the𝑁 idiosyncratic staleness measures) and a second (the red continuous line with circles) obtained
by excluding them. The dotted lines define the 5% − 95% confidence band associated with each average. The plots document that,
absent the information in staleness, the objective function would be excessively flat to identify credibly PAIT, 𝛿𝑞 and, in particular,
𝑓 . While the staleness moments improve identification across the board, solely the ‘‘variance’’-related parameters (again, 𝜎(e)𝑞 , 𝜎(m)

𝑞
and 𝑠𝑞) appear to be estimable reliably using ‘‘variance’’ moments only.

6. Structural idiosyncratic and systematic liquidity

In this section, we dive more deeply into measures that (𝑖) are naturally related to liquidity, (𝑖𝑖) have accepted benchmarks in the
literature and (𝑖𝑖𝑖) allow us to evaluate the ability of our proposed methods to extract both idiosyncratic and systematic information.
Specifically, we focus on the idiosyncratic (half) spreads, 𝑠𝑞 , and on systematic funding costs, 𝑓 . We begin with the former.

16 In unreported experiments, we have also considered non-zero correlations between the shocks to the mid-quotes 𝜀(m)
𝑞,𝑡 and the (asset-specific) shocks to the

efficient prices 𝜀(e)𝑞,𝑡 . We have found that these correlations do not affect our findings in any meaningful way. In order not to add a large number of additional
arameters (one per asset) that are hard to identify, and are less critical in terms of economic logic, we opted for keeping the model simpler.
17 For each of the 250 stocks and on each day, we compute (1) the total volume traded, (2) the total number of transactions and (3) the longest time interval
ith no trading, obtaining three 250 × 2265 matrices, one for each characteristic. We flag all of the daily entries of the three matrices with total log-volume

smaller than 12.5, or with a number of transactions smaller than 500, or with a maximum time length of no trading larger than ten minutes. We keep only
13

those stocks that, after removing all flagged days, have daily returns over at least 97% of the sample.
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Fig. 4. We report the 10-day moving averages of the daily estimates of the model parameters: the probability of arrival of informed traders PAIT, the funding
cost 𝑓 (expressed in basis points), the market volatility 𝜎𝖬 (expressed in percentage), the mean (across the 150 stocks) of the efficient price volatility 𝜎(e)𝑞
(expressed in percentage), the mean (across the 150 stocks) of the mid-quote volatility 𝜎(m)

𝑞 (expressed in percentage), the mean (across the 150 stocks) of the
half bid–ask spread 𝑠𝑞 (expressed in basis points), and the mean (across the 150 stocks) of the speed of learning 𝛿𝑞 . The red dotted lines represent the 10th and
90th largest value associated with the 150 stocks used for estimation. (For interpretation of the references to color in this caption, the reader is referred to the
web version of this article.)
14
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Fig. 5. In each plot we report the average, across 100 simulations, of the objective function computed with (black continuous line) and without (red continuous
ine with circles) the staleness moments. The dashed lines define 5%−95% confidence bands. The moments to be matched are those of artificially-generated data
or a sample of 𝑁 = 10 assets. The horizontal axis of each panel reports the parameter that is varied (all other parameters are set equal to their cross-sectional
nd time-series average). The vertical dashed blue lines coincide with the true values of the parameters, i.e., the values used to generate the artificial samples.
o facilitate comparison, the vertical axis is in logarithmic scale. (For interpretation of the references to color in this caption, the reader is referred to the web
ersion of this article.)

.1. Execution costs

When taken literally, the model specification in Eq. (24) leads to a direct association of the parameter 𝑠𝑞 with the half bid/ask
pread. A superior interpretation, one which takes into account the fact that the model is estimated with transaction prices only
15



Journal of Econometrics 238 (2024) 105522F.M. Bandi et al.

T

w
m

(i.e., without any information on bid/ask spreads) and transacted prices may lay within the spread, suggests that 𝑠𝑞 should, instead,
by viewed as a proxy for the effective spread. We now formalize this logic within the model.

Consider the gap process g = e −m. Given Eqs. (22) and (23), and writing 𝜑𝑞 = 1 − 𝛿𝑞 for conciseness, we have

g𝑞,𝑡 = e𝑞,𝑡 −m𝑞,𝑡 = 𝜑𝑞
(

e𝑞,𝑡−1 −m𝑞,𝑡−1
)

+ 𝜑𝑞 𝜎(e)𝑞
√

𝛥 𝜀(e)𝑞,𝑡 − 𝜑𝑞 𝜎
(m)
𝑞

√

𝛥 𝜀(m)
𝑞,𝑡 + 𝜑𝑞 𝛽𝑞 𝜎𝖬

√

𝛥 𝜀𝖬,𝑡

or

g𝑞,𝑡 = 𝜑𝑞 g𝑡−1 + 𝜀
(g)
𝑞,𝑡 ,

where 𝜀(g)𝑞,𝑡 = 𝜑𝑞 𝜎
(e)
𝑞

√

𝛥 𝜀(e)𝑞,𝑡 −𝜑𝑞 𝜎
(m)
𝑞

√

𝛥 𝜀(m)
𝑞,𝑡 +𝜑𝑞 𝛽𝑞 𝜎𝖬

√

𝛥 𝜀𝖬,𝑡. Assume, now, normality of the shocks, an assumption which is solely
made to arrive at operational closed-form expressions. Then,

g𝑞,𝑡 =
+∞
∑

𝑗=0
𝜑𝑗𝑞 𝜀

(g)
𝑞,𝑡−𝑗 ∼ 𝑁

(

0,
𝜎2
𝜀(g)

1 − 𝜑2
𝑞

)

with

𝜎2
𝜀(g) = 𝜑2

𝑞 𝛥
(

(

𝜎(e)𝑞
)2

+
(

𝜎(m)
𝑞

)2
+ 𝛽2𝑞 𝜎

2
𝖬

)

.

hus, the probability of having a zero return for the 𝑞th asset is given by

𝑝∅𝑞 = PAIT ⋅ P
[

|

|

|

g𝑞,𝑡
|

|

|

≤ 𝑓 + 𝑠𝑞
]

= PAIT ⋅

√

1 − 𝜑2
𝑞

√

2𝜋 𝜎𝜀(g)
∫

𝑐𝑞

−𝑐𝑞
exp

⎛

⎜

⎜

⎜

⎝

−

(

1 − 𝜑2
𝑞

)

𝑥2

2 𝜎2
𝜀(g)

⎞

⎟

⎟

⎟

⎠

𝑑𝑥, (25)

here 𝑐𝑞 = 𝑓 + 𝑠𝑞 is the total cost of trading. Denoting by 𝐷𝑞 the direction of a trade (𝐷𝑞 = +1 for a buy, 𝐷𝑞 = −1 for a sell), the
odel-implied effective spread is:

E
[

𝐷𝑞,𝑡
(

p𝑞,𝑡 −m𝑞,𝑡
)]

= PAIT
(

E
[

m𝑞,𝑡 + 𝑠𝑞 −m𝑞,𝑡
]

P
[

g𝑡 > 𝑐𝑞
]

− E
[

m𝑞,𝑡 − 𝑠𝑞 −m𝑞,𝑡
]

P
[

g𝑡 < −𝑐𝑞
])

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
informed trader

+

+ (1 − PAIT)
(

+1
2
𝑠𝑞 −

(

−1
2
𝑠𝑞
))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
noise trader

= 𝑠𝑞 PAIT
(

P
[

g𝑡 > 𝑐𝑞
]

+ P
[

g𝑡 < −𝑐𝑞
])

+ (1 − PAIT) 𝑠𝑞
= 𝑠𝑞 PAIT

(

1 − P
[

|

|

|

g𝑞,𝑡
|

|

|

≤ 𝑐𝑞
])

+ (1 − PAIT) 𝑠𝑞

= 𝑠𝑞
(

1 − 𝑝∅𝑞
)

= 𝑠𝑞,⋆.

In light of this discussion, we note that while viewing 𝑠𝑞 as a proxy for the prevailing effective spread is reasonable, an even superior
proxy would multiply 𝑠𝑞 by a factor equal to 1 minus the probability of zero returns. Such a probability can be computed in closed
form (given an assumption on the distribution of the shocks and the model parameters), as evidenced by Eq. (25).

In Fig. 6, we compare model-implied measures to empirical spread measures from the TAQ data set. Specifically, we compare
estimates of the spread measure 𝑠𝑞 (left column plots) and the effective spread measure 𝑠𝑞,⋆ (right column plots) to traditional
benchmarks (c.f. Goyenko et al., 2009): daily averages of logarithmic bid–ask spreads, daily averages of effective spreads and daily
averages of realized spreads (first, second and third row, respectively). The realized spreads are defined as in Bessembinder (2003).

The time-series correlations (for each stock and each pair of measures, over time) is represented using colors, from blue
(correlation 0) to dark red (correlation 1). The cross-sectional correlation is, instead, reported in each of the panel’s title. As
emphasized, the structural estimates only hinge on transaction prices (i.e., no information on quotes is needed). In addition, we
do not require the use of any algorithm designed to sign the order flow as in, e.g., the classical work of Lee and Ready (1991). Yet,
the model-implied structural estimates and the three high-frequency execution cost proxies are, remarkably, very highly correlated
both cross-sectionally and in the time series. The structural estimates lay within the recorded bid/ask spreads, an empirical finding
which is in line with the observation that substantial price improvements, as compared to recorded bid/ask spreads, are ubiquitous
(see, e.g., Bessembinder, 2003).

Table 3 reports average time-series correlations between the model-implied estimates (𝑠𝑞 and 𝑠𝑞,⋆) and the same empirical
estimates as in Fig. 6, namely recorded bid/ask spreads, effective spreads and realized spreads. Importantly, we also report average
time-series correlations between idiosyncratic staleness (as defined in Eq. (21)) and the three empirical measures. We note that the
latter are negative. While idiosyncratic staleness contains revealing signal about execution costs – a signal that structural estimation
can bring to light – the impact of features of the trading process other than execution costs make it a rather noisy proxy. We will
16

return to this point.
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�̂�

Fig. 6. In each plot a circle corresponds to a different stock in the data. For each stock, the horizontal axes report (in logarithmic scale of basis points) the daily
time-series averages of the model-implied spread parameters �̂�𝑞 (left column) and the daily time-series averages of the model-implied effective spread parameters

𝑞,⋆ = �̂�𝑞
(

1 − 𝑝∅𝑞
)

(right column). For each stock, the vertical axes report (in logarithmic scale of basis points) the daily time-series averages, computed using
TAQ data, of the logarithmic bid–ask spreads (first row), the daily time-series averages of the effective spreads (second row) and the daily time-series averages
of the realized spreads (third row). The color-coding, whose legend appears in the color map next to each plot, provides information on the sample correlation
between each pair of daily time series. The closer to red the color (and, also, the larger the circle), the higher the correlation. Finally, the title in each plot
reports the percentage cross-sectional correlation between the averages. (For interpretation of the references to color in this caption, the reader is referred to
the web version of this article.)

6.2. Funding liquidity

As emphasized earlier, given the workings of the model, it is natural to interpret the parameter 𝑓 as a market-wide (per unit of
trade) ‘‘shadow’’ cost of capital. Consistent with the logic in Brunnermeier and Pedersen (2009), our daily structural estimate of 𝑓
may, therefore, be viewed as a proxy for daily systematic funding costs.

In order to support this idea empirically, we run regressions of the daily estimates of 𝑓 on three alternative proxies used in the
recent work of Fontaine et al. (2020), namely the bond-based funding liquidity measure in Fontaine and Garcia (2012), the classical
TED spread and the measure in Hu et al. (2013). Table 4 contains our findings. In agreement with our logic, our structural proxy is
highly correlated with all three alternatives, the measure provided by Hu et al. (2013) having the largest correlation with 𝑓 (59.1%,
corresponding to an 𝑅2 of 35%). We emphasize that the reported 𝑅2s are in line with what one would obtain when regressing the
three benchmark proxies on each other. Regressing, for instance, the measure in Fontaine and Garcia (2012) on the TED spread and
17
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Table 3
Average time-series correlations. This table reports the average
(across stocks) time series (percentage) correlations between �̂�𝑞
(model-implied daily spread), �̂�𝑞,⋆ = �̂�𝑞

(

1 − 𝑝∅𝑞
)

(model-implied

daily effective spread), 𝑝(𝑞)𝑑 (daily idiosyncratic staleness) and
𝖡𝖠, 𝖤𝖲 and 𝖱𝖲, i.e., the daily logarithmic bid–ask, effective and
realized spreads computed using TAQ data, respectively.

𝖡𝖠 𝖤𝖲 𝖱𝖲

�̂� 59.22 64.89 69.30
�̂�⋆ 16.83 22.95 51.33
𝑝𝑑 −39.15 −49.40 −52.90

Table 4
The relation between 𝑓 and alternative proxies of funding costs. We
compare our structural estimate of funding costs 𝑓 to three alternative
proxies: the measure in Fontaine and Garcia (2012) (𝖥𝖴𝖭𝖣1), the TED
spread (𝖥𝖴𝖭𝖣2) and the measure in Hu et al. (2013) (𝖥𝖴𝖭𝖣3). T-statistics
are in parenthesis.

𝖥𝖴𝖭𝖣1 𝖥𝖴𝖭𝖣2 𝖥𝖴𝖭𝖣3 𝖱2

(1) 0.572∗∗∗ 0.134
(4.057)

(2) 0.439∗∗∗ 0.138
(4.127)

(3) 0.573∗∗∗ 0.350
(7.558)

(4) 0.423∗∗∗ 0.330∗∗∗ 0.204
(2.929) (3.018)

(5) 0.183 0.521∗∗∗ 0.361
(1.328) (6.101)

(6) 0.100 0.530∗∗∗ 0.355
(0.920) (5.945)

(7) 0.169 0.083 0.489∗∗∗ 0.364
(1.217) (0.758) (5.132)

∗∗∗, ∗∗ and ∗ denote significance at 1% level, 5% level and 10% level,
respectively.

the measure of Hu et al. (2013) would yield 𝑅2s of 11.6% and 21.6%, respectively. Regressing the last two proxies on each other
would, instead, deliver an 𝑅2 of 27.6%.

In Table 5 we run the same regressions but replace 𝑓 with systematic staleness. All betas are now negative and sometimes
significantly so. Once more, while systematic staleness contains signal about systematic liquidity, the nature of the trading process
makes it a rather noisy proxy, thereby justifying our structural approach. Again, we will return to this observation.

7. An economic lens: Cross-sectional pricing

We examine whether alternative systematic measures of liquidity contain cross-sectional pricing signal. We use the 150 stocks
employed for structural estimation and price monthly returns. Because the test assets are individual stocks rather than portfolios,
allowing for time-varying factor loadings is particularly relevant. We implement a classical Fama–MacBeth procedure (Fama and
MacBeth, 1973) and report results for two rolling windows used in the estimation of the factor loadings, 30 months and 50 months.
The latter is a typical length in the literature, the former allows for more time variation (at the cost of less efficiency) in the estimated
betas. We report risk prices for returns in excess of the 5-factor model in Fama and French (2015). In other words, we control for
state-of-the-art systematic risk factors when evaluating the pricing impact of alternative systematic liquidity proxies.

The liquidity proxies are systematic staleness (𝑝(𝖲)𝑚 ),18 the structural estimate of funding liquidity (𝑓 ), the average (across stocks
f) idiosyncratic staleness (mean𝑞𝑝

(𝑞)
𝑚 ), the average (across stocks of) the structural spread measure (mean𝑞 �̂�𝑞), the reversal measure

𝖯𝖲) of Pastor and Stambaugh (Pastor and Stambaugh, 2003) and the three proxies of funding costs in the previous section, namely
he measure in Fontaine and Garcia (2012) (𝖥𝖴𝖭𝖣1), the TED spread (𝖥𝖴𝖭𝖣2) and the measure in Hu et al. (2013) (𝖥𝖴𝖭𝖣3).

We include 𝑓 and mean𝑞 �̂�𝑞 because they represent, given the structural model in Section 5 and the comparisons in Section 6,
eaningful proxies of systematic liquidity, the former in particular. While rather noisy, 𝑝(𝖲)𝑚 and mean𝑞𝑝

(𝑞)
𝑚 are added due to their

omputational simplicity. The reversal measure 𝖯𝖲 has been shown to be priced in other cross sections. Finally, we include 𝖥𝖴𝖭𝖣1,

18 Here and below, the subscript 𝑚 is used to define ‘‘monthly’’ measures obtained as the average of daily measures over the corresponding month.
18
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Table 5
The relation between 𝑝(𝖲)𝑑 and alternative proxies of funding costs.
We compare the systematic staleness estimates 𝑝(𝖲)𝑑 to three alternative
proxies of funding costs: the measure in Fontaine and Garcia (2012)
(𝖥𝖴𝖭𝖣1), the TED spread (𝖥𝖴𝖭𝖣2) and the measure in Hu et al. (2013)
(𝖥𝖴𝖭𝖣3). T-statistics are in parenthesis.

𝖥𝖴𝖭𝖣1 𝖥𝖴𝖭𝖣2 𝖥𝖴𝖭𝖣3 𝖱2

(1) −0.002 0.005
(−0.764)

(2) −0.015∗∗∗ 0.477
(−9.829)

(3) −0.009∗∗∗ 0.231
(−5.649)

(4) 0.005∗∗ −0.016∗∗∗ 0.506
(2.503) (−10.321)

(5) 0.005∗∗ −0.010∗∗∗ 0.260
(2.010) (−6.008)

(6) −0.013∗∗∗ −0.003∗∗ 0.496
(−7.429) (−2.010)

(7) 0.008∗∗∗ −0.014∗∗∗ −0.005∗∗∗ 0.552
(3.611) (−8.243) (−3.271)

∗∗∗, ∗∗ and ∗ denote significance at 1% level, 5% level and 10% level,
respectively.

𝖥𝖴𝖭𝖣2 and 𝖥𝖴𝖭𝖣3 because of their interpretation in terms of funding liquidity measures and, therefore, for comparison with our
central proxy for systematic liquidity, i.e., 𝑓 .

Tables 6 and 7 contain estimated prices of risk along with Newey–West 𝑡-statistics for 16 models. Model 1 through 8 focus on
each of the systematic liquidity proxies one at a time (in addition to the five Fama–French factors). Model 9 through 16 expand on
the pricing of our reduced-form systematic staleness measure 𝑝(𝖲)𝑚 , a noisy proxy for systematic liquidity, and on the pricing of our
structural systematic liquidity measure, 𝑓 . They do so by considering each measure and by controlling for 𝖯𝖲, 𝖥𝖴𝖭𝖣1, 𝖥𝖴𝖭𝖣2 and
𝖥𝖴𝖭𝖣3 one at a time (in addition, once more, to the five Fama–French factors).

We emphasize that all measures are, technically, illiquidity (rather than liquidity) proxies. As such, they should increase when
liquidity dries up. Because higher illiquidity is associated with lower returns, the illiquidity factor loadings are, in general, negative.
We, therefore, expect the prices of risk to also be negative in that adverse states of the world (those associated with increases
in illiquidity and lower returns) should yield higher expected compensations. Having made this point, the measures leading to
consistently negative and largely statistically-significant prices of risk (across the reported choices of rolling window length) are 𝑓 ,
𝖯𝖲 and 𝖥𝖴𝖭𝖣1. Yet, while the statistical significance of 𝖯𝖲 and 𝖥𝖴𝖭𝖣1 is affected somewhat by the choice of window length, it is
stable in the case of 𝑓 .19 Other proxies yield economically-unreasonable positive prices of risk, insignificant estimates, or both.

Our intent in this section cannot be to study the pricing of systematic illiquidity broadly defined. Our more limited objective
is, in fact, solely to evaluate, in our data, the relative (to popular measures) pricing signal contained in our estimates. Consistent
with this observation, we find that 𝑓 performs satisfactorily and is generally more robust than successful illiquidity proxies, like
𝖯𝖲 and 𝖥𝖴𝖭𝖣1. We also find that, while the average (across stocks) of the structural spread measure (mean𝑞 �̂�𝑞) may also have an
interpretation in terms of market-wide illiquidity proxy, its signal is statistically and economically considerably more feeble than
that associated with 𝑓 , by construction a truly systematic measure. Finally, and importantly for our purposes, the use of noisier
proxies, like 𝑝(𝖲)𝑚 and mean𝑞𝑝

(𝑞)
𝑚 , translates into less robust performance as compared to mean𝑞 �̂�𝑞 and, in particular, to 𝑓 .

8. Conclusions

Asset prices do not update as frequently as implied by traditional modeling in continuous time. Lack of price updates may,
however, be economically as informative as long spells of volatility or jumps. The latter have been the focus of the successful
high-frequency literature. The former is the subject of this article.

We provide a new conceptual framework to define notions of (market-wide) systematic staleness and (asset-specific) idiosyncratic
staleness and a methodological framework to measure staleness, in its various forms. The methods result in a complete theory of
inference which builds on joint asymptotics relying on increasingly-frequent observations over the period along with an increasing
number of assets.

Text-book liquidity measures, like quoted bid/ask spreads, are known to be highly correlated with volatility. Alternative liquidity
measures, like effective spreads, are known to be affected by asymmetries in information. There is tendency in the empirical
finance literature to associate the number of zero returns (a form of staleness) to illiquidity. Yet, similar to other proxies, our

19 The pricing performance of 𝑓 is, in fact, robust to window lengths ranging from 20 months to 100 months.
19
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Table 6
Pricing with shorter windows. We run Fama–MacBeth regressions (with 30-month rolling windows) of the returns on
the 150 stocks used for structural estimation on alternative illiquidity proxies as well as on the five Fama–French factors.
The illiquidity proxies are: systematic staleness (𝑝(𝖲)𝑚 ), the structural estimate of funding liquidity (𝑓 ), the average (across
stocks) idiosyncratic staleness (mean𝑞𝑝

(𝑞)
𝑚 ), the average (across stocks) structural spread measure (mean𝑞 �̂�𝑞), the reversal

measure (𝖯𝖲) of Pastor and Stambaugh (Pastor and Stambaugh, 2003) and the three proxies of funding costs in the
previous section, namely the measure in Fontaine and Garcia (2012) (𝖥𝖴𝖭𝖣1), the TED spread (𝖥𝖴𝖭𝖣2) and the measure
in Hu et al. (2013) (𝖥𝖴𝖭𝖣3). T-statistics are in parenthesis.

𝑝(𝖲)𝑚 𝑓 mean𝑞𝑝
(𝑞)
𝑚 mean𝑞 �̂�𝑞 𝖯𝖲 𝖥𝖴𝖭𝖣1 𝖥𝖴𝖭𝖣2 𝖥𝖴𝖭𝖣3 𝖱2

(1) −0.001 0.126
(−0.646)

(2) −0.420∗∗∗ 0.128
(−3.079)

(3) −0.001 0.126
(−0.160)

(4) −0.003 0.130
(−0.133)

(5) −0.007∗ 0.123
(−1.720)

(6) −0.543∗∗ 0.129
(−2.062)

(7) 0.064 0.120
(1.131)

(8) −0.057 0.125
(−0.774)

(9) −0.001 −0.007 0.133
(−0.605) (−1.554)

(10) −0.001 −0.520∗∗ 0.136
(−0.457) (−2.015)

(11) −0.001 0.063 0.129
(−0.565) (1.067)

(12) −0.001 −0.055 0.134
(−0.680) (−0.741)

(13) −0.427∗∗∗ −0.007 0.134
(−3.129) (−1.632)

(14) −0.440∗∗∗ −0.485∗ 0.139
(−3.197) (−1.789)

(15) −0.401∗∗∗ 0.046 0.131
(−2.877) (0.775)

(16) −0.410∗∗∗ −0.062 0.137
(−3.019) (−0.841)

∗∗∗, ∗∗ and ∗ denote significance at 1% level, 5% level and 10% level, respectively.

proposed staleness measures should be viewed as being driven by more than the extent of execution costs and, therefore, that
of illiquidity. The inevitable interaction between liquidity, information, volatility and other effects (such as learning) makes, in
our view, the disentangling afforded by structural approaches to price formation particularly appealing. In one such approach, we
have documented that our proposed (reduced-form) high-frequency estimates of staleness have the potential to provide revealing
structural identification. Much remains to be done, our results being an initial step into structural explorations based on suitable
realized measures.

We emphasize that work on structural estimation using high-frequency realized measures is, at best, sparse. In this early study,
it was, therefore, natural for us to follow the progression of the high-frequency literature: our reduced-form estimates of systematic
and idiosyncratic staleness are viewed as being ‘‘integrated’’ measures over the period (the trading day) and are, therefore, matched
to simulated moments over the same period. A computationally expensive, but intriguing, next step is to localize estimation and
focus on intra-daily effects, rather than on daily (albeit time-varying across days) dynamics. Intra-daily periodicities in volatility are
well-documented. Intra-daily periodicities in staleness have been reported in Bandi et al. (2020). In principle, localization would
require a devoted theory of spot staleness estimation and opportune selection of a truly time-varying threshold 𝛩(𝑞,𝑁)

𝑡,𝑛 , among other
issues. While this is a topic better left for future work, we trust the identification potential of high-frequency data will stimulate the
transition from purely reduced-form investigations – the norm in the current high-frequency literature – to studies that are more
20

genuinely structural in nature.
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Table 7
Pricing with longer windows. We run Fama–MacBeth regressions (with 50-month rolling windows) of the returns on the 150 stocks used for
structural estimation on alternative illiquidity proxies as well as on the five Fama–French factors. The illiquidity proxies are: systematic staleness
(𝑝(𝖲)𝑚 ), the structural estimate of funding liquidity (𝑓 ), the average (across stocks) idiosyncratic staleness (mean𝑞𝑝

(𝑞)
𝑚 ), the average (across stocks)

structural spread measure (mean𝑞 �̂�𝑞), the reversal measure (𝖯𝖲) of Pastor and Stambaugh (Pastor and Stambaugh, 2003) and the three proxies
of funding costs in the previous section, namely the measure in Fontaine and Garcia (2012) (𝖥𝖴𝖭𝖣1), the TED spread (𝖥𝖴𝖭𝖣2) and the measure
in Hu et al. (2013) (𝖥𝖴𝖭𝖣3). T-statistics are in parenthesis.

𝑝(𝖲)𝑚 𝑓 mean𝑞𝑝
(𝑞)
𝑚 mean𝑞 �̂�𝑞 𝖯𝖲 𝖥𝖴𝖭𝖣1 𝖥𝖴𝖭𝖣2 𝖥𝖴𝖭𝖣3 𝖱2

(1) 0.001 0.112
(0.734)

(2) −0.303∗∗∗ 0.114
(−2.642)

(3) 0.002 0.110
(0.515)

(4) −0.001 0.113
(−0.039)

(5) −0.008∗ 0.111
(−1.857)

(6) −0.283 0.123
(−0.723)

(7) 0.038 0.111
(0.467)

(8) 0.156∗ 0.115
(1.824)

(9) 0.002 −0.006∗ 0.117
(1.210) (−1.741)

(10) 0.001 −0.296 0.128
(0.403) (−0.751)

(11) 0.001 0.020 0.116
(0.798) (0.254)

(12) 0.001 0.170∗ 0.121
(0.836) (1.918)

(13) −0.303∗∗∗ −0.008∗ 0.118
(−2.599) (−1.946)

(14) −0.281∗∗ −0.337 0.129
(−2.416) (−0.859)

(15) −0.289∗∗ 0.025 0.118
(−2.402) (0.296)

(16) −0.311∗∗∗ 0.161∗ 0.124
(−2.782) (1.852)

∗∗∗, ∗∗ and ∗ denote significance at 1% level, 5% level and 10% level, respectively.

Appendix A. Proofs

We begin by proving a lemma which will be used throughout.

Lemma 1. Suppose that, for a fixed 𝑁 , ℎ(𝑁)
𝑛 in Eq. (1) of Definition 2.2 is such that ℎ(𝑁)

𝑛
√
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Suppose, now, that ℎ(𝑁)
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nder both 0 and 𝐴.
Finally, define 𝑃 (𝑁)
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nder both 0 and 𝐴, as 𝑁 → ∞.

roof of Lemma 1. In order to simplify notation, we will denote by 𝐶 all constants – even when they change from place to place
– whenever it does not cause confusion. Other constants will be denoted by 𝐶 with superscripts or subscripts. Define

�̃� (𝑞)
𝑗,𝑛 ≐

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

, 𝖨𝖳(𝑞)
𝑛 ≐ 𝛥𝑛

𝑛
∑

𝑗=1
I{
�̃� (𝑞)
𝑗,𝑛≤1

}. (29)

We note that 𝑋(𝑞)
𝑗 𝛥𝑛

is the efficient price process sampled on a discrete time grid (c.f. Assumption 1) whereas 𝑋(𝑞)
(𝑗−1)𝛥𝑛

is the (lagged)
observed price process (either under 0 or under 𝐴). In fact, 𝑋(𝑞)

𝑗 𝛥𝑛
− 𝑋(𝑞)

(𝑗−1)𝛥𝑛
= 𝑋(𝑞)

𝑗 𝛥𝑛
− 𝑋(𝑞)

(

𝑗−1−𝑓 (𝑞)𝑗

)

𝛥𝑛
, where 𝑓 (𝑞)

𝑗 is the random

aiting time for a price update. This waiting time was characterized formally under 0. Under 𝐴, 𝑓 (𝑞)
𝑗 can be defined analogously,

ince the dynamics of the observed price process have the same structure as under 0. This is easy to see. Under 𝐴, the observed
rice process behaves as in Eq. (7), which can be re-written as

𝑋(𝑞)
𝑗 𝛥𝑛

=
(

1 − 𝑆(𝑞)
𝑗,𝑛

)

𝑋(𝑞)
𝑗 𝛥𝑛

+ 𝑆(𝑞)
𝑗,𝑛 𝑋

(𝑞)
(𝑗−1)𝛥𝑛

, (30)

here 𝑆(𝑞)
𝑗,𝑛 is a functional of a triangular array of Bernoulli processes (and a triangular array of Bernoulli processes itself) defined

s

𝑆(𝑞)
𝑗,𝑛 ≐ 𝐶 (𝖲)

𝑗,𝑛 + 𝐵
(𝑞)
𝑗,𝑛 − 𝐶

(𝖲)
𝑗,𝑛 𝐵

(𝑞)
𝑗,𝑛 , (31)

ith P
[

𝑆(𝑞)
𝑗,𝑛 = 1

]

= E
[

𝑆(𝑞)
𝑗,𝑛

]

→
𝑛→∞

𝑝(𝖲)∞ + 𝑝(𝑞)∞ − 𝑝(𝖲)∞ 𝑝(𝑞)∞ . We have 0 ≤ 1 − 𝑆(𝑞)
𝑗,𝑛 ≤ 1. Given sup (𝑓 + 𝑔) ≤ sup 𝑓 + sup 𝑔, 𝑆(𝑞)

𝑗,𝑛 also satisfies the
roperty on the maximum of consecutive flat trades stated in Eq. (6). We conclude that the orders derived below will apply both
nder 0 and under 𝐴.

We begin with a fixed 𝑁. Define the event 𝐸(𝑞)
𝑗,𝑛 ≐

{

|

|

|

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(

𝑗−1−𝑓 (𝑞)𝑗

)

𝛥𝑛

|

|

|

|

|

|

≤ 𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

}

. We have

E
[

𝖨𝖳(𝑞)
𝑛
]

= 1
𝑛
E

[ 𝑛
∑

𝑗=1
I{
𝐸(𝑞)
𝑗,𝑛

}

]

= 1
𝑛
E

[

E

[ 𝑛
∑

𝑗=1
I{
𝐸(𝑞)
𝑗,𝑛

}

|

|

|

|

|

𝑓 (𝑞)
𝑗 , 𝛩(𝑞,𝑁)

𝑗 𝛥𝑛 ,𝑛

]]

.

Applying the expansion of the indicator function on page 1842 of Bandi et al. (2017), we write

E
[

𝖨𝖳(𝑞)
𝑛
]

∼ E

⎡

⎢

⎢

⎢

⎢

⎣

√

2
𝜋

ℎ(𝑁)
𝑛 𝜉(𝑞)𝑗,𝑛

√

𝛥𝑛
(

𝑓 (𝑞)
𝑗 + 1

)

1
𝜎(𝑞)(

𝑗−1−𝑓 (𝑞)𝑗

)

𝛥𝑛

⎤

⎥

⎥

⎥

⎥

⎦

≤ 𝐶 ℎ(𝑁)
𝑛

√

𝑛,

for some constant 𝐶, which gives 𝖨𝖳(𝑞)
𝑛 = 𝑂𝑝

(

ℎ(𝑁)
𝑛

√

𝑛
)

. Now, consider the sets of indexes − and + defined as

− =
{

1 ≤ 𝑗 ≤ 𝑛 ∶ �̃� (𝑞)
𝑗,𝑛 ≤ 1

}

, + =
{

1 ≤ 𝑗 ≤ 𝑛 ∶ �̃� (𝑞)
𝑗,𝑛 > 1

}

, (32)

nd write the absolute value of the difference between 𝛥𝑛
∑𝑛
𝑗=1 

⎛

⎜

⎜

⎝

|

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛,𝑛

⎞

⎟

⎟

⎠

1∕𝑁

and 𝖨𝖳(𝑞)
𝑛 as

|

|

|

|

|

|

|

|

𝛥𝑛
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

1∕𝑁

− 𝖨𝖳(𝑞)
𝑛

|

|

|

|

|

|

|

|

= 𝛥𝑛
|

|

|

|

|

|

𝑛
∑

𝑗=1

(


(

�̃� (𝑞)
𝑗,𝑛

)1∕𝑁
− I{

�̃� (𝑞)
𝑗,𝑛≤1

}

)|

|

|

|

|

|

= 𝛥𝑛
|

|

|

|

|

|

∑

𝑗∈−

(


(

�̃� (𝑞)
𝑗,𝑛

)1∕𝑁
− 1

)

+
∑

𝑗∈+

(

�̃� (𝑞)
𝑗,𝑛

)1∕𝑁 |

|

|

|

|

|

= 𝛥𝑛

|

|

|

|

|

|

|

|

|

𝑛
∑

𝑗∈−

 ′
(

𝑐(𝑞)𝑗,𝑛
)

𝑁 
(

𝑐(𝑞)𝑗,𝑛
)
𝑁−1
𝑁

�̃� (𝑞)
𝑗,𝑛 +

𝑛
∑

𝑗∈+

(

�̃� (𝑞)
𝑗,𝑛

)1∕𝑁

|

|

|

|

|

|

|

|

|

≤ 𝛥𝑛

|

|

|

|

|

|

𝑛
∑

𝑗∈−

𝐶

𝑁 
(

𝑐(𝑞)
) �̃� (𝑞)

𝑗,𝑛 +
𝑛
∑

𝑗∈+

(

�̃� (𝑞)
𝑗,𝑛

)1∕𝑁
|

|

|

|

|

|

22

|
𝑗,𝑛

|
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t

N

B

≤ 𝛥𝑛
|

|

|

|

|

|

𝑛
∑

𝑗∈−

𝐶∗

𝑁
�̃� (𝑞)
𝑗,𝑛 +

𝑛
∑

𝑗∈+

(

�̃� (𝑞)
𝑗,𝑛

)1∕𝑁 |

|

|

|

|

|

≤ 𝐶∗ 𝖨𝖳(𝑞)
𝑛
𝑁

+ 𝛥𝑛
𝑛
∑

𝑗=1

(

�̃� (𝑞)
𝑗,𝑛

)1∕𝑁
I{
�̃� (𝑞)
𝑗,𝑛>1

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖠(𝑞,𝑁)
𝑛

.

The first equality is definitional. The second equality derives from breaking the summation down into two pieces and recognizing
that the indicator is either 1 or zero over the two sets in Eq. (32). The third equality uses (0) = 1, c.f. Definition 2.1, and the
mean value theorem with 𝑐(𝑞)𝑗,𝑛 ∈

(

0, �̃� (𝑞)
𝑗,𝑛

)

. The first inequality follows from (i) the boundedness of  ′ (𝑥) and (ii) the inequality
1

(𝑥)
𝑁−1
𝑁

≤ 1
(𝑥) which, in turn, derives from 0 <  (𝑥) ≤ 1 (c.f., again, Definition 2.1). Now, because  (𝑥) ≥ 𝜀 > 0, for 𝜀 small

nough, we have 𝐶

(

𝑐(𝑞)𝑗,𝑛
) ≤ 𝐶

𝜀 = 𝐶∗, which yields the second inequality. The last inequality is based on the triangle inequality and

he fact that 𝛥𝑛
∑𝑛
𝑗∈− �̃� (𝑞)

𝑗,𝑛 ≤ 𝖨𝖳(𝑞)
𝑛 .

Since 𝖨𝖳(𝑞)
𝑛 ≥ 0, the last inequality also implies that20

𝛥𝑛
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

1∕𝑁

=

|

|

|

|

|

|

|

|

𝛥𝑛
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

1∕𝑁 |

|

|

|

|

|

|

|

≤
(

𝐶∗

𝑁
+ 1

)

𝖨𝖳(𝑞)
𝑛 + 𝖠(𝑞,𝑁)

𝑛 .

Turning, now, to 𝖠(𝑞,𝑁)
𝑛 , define

𝑌 (𝑞)
𝑗,𝑛 ≐

|

|

|

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(

𝑗−1−𝑓 (𝑞)𝑗

)

𝛥𝑛

|

|

|

|

|

|

,

and 𝑡(𝑞)𝑗−1,𝑛 ≐ 𝑡𝑗−1−𝑓 (𝑞)𝑗 ,𝑛. We have

𝖠(𝑞,𝑁)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

𝑌 (𝑞)
𝑗,𝑛

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

1∕𝑁

I{
𝑌 (𝑞)
𝑗,𝑛 >𝛩

(𝑞,𝑁)
𝑗 𝛥𝑛,𝑛

} ≤ 𝛥𝑛
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

𝑌 (𝑞)
𝑗,𝑛

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

1∕𝑁

= 1
𝑛

𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

1
𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

|

|

|

|

|

|

∫

𝑡𝑗,𝑛

𝑡(𝑞)𝑗−1,𝑛

𝜇(𝑞)𝑠 𝑑𝑠 + ∫

𝑡𝑗,𝑛

𝑡(𝑞)𝑗−1,𝑛

𝜎(𝑞)𝑠 𝑑𝑊 (𝑞)
𝑠

|

|

|

|

|

|

⎞

⎟

⎟

⎠

1∕𝑁

. (33)

ow, consider that, for any arbitrary ℎ, it holds that, a.s.,
|

|

|

|

|

∫

𝑡+ℎ

𝑡
𝜇𝑠 𝑑𝑠 + ∫

𝑡+ℎ

𝑡
𝜎𝑠 𝑑𝑊𝑠

|

|

|

|

|

=
|

|

|

|

|

∫

𝑡+ℎ

𝑡
𝜇𝑠 𝑑𝑠 +𝑊∫ 𝑡+ℎ0 𝜎2𝑠 𝑑𝑠

−𝑊∫ 𝑡0 𝜎
2
𝑠 𝑑𝑠

|

|

|

|

|

≥
|

|

|

|

𝑊∫ 𝑡+ℎ0 𝜎2𝑠 𝑑𝑠
−𝑊∫ 𝑡0 𝜎

2
𝑠 𝑑𝑠

|

|

|

|

−
|

|

|

|

|

∫

𝑡+ℎ

𝑡
𝜇𝑠 𝑑𝑠

|

|

|

|

|

≥
|

|

|

|

𝑊∫ 𝑡+ℎ0 𝜎2𝑠 𝑑𝑠
−𝑊∫ 𝑡0 𝜎

2
𝑠 𝑑𝑠

|

|

|

|

− 𝐶ℎ

≥ 𝐶

⎛

⎜

⎜

⎜

⎜

⎝

√

√

√

√

√

√

√

(

∫

𝑡+ℎ

0
𝜎2𝑠 𝑑𝑠 − ∫

𝑡

0
𝜎2𝑠 𝑑𝑠

)

log

⎛

⎜

⎜

⎜

⎝

1
(

∫ 𝑡+ℎ0 𝜎2𝑠 𝑑𝑠 − ∫ 𝑡0 𝜎2𝑠 𝑑𝑠
)

⎞

⎟

⎟

⎟

⎠

− ℎ

⎞

⎟

⎟

⎟

⎟

⎠

= 𝐶

⎛

⎜

⎜

⎜

⎜

⎝

√

√

√

√

√

√

√

(

∫

𝑡+ℎ

𝑡
𝜎2𝑠 𝑑𝑠

)

log

⎛

⎜

⎜

⎜

⎝

1
(

∫ 𝑡+ℎ𝑡 𝜎2𝑠 𝑑𝑠
)

⎞

⎟

⎟

⎟

⎠

− ℎ

⎞

⎟

⎟

⎟

⎟

⎠

,

where we have temporarily omitted, to avoid clutter, the superscript 𝑞 in 𝜇, 𝜎 and 𝑊 . In the equality, the Dambis-Dubins–Schwarz
Theorem (see, e.g., Theorem 1.6 of Revuz and Yor, 2001) is used to express the stochastic integral ∫ 𝑡+ℎ𝑡 𝜎𝑠 𝑑𝑊𝑠 as a time-changed
Brownian motion. The first inequality is a triangle inequality. In the second inequality, we employ the boundedness of the drift, c.f.
Assumption 1. In the third inequality, for the first term, we use Theorem 1.13 in Mörters and Peres (2010).

20 The implication is easy to see. For non-negative 𝑎, 𝑏, 𝐶 and 𝐶 ′ real numbers, it holds

|𝑎 − 𝑏| ≤ 𝐶 𝑏 + 𝐶 ′ ⇔ −𝐶 𝑏 − 𝐶 ′ ≤ 𝑎 − 𝑏 ≤ 𝐶 𝑏 + 𝐶 ′ ⇔ −𝐶 𝑏 + 𝑏 − 𝐶 ′ ≤ 𝑎 ≤ 𝐶 𝑏 + 𝑏 + 𝐶 ′ .

ut, since 𝑏 ≥ 0, then −𝐶 𝑏 + 𝑏 − 𝐶 ′ ≥ −𝐶 𝑏 − 𝑏 − 𝐶 ′ . Hence, 𝑎 ≤ 𝐶 𝑏 + 𝑏 + 𝐶 ′ = 𝐶 + 1 𝑏 + 𝐶 ′.
23

| | ( )
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I

T

a

Because spot variance is bounded from above and from below, i.e., 𝐶𝓁 ≤ 𝜎2𝑠 ≤ 𝐶𝑢 from Assumption 1, we obtain
√

√

√

√

√

√

√

(

∫

𝑡+ℎ

𝑡
𝜎2𝑠 𝑑𝑠

)

log

⎛

⎜

⎜

⎜

⎝

1
(

∫ 𝑡+ℎ𝑡 𝜎2𝑠 𝑑𝑠
)

⎞

⎟

⎟

⎟

⎠

≥
⎛

⎜

⎜

⎝

√

𝐶𝓁ℎ log
(

1
𝐶𝑢 ℎ

)

⎞

⎟

⎟

⎠

.

After absorbing all constants in one as earlier, there exist suitable constants 𝐶 such that, uniformly in 𝑗, for a sufficiently large
𝑛, a.s.,

1
𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

|

|

|

|

|

|

∫

𝑡𝑗,𝑛

𝑡(𝑞)𝑗−1,𝑛

𝜇(𝑞)𝑠 𝑑𝑠 + ∫

𝑡𝑗,𝑛

𝑡(𝑞)𝑗−1,𝑛

𝜎(𝑞)𝑠 𝑑𝑊 (𝑞)
𝑠

|

|

|

|

|

|

≥ 𝐶
ℎ(𝑁)
𝑛

⎛

⎜

⎜

⎝

√

√

√

√

1 + 𝑓𝑗
𝑛

log

(

𝑛
𝐶𝑢

(

1 + 𝑓𝑗
)

)

−
1 + 𝑓𝑗
𝑛

⎞

⎟

⎟

⎠

≥ 𝐶
ℎ(𝑁)
𝑛

⎛

⎜

⎜

⎜

⎝

√

√

√

√

√

1
𝑛
log

⎛

⎜

⎜

⎝

𝑛
𝐶𝑢(1 +

𝑛𝛼
log 𝑛 )

⎞

⎟

⎟

⎠

−
1 + 𝑛𝛼

log 𝑛

𝑛

⎞

⎟

⎟

⎟

⎠

≥ 𝐶
ℎ(𝑁)
𝑛

⎛

⎜

⎜

⎝

1
√

𝑛

√

log
(

𝑛 log 𝑛
log 𝑛 + 𝑛𝛼

)

− 1
𝑛
− 𝑛𝛼−1

log 𝑛

⎞

⎟

⎟

⎠

⟶ ∞, (34)

since ℎ(𝑁)
𝑛

√

𝑛 → 0 and 𝛼 < 1∕2. Given the integrability of the smoother, lim𝑥→∞ 𝑥 (𝑥) = 0, which implies that, for 𝑥 sufficiently
large,  (𝑥) ≤ 𝐶

𝑥 , where 𝐶 defines, as always, a suitable constant. This gives  (𝑥)1∕𝑁 ≤
(

𝐶
𝑥

)1∕𝑁
, for 𝑥 large enough. Hence, from

Eqs. (33)–(34) and the continuous mapping theorem, we obtain

0 ≤ 𝖠(𝑞,𝑁)
𝑛 ≤

(

𝐶 ℎ(𝑁)
𝑛

√

𝑛
(

log
(

𝑛 log 𝑛
log 𝑛 + 𝑛𝛼

))−1∕2
)1∕𝑁

∼

(

ℎ(𝑁)
𝑛

√

𝑛
√

log 𝑛

)1∕𝑁

,

for a fixed 𝑁 and a large 𝑛, where the order of the bound is the result of the following observation:

log
(

𝑛 log 𝑛
log 𝑛 + 𝑛𝛼

)

= log(𝑛 log 𝑛) − log(log 𝑛 + 𝑛𝛼) = log 𝑛 + log(log 𝑛) − log(log 𝑛 + 𝑛𝛼) ∼ log 𝑛.

n sum,

0 ≤ 𝛥𝑛
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

1∕𝑁

≤ 𝑂𝑝
(

ℎ(𝑁)
𝑛

√

𝑛
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
from 𝖨𝖳(𝑞)𝑛

+𝑂𝑝
⎛

⎜

⎜

⎝

(

ℎ(𝑁)
𝑛

√

𝑛
√

log 𝑛

)1∕𝑁
⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
from 𝖠(𝑞,𝑁)

𝑛

. (35)

hus, if 𝑁 is fixed, it is enough to have ℎ(𝑁)
𝑛

√

𝑛→ 0 in order to obtain

𝛥𝑛
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

1∕𝑁

= 𝑂𝑝
(

ℎ(𝑁)
𝑛

√

𝑛
) 𝑝
⟶ 0

s 𝑛→ ∞, which is, e.g., guaranteed by ℎ(𝑁)
𝑛 ∼ 𝛽𝑁1+𝜂

𝑛𝛾 with 𝛾 > 1
2 . This proves Eq. (26).

Let us now turn to the case 𝑁 → ∞. Writing, again, ℎ(𝑁)
𝑛 ∼ 𝛽𝑁1+𝜂

𝑛𝛾 , we obtain

𝖠(𝑞,𝑁)
𝑛 = 𝑂𝑝

⎛

⎜

⎜

⎝

(

ℎ(𝑁)
𝑛

√

𝑛
√

log 𝑛

)1∕𝑁
⎞

⎟

⎟

⎠

= 𝑂𝑝
⎛

⎜

⎜

⎝

𝛽𝑁
𝜂

(

𝑛1∕2−𝛾
√

log 𝑛

)1∕𝑁
⎞

⎟

⎟

⎠

.

If 𝑛 ∼ 𝑎𝑁 , with 𝑎 > 1, we also have, for large 𝑁 ,

𝛽𝑁
𝜂

(

𝑎𝑁 (1∕2−𝛾)
√

𝑁 log 𝑎

)1∕𝑁

∼ 𝛽𝑁
𝜂
. (36)

In order to establish which among the two terms in Eq. (35) dominate as 𝑁 → ∞, consider that

ℎ(𝑁)
𝑛

√

𝑛
(log 𝑛)1∕(2𝑁)

(

ℎ(𝑁)
𝑛

√

𝑛
)1∕𝑁

=
(

ℎ(𝑁)
𝑛

√

𝑛
)1−1∕𝑁

(log 𝑛)1∕(2𝑁) ∼
⎛

⎜

⎜

⎝

𝛽𝑁1+𝜂

𝑎𝑁
(

𝛾− 1
2

)

⎞

⎟

⎟

⎠

1−1∕𝑁

(𝑁 log 𝑎)1∕(2𝑁) → 0.

Hence, 𝖠(𝑞,𝑁)
𝑛 is of lower asymptotic order than 𝖨𝖳(𝑞)

𝑛 . This finding, along with Eqs. (35) and (36), yields Eq. (27).
To prove Eq. (28), define

𝑝 ≐ min
(

𝑝(1),… , 𝑝(𝑁)) , 𝑝 ≐ max
(

𝑝(1),… , 𝑝(𝑁)) (37)
24

𝑛 𝑛 𝑛 𝑛 𝑛 𝑛
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so that the product 𝑃 (𝑁)
𝑛 ≐ 𝑝(1)𝑛 𝑝(2)𝑛 ⋯ 𝑝(𝑁)

𝑛 of all of the idiosyncratic probabilities verifies

𝑝𝑁
𝑛

≤ 𝑃 (𝑁)
𝑛 ≤ 𝑝𝑁𝑛 .

Thus, for large 𝑁 ,
√

𝑝𝑁
𝑛
𝑛

≤ 𝜎(𝑁)
𝑛 ≤

√

𝑝𝑁𝑛
𝑛
.

Finally,

1
𝜎(𝑁)
𝑛

𝛥𝑛
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

1∕𝑁

≤ 𝑂𝑝

(
√

𝑛
𝑝𝑁∕2
𝑛

𝛽𝑁
𝜂

)

(recalling 𝑛 ∼ 𝑎𝑁 ) = 𝑂𝑝
⎛

⎜

⎜

⎝

𝛽𝑁
𝜂

(

𝑎
𝑝
𝑛

)𝑁∕2
⎞

⎟

⎟

⎠

𝑝
⟶ 0,

rovided 𝜂 > 1. The condition on 𝜂 depends on the following observation. Taking logs, one can write 𝜙(𝑁) = 𝑁𝜂 log 𝛽 + 𝑁
2 log 𝑎

𝑝
𝑛
=

𝑁
(

𝑁𝜂−1 log 𝛽 + 1
2 log

𝑎
𝑝
𝑛

)

. Because 𝛽 < 1 and 𝑎
𝑝
𝑛
> 1, for 𝜂 > 1, 𝜙(𝑁) → −∞ as 𝑁 → ∞ and exp(𝜙(𝑁)) → 0. This proves Eq. (28). □

roof of Theorem 1. First, note that, under 0,

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥 =

(

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

) (

1 − 𝐵(𝑞)
𝑗,𝑛

)

.

he key of the proof is to recognize that

U(𝑞)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1

⎛

⎜

⎜

⎜

⎝

|

|

|

|

(

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

) (

1 − 𝐵(𝑞)
𝑗,𝑛

)

|

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎟

⎠

= 𝛥𝑛
𝑛
∑

𝑗=1
𝐵(𝑞)
𝑗,𝑛  (0) + 𝛥𝑛

𝑛
∑

𝑗=1

(

1 − 𝐵(𝑞)
𝑗,𝑛

)


⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

= 𝛥𝑛
𝑛
∑

𝑗=1
𝐵(𝑞)
𝑗,𝑛

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Ũ

(𝑞)
𝑛

+𝛥𝑛
𝑛
∑

𝑗=1

(

1 − 𝐵(𝑞)
𝑗,𝑛

)


⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖱(𝑞)𝑛

, (38)

since  (0) = 1. Now, as 𝑛→ ∞, we have Ũ(𝑞)
𝑛

𝑝
⟶ 𝑝(𝑞)∞ , given Eq. (5). Because 0 ≤ 1 − 𝐵(𝑞)

𝑗,𝑛 ≤ 1, Lemma 1 gives

𝖱(𝑞)𝑛 = 𝑂𝑝
(

ℎ(𝑁)
𝑛

√

𝑛
) 𝑝
⟶ 0.

hus, under 0, we have, as 𝑛→ ∞, U(𝑞)
𝑛

𝑝
⟶ 𝑝(𝑞)∞ .

The 𝑁-multivariate staleness estimator can be studied analogously. We begin, as always, with 𝑁 fixed. To clarify the logic, let
s focus on the bivariate case first, i.e., the object M(2)

𝑛 . Write

M(2)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1
𝐵(1)
𝑗,𝑛 𝐵

(2)
𝑗,𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
M̃

(2)
𝑛

+𝛥𝑛
𝑛
∑

𝑗=1
𝐵(1)
𝑗,𝑛

(

1 − 𝐵(2)
𝑗,𝑛

)


(

�̃� (2)
𝑗,𝑛

)1∕2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖱𝑛

+𝛥𝑛
𝑛
∑

𝑗=1

(

1 − 𝐵(1)
𝑗,𝑛

)

𝐵(2)
𝑗,𝑛 

(

�̃� (1)
𝑗,𝑛

)1∕2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖱′𝑛

+

+𝛥𝑛
𝑛
∑

𝑗=1

(

1 − 𝐵(1)
𝑗,𝑛

) (

1 − 𝐵(2)
𝑗,𝑛

)


(

�̃� (1)
𝑗,𝑛

)1∕2

(

�̃� (2)
𝑗,𝑛

)1∕2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖱′′𝑛

,

here the quantity �̃� (𝑞)
𝑗,𝑛 is defined in Eq. (29). The Bernoulli variates 𝐵(1)

𝑗,𝑛 and 𝐵(2)
𝑗,𝑛 in M̃(2)

𝑛 are independent. Thus, we have
[

𝐵(1)
𝑗,𝑛 𝐵

(2)
𝑗,𝑛

]

= 𝑝(1)𝑛 𝑝(2)𝑛 and M̃(2)
𝑛

𝑝
⟶
𝑛→∞

𝑝(1)∞ 𝑝(2)∞ , given Eq. (5). Regarding the terms 𝖱𝑛, 𝖱′𝑛 and 𝖱′′𝑛 , using Lemma 1 and the fact that each
ernoulli variates can be either zero or one, it is readily shown that, just like the remainder term 𝖱(𝑞)𝑛 above, they all converge to

(𝑁) √𝑛→ 0. Hence, under  , we have M(2) 𝑝
⟶ 𝑝(1) 𝑝(2), as 𝑛→ ∞.
25

ero in probability, when 𝑛→ ∞, provided ℎ𝑛 0 𝑛 ∞ ∞
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The bivariate result is straightforwardly extended to the situation in which 𝑁 is generic. In this case,

M(𝑁)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1

𝑁
∏

𝑞=1
𝐵(𝑞)
𝑗,𝑛

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
M̃

(𝑁)
𝑛

+𝛥𝑛
∑

𝖥
(1)
𝑗 ,…,𝖥(𝑁)

𝑗

𝖥
(𝑞)
𝑗 =𝐵(𝑞)𝑗,𝑛 or 𝖥

(𝑞)
𝑗 =1−𝐵(𝑞)𝑗,𝑛

(

𝖥
(1)
𝑗 ,…,𝖥(𝑁)

𝑗

)

≠
(

𝐵(1)𝑗,𝑛 ,…,𝐵(𝑁)
𝑗,𝑛

)

𝑛
∑

𝑗=1
𝖥(1)𝑗 ⋯ 𝖥(𝑁)

𝑗 𝜒
(

𝖥(1)𝑗

)

⋯𝜒
(

𝖥(𝑁)
𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖱(𝑁)
𝑛

, (39)

here the sum defining 𝖱(𝑁)
𝑛 is over all possible 𝑁-tuples

(

𝖥(1)𝑗 ,… , 𝖥(𝑁)
𝑗

)

such that the 𝑞th element of the 𝑁-tuple, i.e. 𝖥(𝑞)𝑗 , can be
ither 1 − 𝐵(𝑞)

𝑗,𝑛 or 𝐵(𝑞)
𝑗,𝑛, but the 𝑁-tuple in which 𝖥(𝑞)𝑗 = 𝐵(𝑞)

𝑗,𝑛 for all 𝑞 is excluded, and where the functional 𝜒 (⋅) is defined as

𝜒
(

𝖥(𝑞)𝑗

)

≐
⎧

⎪

⎨

⎪

⎩


(

�̃� (𝑞)
𝑗,𝑛

)1∕𝑁
if 𝖥(𝑞)𝑗 = 1 − 𝐵(𝑞)

𝑗,𝑛

1 if 𝖥(𝑞)𝑗 = 𝐵(𝑞)
𝑗,𝑛

.

or a given 𝑁 , because of Eq. (5), the quantity M̃(𝑁)
𝑛 is consistent in probability for ∏𝑁

𝑞=1 𝑝
(𝑞)
∞ . The remaining 2𝑁 − 1 terms in 𝖱(𝑁)

𝑛

anish in probability by virtue of Lemma 1. In fact, a generic term in the summation over the 𝑁-tuples
(

𝖥(1)𝑗 ,… , 𝖥(𝑁)
𝑗

)

is bounded
rom above by

0 ≤ 𝛥𝑛
𝑛
∑

𝑗=1
𝖥(1)𝑗 ⋯ 𝖥(𝑁)

𝑗 𝜒
(

𝖥(1)𝑗

)

⋯𝜒
(

𝖥(𝑁)
𝑗

)

≤ 𝛥𝑛
𝑛
∑

𝑗=1

(

�̃�(𝑞)𝑗,𝑛

)1∕𝑁
= 𝑂𝑝

(

ℎ(𝑁)
𝑛

√

𝑛
)

→ 0

aving assumed, without loss of generality, that 𝑞 ∈ {1,… , 𝑁} is such that 𝖥(𝑞)𝑗 = 1−𝐵(𝑞)𝑗,𝑛 and having used the properties 0 ≤ 𝖥(𝑞)𝑗 ≤ 1

and 0 <  (𝑥) ≤ 1. We conclude that, for 𝑁 fixed, M(𝑁)
𝑛

𝑝
⟶

∏𝑁
𝑞=1 𝑝

(𝑞)
∞ .

When 𝑁 → ∞, being 𝜂 > 1, we have

𝖱(𝑁)
𝑛 = 𝑂𝑝

⎛

⎜

⎜

⎝

2𝑁
(

ℎ(𝑁)
𝑛

√

𝑛
√

log 𝑛

)1∕𝑁
⎞

⎟

⎟

⎠

= 𝑂𝑝
(

2𝑁 𝛽𝑁
𝜂
) 𝑝
⟶ 0,

given the choice of bandwidth in Eqs. (10) and (11). Also, in this case, trivially, ∏𝑁
𝑞=1 𝑝

(𝑞)
∞ → 0, when 𝑁 → ∞. Thus, M(𝑁)

𝑛
𝑝

⟶ 0, as
→ ∞.
In order to compute the limit in probability of U(𝑞)

𝑛 under 𝐴, we re-arrange the representation in Eq. (30). Write

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

=
(

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

) (

1 − 𝑆(𝑞)
𝑗,𝑛

)

,

ith 𝑆(𝑞)
𝑗,𝑛 defined in Eq. (31). As earlier, this expression leads to

U(𝑞)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1
𝑆(𝑞)
𝑗,𝑛

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Ũ

′(𝑞)
𝑛

+𝛥𝑛
𝑛
∑

𝑗=1

(

1 − 𝑆(𝑞)
𝑗,𝑛

)


⎛

⎜

⎜

⎝

|

|

|

𝑋(𝑞)
𝑗 𝛥𝑛

−𝑋(𝑞)
(𝑗−1)𝛥𝑛

|

|

|

𝛩(𝑞,𝑁)
𝑗 𝛥𝑛 ,𝑛

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖱′(𝑞)𝑛

. (40)

Now, as 𝑛→ ∞, Ũ′(𝑞)
𝑛

𝑝
⟶ 𝑝(𝖲)∞ + 𝑝(𝑞)∞ − 𝑝(𝖲)∞ 𝑝(𝑞)∞ , given Eq. (5), Eq. (8), and Eq. (9). Also, by virtue of Lemma 1,

𝖱′(𝑞)𝑛 = 𝑂𝑝
(

ℎ(𝑁)
𝑛

√

𝑛
) 𝑝
⟶ 0,

as 𝑛→ ∞. In sum,

U(𝑞)
𝑛

𝑝
⟶ 𝑝(𝖲)∞ + 𝑝(𝑞)∞ − 𝑝(𝖲)∞ 𝑝(𝑞)∞ as 𝑛 → ∞.

ecause the processes 𝑆(𝑞)
𝑗,𝑛 are not pairwise (i.e., for different pairs of 𝑞) independent, in order to evaluate M(𝑁)

𝑛 , it is convenient to
employ the original representation in Eq. (7). To clarify the logic, we use again the quantities �̃� (𝑞)

𝑗,𝑛 defined in Eq. (29) and consider,
first, the case 𝑁 = 2:

M(2)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(1)
𝑗 𝛥𝑛

−𝑋(1)
(𝑗−1)𝛥𝑛

|

|

|

𝐻 (1)
𝑗,𝑛

⎞

⎟

⎟

⎠

1∕2


⎛

⎜

⎜

⎝

|

|

|

𝑋(2)
𝑗 𝛥𝑛

−𝑋(2)
(𝑗−1)𝛥𝑛

|

|

|

𝐻 (2)
𝑗,𝑛

⎞

⎟

⎟

⎠

1∕2

= 𝛥𝑛
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

|

|

|

𝑋(1)
𝑗 𝛥𝑛

−𝑋(1)
(𝑗−1)𝛥𝑛

|

|

|

𝐻 (1)
𝑗,𝑛

(

1 − 𝐶 (𝖲)
𝑗,𝑛

) (

1 − 𝐵(1)
𝑗,𝑛

)
⎞

⎟

⎟

⎠

1∕2


⎛

⎜

⎜

⎝

|

|

|

𝑋(2)
𝑗 𝛥𝑛

−𝑋(2)
(𝑗−1)𝛥𝑛

|

|

|

𝐻 (2)
𝑗,𝑛

(

1 − 𝐶 (𝖲)
𝑗,𝑛

) (

1 − 𝐵(2)
𝑗,𝑛

)
⎞

⎟

⎟

⎠

1∕2

= 𝛥𝑛
𝑛
∑

𝐶 (𝖲)
𝑗,𝑛 + 𝛥𝑛

𝑛
∑

(

1 − 𝐶 (𝖲)
𝑗,𝑛

)

[

𝐵(1)
𝑗,𝑛 𝐵

(2)
𝑗,𝑛 +

(

1 − 𝐵(1)
𝑗,𝑛

)

𝐵(2)
𝑗,𝑛 

(

�̃� (1)
𝑗,𝑛

)1∕2
+ 𝐵(1)

𝑗,𝑛

(

1 − 𝐵(2)
𝑗,𝑛

)


(

�̃� (2)
𝑗,𝑛

)1∕2
+

26
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r

F

f

s

a

o

+
(

1 − 𝐵(1)
𝑗,𝑛

) (

1 − 𝐵(2)
𝑗,𝑛

)


(

�̃� (1)
𝑗,𝑛

)1∕2

(

�̃� (2)
𝑗,𝑛

)1∕2
]

= 𝛥𝑛
𝑛
∑

𝑗=1
𝐶 (𝖲)
𝑗,𝑛 + 𝛥𝑛

𝑛
∑

𝑗=1
𝐵(1)
𝑗,𝑛𝐵

(2)
𝑗,𝑛 − 𝛥𝑛

𝑛
∑

𝑗=1
𝐶 (𝖲)
𝑗,𝑛𝐵

(1)
𝑗,𝑛 𝐵

(2)
𝑗,𝑛 + 𝛥𝑛

𝑛
∑

𝑗=1

(

1 − 𝐶 (𝖲)
𝑗,𝑛

)

[

(

1 − 𝐵(1)
𝑗,𝑛

)

𝐵(2)
𝑗,𝑛 

(

�̃� (1)
𝑗,𝑛

)1∕2
+

+𝐵(1)
𝑗,𝑛

(

1 − 𝐵(2)
𝑗,𝑛

)


(

�̃� (2)
𝑗,𝑛

)1∕2
+
(

1 − 𝐵(1)
𝑗,𝑛

) (

1 − 𝐵(2)
𝑗,𝑛

)


(

�̃� (1)
𝑗,𝑛

)1∕2

(

�̃� (2)
𝑗,𝑛

)1∕2
]

.

As 𝑛 → ∞, the first three terms satisfy 𝛥𝑛
∑𝑛
𝑗=1 𝐶

(𝖲)
𝑗,𝑛

𝑝
⟶ 𝑝(𝖲)∞ , 𝛥𝑛

∑𝑛
𝑗=1 𝐵

(1)
𝑗,𝑛𝐵

(2)
𝑗,𝑛

𝑝
⟶
𝑛→∞

𝑝(1)∞ 𝑝(2)∞ , and 𝛥𝑛
∑𝑛
𝑗=1 𝐶

(𝖲)
𝑗,𝑛 𝐵

(1)
𝑗,𝑛 𝐵

(2)
𝑗,𝑛

𝑝
⟶ 𝑝(𝖲)∞ 𝑝(1)∞ 𝑝(2)∞ ,

espectively, given Eq. (5), Eq. (8), and Eq. (9). The other terms vanish in probability, given Lemma 1, since ℎ(𝑁)
𝑛

√

𝑛→ 0. Hence,

M(2)
𝑛

𝑝
⟶
𝑛→∞

𝑝(𝖲)∞ + 𝑝(1)∞ 𝑝(2)∞ − 𝑝(𝖲)∞ 𝑝(1)∞ 𝑝(2)∞ = 𝑝(𝖲)∞ +
(

1 − 𝑝(𝖲)∞
)

𝑝(1)∞ 𝑝(2)∞ .

or the generic 𝑁-multivariate case, we may easily extend the representation used for 𝑁 = 2, thereby obtaining

M(𝑁)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1
𝐶 (𝖲)
𝑗,𝑛 + 𝛥𝑛

𝑛
∑

𝑗=1

(

1 − 𝐶 (𝖲)
𝑗,𝑛

)

𝑁
∏

𝑞=1
𝐵(𝑞)
𝑗,𝑛 + 𝖱′(𝑁)

𝑛
𝑝

⟶
𝑛→∞

𝑝(𝖲)∞ +
(

1 − 𝑝(𝖲)∞
)

𝑁
∏

𝑞=1
𝑝(𝑞)∞ , (41)

or fixed 𝑁 . For 𝑁 → ∞ and ℎ(𝑁)
𝑛 defined as in Eqs. (10) and (11), we obtain

M(𝑁)
𝑛

𝑝
⟶ 𝑝(𝖲)∞

ince, by Lemma 1 and the same reasoning used for 𝖱(𝑁)
𝑛 , we have

𝖱′(𝑁)
𝑛 = 𝑂𝑝

(

2𝑁 𝛽𝑁
𝜂
) 𝑝
⟶ 0

nd since

𝛥𝑛
𝑛
∑

𝑗=1

(

1 − 𝐶 (𝖲)
𝑗,𝑛

)

𝑁
∏

𝑞=1
𝐵(𝑞)
𝑗,𝑛 = 𝑂𝑝

(

𝑝𝑁𝑛
) 𝑝
⟶ 0.

The last result depends on the fact that

P
⎡

⎢

⎢

⎣

∏𝑁
𝑞=1 𝐵

(𝑞)
𝑗,𝑛

𝑝𝑁𝑛
> 𝐶

⎤

⎥

⎥

⎦

≤
E
[

∏𝑁
𝑞=1 𝐵

(𝑞)
𝑗,𝑛

]

𝑝𝑁𝑛 𝐶
≤

𝑝𝑁𝑛
𝑝𝑁𝑛 𝐶

= 1
𝐶

= 𝜀, (42)

where 𝑝𝑛 is defined in Eq. (37) as the maximum probability among
{

𝑝(1)𝑛 ,… , 𝑝(𝑁)
𝑛

}

. □

Proof of Theorem 2. Under 0, using the expansion in Eq. (39), we may write, for a generic 𝑁 ,

Z(𝑁)
𝑛 =

M(𝑁)
𝑛 − 𝑃 (𝑁)

𝑛

𝜎(𝑁)
𝑛

=
𝛥𝑛

∑𝑛
𝑗=1 𝐵

(1)
𝑗,𝑛⋯𝐵(𝑁)

𝑗,𝑛 − 𝑃 (𝑁)
𝑛

𝜎(𝑁)
𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Z̃

(𝑁)
𝑛

+ 1
𝜎(𝑁)
𝑛

𝖱(𝑁)
𝑛 .

Define, now, 𝑌𝑗,𝑛 ≐ 𝐵(1)
𝑗,𝑛⋯𝐵(𝑁)

𝑗,𝑛 − 𝑃 (𝑁)
𝑛 . Note that E

[

𝑌𝑗,𝑛
]

= 0 and E
[

(

𝑌𝑗,𝑛
)2
]

= 𝑃 (𝑁)
𝑛

(

1 − 𝑃 (𝑁)
𝑛

)

. After, also, defining

𝑠2𝑛 ≐
𝑛
∑

𝑗=1
V
[

𝑌𝑗,𝑛
]

= 𝑛𝑃 (𝑁)
𝑛

(

1 − 𝑃 (𝑁)
𝑛

)

,

we have that,

1
𝑠4𝑛

𝑛
∑

𝑗=1
E
[

(

𝑌𝑗,𝑛
)4
]

∼
𝑛𝑃 (𝑁)

𝑛

𝑛2(𝑃 (𝑁)
𝑛 )2

∼ 1
𝑛𝑃 (𝑁)

𝑛

= 𝑂

(

1
𝑎𝑁𝑝𝑁

𝑛

)

→ 0

by Eq. (15). The Lindeberg–Feller Theorem (c.f. Theorem 27.2 in Billingsley, 1995), now, yields

1
𝑠𝑛

𝑛
∑

𝑗=1
𝑌𝑗,𝑛

𝑑
⟶ 𝑁 (0, 1) ,

r, equivalently,

Z̃(𝑁)
𝑛 =

𝛥𝑛
∑𝑛
𝑗=1 𝐵

(1)
𝑗,𝑛⋯𝐵(𝑁)

𝑗,𝑛 − 𝑃 (𝑁)
𝑛

(𝑁)

𝑑
⟶ 𝑁 (0, 1) .
27
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By virtue of Eq. (28) in Lemma 1, we also have

1
𝜎(𝑁)
𝑛

𝖱(𝑁)
𝑛 = 𝑂𝑝

⎛

⎜

⎜

⎝

2𝑁
(

𝑎
𝑝
𝑛

)𝑁∕2

𝛽𝑁
𝜂
⎞

⎟

⎟

⎠

= 𝑂𝑝
⎛

⎜

⎜

⎝

(

4 𝑎
𝑝
𝑛

)𝑁∕2

𝛽𝑁
𝜂
⎞

⎟

⎟

⎠

𝑝
⟶ 0,

rovided 𝜂 > 1. We conclude that

Z(𝑁)
𝑛

𝑑
⟶ 𝑁 (0, 1) ,

hich proves Eq. (16). Under 𝐴, because of Theorem 1, we obtain

Z(𝑁)
𝑛 =

𝑝
⟶𝑝(𝖲)∞
⏞⏞⏞
M(𝑁)

𝑛 −

𝑝
⟶0
⏞⏞⏞
𝑃 (𝑁)
𝑛

𝜎(𝑁)
𝑛

⏟⏟⏟
→0

𝑝
⟶ ∞,

hich proves Eq. (17).
In order to verify Eqs. (18) and (19), write

Id(𝑞,𝑁)
𝑛 − 𝑝(𝑞)𝑛 =

U(𝑞)
𝑛 −M(𝑁)

𝑛

1 −M(𝑁)
𝑛

− 𝑝(𝑞)𝑛 =
U(𝑞)
𝑛 −M(𝑁)

𝑛 − 𝑝(𝑞)𝑛 + 𝑝(𝑞)𝑛 M
(𝑁)
𝑛

1 −M(𝑁)
𝑛

≐
𝖭(𝑞,𝑁)
𝑛

𝖣(𝑁)
𝑛

. (43)

Under 0, the numerator 𝖭(𝑞,𝑁)
𝑛 in Eq. (43) is given by

𝖭(𝑞,𝑁)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1
𝐵(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛 + 𝖱(𝑞)𝑛 −

(

1 − 𝑝(𝑞)𝑛
)

𝛥𝑛
𝑛
∑

𝑗=1

𝑁
∏

𝑞=1
𝐵(𝑞)
𝑗,𝑛 −

(

1 − 𝑝(𝑞)𝑛
)

𝖱(𝑁)
𝑛

= 𝛥𝑛
𝑛
∑

𝑗=1

(

𝐵(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛 −

(

1 − 𝑝(𝑞)𝑛
)

𝑁
∏

𝑞=1
𝐵(𝑞)
𝑗,𝑛

)

+ 𝑂𝑝
(

2𝑁 𝛽𝑁
𝜂
)

, (44)

here the remainders 𝖱(𝑞)𝑛 and 𝖱(𝑁)
𝑛 are defined, respectively, in Eqs. (38) and (39) and their asymptotic order in Eq. (44) follows

rom Lemma 1. Thus, using ∏𝑁
𝑞=1 𝐵

(𝑞)
𝑗,𝑛 = 𝑂𝑝

(

𝑝𝑁𝑛
)

, which is justified in Eq. (42), we have that

𝖭(𝑞,𝑁)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1

(

𝐵(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛

)

+ 𝑂𝑝
(

𝑝𝑁𝑛
)

+ 𝑂𝑝
(

2𝑁 𝛽𝑁
𝜂
)

.

Define, now, 𝑌 ′(𝑞)
𝑗,𝑛 ≐ 𝐵(𝑞)

𝑗,𝑛 − 𝑝
(𝑞)
𝑛 . Note that E

[

𝑌 ′(𝑞)
𝑗,𝑛

]

= 0 and E
[

(

𝑌 ′(𝑞)
𝑗,𝑛

)2
]

= 𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

. After, also, defining

(𝑠′𝑛)
2 ≐

𝑛
∑

𝑗=1
V
[

𝑌 ′(𝑞)
𝑗,𝑛

]

= 𝑛 𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

,

we have that

1
(𝑠′𝑛)4

𝑛
∑

𝑗=1
E
[

(

𝑌 ′(𝑞)
𝑗,𝑛

)4
]

∼
𝑛𝑝(𝑞)𝑛

𝑛2(𝑝(𝑞)𝑛 )2
∼ 1
𝑛𝑝(𝑞)𝑛

→ 0 (45)

as 𝑁 → ∞, since 𝑝(𝑞)𝑛 → 𝑝(𝑞)∞ ∈ (0, 1). The Lindeberg–Feller Theorem, now, gives

1
𝑠′𝑛

𝑛
∑

𝑗=1
𝑌 ′(𝑞)
𝑗,𝑛

𝑑
⟶ 𝑁 (0, 1) ,

hich implies

√

𝑛
𝖭(𝑞,𝑁)
𝑛

√

𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

= 1
√

𝑛 𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

𝑛
∑

𝑗=1
𝑌 ′(𝑞)
𝑗,𝑛 + 𝑂𝑝

(√

𝑎𝑁𝑝𝑁𝑛
)

+ 𝑂𝑝
(√

𝑎𝑁2𝑁 𝛽𝑁
𝜂
) 𝑑
⟶ 𝑁 (0, 1) ,

y Eq. (14). Finally, since, under 0, M
(𝑁)
𝑛

𝑝
⟶ 0, we obtain 𝖣(𝑁)

𝑛
𝑝

⟶ 1 and Slutsky’s theorem yields

√

𝑛
Id(𝑞,𝑁)

𝑛 − 𝑝(𝑞)𝑛
√

𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

𝑑
⟶ 𝑁 (0, 1) ,
28
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which proves Eq. (18). Under 𝐴, we have that the numerator 𝖭(𝑞,𝑁)
𝑛 , defined in Eq. (43), can be expressed as

𝖭(𝑞,𝑁)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1

(

𝐶 (𝖲)
𝑗,𝑛 + 𝐵

(𝑞)
𝑗,𝑛 − 𝐶

(𝖲)
𝑗,𝑛 𝐵

(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛

)

+

+ 𝖱′(𝑞)𝑛 −
(

1 − 𝑝(𝑞)𝑛
)

(

𝛥𝑛
𝑛
∑

𝑗=1
𝐶 (𝖲)
𝑗,𝑛 + 𝛥𝑛

𝑛
∑

𝑗=1

(

1 − 𝐶 (𝖲)
𝑗,𝑛

)

𝑁
∏

𝑞=1
𝐵(𝑞)
𝑗,𝑛 + 𝖱′(𝑁)

𝑛

)

,

here 𝖱′(𝑞)𝑛 is defined in Eq. (40) and 𝖱′(𝑁)
𝑛 is defined in Eq. (41). Given the asymptotic orders, i.e.,

𝖱′(𝑞)𝑛 = 𝑂𝑝
(

ℎ(𝑁)
𝑛

√

𝑛
)

, 𝖱′(𝑁)
𝑛 = 𝑂𝑝

(

2𝑁 𝛽𝑁
𝜂
)

, 𝛥𝑛
𝑛
∑

𝑗=1

(

1 − 𝐶 (𝖲)
𝑗,𝑛

)

𝑁
∏

𝑞=1
𝐵(𝑞)
𝑗,𝑛 = 𝑂𝑝

(

𝑝𝑁𝑛
)

,

since 𝖱′(𝑞)𝑛

𝖱′(𝑁)
𝑛

→ 0 immediately as 𝑁 → ∞, we only retain the last two orders:

𝖭(𝑞,𝑁)
𝑛 = 𝛥𝑛

𝑛
∑

𝑗=1

(

𝐶 (𝖲)
𝑗,𝑛 + 𝐵

(𝑞)
𝑗,𝑛 − 𝐶

(𝖲)
𝑗,𝑛 𝐵

(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛 −

(

1 − 𝑝(𝑞)𝑛
)

𝐶 (𝖲)
𝑗,𝑛

)

+ 𝑂𝑝
(

2𝑁 𝛽𝑁
𝜂
)

+ 𝑂𝑝
(

𝑝𝑁𝑛
)

= 𝛥𝑛
𝑛
∑

𝑗=1

(

𝐶 (𝖲)
𝑗,𝑛

(

1 − 𝐵(𝑞)
𝑗,𝑛 −

(

1 − 𝑝(𝑞)𝑛
)

)

+ 𝐵(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛

)

+ 𝑂𝑝
(

2𝑁 𝛽𝑁
𝜂
)

+ 𝑂𝑝
(

𝑝𝑁𝑛
)

.

ecause the expected value of 𝑌 ′′(𝑞)
𝑗,𝑛 ≐

(

𝐶 (𝖲)
𝑗,𝑛 + 𝐵

(𝑞)
𝑗,𝑛 − 𝐶

(𝖲)
𝑗,𝑛 𝐵

(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛 −

(

1 − 𝑝(𝑞)𝑛
)

𝐶 (𝖲)
𝑗,𝑛

)

is zero, we have

V
[

𝑌 ′′(𝑞)
𝑗,𝑛

]

= E
[

(

𝐶 (𝖲)
𝑗,𝑛

(

1 − 𝐵(𝑞)
𝑗,𝑛 −

(

1 − 𝑝(𝑞)𝑛
)

)

+ 𝐵(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛

)2
]

= E
[

(

𝐶 (𝖲)
𝑗,𝑛

)2
]

E
[

(

1 − 𝐵(𝑞)
𝑗,𝑛 −

(

1 − 𝑝(𝑞)𝑛
)

)2
]

+ E
[

(

𝐵(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛

)2
]

+

+2E
[

𝐶 (𝖲)
𝑗,𝑛

(

1 − 𝐵(𝑞)
𝑗,𝑛 −

(

1 − 𝑝(𝑞)𝑛
)

) (

𝐵(𝑞)
𝑗,𝑛 − 𝑝

(𝑞)
𝑛

)]

= 𝑝(𝖲)𝑛
(

1 − 𝑝(𝑞)𝑛
)

𝑝(𝑞)𝑛 +
(

1 − 𝑝(𝑞)𝑛
)

𝑝(𝑞)𝑛 +

+2 𝑝(𝖲)𝑛 E
[

−𝐵(𝑞)
𝑗,𝑛

(

1 − 𝑝(𝑞)𝑛
)

− 𝑝(𝑞)𝑛
(

1 − 𝐵(𝑞)
𝑗,𝑛

)

+ 𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

]

= 𝑝(𝖲)𝑛
(

1 − 𝑝(𝑞)𝑛
)

𝑝(𝑞)𝑛 +
(

1 − 𝑝(𝑞)𝑛
)

𝑝(𝑞)𝑛 − 2 𝑝(𝖲)𝑛 𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

= 𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
) (

1 − 𝑝(𝖲)𝑛
)

.

hus, after defining

(

𝑠′′𝑛
)2 ≐

𝑛
∑

𝑗=1
V
[

𝑌 ′′(𝑞)
𝑗,𝑛

]

= 𝑛 𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
) (

1 − 𝑝(𝖲)𝑛
)

,

e obtain

1
(

𝑠′′𝑛
)4

𝑛
∑

𝑗=1
E
[

(

𝑌 ′′(𝑞)
𝑗,𝑛

)4
]

→ 0,

y the same argument used for Eq. (45). The Lindeberg–Feller Theorem, now, yields

1
𝑠′′𝑛

𝑛
∑

𝑗=1
𝑌 ′′(𝑞,𝑁)
𝑗,𝑛

𝑑
⟶ 𝑁 (0, 1) ,

and, in turn,
√

𝑛
𝖭(𝑞,𝑁)
𝑛

√

𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
) (

1 − 𝑝(𝖲)𝑛
)

= 1
√

𝑛 𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
) (

1 − 𝑝(𝖲)𝑛
)

𝑛
∑

𝑗=1
𝑌 ′′(𝑞)
𝑗,𝑛 + 𝑂𝑝

(√

𝑎𝑁𝑝𝑁𝑛
)

+ 𝑂𝑝
(√

𝑎𝑁2𝑁 𝛽𝑁
𝜂
) 𝑑
⟶ 𝑁 (0, 1) ,

y Eq. (14). Finally, since, under 𝐴, M(𝑁)
𝑛

𝑝
⟶ 𝑝(𝖲)∞ , we have 𝖣(𝑁)

𝑛
𝑝

⟶ 1 − 𝑝(𝖲)∞ and Slutsky’s theorem implies
√

√

√

√

√

√

𝑛
(

1 − 𝑝(𝖲)𝑛
)

𝑝(𝑞)𝑛
(

1 − 𝑝(𝑞)𝑛
)

(

Id(𝑞,𝑁)
𝑛 − 𝑝(𝑞)𝑛

) 𝑑
⟶ 𝑁 (0, 1) ,

hereby verifying Eq. (19). □
29
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Appendix B. Monte Carlo simulations

This Appendix reports two Monte Carlo studies. The first is devoted to the exploration of the finite-sample accuracy of the limiting
esults reported in the theorems. The second is an assessment of the reliability of the numerical optimization used to perform the
imulated method-of-moment estimation, as described in Section 5.2.

.1. The finite-sample properties of the staleness measures

We simulate 10,000 paths of 𝑁 stochastic processes both under the null (c.f. Eq. (4)) and under the alternative (c.f. Eq. (7)).
In both cases, the paths of the efficient logarithmic prices 𝑋(𝑞)

𝑡 , with 𝑞 = 1,… , 𝑁 , are generated as the solution to the stochastic
differential equation

⎧

⎪

⎨

⎪

⎩

𝑑𝑋(𝑞)
𝑡 = 𝑐4 𝑑𝑡 + 𝑈𝑡

√

exp
(

𝑉 (𝑞)
𝑡

)

(

√

1 − 𝑐25 𝑑𝑊
(𝑞)
𝑡 + 𝑐5 𝑑𝑍

(𝑞)
𝑡

)

+ 𝛽𝑞 𝜎𝖬 𝑑𝖬𝑡,

𝑑𝑉 (𝑞)
𝑡 =

(

𝑐1 − 𝑐2 𝑉
(𝑞)
𝑡

)

𝑑𝑡 + 𝑐3 𝑑𝑍
(𝑞)
𝑡 ,

𝑞 = 1,… , 𝑁,

here 𝑊 (𝑞)
𝑡 and 𝑍(𝑞)

𝑡 are independent asset-specific Brownian motions and 𝖬𝑡 is a Brownian motion, independent of all others,
hich is common to all assets. The process 𝖬𝑡 is, thus, a systematic component, say the market. The assets’ sensitivities to market
ariation are set equal to 𝛽𝑞 = 1.06, for all 𝑞 = 1,… , 𝑁 . The chosen value (1.06) corresponds to the (time-series and cross-
ectional) average for our data. The volatility of the common factor is set to 𝜎𝖬 = 0.0103, which is the market volatility in our
ata. The percentage values of the other parameters (in daily units) are 𝑐1 = −0.0120, 𝑐2 = 0.0145, 𝑐3 = 0.1153, 𝑐4 = 0.0304 and
𝑐5 = −0.3. These are estimates from Andersen et al. (2002) based on S&P500 historical data. The deterministic function of time
𝑈𝑡 = (0.1271 𝑡2 − 0.1260 𝑡 + 0.1239)∕0.1033, with 𝑡 ∈ [0, 1], is estimated on the intra-daily path of the S&P500 and reproduces the
typical U-shaped intra-daily pattern of spot volatility.

We allow for rounding and microstructure noise. To do so, we simulate the paths of the processes 𝑋(𝑞)
𝑡 on an equi-spaced partition

𝑗,𝑛𝑠 = 𝑗∕𝑛𝑠 of the time interval [0, 1] with 𝑛𝑠 = 7×60×60, which corresponds to a frequency of one second for a trading day of seven
ours. On the grid, noise is added to the efficient price process (before rounding) using the specification of Barndorff-Nielsen et al.
2011). The efficient logarithmic price is, thus, expressed as

𝑋
(𝑞)
𝑡𝑗,𝑛𝑠

= 𝑋(𝑞)
𝑡𝑗,𝑛𝑠

+ 𝜀𝑗,𝑛𝑠 ,

where 𝜀𝑗,𝑛𝑠 is a 𝑁
(

0, 𝜔2)-iid shock, 𝜔2 = 𝜉2
√

1
𝑁

∑𝑁
𝑞=1

1
𝑛𝑠

∑𝑛𝑠
𝑗=1 exp

(

𝑉 (𝑞)
𝑡𝑗,𝑛𝑠

)

and 𝜉2 is the noise-to-signal ratio at the one-second

frequency. We will consider, below, the cases 𝜉2 = 0 (no noise), 𝜉2 = 10 bp (medium noise) and 𝜉2 = 50 bp (large noise). The noisy
prices 𝑋

(𝑞)
𝑡𝑗,𝑛𝑠

are then sampled on a coarser sampling grid 𝑡𝑗,𝑛 = 𝑗∕𝑛, with 𝑛 = 1260, 1680, 2520 and 5040, corresponding, respectively,
to a sampling frequency of 20, 15, 10 and 5 s.

The observed logarithmic prices are generated (on the four coarser partitions
{

𝑡𝑗,𝑛 = 𝑗∕𝑛; 𝑗 = 0,… , 𝑛
}

) according to the recursive
equation

⎧

⎪

⎨

⎪

⎩

𝑋(𝑞)
0 = 𝑋

(𝑞)
0 ,

𝑋(𝑞)
𝑗∕𝑛 =

(

1 − 𝐶 (𝖲)
𝑗,𝑛

) (

𝑋
(𝑞)
𝑗∕𝑛

(

1 − 𝐵(𝑞)
𝑗,𝑛

)

+𝑋(𝑞)
(𝑗−1)∕𝑛 𝐵

(𝑞)
𝑗,𝑛

)

+ 𝐶 (𝖲)
𝑗,𝑛 𝑋

(𝑞)
(𝑗−1)∕𝑛, 𝑗 = 1,… , 𝑛,

(46)

here 𝐶 (𝖲)
𝑗,𝑛 and 𝐵(𝑞)

𝑗,𝑛, 𝑞 = 1,… , 𝑁 , are 𝑁 + 1 triangular arrays of iid Bernoulli random variables. We assume the following scaling
aws for the 𝑁 idiosyncratic probabilities of stale trading

E
[

𝐵(𝑞)
𝑗,𝑛

]

= 𝑝(𝑞)𝑛 = 𝑝(𝑞)∞
(

1 − 𝑒−𝜙𝑛
)

, 𝑞 = 1,… , 𝑁, (47)

ith 𝜙 = 0.001 and 𝑝(𝑞)∞ = 0.99 ∀𝑞. Under the alternative, in addition to the 𝑁 scaling laws in Eq. (47), we assume a similar scaling
aw for the probability of systematic staleness. In particular, we set

E
[

𝐶 (𝖲)
𝑗,𝑛

]

= 𝑝(𝖲)𝑛 = 𝑝(𝖲)∞
(

1 − 𝑒−𝜙𝑛
)

, (48)

ith 𝜙 = 0.001 and 𝑝(𝖲)∞ = 0.99. In order to justify Eqs. (47) and (48), we recall that both the probability of idiosyncratic staleness and
he probability of systematic staleness are modeled, in the theorems, as changing across scales and, therefore, as being frequency-
pecific. This modeling device is a reflection of the higher likelihood of staleness associated with increased sampling in the data
Bandi et al., 2020).

Finally, the observed logarithmic prices in Eq. (46) are transformed back into prices (through the exponential function), rounded
30

o one cent, and put back into a logarithmic form.
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Fig. 7. The figure reports the simulated normalized density of the random variable Z(𝑁)
𝑛 under 0. The threshold 𝛩(𝑞,𝑁)

𝑛 , with 𝑞 = 1,… , 𝑁 , is chosen as
𝛩(𝑞,𝑁)
𝑛 = ℎ(𝑁)

𝑛 𝜎∕𝑛1∕2, where ℎ(𝑁)
𝑛 is selected as ℎ(𝑁)

𝑛 = 0.8𝑁2.0001

𝑛0.9
and 𝜎 is the square root of the five-minute realized variance. The red dashed lines correspond to the

tandard Gaussian density. The title of each plot reports the number of intra-daily observations 𝑛 (and the corresponding time-distance between observations,
i.e., 𝛥𝑛) and the number of assets 𝑁 . Noise and rounding are switched off since this experiment is meant to be illustrative of the asymptotic theory. (For
interpretation of the references to color in this caption, the reader is referred to the web version of this article.)

For a given sampling frequency 𝑛, a given number of stocks 𝑁 and a specific asset 𝑞, the threshold 𝛩(𝑞,𝑁)
𝑡,𝑛 in Eq. (1) is set equal

to 𝛩(𝑞,𝑁)
𝑛 = ℎ(𝑁)

𝑛 𝜎∕𝑛1∕2, where ℎ(𝑁)
𝑛 is chosen as

ℎ(𝑁)
𝑛 =

𝛽𝑁1+𝜂

𝑛𝛾
,

ith 𝛽 = 0.8, 𝜂 = 1.0001 and 𝛾 = 0.9 and 𝜎 is the square-root of the five-minute realized variance of the observed price.
The panels in Fig. 7 report, for several values of 𝛥𝑛 =

1
𝑛 , the finite-sample distributions, under the null, of the random variable

Z(𝑁)
𝑛 ≐

M(𝑁)
𝑛 − 𝑃 (𝑁)

𝑛
(𝑁)
31

𝜎𝑛
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Table 8
Mean and standard deviation of the relative error of idiosyncratic staleness. We report the mean and, in parentheses, the standard deviation
of the relative error of idiosyncratic staleness as an estimator of true idiosyncratic staleness. Results are shown for different values of the number
of observations 𝑛, the number of assets 𝑁 , the noise-to-signal ratio 𝜉2 and the level of rounding.
𝑛 𝜉2 = 0 𝜉2 = 10 𝖻𝗉𝗌 𝜉2 = 50 𝖻𝗉𝗌

𝑁 = 10 𝑁 = 25 𝑁 = 50 𝑁 = 10 𝑁 = 25 𝑁 = 50 𝑁 = 10 𝑁 = 25 𝑁 = 50

No rounding

168 0.031 0.085 0.184 0.034 0.076 0.179 0.038 0.082 0.177
(0.191) (0.198) (0.197) (0.198) (0.192) (0.197) (0.191) (0.201) (0.196)

420 −0.001 0.022 0.051 0.006 0.019 0.050 0.003 0.019 0.049
(0.083) (0.083) (0.083) (0.081) (0.082) (0.079) (0.082) (0.082) (0.082)

840 −0.007 0.002 0.011 −0.006 0.003 0.012 −0.006 0.004 0.011
(0.045) (0.046) (0.044) (0.046) (0.046) (0.044) (0.045) (0.045) (0.045)

1260 −0.019 −0.003 0.001 −0.017 −0.002 0.001 −0.017 −0.003 −0.000
(0.034) (0.033) (0.033) (0.034) (0.033) (0.033) (0.034) (0.033) (0.033)

1680 −0.037 −0.007 −0.003 −0.037 −0.006 −0.003 −0.037 −0.006 −0.004
(0.030) (0.027) (0.026) (0.030) (0.027) (0.027) (0.030) (0.027) (0.027)

2520 −0.077 −0.020 −0.009 −0.076 −0.020 −0.009 −0.078 −0.020 −0.009
(0.035) (0.023) (0.020) (0.033) (0.022) (0.021) (0.033) (0.023) (0.021)

Rounding: small tick

168 0.085 0.109 0.195 0.075 0.110 0.194 0.073 0.110 0.186
(0.195) (0.203) (0.202) (0.211) (0.205) (0.200) (0.194) (0.207) (0.199)

420 0.036 0.042 0.062 0.035 0.041 0.059 0.034 0.037 0.056
(0.085) (0.085) (0.082) (0.081) (0.083) (0.083) (0.083) (0.082) (0.083)

840 0.010 0.013 0.019 0.008 0.013 0.018 0.008 0.012 0.016
(0.046) (0.047) (0.044) (0.047) (0.045) (0.044) (0.047) (0.045) (0.045)

1260 −0.011 0.003 0.004 −0.012 0.002 0.004 −0.013 0.003 0.004
(0.034) (0.033) (0.033) (0.034) (0.033) (0.032) (0.034) (0.033) (0.033)

1680 −0.037 −0.003 −0.002 −0.034 −0.002 −0.001 −0.034 −0.004 −0.002
(0.029) (0.027) (0.027) (0.030) (0.027) (0.027) (0.030) (0.027) (0.027)

2520 −0.076 −0.020 −0.009 −0.076 −0.020 −0.009 −0.077 −0.019 −0.009
(0.032) (0.023) (0.021) (0.032) (0.023) (0.021) (0.032) (0.023) (0.021)

Rounding: large tick

168 1.682 1.677 1.678 1.657 1.669 1.662 1.623 1.625 1.630
(0.260) (0.269) (0.265) (0.261) (0.259) (0.261) (0.263) (0.262) (0.266)

420 0.745 0.755 0.754 0.738 0.748 0.744 0.708 0.712 0.713
(0.083) (0.083) (0.083) (0.082) (0.083) (0.082) (0.083) (0.082) (0.084)

840 0.277 0.304 0.305 0.276 0.300 0.302 0.263 0.286 0.286
(0.038) (0.037) (0.037) (0.038) (0.037) (0.038) (0.041) (0.039) (0.038)

1260 0.099 0.138 0.141 0.100 0.137 0.139 0.093 0.130 0.132
(0.029) (0.026) (0.026) (0.029) (0.026) (0.026) (0.029) (0.027) (0.027)

1680 0.013 0.062 0.066 0.012 0.061 0.066 0.011 0.058 0.062
(0.027) (0.021) (0.021) (0.027) (0.022) (0.021) (0.026) (0.022) (0.021)

2520 −0.068 −0.006 0.008 −0.067 −0.006 0.008 −0.069 −0.006 0.008
(0.032) (0.021) (0.018) (0.032) (0.020) (0.018) (0.031) (0.021) (0.018)

defined in Eq. (16). Under the null, in order to illustrate the validity of the asymptotic theory, both rounding and noise are turned
off. Fig. 7 shows that Z(𝑁)

𝑛 is approximately Gaussian. More specifically, as implied by theory, Z(𝑁)
𝑛 is closer to a Gaussian, the larger

he number of intra-daily observations 𝑛 and the larger the number of assets 𝑁 . Consistent with the bandwidth condition in the
tatement of Theorem 1, the tuning parameter ℎ(𝑁)

𝑛 plays a role.
The left and right panels of Fig. 8, Fig. 9 and Fig. 10 report, respectively, the average value, under the alternative, of Id(𝑞,𝑁)

𝑛
defined in Eq. (13)) and M(𝑁)

𝑛 (defined in Eq. (3)) for different values of 𝑁 and as a function of the sampling frequency 𝑛. Fig. 8
llustrates the ideal case of no rounding and no noise and, separately, the effect of noise without rounding and rounding without
oise. In Figs. 9 and 10, which correspond, respectively, to the case 𝜉2 = 10 𝖻𝗉𝗌 and 𝜉2 = 50 𝖻𝗉𝗌, we report three rounding scenarios:
mall tick size (graphs in the top panel, average price level ≈ 100$, daily efficient price volatility ≈ 1% and prices rounded to one
ent), medium tick size (graphs in the middle panel, average price level ≈ 50$, daily efficient price volatility ≈ 1% and prices rounded
o one cent) and large tick size (graphs in the bottom panel, average price level ≈ 5$, daily efficient price volatility ≈ 1% and prices
ounded to one cent). In each scenario, we allow for different intra-daily sampling frequencies (corresponding to a total number of
bservations reported along the horizontal axis) and three possible values for the total number of assets (more specifically, 𝑁 = 10,
= 50 and 𝑁 = 100). The black continuous line represents the true value of the estimated quantities, either idiosyncratic staleness

graphs in the left column) or systematic staleness (graphs in the right column). The average value of the estimated quantities is
eported, for each sampling frequency, as a red cross (𝑁 = 10), a blue star (𝑁 = 50) or a black empty circle (𝑁 = 100). Tables 8
nd 9 report the mean and the standard deviation of the relative error of, respectively, Id(𝑞,𝑁)

𝑛 and M(𝑁)
𝑛 when estimating the

orresponding true quantities. Again, results are shown for different values of the number of observations 𝑛, the number of assets
2
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Table 9
Mean and standard deviation of the relative error of systematic staleness. We report the mean and, in parentheses, the standard deviation
of the relative error of systematic staleness as an estimator of true systematic staleness. Results are shown for different values of the number of
observations 𝑛, the number of assets 𝑁 , the noise-to-signal ratio 𝜉2 and the level of rounding.
𝑛 𝜉2 = 0 𝜉2 = 10 𝖻𝗉𝗌 𝜉2 = 50 𝖻𝗉𝗌

𝑁 = 10 𝑁 = 25 𝑁 = 50 𝑁 = 10 𝑁 = 25 𝑁 = 50 𝑁 = 10 𝑁 = 25 𝑁 = 50

No rounding

168 −0.009 −0.006 −0.008 −0.022 −0.002 −0.001 −0.018 −0.003 −0.021
(0.183) (0.162) (0.171) (0.188) (0.187) (0.179) (0.176) (0.182) (0.154)

420 −0.002 −0.002 −0.007 −0.008 0.004 −0.009 0.001 −0.002 0.001
(0.065) (0.069) (0.072) (0.078) (0.072) (0.072) (0.080) (0.072) (0.064)

840 0.003 −0.005 −0.005 0.000 −0.006 −0.003 −0.005 −0.006 0.000
(0.033) (0.031) (0.033) (0.029) (0.028) (0.032) (0.030) (0.029) (0.030)

1260 0.011 −0.004 −0.002 0.011 −0.001 −0.000 0.012 −0.002 −0.001
(0.017) (0.017) (0.018) (0.017) (0.022) (0.019) (0.018) (0.018) (0.019)

1680 0.026 0.004 −0.002 0.027 0.001 −0.002 0.028 0.001 −0.000
(0.011) (0.010) (0.012) (0.010) (0.012) (0.012) (0.013) (0.011) (0.013)

2520 0.037 0.009 0.000 0.038 0.009 −0.000 0.037 0.008 0.001
(0.005) (0.006) (0.007) (0.005) (0.005) (0.006) (0.004) (0.006) (0.006)

Rounding: small tick

168 −0.028 −0.013 0.029 −0.005 −0.000 −0.047 −0.005 −0.025 −0.009
(0.185) (0.138) (0.192) (0.198) (0.179) (0.178) (0.192) (0.162) (0.190)

420 0.001 0.004 0.000 −0.005 −0.007 −0.005 −0.024 0.010 0.000
(0.064) (0.069) (0.067) (0.070) (0.070) (0.068) (0.068) (0.065) (0.066)

840 −0.002 −0.000 −0.006 0.001 −0.003 −0.003 0.007 −0.006 −0.004
(0.030) (0.028) (0.033) (0.030) (0.031) (0.031) (0.029) (0.031) (0.030)

1260 0.012 −0.001 0.002 0.015 −0.002 0.001 0.011 −0.003 0.001
(0.016) (0.018) (0.018) (0.018) (0.019) (0.020) (0.017) (0.017) (0.014)

1680 0.028 −0.000 −0.001 0.028 −0.001 −0.002 0.027 0.001 −0.000
(0.012) (0.012) (0.012) (0.011) (0.012) (0.011) (0.011) (0.013) (0.012)

2520 0.037 0.009 0.000 0.038 0.009 0.001 0.039 0.009 0.001
(0.005) (0.006) (0.006) (0.005) (0.006) (0.007) (0.005) (0.006) (0.007)

Rounding: large tick

168 0.007 0.009 −0.014 −0.001 −0.007 −0.006 −0.000 −0.043 −0.030
(0.184) (0.160) (0.186) (0.179) (0.186) (0.178) (0.181) (0.173) (0.193)

420 0.008 0.002 −0.002 0.014 −0.018 0.002 0.010 −0.008 −0.011
(0.066) (0.071) (0.076) (0.070) (0.078) (0.083) (0.068) (0.070) (0.073)

840 0.037 −0.002 −0.002 0.034 −0.002 −0.001 0.034 −0.001 0.002
(0.030) (0.032) (0.030) (0.030) (0.027) (0.030) (0.032) (0.031) (0.028)

1260 0.054 0.003 0.001 0.050 0.002 −0.004 0.047 0.000 −0.000
(0.014) (0.019) (0.018) (0.015) (0.017) (0.020) (0.020) (0.019) (0.016)

1680 0.056 0.005 −0.001 0.055 0.006 −0.002 0.053 0.005 −0.001
(0.009) (0.013) (0.012) (0.010) (0.013) (0.011) (0.009) (0.013) (0.013)

2520 0.046 0.015 0.002 0.045 0.013 0.001 0.045 0.015 0.001
(0.004) (0.005) (0.006) (0.004) (0.005) (0.006) (0.004) (0.006) (0.006)

We show that rounding and noise are not an issue for the systematic staleness estimator. The impact of noise is immaterial and
he limit 𝑁 → ∞ is effective in removing the impact of rounding. This property is easily explained: the probability of a simultaneous

round-off error across multiple assets goes to zero exponentially fast as the number of assets diverges. For idiosyncratic staleness, the
effect of rounding is marginal in the case of small and medium tick stocks and can be impactful only in the case of large tick stocks
which are, however, only a small fraction of the stocks considered in our analysis. In addition, regimes with higher volatility than
the one considered here will generate, ceteris paribus, a smaller rounding-induced bias in the estimation of idiosyncratic staleness.

B.2. The finite-sample properties of the structural estimates

We now discuss the efficacy of the simulated method of moments, described in Section 5.2, in estimating the parameters of the
microstructure-founded model of price formation discussed in Section 5.

For three different values of the number of assets 𝑁 , i.e., 𝑁 = 2, 𝑁 = 5 and 𝑁 = 10, we set, for all assets, the parameters as the
(cross-sectional and time-series) average of the estimates obtained from data (i.e. the estimates reported in Fig. 4). We simulate 100
trading days of 7 h (each of which is divided into 𝛥−1𝑛 = 840 intervals of 30 seconds) of the 𝑁-variate price process.

The plots in Fig. 11 display, for the parameters 𝜎(e)𝑞 , 𝜎(m)
𝑞 , 𝛿𝑞 and 𝑠𝑞 – pooled across all assets – and for 𝑓 and PAIT, the densities

f the relative error with respect to the true value, i.e., the densities of
(

𝜗 − 𝜗0
)

∕𝜗0, where 𝜗 and 𝜗0 are, respectively, estimated
nd true value. All parameters are well identified but two observations are in order. First, we conservatively present results for low
alues of 𝑁 . A larger number of assets (as in our empirical work) would generally lead to further improvements. Second, relatedly,
33

t may appear that some of the parameter estimates (such as PAIT) do not benefit in an obvious way from increasing the number of
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Fig. 8. Results of a simulated experiment designed to assess the impact of rounding on idiosyncratic and systematic staleness. In the top, middle and bottom
panels we consider, respectively, the following three scenarios: (1) no noise and no rounding, (2) noise (added with a noise-to-signal ratio of 𝜉2 = 50 𝖻𝗉𝗌) without
rounding and (3) rounding for a large tick size stock (average price level ≈ 5$, daily efficient price volatility ≈ 1% and prices rounded to one cent) without noise.
In each panel, the black continuous line represents the true quantity to be estimated (idiosyncratic staleness, assumed equal for all assets, in the left column,
and systematic staleness, in the right column). Red crosses, blue stars and empty circles represent the estimated quantities when 𝑁 = 10, 𝑁 = 50 and 𝑁 = 100
assets are simulated, respectively. The horizontal axis reports the inverse of the sampling frequency, i.e. the total number of observations. (For interpretation of
the references to color in this caption, the reader is referred to the web version of this article.)
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Fig. 9. Results of a simulated experiment designed to assess the impact of rounding on idiosyncratic and systematic staleness. In the top, middle and bottom
panels we consider, respectively, the following three scenarios: (1) small tick size (average price level ≈ 100$, daily efficient price volatility ≈ 1% and prices
ounded to one cent), (2) medium tick size (average price level ≈ 50$, daily efficient price volatility ≈ 1% and prices rounded to one cent) and (3) large tick
ize (average price level ≈ 5$, daily efficient price volatility ≈ 1% and prices rounded to one cent). In each panel, the black continuous line represents the true
uantity to be estimated (idiosyncratic staleness, assumed equal for all assets, in the left column, and systematic staleness, in the right column). Red crosses,
lue stars and empty circles represent the estimated quantities when 𝑁 = 10, 𝑁 = 50 and 𝑁 = 100 assets are simulated, respectively. The horizontal axis reports
he inverse of the sampling frequency, i.e. the total number of observations. Microstructure noise is added with a noise-to-signal ratio of 𝜉2 = 10 𝖻𝗉𝗌. (For
nterpretation of the references to color in this caption, the reader is referred to the web version of this article.)
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Fig. 10. Results of a simulated experiment designed to assess the impact of rounding on idiosyncratic and systematic staleness. In the top, middle and bottom
panels we consider, respectively, the following three scenarios: (1) small tick size (average price level ≈ 100$, daily efficient price volatility ≈ 1% and prices
ounded to one cent), (2) medium tick size (average price level ≈ 50$, daily efficient price volatility ≈ 1% and prices rounded to one cent) and (3) large tick
ize (average price level ≈ 5$, daily efficient price volatility ≈ 1% and prices rounded to one cent). In each panel, the black continuous line represents the true
uantity to be estimated (idiosyncratic staleness, assumed equal for all assets, in the left column, and systematic staleness, in the right column). Red crosses,
lue stars and empty circles represent the estimated quantities when 𝑁 = 10, 𝑁 = 50 and 𝑁 = 100 assets are simulated, respectively. The horizontal axis reports
he inverse of the sampling frequency, i.e. the total number of observations. Microstructure noise is added with a noise-to-signal ratio of 𝜉2 = 50 𝖻𝗉𝗌. (For
nterpretation of the references to color in this caption, the reader is referred to the web version of this article.)
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Fig. 11. The figure reports the kernel density of the relative error (computed over 100 replications) for estimates of the parameters of the model described in
ection 5. For each parameter, we report three densities obtained by using three different numbers of assets, i.e. 𝑁 = 2 (black continuous line), 𝑁 = 5 (red

dashed line) and 𝑁 = 10 (blue line with stars). The densities for the asset-specific parameters 𝜎(e)𝑞 , 𝜎(m)
𝑞 , 𝛿𝑞 and 𝑠𝑞 are computed by pooling across all the assets.

For interpretation of the references to color in this caption, the reader is referred to the web version of this article.)

ssets. This is due to the fact that the threshold 𝛩(𝑞,𝑁)
𝑡,𝑛 in Eq. (1), a threshold which, e.g., defines the multivariate staleness estimator

n Eq. (3), may be further optimized (through ℎ(𝑁)
𝑛 ) with respect to the number of observations 𝑛 and the number of assets 𝑁 . Our

election rule is consistent with the one described in the main text. It is effective, as shown in these simulations, but it can likely be
mproved. The study of an optimal threshold selection rule is beyond the objectives of this article and we leave it for future work.
aving made these points, the estimates of the funding cost parameter 𝑓 , which are central to this study, are remarkably accurate
nd further improve when larger values of the number of assets are considered.
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