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Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-
year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2
(BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-
associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective
homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient
displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally
associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity.
Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand
2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might
likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency
and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients
for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy.
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INTRODUCTION
Breast cancer is one of the most common malignancies in women
worldwide [1]. It displays complex diversity in both molecular
alterations, clinical manifestations, and pathological characteristics
[2–5]. Estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor-2 (ERBB2/HER2) are considered as
the molecular markers for diagnostic classification of breast cancer
subtypes [6, 7]. Breast cancer with the genetic signature of ER-
negative, PR-negative, and ERBB2/HER2-negative has been classified
as triple-negative breast cancer (TNBC) [8], which represents the
most aggressive clinical subtype with a poor prognosis. Breast
cancer, and in particular TNBC, presents significant genomic defects
[9–12] involving protein degradation [13–15], mutations or dereg-
ulation of the p53 family members of tumor suppressors [16–20] as
well as of other transcription factors [21–23]. In addition, also defects
in metabolism or in hypoxia response [24–27] seem to influence the
ability of cancer cells to progress [28–31] or to respond to treatment
[32, 33]. Compared with other subtypes, TNBC displays a greater
tendency of recurrence with higher invasive and metastatic behavior.
Due to the lack of targetable receptors (ER, PGR, and HER-2), TNBC
patients cannot benefit from hormonal therapy or receptor-targeted
monoclonal antibodies.

By using sequencing technologies, a series of molecular markers
have been recognized as targetable genes so that individualized
therapeutic regimens appear to be a promising approach to
improve the survival of TNBC patients. Researchers have been
committed to investigate effective neoadjuvant chemotherapy
strategies at the molecular level, with a focus on genetic
background of breast-cancer susceptibility genes such as BRCA1/
2 loss-of-function mutations.
BRCA mutations account for about 10–15% of TNBC patients

[34, 35]. The deleterious variants of BRCA1/2 genes, such as
c.5558dupA (BIC: 5677insA) in BRCA1 (ref. 36) and
c.9541_9554del14 (BIC: 9769del14) in BRCA2, abrogate the
function of encoded proteins, and confer a high risk of breast
(most commonly the TNBC subtype) and ovarian cancers [37].
BRCA1 and BRCA2 are required for mammalian development, and
they function as tumor suppressors to support the maintenance of
genomic integrity. Both BRCA1 and BRCA2 are involved in
recognizing double-strand breaks (DSBs) and initiating the repair
of damaged DNA through the homologous recombination (HR)
repair system [38]. Thus, defective BRCAs lead to the accumulation
of chromosomal breaks [39]. Furthermore, BRCAs serve as vital
regulators of multiple transcription factors including p53.
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Germline mutations of BRCA1/2 are frequently associated with
somatic TP53 abnormalities in patients with breast cancer [40].
Conditional mutants of BRCA2 and TP53 alleles predispose to
mammary carcinogenesis [41, 42]. This is likely due, at least in part,
to the ability of BRCA1 protein to interact with and regulate the
transactivation of p53 target genes [43].
The accumulation of gene alterations in human cancers can

give rise to the expression of tumor-specific neoantigens, which
imply the potential of cancer cells to be recognized by the host
immune system. In this regard, the tumor mutational burden
(TMB) is a new biomarker to predict the potential of therapeutic
strategies targeting tumor immunity. Tumors with germline or
somatic mutations of BRCA1/2 are considered more immunogenic
because of the dysregulation of the HR DNA repair system that
causes increased genomic instability and high TMB. The existence
of tumor-infiltrating lymphocytes in different breast cancer
subtypes has been confirmed [44], with high frequency of
infiltration of immune cells in breast cancers associated with
BRCA1 and BRCA2 mutations [45, 46]. The immunotherapies
targeting immune checkpoint receptors, such as PD1 and its
ligand PD-L1 and CTLA-4, have emerged as a promising strategy
to provoke an anti-tumor immune response in malignancies with
polygenic mutations [47]. Indeed, many studies have proved the
prevalence of PD-L1 expression in both breast cancer cell lines and
clinical samples of breast cancer, mainly in TNBC patients [48–50],
indicating that the aggressive subset of patients may benefit from
PD1/PDL1 blockade. Of note, TNBC patients carrying the BRCA1/2-
mutations display high TMB, suggesting that combined check-
point blockade of PD-1 and CTLA4 might improve the efficacy of
the chemotherapy treatment [46]. Breast cancers harboring BRCA1
mutations are characterized by increased PD-L1 and PD-1expres-
sion, and a greater immune cells infiltration in the tumor
microenvironment. Interestingly, these findings have not been
observed in BRCA2-deficient tumors [51].
In this case report, we describe a TNBC patient who carries a

BRCA2 germline mutation and an array of somatic mutations,
shows high expression of immune checkpoints and an elevated
TMB with a dysregulated PI3K/AKT signaling pathway.

Case presentation
In February 2021, an 81-year-old woman presented with a mass in
the upper-outer quadrant of left breast. Histopathological
examination revealed a G3 infiltrating ductal carcinoma with
peritumoral lymphocytic inflammatory infiltrate (Fig. 1A, B);
disease stage was IIA (pT2N0M0) (Table 1). Immunohistochemical
(IHC) analysis showed strong positivity for Ki67 (~70%) (Fig. 1C),
lack of expression of ER, PR, and HER2 (Fig. 1D). In addition, the
IHC study of the expression of PD-L1 showed more than 1% of
positive tumor-associated lymphocytes (Fig. 1E, F). All at once, IHC
data allowed to classify the lesions as TNBC also suggesting a
possible response to anti PDL-1 therapy. Lack of expression of ER,
PR and HER2 was also confirmed by RNA-Seq, immunostaining
and metabolic analyses [52–55]. As shown in Fig. 1G, the patient
indeed showed absence of ER1, ER2, PR and HER2 mRNAs as
compared to the clinical cohort (580 breast cancer patients).
Further characterization of the tumor revealed a basal subtype of
TNBC characterized by low to absent luminal differentiation
marker expression, and high expression of epithelial-to-
mesenchymal transition (EMT) and cancer stem cell-like markers
(e.g., low claudin). The patient underwent a comprehensive
genomic profiling that indicated the presence of four concurrent
heterozygous somatic mutations in the ephrin type-A receptor 3
(EphA3), TP53, BRCA1-associated protein (BAP1) and MYB genes
(Table 2).
The His214 frameshift mutation of TP53 (Table 2) lies within its

DNA-binding domain (DBD), suggesting that it may impair its
ability to contact DNA (Fig. 2A). This mutation has not been
described previously in cancer patients. Interestingly, Yaupt and

co-authors reported a truncated protein (p53d1214), composed by
the first 214 amino-terminal residues of p53 that lacks the
transactivation function, even though retains the ability to induce
apoptosis [41, 56]. The relevance of this mutation in vivo and its
biological significance warrants further studies.
We also identified a somatic mutation in the BAP1 gene

encoding a ubiquitin carboxy-terminal hydrolase that regulates
several important cellular responses including HR DNA repair and
cell growth [57, 58]. Germline inactivation of BAP1 confers an
increased risk for developing cutaneous and uveal melanoma,
mesothelioma, renal cell carcinoma, and breast cancer, albeit to a
lesser extent [59]. Mutations of BAP1 have been included in the
HR-deficiency-associated pathways in breast cancer, particularly in
the TNBC subtype, characterized by a relative high mutation
frequency [60]. In this patient we found the occurrence of a short
deletion at amino acid 51–53 (Table 2), which lies within the
peptidase domain of BAP1 and may likely affect its protein activity
(Fig. 2B).
Genetic testing also revealed a germline variant (c.516+1 G > C;

p.Leu1839Ser) located within the seventh repeat of the BRCA2
gene (Table 2, Fig. 2C). This pathogenic variant harbors a G > A
nucleotide substitution at position +1 of intron 6 of the BRCA2
gene. The mutation, which eliminates a splice donor site, is
predicted to alter RNA splicing. As a result, an abnormal mRNA
could be produced, which could undergo to nonsense-mediated
mRNA decay, or alternatively, an aberrant protein could be
translated. This mutation has been reported in other breast and
ovarian cancer patients [37].
Both the somatic mutations in the TP53 and BAP1 genes and the

germline mutation in the BRCA2 gene predict a HR-deficiency and
chromosomal instability. Consistently, mutational signature ana-
lysis revealed a strong HR deficiency signature (Fig. 2D). We also
observed a high tumor mutational burden (TMB) status in this
patient as compared to the clinical cohort (Fig. 2E). The
microsatellite instability (MSI) was instead stable as most breast
cancer patients with the 0.1 score (Fig. 2F).
We also evaluated chromosomal instability (CIN) metrics, a

principal indicator of aneuploidy and intra-tumor heterogeneity.
We found that while the fraction genome altered (FGA, numerical
CIN) and structural CIN (CAN) values of the patient are within the
median range of the background cohort, her copy number
heterogeneity (CNH) score is higher compared to the median
disease cohort (Fig. 2G). The chromosomal instability represented
by the high CNH value measured in the patient thoroughly
correlates with tumor suppressor gene inactivation events [61] .
The patient also carries the Pro603Arg mutation in the MYB

gene, which encodes the transcription factor proto-oncogene
c-MYB. MYB is one of the prominent genes that gain frequent
somatic copy number alterations in TNBC [62], while its mutations
have never been reported in breast cancer patients and were not
detected among the METABRIC patient cohort. Increased MYB
expression confers resistance to tamoxifen in ER+ breast cancer
cells by promoting EMT [63]. Therefore, deregulated expression of
MYB could be used as an indicator to predict the response to drug
therapy for breast cancer patients. The Pro603Arg mutation lies in
the C-terminal domain whose function is currently unclear (Fig.
3A). Of note, since its deletion seems to increase the transcrip-
tional transactivation activity of c-MYB, an inhibitory function has
been proposed for the C-terminal domain of c-MYB [64].
The ΕphA3 gene encodes a tyrosine kinase receptor, whose

activation regulates important biological process altered in
carcinogenesis, such as Rho-associated cell migration and adhe-
sion [65]. Mutations and altered expression of EphA3 have been
associated with various human cancers, such as colorectal [66] and
lung [67] carcinomas, in which EphA3 dysfunction correlates with
poor prognosis and decreased survival. Of note, EphA3 have
available targeted treatment in phases I and II of clinical trials [68].
In particular, the anti-EphA3 monoclonal antibody KB004 has been
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explored in clinical trials aimed to treat refractory hematologic
malignancies (NCT01211691) [69]. However, the role of EphA3 in
breast cancer remains largely unexplored. An interesting study
reported that EphA3 functions as a receptor for IL-26 in TNBC.
IL-26 binding to EphA3 induces its dephosphorylation and
dampens its activity, leading to increased phosphorylation of
AKT and JNK and consequent tumor growth [70]. This patient
harbors the Asp806Asn mutation (Table 2) that has also been
described in colon cancer patients [66, 71]. The mutation is in
the tyrosine kinase domain (Fig. 3B) and abolishes EphA3
tyrosine phosphorylation and, as a result, its enzymatic function
[72]. It is therefore a an aminoacidic substitution that has a high
potential to be pathogenic through AKT activation. In line with
this possibility, we found the phosphorylation of threonine at

position 448 of AKT1 protein is higher in the patient compared
to cohort (Fig. 3C).
Finally, evaluation of the immune checkpoints revealed high

expression of PD-L1, PD-L2, PD1, and CTLA 4, relatively to the
clinical cohort (Fig. 4). As reported above, the higher expression of
PDL-1 (clone Sp142) was also demonstrated by IHC [73, 74].

DISCUSSION
An intact DNA damage repair response is fundamental to
counteract cancer development. Defects in the HR repair system,
occurring because of both somatic and inherited germline
mutations in the HR pathway genes, can trigger deficient DNA
damage responses and genome instability. In the case presented

Fig. 1 Histopathological analysis and molecular characterization of the tumor. A Hematoxylin and eosin staining shows a G3 infiltrating
ductal carcinoma with inflammatory infiltrates. Scale bar represents 50 µm. B High magnification of panel A highlights the presence of
peritumoral inflammatory cells (asterisk). Scale bar represents 50 µm. C Ki67 expression in more than 70% of breast cancer cells. Scale bar
represents 50 µm. D c-Erb-B2 staining revealed score 0. Scale bar represents 20 µm. E PDL-1 (SP142) immunostaining shows positivity in more
than 1% of tumor-associated lymphocytes (asterisk). Scale bar represents 100 µm. F High magnification of panel (E). scale bar represents
20 µm. G Expression mRNA levels (TPM) of estrogen receptor 1 (ESR1), progesterone receptor (PR1), ERBB2 receptor tyrosine kinase 2 (HER2)
and proliferation marker KI-67 (MKI67) for the patient (red triangle) and the clinical cohort (blue boxplot).
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here, the patient had somatic mutations in the TP53 (a frameshift
mutation predicted to result in a transactivation deficient variant)
and BAP1 (a deletion variant that likely affects its deubiquitinase
function) genes, and a germline mutation in the BRCA2 gene,
generating a risk pathogenic variant. We have coherently found
mutational signatures associated with failures in HR pathways

along with high TMB and CNH values. Since the dissatisfactory
outcomes of conventional chemotherapies in TNBC patients, these
features strongly indicate the importance to define the landscape
of tumor immunogenicity, which would offer the basic principle to
employ an optimal immune therapeutic strategy for cancer
patients. There are few studies reporting the association of BRCA2
mutations with immune biomarkers in tumors such as gastro-
esophageal cancers [75] or with an immunogenic microenviron-
ment in ovarian cancers [76]. In contrast, the association of BRCA2
with immune checkpoints has never been reported in TNBC. The
patient of our study showed higher expression of CTLA4, PD1,
PDL1, PDL2 compared with the median expression of the clinical
cohort. Hence, we have presented a clinical case that supports a
link between BRCA2 inactivation, HR deficiency and increased
expression of immune checkpoints. Having a strong immunogenic
signature, the patient might likely benefit from immunotherapies.
HR deficiency status in TNBC may help identify suitable patients
who would receive greater benefit from PARP inhibitors. BRCA1/2
mutations can indeed help in predicting the sensitivity to poly
(ADP ribose) polymerase (PARP) inhibitors. Clinical trials have also
demonstrated a promising anticancer activity and safety of the
combination of PARP and immune checkpoint inhibitors in
patients with metastatic breast cancer harboring germline
BRCA1/2 mutations [77]. The clinical trial (NCT02657889) has
proved that the anti-PD1 antibody combined with niraparib
provided a favorable antitumor response in TNBC patients who
carried tumor BRCA mutations [78]. Furthermore, the combined
therapy of double immune checkpoint inhibitors (ICIs), such as
anti-PD1 and anti-CTLA4, with chemotherapy provoked strong
systemic and intratumoral immune responses in BRCA1-mutated
breast cancer [46].
Interestingly, loss of BAP1 expression was found to promote T

cell infiltration in uveal melanoma [79]. Similarly, peritoneal
mesothelioma and renal cell carcinoma patients with BAP1
haploinsufficiency display an inflammatory microenvironment,
characterized by increased immune cell tumor infiltration and
enhanced PD-L1 expression [80, 81]. However, another study
reported that loss of BAP1 expression correlates with an
immunosuppressive microenvironment in uveal melanoma, sug-
gesting the immunotherapy resistance [82]. A patient affected by
a BAP1 cancer syndrome, who developed a metastatic TNBC,
carried both a germline pathogenic and a somatic BAP1 mutation.
Her tumor was PD-L1 positive, and the patient had a complete
response to immunotherapy even after chemotherapy disconti-
nuation. These findings indicate that BAP1 alterations may also
help predicting response to immunotherapy in breast cancer. This
clinical case highlights the importance of screening TNBC patients
for genetic mutations and TMB to predict the potential efficacy of
immunotherapy.
Deregulation of the AKT pathway is a frequent event in breast

cancer including TNBC. The PI3K/AKT signaling pathway is indeed
commonly hyperactivated in TNBC as a result of AKT1 or PIK3CA

Table 1. Clinical data of the breast cancer patient enrolled in this
study.

Clinical information

Gender Female Menarche 15 age
of year

Age at case
start

81 Menopause Yes

General
condition

Grade 0
Asymptomatic

Menopause at 34 age
of year

Reason Natural

Weight 62.0 kg Pregnancies Yes (n= 4)

Body height 155 cm Breastfeeding Yes (n= 3)

BMI 25.8 Total month of
breastfeeding

13

BSA 1.639

Vegetarian No Hormone pre
menopause

No

Meat
consumption

2 times per
week

Defecation Normal Hormone post
menopause

No

Smoker No

Disease ICD Text

C50.4 Malignant neoplasm of breast

Tumor

Organ Breast

Location Upper-outer quadrant of left breast

Histological
type

Ductal carcinoma

Morphology No M-8500/3

TNM TNM Classification, 8th Edition (UICC 2017) pT2
pN0(sn) 0/1 cM0 L0 R2

Total radicality R2

Stage IIA

Grading G3

Dignity Malign

Ki-67 70

Neoadjuvant
therapy

No

Subtype ER- PR- HER2- /TNBC

Table 2. Genetic alterations detected in the tumor.

SOMATIC MUTATIONS

Gene Position Original AA Alteration VAF

EPHA3 806 Asp Asn 22%

TP53 214 His Frameshift 29.80%

BAP1 51–53 – Deletion 21.30%

MYB 603 Pro Arg 14.50%

GERMLINE MUTATIONS

Symbol Feature ID Effect Nchange AAChange

BRCA2 ENST00000544455.5 Splice donor variant & intron variant c.516+1 G > C (intron variant) p.Leu1839Ser

Y. Han et al.

4

Cell Death Discovery           (2023) 9:370 



Fig. 2 Molecular and chromosomal alterations in the breast cancer patient. A Schematic structure of the p53 protein and lollipop plot
showing the incidence of mutations in the TP53 gene in METABRIC cohort. Patient’s mutation is indicated. B Schematic structural features of the
BAP1 protein and lollipop plot showing the incidence of BAP1 gene mutations in METABRIC cohort. Patient’s mutation is indicated by arrow.
C Schematic structural features of the BRCA2 protein and lollipop plot showing incidence of mutations in the BRCA2 gene in METABRIC cohort.
Patient’s mutation is indicated by arrow. A–C Data were obtained from cBioPortal. D Mutational contribution of HR-related signatures. E The
patient has a higher TMB as compared to the cohort median (~80% percentile). F MSI score (MSI High: score > 0.901). The patient is observed as
having MSI Low status (score = 0.09). G Chromosomal instability: CNH is higher in the patient compared to the median disease cohort, whereas
numerical and structural CIN values are not much higher than median. The patient (red triangle) is compared to the clinical cohort (blue boxplot).
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mutations and/or PTEN inactivation [83]. To date, several AKT
inhibitors have been tested in clinical trials. Some compounds
proceeded to further development, being also tested in breast
cancer patients in combination with chemotherapy, endocrine and
anti-HER2 compounds [84]. Phosphorylated AKT levels are signifi-
cantly associated with increased clinical benefit of the AKT inhibitor
ipatasertib in TNBC patients [85], implying that the patient presented
in this study would be probably sensitive to this treatment.

METHODS
Collection of samples
Tumor tissues were globally collected using a standardized protocol,
minimizing the ischemia time until freezing in liquid nitrogen. To ensure
the quality of the samples, all tissues were Hematoxilin and Eosin stained
and subjected to a pathological QC. Samples need to be invasive, have a
tumor content of ≥30% and Necrosis ≤30%. Normal tissues were processed
in parallel and need to be free of tumor and representative regarding the
tumor tissue to be included.
Approximately 10mg tissue were taken for nucleic acid extraction and

protein lysate preparation each. To account for tumor heterogeneity,
pathological QCs were performed on two sections, before and after taking
the analysis material. The tissues stay frozen during the entire process.

Immunohistochemical analysis
Approximately 1 × 1 × 0.5 cm of tissue was formalin-fixed and paraffin-
embedded (FFPE). Serial sections were used to evaluate prognostic and
predictive biomarkers including ER, PR, Ki67, and HER2 through
immunohistochemistry. Briefly, sections were stained using the automated
Leica Bond IHC platform (Leica Biosystems, Deer Park, IL). After antigen
retrieval, 4-μm thick sections were incubated with the following primary

monoclonal antibodies: mouse monoclonal anti-Ki67 (clone MM1; Leica
Biosystems), mouse monoclonal anti-HER2 (clone CB11, Leica Biosystems)
and rabbit monoclonal anti-PDL1 (clone sp142; Ventana Roche, USA).
Reactions were revealed using BOND-PRIME Polymer DAB Detection
System (Leica Biosystems, Deer Park, IL). Immunohistochemistry was
evaluated by two blind pathologists.

Nucleic acid extraction and quality assessment
Frozen tissue slices were mixed with beta-mercaptoethanol containing
sample buffer and homogenized using the BeadBug system. DNA and RNA
were extracted in parallel from the same sample using the Qiagen AllPrep
Universal Kit according to the manufacturer’s instructions.
DNA and RNA concentration were quantified using Qubit fluorometer

with the Qubit dsDNA BR assay or Qubit RNA BR assay respectively.
DNA and RNA quality were assessed using the Agilent Tapestation with

the Agilent Genomic DNA kit or Agilent High-Sensitivity RNA ScreenTape
kit respectively. RNAs need to have a RIN ≥ 4 or a DV200 ≥ 60 to be
selected for library preparation.

Library preparation and NGS sequencing
Libraries for whole genome sequencing (WGS) were prepared using the
PCR-free KAPA Hyper Prep Kit (Roche). For whole transcriptome sequen-
cing, RNA samples were depleted of the ribosomal RNA using the Ribo
Zero Kit (Illumina) and library preparation was performed using the TruSeq
Stranded Total RNA Kit (Qiagen). For small RNA sequencing the QIAseq
miRNA Kit (Qiagen) was used All library preparation kits were used
according to manufacturer’s instructions. Sequencing was performed on a
NovaSeq6000 system (Illumina).
For WGS, average coverage for tumor samples was ≥60X and ≥30X for

normal samples with a total genomic coverage of ≥95%.
Whole transcriptome sequencing datasets have ≥100 million total reads

with <20% of ribosomal origin and ≥20 million reads mapping to mRNAs

Fig. 3 Genomic alterations in the patient. A MYB genomic alterations derived from the METABRIC dataset. Schematic structure of the c-Myb
protein. Patient’s mutation is indicated by an arrow. B Schematic structural features of the EPHA3 protein. Patient’s mutation is indicated by an
arrow. A, B Data were obtained from cBioPortal. C Increased AKT1 phosphorylation of T448 in the patient relative to the clinical cohort.

Fig. 4 RNA-Seq expression levels of immune checkpoint genes in the patient. The patient (red triangle) is compared to the clinical cohort
(blue boxplot).
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according to Ensembl reference. Ribosomal depletion was performed to
remove nuclear rRNA and mt-rRNA.

NGS data processing
NGS data was aligned against Grch38 genome assembly. Identification and
annotation of short genomic variations in normal sample was done using
Haplotype Caller (genome analysis toolkit; GATK) [86]. WGS somatic
variation were called using a consensus of Mutect2(ref. 87), Strelka [88],
Varscan [89] and Somatic Sniper [90]. Structural variations were called
using R packages TitanCNA [91]and DellyCNV [92].
RNA-Seq differential expression was based on normalized readcount

data (TPM: transcripts per million).

Mass spectrometry phospho-proteome profiling
For phospho-proteome profiling, 5–10mg of fresh-frozen tissue was lysed
in 2mL Precellys® CK14 tubes containing 1.4 mm ceramic beads and using
a lysis buffer containing PhosSTOP™ and bead shaking using a Precellys®
Evolution Homogenizer equipped with a Cryolys® cooling module. After
overnight digest samples were acidified and subjected to peptide
desalting using Waters HLB Oasis 30 mg 96-well plates. 500 μg of peptide
preparation was subjected to phospho-peptide enrichment using MagRe-
Syn® Ti-IMAC magnetic beads (ReSyn Biosciences) as described in ref. 93
with modifications to enable processing using a KingFisher™ Flex robot
equipped with a 96-magnetic pin head. Peptides were desalted using
Waters μElution plates, dried down and resolubilized.
For DIA LC-MS/MS measurements, 5 μg of peptides per sample were

injected to a reversed phase column (nanoEase M/Z Peptide CSH C18
Column, 1.7 μm, 300 μm X 150mm) on a Waters ACQUITY UPLC M-Class LC
connected to a Thermo Scientific™ Orbitrap Q Exactive™ HF-X mass
spectrometer equipped with an EASYspray source. The nonlinear LC
gradient was 1–60 % solvent B in 60min at 50 °C and a flow rate of 5 μL/
min. The DIA method consisting of one full range MS1 scan and 50 DIA
segments was adapted from Bruderer et al. [94].
Tissue-specific spectral libraries were generated combining high-

fractionated DDA and DIA measurements on a pool of tissue material
and raw data processed using Biognosys’ software Spectronaut 13.

Bioinformatical analyses
Mutational signatures were calculated using the R package Mutational-
Patterns [95]. MSI classification was done using R package MSIseq [96].
PAM50 subtyping as well as risk scores were investigated using R package
genefu [97].
TMB was calculated as the number of non-synonymous mutations of

protein-coding genes divided by exome size in Megabases.
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