
Forecasting the severity of design traffic 
loads exceeding on road’s bridges

2.Literature gaps and research aim
On the one hand, previous research mainly focused on estimating (direct and indirect)
failure consequences, by carrying out detailed cost analyses and calibrating refined traffic
models accounting for the road network topology (e.g., Abarca et al., 2022; Fiorllo and
Ghosn, 2022). However, these procedures are time-consuming and require resource-
consuming elaborations that frequently hinder their applicability among Road Authorities.

On the other hand, only a recent study assessed the severity of design traffic load exceeding
events as a driver of failure consequences (Ventura et al., 2023). Econometric models by
Binomial Logistic Regressions (BLRs) were applied achieving good results. Conversely,
Machine Learning Models by Artificial Neural Networks (ANNs) were never
explored for this purpose despite their well-recognized performance in prediction (e.g.,
Hegde & Rokseth, 2020).

This research aims to cover this gap.

1.Introduction
Trucks frequently overcome the mass limits prescribed by Traffic Codes, sometimes
leading to road’s bridge failures when the traffic design loads of bridges are surpassed
(Zhang et al. 2022).

The severity of design traffic load exceeding events is a key component of traffic load
hazard risk assessment procedures, being a concise driver of failure consequences
(Ventura et al., 2023).

Thus, forecasting the severity of these events is fundamental to preserve the safety of the
road transport system by driving effective traffic management actions aimed at
preventing bridge failure occurrences.

Learn more:5.Conclusions
This research provides the first empirical contribution into the potentialities of Machine Learning Models in predicting the severity of
design load exceeding events brought on by traffic load hazard on a road’s bridge.

The results could support Road Authorities to implement effective traffic management strategies to increase the safety of bridges against
traffic load hazards.

An investigation on the impact of Artificial Neural Network modelling approaches in assessing the risk of traffic load on bridges is
recommended as future development.

4.Results

3.Materials and methods
Two different models are specified, calibrated, and validated to predict the severity
metric (denoted as !𝑉!) as function of several predictors (denoted as 𝑓!) measured
during each temporal slot (denoted as 𝑠 ∈ 𝑆).

The former is based on a BLR trained with an automated stepwise technique:

!𝑉! =
𝑒"#∑!∈# %!&$

1 + 𝑒"#∑!∈# %!&$
; ∀ 𝑠 ∈ 𝑆;

where 𝛼 and 𝛽& are the coefficients of the model.

The latter is based on a two-layer feedforward ANN trained with the scaled
conjugated gradient algorithm:

!𝑉! = /𝜔 𝑓! ∈ 𝐹 , 𝜃' ; ∀ 𝑠 ∈ 𝑆;

where /𝜔 is the function describing the ANN structure and 𝜃' is the vector of the
ANN parameters.

These models are compared by Confusion Matrixes (CMs), some Performance
Indicators (PIs) and the Cross Entropy (CE) parameter to evaluate their fitting
and forecasting performance.

More than 7.4M raw vehicular records acquired by Weigh-In-Motion system on a
bridge (simply supported overpass structure, 23.5 m span length) along a main road in
the city of Brescia (Italy) are elaborated to set up the two models.
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Parameter Typology BLR model ANN model 
  Training Test Training  Validation  Test 

II comparison strategy       
True positive rate (𝒯𝒫ℛ) + 99.4% 100% 99.4% 100% 97.0% 
True negative rate (𝒯𝒩ℛ) + 100% 99.9% 100% 100% 99.9% 
Positive predictive value (𝒫𝒫𝒱) + 100% 97.0% 100% 100% 97.0% 
Negative predictive value (𝒩𝒫𝒱) + 100% 100% 100% 100% 99.9% 
False negative rate (ℱ𝒩ℛ) − 0.6% 0.0% 0.6% 0.0% 3.0% 
False positive rate (ℱ𝒫ℛ) − 0.0% 0.1% 0.0% 0.0% 0.1% 
False discovery rate (ℱ𝒟ℛ) − 0.0% 3.0% 0.0% 0.0% 3.0% 
False omission rate (ℱ𝒪ℛ) − 0.0% 0.0% 0.0% 0.0% 0.1% 
Accuracy (𝒜𝒞𝒞) + 100% 99.9% 100% 100% 99.8% 
III comparison strategy       
Cross Entropy (C𝐸) − 0.0202 0.0435 0.0059 0.0042 0.0096 
+ : Positively oriented score (more is better) 
− : Negatively oriented score (less is better) 

 Confusion Matrixes on the training dataset. Comparison among the fitting and prediction performances of  BLR and ANN models.

Traffic flow characteristics, interaction between vehicular and bridge characteristic, and compliance with Traffic Code load limit prescriptions resulted the factors having the stronger
influence on severity predictions.

Moreover, on the one hand, findings indicated a similar (and strong) fitting and predictive power for BLR and ANN models when CMs and PIs were considered.

On the other hand, the ANN model showed a CE value an order of magnitude lower than the BLR model, implying that the former predicted severity records with higher
confidence than the latter.

CENTRO NAZIONALE PER LA MOBILITÀ SOSTENIBILE
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