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We introduce two families of criteria for detecting and quantifying the entanglement of a bipartite quantum
state of arbitrary local dimension. The first is based on measurements in mutually unbiased bases and the second
is based on equiangular measurements. Both criteria give a qualitative result in terms of the state’s entanglement
dimension and a quantitative result in terms of its fidelity with the maximally entangled state. The criteria are
universally applicable since no assumptions on the state are required. Moreover, the experimenter can control the
trade-off between resource-efficiency and noise-tolerance by selecting the number of measurements performed.
For paradigmatic noise models, we show that only a small number of measurements are necessary to achieve
nearly-optimal detection in any dimension. The number of global product projections scales only linearly in the
local dimension, thus paving the way for detection and quantification of very high-dimensional entanglement.

Introduction.— Entanglement is a paradigmatic resource in
quantum information science. It is essential for applications
in communication [1–3], cryptography [4–6], sensing [7, 8]
and device-independent information processing [9, 10]. It is
also crucial for fundamental tests, for example in nonlocality
[11, 12] and for the nature of gravity [13]. Therefore, entan-
glement has received massive research attention [14–17].

An important frontier is the entanglement between two
high-dimensional systems. It is well-known that entangle-
ment typically becomes much more robust to noise as the
dimension increases. This enables stronger tests of steering
[18, 19] and even advantages in quantum nonlocality [20, 21],
leading to device-independence for high-dimensional systems
[22–24]. In quantum key distribution, higher-dimensional en-
tanglement can lead to higher key-rates [25–29] and to higher
tolerance of errors for the security [30]. In entanglement-
assisted quantum communication, it can boost the advantages
of qubit messages [31, 32], increase the capacity of a quantum
channel [33] and enhance the noise-tolerance of teleportation
[34]. Naturally, high-dimensional entanglement has been the
focus of many optics experiments [35, 36]. Realisations have
been reported for instance in transverse spatial modes [37–
40], in path [41, 42], in time-bins [43, 44] and in frequency
modes [45–47]. Beyond optics, higher-dimensional entangle-
ment has been developed in e.g. trapped ion quantum comput-
ers [48] and superconducting circuits [49].

In view of all this progress, a central challenge is to de-
velop methods for detecting and characterising entanglement.
A common approach is to perform state tomography and then
apply a suitable entanglement criterion to the reconstructed
density matrix. However, this is typically only viable for low-
dimensional systems; partly because entanglement detection
is difficult even with the density matrix in hand [50, 51], but
mainly because of the rapidly increasing resource cost. For
a bipartite system of local dimension d, tomography requires
measurements in (d + 1)2 global product bases. Since for
many optical platforms, especially when d is large, it is a chal-
lenge to simultaneously resolve all d possible local outcomes,
it is often more relevant to perform d2(d+ 1)2 local filter set-
tings, i.e. to make global product projections separately onto
each component of the basis. This often considerably sim-

plifies experimental requirements. A different approach is
to detect entanglement via the fidelity of the unknown state
with the maximally entangled state [52]. This is informative
because often the most useful entanglement is close to the
maximally entangled state, which considerably narrows the
otherwise much larger set of entangled states [53]. By per-
forming suitable global product projections, one can deduce
the fidelity and thereby quantify the entanglement. Moreover,
from the fidelity one also obtains a lower bound on an impor-
tant qualitative property of the state, namely the number of
entangled degrees of freedom (dimension) needed to prepare
the state. This is known both as the entanglement dimension
and Schmidt number [54]. While the fidelity can be deduced
using much fewer measurements than tomography, it is still
resource-intensive for larger dimensions, requiring d(d + 1)
global product projections (filters) if the total count rate is
known. It motivates the need for more efficient approaches
to fidelity-based entanglement detection.

Notably, the practical difficulties of certifying high-
dimensional entanglement have sometimes motivated con-
veninent additional assumptions to simplify the problem.
Here, we will make no such assumptions. Thus, we de-
velop an approach that is valid independently of the precise
physical modelling of the state. In this setting, we introduce
two practically useful classes of entanglement detection crite-
ria. They both provide lower bounds on the fidelity with the
maximally entangled state and a lower bound on the Schmidt
number. One criterion is based on mutually unbiased bases
(MUBs). The other criterion is based on equiangular mea-
surements (EAMs), among which the most well-known exam-
ple is the symmetric informationally complete measurement
(SIC-POVM) [55, 56]. Both these classes of measurements
are broadly relevant in quantum information science and they
are frequently studied in both theory [57, 58] and experiment
[19, 40, 59–64].

In addition to their universality, both our criteria have three
important practical features. Firstly, they are versatile. The
experimenter can freely choose how many global product pro-
jections are implemented, thus tuning the trade-off between
using few measurements and tolerating large amounts of noise
[65]. Secondly, they require very few projections. The exper-



2

imenter does not need to measure global product bases. They
need only to estimate the total count rate and measure the
much smaller subset of global filter projections correspond-
ing to identical outcomes. Thus, no data needs to be collected
for non-identical outcomes. For example in the case of MUBs,
and similarly for EAMs, this reduces the scaling of the num-
ber of projections to being only linear in d. This not only
greatly improves on the above fidelity discussion but also on
comparable criteria [38, 66], thus making viable tests of very
high-dimensional entanglement. Thirdly, for standard noise
models, only a small number of projections are necessary to
obtain nearly optimal noise-tolerance. This means that the
large savings in resource cost come at a much smaller cost in
accuracy.

Schmidt numbers and entanglement fidelity.— The num-
ber of entangled degrees of freedom in a pure bipartite state
|ψ〉AB of local dimension d is given by its Schmidt rank.
That is the number of terms, r(ψ), appearing in the Schmidt
decomposition |ψ〉 =

∑r(ψ)
i=1 λi |αi, βi〉, where {|αi〉}i and

{|βi〉}i are, respectively, orthonormal states and {λi}i satisfy
λi > 0 and

∑
i λ

2
i = 1. The Schmidt rank is an integer de-

limited by 1 ≤ r ≤ d, with r = 1 (r = d) meaning that the
state is product (fully entangled) and 1 < r < d meaning that
entanglement is present but confined to a smaller subspace.
For mixed states, ρAB , the Schmidt rank generalises to the
Schmidt number [54]. The Schmidt number, k(ρAB), is the
largest Schmidt rank of all the pure states {|ψi〉} appearing
in a given convex decomposition of ρAB , minimised over all
possible decompositions. Thus,

k(ρAB) ≡ min
{qi},{ψi}

{
rmax : ρAB =

∑
i

qi |ψi〉〈ψi|

and rmax = max
i
r(ψi)

}
. (1)

While the Schmidt number provides a qualitative bench-
mark for the extent to which a high-dimensional state is en-
tangled, it does not mean that the entanglement is useful. For
example, the state |ψ〉 =

√
1− ε |00〉+

√
ε

d−1
∑d−1
i=1 |ii〉 has

maximal Schmidt rank (r = d) for any 0 < ε < 1 but in
the limit ε → 0 it is arbitrarily close to the product state |00〉
(r = 1). Therefore, we also quantitatively study the entangle-
ment, through its fidelity with the maximally entangled state,

F (ρAB) ≡ max
UA
〈φ+d |UA ⊗ 11BρABU

†
A ⊗ 11B |φ+d 〉, (2)

where U is a unitary operator and
∣∣φ+d 〉 = 1√

d

∑d−1
i=0 |ii〉.

We will refer to F (ρAB) simply as the entanglement fidelity.
Moreover, the entanglement fidelity implies a simple lower
bound, F (ρAB) ≤ k(ρAB)

d , on the Schmidt number [54].
Entanglement criterion via MUBs.— A pair of bases are

called mutually unibased if the modulus overlap between any
two of their elements is constant. Similarly, a set of m bases
{|eza〉}, indexed by z = 1, . . . ,m with basis element a =
0, . . . , d − 1, are called MUBs if the unbiased property holds

between every pair. That is, MUBs satisfy
∣∣∣〈eza∣∣∣ez′a′〉∣∣∣2 = 1

d

for any z 6= z′. For any d, at least m = 3 and at most m =

d + 1 MUBs exist. Saturation of the upper bound implies a
tomographically complete set and it is known to be reachable
in all dimensions that are powers of prime numbers [67].

Towards detecting entanglement, consider that we perform
global product measurements of the projectors comprising m
MUBs. Specifically, we measure |eza〉〈eza| ⊗ |ez∗a 〉〈ez∗a |, where
|ψ∗〉 denotes the complex conjugate of |ψ〉. The set {|eza〉}
is only assumed to satisfy the MUB-property. As our witness
of entanglement, we use the sum-total of the probabilities that
the local outcomes are identical, i.e.

Sm,d(ρAB) =

m∑
z=1

d−1∑
a=0

〈eza, ez∗a |ρAB |eza, ez∗a 〉. (3)

We choose this quantity for three reasons. Firstly, for any se-
lected set ofmMUBs it is invariant under permutations of the
basis label and the outcome label respectively. Secondly, it is
particularly well-suited for the most relevant entangled state,
namely

∣∣φ+d 〉. Since this state is invariant under any local uni-
taries of the form U ⊗ U∗, it follows that perfect correlations
must be observed in every product MUB. This leads to the
algebraically maximal value Sm,d(φ+d ) = m. Thirdly, Sm,d
can be measured in the lab using few global filter projections
(identical outcomes), as compared to measuring the full global
product bases.

We now present our first criterion, showing that Sm,d can be
used both to detect the Schmidt number of ρAB and to bound
its entanglement fidelity.

Result 1 (MUBs). For any bipartite state ρAB of equal local
dimension with Schmidt number at most k it holds that

Sm,d(ρAB) ≤ 1 +
(m− 1)k

d
. (4)

Moreover, any observed value Sm,d implies the entanglement
fidelity bound

F (ρAB) ≥ Sm,d − 1

m− 1
. (5)

The proof is fully analytical and given in Supplementary
Material. The special case corresponding to Eq. (4) and sepa-
rable states (k = 1) was obtained by a different proof method
in [68]. Already m = 2 MUBs are sufficient to detect the
largest possible Schmidt number. However, by using more
MUBs the gap between Sm,d(φ+d ) and the bound (4) grows,
indicating improved noise-robustness of entanglement detec-
tion. We return to the noise analysis later. Complementarily
to our case, lower bounds on Sm,d for small d were explored
in [69] and a modification of Sm,d can detect bound entangle-
ment [70].

Entanglement criterion via EAMs.— A set of n pure states
{|ψa〉}na=1 of dimension d is called equiangular if the mod-
ulus overlap between any pair of distinct states is constant,
i.e.|〈ψa|ψa′〉|2 = tn,d for every a 6= a′. The constant cannot
take a value smaller than tn,d = n−d

d(n−1) [71]. The set forms
a so-called equiangular tight frame if and only if this lower
bound is saturated, meaning in particular that the subnor-
malised projectors { dn |ψa〉〈ψa|} form an equiangular quan-
tum measurement. Considerable work has been directed at
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deciding the existence of EAMs (see e.g. [72–74]). In par-
ticular, when n = d they reduce to an orthonormal basis.
When n = d+1, an EAM is obtained from removing one row
from the (d+ 1)-dimensional Fourier matrix and renormalis-
ing the columns. When n = d2, EAMs are equivalent to SIC-
POVMs. The latters are known to exist in every dimension up
to at least d = 151 [58] and they are particularly interesting
because the size of an EAM is delimited by d ≤ n ≤ d2.

We now present an entanglement witness based on local
measurement of an EAM. The main idea parallels that of Re-
sult 1. We consider global product projections |ψa〉〈ψa| ⊗
|ψ∗a〉〈ψ∗a| where {|ψa〉}na=1 can correspond to any EAM. In
analogy with (3), we consider the sum-total of the probabili-
ties that the local outcomes are identical. Up to a conveninent
constant, this is given by

Rn,d ≡
d(n− 1)

n(d− 1)

n∑
a=1

〈ψa, ψ∗a|ρAB |ψa, ψ∗a〉. (6)

Again, for a given choice of EAM, this quantity is invari-
ant under permutations of the outcome label and the maximal
value (when n > d) is obtained from the maximally entangled
state. One hasRn,d(φ+d ) = n−1

d−1 . We now present our second
main result; an entanglement criterion based onRn,d.

Result 2 (EAM). For any bipartite state ρAB of equal local
dimension with Schmidt number at most k it holds that

Rn,d(ρAB) ≤ 1 + k
n− d
d(d− 1)

. (7)

Moreover, any observed value Rn,d implies the entanglement
fidelity bound

F (ρAB) ≥ (d− 1)(Rn,d − 1)

n− d
. (8)

The proof is given in Supplementary Material and it is
based on ideas that closely parallel those used in the proof
of Result 1. It is interesting to note that already the smallest
non-trivial EAM, namely n = d + 1, is sufficient to detect
a maximal Schmidt number. However, in analogy with the
MUB-case, using more projections (larger n) leads to a larger
gap between Rn,d(φ+d ) and the bound (7) which enables bet-
ter noise-robustness. For the special case of n = d2 and k = 1
our witness recovers the result introduced in [75].

In summary, both entanglement criteria require no assump-
tion on the state, they apply to states of any local dimension,
they detect both the Schmidt number and the entanglement fi-
delity and their resource cost (the number of bases m and the
number of projectors n) can be freely selected by the experi-
menter. At this point, the natural question regards the useful-
ness of the criteria, i.e. how good are they at detecting various
forms of high-dimensional entanglement as compared to their
resource cost. Next, we investigate this for important noise
models.

Entanglement with depolarising noise.— Consider that the
source produces the maximally entangled state but is sub-
jected to noise of uniform spectral density. The resulting
isotropic state is ρiso

v = v
∣∣φ+d 〉〈φ+d ∣∣+ 1−v

d2 11, where v ∈ [0, 1]

is the visibility. This state has entanglement fidelity F (ρiso
v ) =

v + 1−v
d2 and Schmidt number at least k + 1 if and only if the

visibility exceeds the critical value vopt = kd−1
d2−1 [54].

Using the MUB-criterion in Result 1 on ρiso
v , the critical

visibility for detecting Schmidt number at least k+1 becomes

vMUB =
d− k +m(k − 1)

m(d− 1)
. (9)

As expected, using more MUBs reduces vMUB for any k. For
fixed k and large d, the visibility threshold tends to vMUB =
1
m . Importantly, if we use a complete set of MUBs (m =
d+ 1), then the criterion becomes necessary and sufficient as
vMUB = vopt.

The key question is how rapidly vMUB becomes a good ap-
proximation of vopt as we increase m. Following [76], we
quantify this accuracy through the ratio of the relative gap
between the two visibilities, defined as ∆ ≡ 1−vMUB

1−vopt
. Thus,

∆ ≈ 1 (∆ ≈ 0) indicates a good (bad) approximation of the
ideal value. One finds that ∆ = d+1

d

(
1− 1

m

)
. Interestingly

this is independent of k. Typically, we want to use a small
subset of the total number of MUBs, i.e. m� d. In this limit,
we have ∆ ≈ 1 − 1

m , which quickly approaches unit. For
instance, regardless of d and k, five (20) MUBs are needed to
achieve ∆ = 0.8 (∆ = 0.95).

Interestingly, the criterion 2 performs very similarly. The
threshold for Schmidt number at least k + 1 via EAMs is

vEAM =
d− k
n− 1

+
k − 1

d− 1
. (10)

Indeed, using larger EAMs reduces vEAM and using a maximal
EAM (n = d2) gives the ideal value vEAM = vopt. In fact, by
choosing n = md+ 1−m, our two criteria become identical,
i.e. vEAM = vMUB. Notably, since d is significantly larger than
m, we roughly have n ≈ md. Thus, the number of global
product projections is roughly the same for both criteria. The
accuracy of the EAM-criterion for the isotropic state is ∆ =
(d+1)(n−d)
d(n−1) , which has the same favourable scaling in n as did

the MUB-criterion.
Entanglement with dephasing noise.— Let the source pro-

duce a maximally entangled state which is subjected dephas-
ing noise in the computational basis, ρdeph

v = v
∣∣φ+d 〉〈φ+d ∣∣ +

1−v
d

∑d−1
i=0 |ii〉〈ii|. The Schmidt number is at least k + 1 if

and only if the visibility exceeds vopt = k−1
d−1 [38].

Since the noise appears in a specific basis, we must care-
fully choose specific MUBs when detecting the Schmidt num-
ber of ρdeph

v using Result 1. With a good choice, the minimal
number of MUBs, namely m = 2, suffices to obtain a neces-
sary and sufficient criterion for all dimensions and all Schmidt
numbers. Specifically, we choose the pair of MUBs consist-
ing of the computational basis {|a〉}d−1a=0 and its Fourier trans-
form {F |a〉}d−1a=0 where F = 1√

d

∑d−1
s,t=0 e

2πi
d st |s〉〈t|. When

measuring the separable state ϕd = 1
d

∑d−1
i=0 |ii〉〈ii|, the first

basis yields perfect correlations and the second basis yields
uniformly random outcomes. Hence S2,d(ϕ) = 1 + 1

d . From
Eq. (4), the visibility threshold then becomes the solution to
2v + (1− v)S2,d(ϕ) = 1 + k

d which is identical to vopt.
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Let us now momentarily depart from the local filter picture
and instead consider the case where all outcomes of a rank-1
measurement are resolved in each round. In that scenario, an
interesting feature of Result 2 is that it enables entanglement
detection using the smallest number of outcomes. That is, we
can detect entanglement from an EAM with just n = d + 1.
Naturally, it is expected that this sparse approach gives a cor-
respondingly poor tolerance to noise. However, it turns out
to still be a useful approach for ρdeph

v in reasonably low di-
mensions. We choose the EAM |ψa〉 = F |ψ′a〉 where |ψ′a〉 =
1√
d

∑d−1
l=0 e

2πi
d+1 l(a−1) |l〉 for a = 1, . . . , d+1. We then consis-

tently find that vEAM = (d2− 3(d− k)− 1)/(d2− 1). For in-
stance, for d = 8 we can detect entanglement when vEAM > 2

3
and even a maximal Schmidt number when v & 0.95. Quali-
tatively similar results apply to the case of depolarising noise.

Entanglement with the worst-case noise.— Consider a
noisy state ρworst

v = v
∣∣φ+d 〉〈φ+d ∣∣+ (1− v)σ, where the state σ

is selected so that it has a maximal detrimental impact on en-
tanglement detection for any given set of MUBs and EAMs.
Thus, we must choose σ so that it minimises Sm,d(σ) and
Rn,d(σ) respectively. When maximal sets are used, namely
m = d + 1 and n = d2, the witness operators associated to
(3) and (6) both simplify to 11 + d

∣∣φ+d 〉〈φ+d ∣∣, which implies
Sm,d(σ) ≥ 1 and Rn,d(σ) ≥ 1. However, when m < d + 1
and n < d2, the witness operators are not full rank and there-
fore we can always find a σ such that Sm,d(σ) = 0 and
Rn,d(σ) = 0. With these worst-case choices, for maximal
sets, we thus obtain the critical visibility vMUB = vEAM = k

d
for Schmidt number k + 1, which is identical to the exact fi-
delity criterion of Ref. [54]. For non-maximal sets, we obtain

vMUB =
d+ (m− 1)k

dm
(11)

vEAM =
d− 1

n− 1
+
k(n− d)

d(n− 1)
. (12)

As compared to the exact fidelity of the worst-case state,
namely F (ρworst

v ) = v, our criteria exhibit similarly fast con-
vergence properties as seen previously for isotropic noise.
However, many entangled states fundamentally cannot be de-
tected via fidelity estimation. An extreme example of such
unfaithful entanglement amounts to choosing σ = |01〉〈01|.
The state ρworst

v is entangled for all v > 0 but the quality of
the exact fidelity bound is only ∆ = 1 − 1

d when m = d + 1

or n = d2. Naturally, the unfaithful property of this entangle-
ment cannot be overcome by any fidelity estimation method.

Discussion.— We have developed criteria for detection and
quantification of high-dimensional entanglement which com-
bine several practically useful properties. We now discuss
them one by one.

Firstly, the criteria require no assumption on the state. This
comes with the advantage that they can be reliably applied
without requiring that the experiment accurately follows a par-
ticular noise model, which is often difficult to determine any-
way.

Secondly, the criteria permit the experimenter to select the
number of measurements used for entanglement detection.
Notably, when the state is expected to feature relatively lit-

tle noise, a small number of measurement suffices to detect
high Schmidt numbers. To exemplify this, we have examined
the data reported in [40] from measuring two global product
MUBs on a 19-dimensional state. With our criterion then im-
plies an entanglement fidelity of at least 92.7% and a Schmidt
number of at least 18.

Thirdly, the criteria require only md (MUBs) and n
(EAMs) global product projections, and knowledge of the
count rate so that relative frequencies can be estimated. For
a fixed number of MUBs, this scales only linearly in the di-
mension, thus improving significantly on the d(d+ 1) projec-
tions needed for exact fidelity estimation with known count
rate. Furthermore, it also improves on the 2d2 projections re-
quired in the two-MUB fidelity-based method of [38] and the
d2 + (m− 1)d projections for m MUBs from [40] where the
quadratic term is not used for determining the count rate but
implicitly featured in the witness construction. For example
for m = 5 MUBs in d = 100, the method used in [40] would
amount to 10400 projections, as compared to our 500. As we
have shown, EAMs offer similar scaling advantages.

Fourthly, for relevant types of noise the criteria rapidly be-
come converge to the theoretically optimal noise-rates. We
again exemplify this based on the data of [40] where a 97-
dimensional state was measured in two MUBs. The corre-
lation probability in the two respective bases are 0.6942 and
0.6899. A direct use of our criterion certifies k ≥ 38. Sup-
pose now that m MUB-diagonals would have been measured
in the experiment, and for sake of argument each achieving
a correlation of 0.6942+0.6899

2 = 0.6920. Measuring already
one more MUB-diagonal (m = 3) would then have implied
k ≥ 53, whereas measuring all m = 98 MUBs would only
further improve this to k ≥ 67.

Entanglement witnesses have become a standard tool in
more and more complex experimental settings. While for each
specific noise model and for each specific physical system,
upon being able to find a good characterisation, special en-
tanglement witnesses can be tailored, it is rare to find a uni-
versal criterion that retains a simplicitly in both its evalua-
tion and its use, and more importantly in obtaining the rel-
vant data. EAMs and especially MUBs are often the goal of
many experiments. In some systems, MUBs are particularly
natural choices, given the mutual unbiasedness of for exam-
ple position and momemtum observables. The fact that high-
dimensional entanglement can be detected and quantified in
a noise-tolerant way using such commonplace measurements
hopefully makes it a versatile tool to be used across many plat-
forms.

Finally, we note that our method does not straightforwardly
extend to multipartite systems. In multipartite systems there
is no counterpart to the Schmidt number and a unique max-
imally entangled state, as each entanglement class has a dis-
tinct maximally entangled state, so one must instead consider
Schmidt numbers across given cuts of the system and orient
the criterion towards a selected target state. More crucially,
our bipartite criteria are valid regardless of which MUBs and
EAMs are considered, and they are based on the idea of per-
fect correlations between two parties. The former’s level of
generality and the intuition behind the latter idea do not carry
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over to multipartite systems. Multipartite entanglement crite-
ria, in the spirit of our results, require more substantial inno-
vation and therefore constitute a central open problem.
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Appendix A: Proof of Result 1

Define the witness operator W =
∑m
z=1Az where Az =∑d−1

a=0 |eza〉〈eza| ⊗ |ez∗a 〉〈ez∗a |. Thus Sm,d = Tr (WρAB).
For any linear operator O, it holds that 11 ⊗ O

∣∣φ+d 〉 =

OT ⊗ 11
∣∣φ+d 〉. Use this relation and the standard prop-

erties of a basis measurement to obtain Az
∣∣φ+d 〉 =∑

a |eza〉〈eza| (|ez∗a 〉〈ez∗a |)
T⊗11

∣∣φ+d 〉 =
∑
a |eza〉〈eza|⊗11

∣∣φ+d 〉 =∣∣φ+d 〉. Hence,
∣∣φ+d 〉 is an eigenstate of W with eigenvalue m,

W
∣∣φ+d 〉 = m

∣∣φ+d 〉 . (A1)

Since W � 0, it admits a spectral decomposition W =∑d2

i=1 λi |λi〉〈λi| where the set {|λ1〉 , . . . , |λd2〉} is the eigen-
basis of W and λi ≥ 0 is the eigenvalue associated to |λi〉.
We can w.l.o.g. select |λ1〉 =

∣∣φ+d 〉 and λ1 = m. Assume
now that for all other eigenvalues it holds that λi ≤ 1. Un-
der this assumption, it follows from the completeness of the
eigenbasis that

W =(m− 1)φ+d +

φ+d +

d2∑
i=2

λi |λi〉〈λi|


≤ (m− 1)φ+d + 11. (A2)

Since Sm,d is a convex function in ρAB , we need only to
consider pure states of Schmidt rank k in order to prove a

bound that holds for all states of Schmidt number k. Therefore
let |ψ〉 be any state of Schmidt rank k. From (A2) we obtain

〈ψ|W |ψ〉 ≤ 1+(m−1)
∣∣〈ψ∣∣φ+d 〉∣∣2 ≤ 1+

(m− 1)k

d
, (A3)

where in the last step we have used the fidelity bound F ≤ k
d .

By noticing that F (ψ) ≥
∣∣〈ψ∣∣φ+d 〉∣∣2, we can re-arrange the

first inequality in (A3) to obtain the bound on the entangle-
ment fidelity.

To complete the proof we must show that the assumption
λi ≤ 1 holds. For this purpose, define the shifted wit-
ness operator W̃ = W − (m − 1)φ+d . Its spectra reads
(1, λ2, . . . , λd2). We will show that W̃ is a projector (W̃ 2 =

W̃ ), from which it immediately follows that all its eigenvalues
belong to {0, 1}. To prove that it is a projector, we compute
its square,

W̃ 2 = W 2 + (m− 1)2φ+d − (m− 1){W,φ+d }. (A4)

From Eq. (A1), it follows that {W,φ+d } = 2mφ+d . Evalu-
ating W 2 and using the MUB property one arrives at W 2 =

W +
∑
z 6=z′ |ϕz〉〈ϕz′ |where |ϕz〉 = 1√

d

∑d−1
a=0 |eza, ez∗a 〉 is the

maximally entangled state expressed in the z’th MUB. Since∣∣φ+d 〉 is invariant under any unitary U ⊗ U∗, it follows that
all |ϕz〉 are identical and equal to

∣∣φ+d 〉. Hence, we arrive at
W 2 = W +

∑
z 6=z′ φ

+
d = W +m(m− 1)φ+d . Inserting these

findings in (A4), we arrive at

W̃ 2 = W +m(m− 1)φ+d + (m− 1)2φ+d

− 2m(m− 1)φ+d = W − (m− 1)φ+d = W̃ ,

which concludes the proof.

Appendix B: Proof of Result 2

The proof idea parallels that of Result 1. Due to the con-
vexity of Rn,d in ρAB , we can restrict the analysis to pure
states of Schmidt rank k. We define the witness operator
W = d(n−1)

n(d−1)
∑n
a=1 |ψa〉〈ψa| ⊗ |ψ∗a〉〈ψ∗a| and observe that

W
∣∣φ+d 〉 =

n− 1

d− 1

∣∣φ+d 〉 . (B1)

Hence the spectral decomposition becomes W = n−1
d−1φ

+
d +∑d2

i=2 λi |λi〉〈λi|, where {λi, |λi〉}d
2

i=2 are the remaining
eigenvalues and eigenvectors of W . Since W � 0 we have
λi ≥ 0. If we assume that λi ≤ 1, then

W =

(
n− 1

d− 1
− 1

)
φ+d +

φ+d +

d2∑
i=2

λi |λi〉〈λi|


≤ n− d
d− 1

φ+d + 11. (B2)

Using this, for any pure state |ψ〉 of Schmidt rank k, we obtain

〈ψ|R|ψ〉 = 1 +
n− d
d− 1

∣∣〈ψ∣∣φ+d 〉∣∣2 ≤ 1 + k
n− d
d(d− 1)

, (B3)
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where in the last step we have used the fidelity bound F ≤ k
d .

Using that F (ψ) ≥
∣∣〈ψ∣∣φ+d 〉∣∣2, re-arranging the first inequal-

ity gives the bound on the entanglement fidelity.

To complete the proof, we must prove that λi ≤ 1. To
do this, we define the shifted witness operator W̃ = W −
n−d
d−1φ

+
d and prove that it is a projector, thus implying that all

its eigenvalues are confined to {0, 1}. To this end, we evaluate
the square of the operator,

W̃ 2 = W 2 +

(
n− d
d− 1

)2

φ+d −
n− d
d− 1

{W,φ+d }. (B4)

From Eq. (B1) it follows that the anticommutator reduces to

2(n−1)
d−1 φ+d . Next we compute W 2,

W 2 =

(
d(n− 1)

n(d− 1)

)2∑
a,a′

| 〈ψa|ψa′〉 |2 |ψa〉〈ψa′ | ⊗ |ψ∗a〉〈ψ∗a′ |

=
d(n− 1)

n(d− 1)
W +

d(n− d)(n− 1)

n2(d− 1)2

∑
a 6=a′
|ψaψ∗a〉〈ψa′ψ∗a′ |

= W +
d(n− d)(n− 1)

n2(d− 1)2

∑
a

|ψaψ∗a〉
∑
a′

〈ψa′ψ∗a′ | .

(B5)

To arrive at the second line, we have used the defining equian-
gular relation. In the third line, the right-most operator is
an unnormalised projector onto the bipartite superposition∑
a |ψaψ∗a〉. In fact, its eigenstate is the maximally entangled

state. To see that, we use the action-at-distance property of
the maximally entangled state and the fact that the projectors
in an EAM resolve the identity,∑

a,a′

|ψaψ∗a〉〈ψa′ψ∗a′ |
∣∣φ+d 〉 = n

∑
a

|ψa〉〈ψa| ⊗ 11
∣∣φ+d 〉

= n× n

d
11⊗ 11

∣∣φ+d 〉 =
n2

d

∣∣φ+d 〉 . (B6)

We thus have
∑
a |ψaψ∗a〉

∑
a′ 〈ψa′ψ∗a′ | = n2

d φ
+
d . Inserting

the above back into (B4), we arrive at

W̃ 2 = W +
d(n− d)(n− 1)

n2(d− 1)2
n2

d
φ+d +

(n− d)2

(d− 1)2
φ+d

− 2d(n− d)(n− 1)

(d− 1)2
φ+d = W − n− d

d− 1
φ+d = W̃ , (B7)

which concludes the proof.
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