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A B S T R A C T

Important biological features of viral infectious diseases caused by multiple agents with inter-
acting strain dynamics continue to pose challenges for mathematical modelling development.
Motivated by dengue fever epidemiology, we study a system of Integro-Differential Equations
(IDE) considering strain structure of pathogens. Knowing that complex dynamics observed in
dengue models are driven by the combination of two biological features, the temporary cross-
immunity (TCI) and disease enhancement via the antibody-dependent enhancement process
(ADE), our IDE system incorporates the TCI with a general time delay term, and the ADE effect
by a constant factor to differentiate the susceptibility of individuals experiencing a primary or a
secondary infection. Aiming at analysing the effect of the symmetry on dengue serotypes in the
IDE framework, a detailed qualitative analysis of the model is performed and the instability of the
coexistence steady state is shown using the perturbation theory approach. Numerical simulations
identify the bifurcation structures and confirm the stability analysis. Results for the symmetric
and asymmetric models are discussed.

1. Introduction
Mathematical models have a long history in epidemiological research, used as an important tool to understand the

dynamics of infectious disease spreading and control under different scenarios.
Dengue fever is a widespread viral disease transmitted by mosquitoes, with half of the world’s population at risk

of acquiring dengue infection [1, 2]. There are four distinct serotypes that are antigenically related. Thus, infection
with one serotype confers short cross-immunity protection (TCI) to all serotypes and long-immunity protection to that
serotype. Secondary infection with a heterologous serotype has been associated with the severity of illness symptoms
and dengue hemorrhagic fever due to a biological process known as ADE [3, 4, 5] . This process occurs when antibodies
produced by an immune response after a first infection recognize the first related serotype, attempt to bind to the virus
but are unable to do so, instead increasing the virus’s ability and enhancing the new infection [6, 7, 8, 9].

There is no specific treatment for dengue infection. Most people have mild or no symptoms that will require only
supportive care. However, severe dengue cases will require hospitalization and can eventually lead do death due to
the disease. Due to the dengue-specific complexities described above, vaccine development focuses on the production
of a tetravalent vaccine aimed at providing long-term protection against all dengue virus serotype. the Dengvaxia,
developed by Sanofi Pasteur [10], and the Qdenga (TAK-003) vaccine, developed by Takeda Pharmaceutical Company
[11, 12] have both completed phase 3 clinical trials. The Dengvaxia vaccine has resulted in serious adverse events in
seronegative individuals in a study comparing the age-matched seronegative controls [13, 14, 15, 16, 17, 18], whereas
serotype specific negative vaccine efficacy was observed for vaccinated seronegative individuals who have received
the Qdenga vaccine [19], resulting that long-term surveillance involving prudent and careful observation of people
receiving Qdenga is necessary [20, 21, 22].
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To explain the irregular behavior of dengue epidemics, mathematical models that investigated dengue dynamics
and focused on the interplay between strains have been proposed [23].

Using an extension of the SIR models, the multi-strain dengue dynamics have been studied by adding biological
features of the disease such as ADE process [24, 25, 26, 27, 28, 29, 30], successfully describing the large fluctuations
observed in empirical outbreak data. The combination of TCI and ADE features in these models has shown to be the
most important drivers for the complex dynamics found in the models [31]. The combination of these biological features
have been modeled in different ways. The ADE effect can be introduced to act either on individual transmissibility
[28, 32, 33, 34, 35, 36] or on individual susceptibility [37, 38, 39], whereas the TCI can either be included using a
constant waning immunity period (thus the mathematical model is the typical Ordinary Differential Equations (ODEs)
system) [24] or can be represented by including a general time protection period (leading to an Integro-differential
equations (IDEs) system) [37, 40].

Regarding models that considering asymmetry between serotypes have been studied in both the general ODE
framework [32] and in the IDE framework [37, 40]. In the last one [37, 40], the authors have shown that the ODE
system that consider constant immunity period (exponential distributed function) and the IDE system that consider a
general immunity period (distributed delay using polynomial function) present the same qualitative behavior. However,
quantitative behaviour depends on the choice of the function affecting the behaviour of the steady state regarding the
coexistence of different strains. On the other hand, models considering symmetry between dengue serotypes have been
studied in the general ODE framework [32, 41], whereas in the IDE framework the symmetry effect have been not
been fully studied and understood [40].

Motivated by the study of disease transmission, we study a system of integro-differential equations describing the
disease transmission dynamics considering strain structure of pathogens, ADE effect differentiating the susceptibility
rate in a primary and secondary infection and TCI as a general time protection period. Differently from previous work,
here we assume symmetry between dengue serotypes, that is, considering same virulence between serotypes. The main
purpose of this study is to assess and analyse the impact of the symmetry between biological parameters and variables
of the model where TCI is introduced as distributed delay. While it is recognized that the serological relationship
between pairs of virus strains might not always be symmetrical, with one strain potentially dominating over another,
this study focuses on the symmetric case. This approach is taken to simplify the system and derive theoretical insights
from the model that wouldn’t have been attainable with an assumption of asymmetry.

The outcomes presented in this work offer a deeper understanding of potential disease spread scenarios. This is
achieved through an approximation of the general model, using the assumption of symmetry in the force of infection.

This paper is organized as follows. The proposed model framework is described in the qualitative analysis is
discussed in Section 2. The associated limiting system is defined in Section 3, where we look for the equilibria
and analyse the local stability determined by an important threshold value. In Section 4, numerical simulations are
performed to describe the bifurcation structures appearing in the system and to study the stability of the coexistence
equilibrium. In Section 5, perturbation theory is used to demonstrate that the Hopf bifurcation occurs out of a symmetric
manifold, showing the instability of the coexistence steady state. In Section 6, the findings of the asymmetric and
symmetric cases are discussed, followed by final considerations and conclusions.

2. Model structure
The system of integro-differential equations (IDE) proposed by Steindorf et al. [37] studied the propagation

of multi-serotype infectious diseases. Motivated by dengue fever epidemiology, the model assumes asymmetry of
serotypes and includes important biological features of the disease epidemiology, the temporary cross-immunity
period (TCI) and the disease enhancement via the antibody-dependent enhancement (ADE) process to describe disease
transmission dynamics in endemic scenarios.

As proposed in Steindorf et al. [37], the total population 𝑁 of individuals at time 𝑡 is stratified into 10 classes, 𝑆(𝑡),
𝐼𝑖(𝑡), 𝐶𝑖(𝑡), 𝑅𝑖(𝑡), 𝐼𝑖𝑗(𝑡) and 𝑅(𝑡), with 𝑖, 𝑗 = 1, 2 and 𝑖 ≠ 𝑗, representing all possible disease stages. Susceptible to all
serotypes, 𝑆(𝑡), become infected for the first time with one of the dengue serotype, 𝐼𝑖(𝑡). After recovering from the first
infection, individuals are temporarily immune to all serotypes, 𝐶𝑖(𝑡). After immunity wanes, individuals are life long
immune to that specific serotype, 𝑅𝑖(𝑡), but susceptible to a secondary infection with a heterologous serotype, moving
to the class 𝐼𝑖𝑗(𝑡). Finally, individuals are recovered and fully immune after two infections, 𝑅(𝑡).

The constants, 𝑑 is the natural mortality rate for the population, 𝛽 is the transmission rate of primarily infected
individuals, while 𝛼 is the transmission rate of individuals experiencing a secondary infection with an heterologous
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strain. With the assumption of a general length of cross-immunity protection, 𝑃 (𝑡) denotes the proportion of people
who, after recovering from the serotype 𝑖, remain temporarily protected against all serotypes during 𝑡 units assuming

𝑃 (0) = 1 𝑎𝑛𝑑 𝑃 (∞) = 0, (1)

𝑃 (𝑡) is non-increasing and

∫

∞

0
𝑃 (𝑠)𝑑𝑠 = 1

𝜔
< ∞. (2)

Moreover, 𝛾 is the recovery rate, and, 𝜙 is the disease enhancement factor representing the disease severity due
to the ADE process occurring during a secondary infection. The ADE effect is introduced as a constant rate that can
increase or decrease the probability of a primarily infected recovered individual, to become infected for the second
time, assuming that these individuals have a certain level of cross-reactive antibodies able to neutralize or enhance the
new infection [9]. Hence, while 𝜙 < 1 decreases the probability of a secondary infection to occur, 𝜙 > 1 increases the
probability of individuals to experience a secondary infection. Thus, here we assume that a previous exposure to one
serotype results will increase the susceptibility to reinfection [9, 42]. The model does not consider the rare occurrence
of co-infection of different strains [43], or the possibility of reinfection with same strain.

Differently from the assumptions in [37], here we investigate the IDE framework considering serotype symmetry
in transmission and immunity, that is, 𝛽1 = 𝛽2 = 𝛽, 𝛼1 = 𝛼2 = 𝛼 and 𝑃1 = 𝑃2 = 𝑃 , respectively. These assumptions
lead to a system reduction allowing us to obtain theoretical results on the stability of coexistence equilibrium that were
not possible for the asymmetric case. The refined system is shown in Equation System (3).

𝑑𝑆(𝑡)
𝑑𝑡

= 𝑑𝑁(𝑡) − 𝑑𝑆(𝑡) − 𝛽
𝑆(𝑡)
𝑁(𝑡)

(

𝐼1(𝑡) + 𝐼2(𝑡) + 𝐼12(𝑡) + 𝐼21(𝑡)
)

𝑑𝐼1(𝑡)
𝑑𝑡

= −𝑑𝐼1(𝑡) + 𝛽
𝑆(𝑡)
𝑁(𝑡)

𝐼1(𝑡) + 𝛽
𝑆(𝑡)
𝑁(𝑡)

𝐼21(𝑡) − 𝛾𝐼1(𝑡)

𝑑𝐼2(𝑡)
𝑑𝑡

= −𝑑𝐼2(𝑡) + 𝛽
𝑆(𝑡)
𝑁(𝑡)

𝐼2(𝑡) + 𝛽
𝑆(𝑡)
𝑁(𝑡)

𝐼12(𝑡) − 𝛾𝐼2(𝑡)

𝑑𝐶1(𝑡)
𝑑𝑡

= 𝛾𝐼1(𝑡) − 𝑑𝐶1(𝑡) + ∫

𝑡

0
𝛾𝐼1(𝑠)𝑃 ′(𝑡 − 𝑠)𝑒−𝑑(𝑡−𝑠)𝑑𝑠

𝑑𝐶2(𝑡)
𝑑𝑡

= 𝛾𝐼2(𝑡) − 𝑑𝐶2(𝑡) + ∫

𝑡

0
𝛾𝐼2(𝑠)𝑃 ′(𝑡 − 𝑠)𝑒−𝑑(𝑡−𝑠)𝑑𝑠 (3)

𝑑𝑅1(𝑡)
𝑑𝑡

= −𝑑𝑅1(𝑡) − 𝛼𝜙
𝑅1(𝑡)
𝑁(𝑡)

𝐼12(𝑡) − 𝛼𝜙
𝑅1(𝑡)
𝑁(𝑡)

𝐼2(𝑡) − ∫

𝑡

0
𝛾𝐼1(𝑠)𝑃 ′(𝑡 − 𝑠)𝑒−𝑑(𝑡−𝑠)𝑑𝑠

𝑑𝑅2(𝑡)
𝑑𝑡

= −𝑑𝑅2(𝑡) − 𝛼𝜙
𝑅2(𝑡)
𝑁(𝑡)

𝐼21(𝑡) − 𝛼𝜙
𝑅2(𝑡)
𝑁(𝑡)

𝐼1(𝑡) − ∫

𝑡

0
𝛾𝐼2(𝑠)𝑃 ′(𝑡 − 𝑠)𝑒−𝑑(𝑡−𝑠)𝑑𝑠

𝑑𝐼12(𝑡)
𝑑𝑡

= −𝑑𝐼12(𝑡) − 𝛾𝐼12(𝑡) + 𝛼𝜙
𝑅1(𝑡)
𝑁(𝑡)

𝐼2(𝑡) + 𝛼𝜙
𝑅1(𝑡)
𝑁(𝑡)

𝐼12(𝑡)

𝑑𝐼21(𝑡)
𝑑𝑡

= −𝑑𝐼21(𝑡) − 𝛾𝐼21(𝑡) + 𝛼𝜙
𝑅2(𝑡)
𝑁(𝑡)

𝐼1(𝑡) + 𝛼𝜙
𝑅2(𝑡)
𝑁(𝑡)

𝐼21(𝑡)

𝑑𝑅(𝑡)
𝑑𝑡

= −𝑑𝑅(𝑡) + 𝛾𝐼12(𝑡) + 𝛾𝐼21(𝑡).

The total population dynamics is determined by

𝑁 = 𝑆(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝐶1(𝑡) + 𝐶2(𝑡) + 𝐼12(𝑡) + 𝐼21(𝑡) + 𝑅1(𝑡) + 𝑅2(𝑡) + 𝑅(𝑡).

Thus, we redefined the fractions of each sub-population by writing: 𝑆
𝑁 = 𝑆, 𝐼𝑖𝑗

𝑁 = 𝐼𝑖𝑗 ,
𝐶𝑖
𝑁 = 𝐶𝑖 and 𝑅𝑖

𝑁 = 𝑅𝑖. In
addition, the dynamics for the recovered and cross immunity classes are decoupled (that is, the solution of 𝐶𝑖 and 𝑅 can
be obtained by integrating its differential equation, after solving and substituting the solution of 𝐼𝑖), hence the original
system can be studied by analysing the following seven dimensional equation system:
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𝑑𝑆(𝑡)
𝑑𝑡

= 𝑑 − 𝑑𝑆(𝑡) − 𝛽𝑆(𝑡)
(

𝐼1(𝑡) + 𝐼21(𝑡) + 𝐼2(𝑡) + 𝐼12(𝑡)
)

𝑑𝐼1(𝑡)
𝑑𝑡

= −(𝑑 + 𝛾)𝐼1(𝑡) + 𝛽𝑆(𝑡)(𝐼1(𝑡) + 𝐼21(𝑡))

𝑑𝐼2(𝑡)
𝑑𝑡

= −(𝑑 + 𝛾)𝐼2(𝑡) + 𝛽𝑆(𝑡)(𝐼2(𝑡) + 𝐼12(𝑡)) (4)

𝑑𝑅1(𝑡)
𝑑𝑡

= −𝑑𝑅1(𝑡) − 𝛼𝜙𝑅1(𝑡)(𝐼12(𝑡) + 𝐼2(𝑡)) − ∫

𝑡

0
𝛾𝐼1(𝑠)𝑃 ′(𝑡 − 𝑠)𝑒−𝑑(𝑡−𝑠)𝑑𝑠

𝑑𝑅2(𝑡)
𝑑𝑡

= −𝑑𝑅2(𝑡) − 𝛼𝜙𝑅2(𝑡)(𝐼21(𝑡) + 𝐼1(𝑡)) − ∫

𝑡

0
𝛾𝐼2(𝑠)𝑃 ′(𝑡 − 𝑠)𝑒−𝑑(𝑡−𝑠)𝑑𝑠

𝑑𝐼12(𝑡)
𝑑𝑡

= −(𝑑 + 𝛾)𝐼12(𝑡) + 𝛼𝜙𝑅1(𝑡)(𝐼2(𝑡) + 𝐼12(𝑡))

𝑑𝐼21(𝑡)
𝑑𝑡

= −(𝑑 + 𝛾)𝐼21(𝑡) + 𝛼𝜙𝑅2(𝑡)(𝐼1(𝑡) + 𝐼21(𝑡)).

3. Qualitative analysis
Following the idea proposed in [44, 37], we will examine the system (4) as a perturbation of the limiting system:

𝑑𝑆(𝑡)
𝑑𝑡

= 𝑑 − 𝑑𝑆(𝑡) − 𝛽𝑆(𝑡)
(

𝐼1(𝑡) + 𝐼21(𝑡) + 𝐼2(𝑡) + 𝐼12(𝑡)
)

𝑑𝐼1(𝑡)
𝑑𝑡

= −(𝑑 + 𝛾)𝐼1(𝑡) + 𝛽𝑆(𝑡)(𝐼1(𝑡) + 𝐼21(𝑡))

𝑑𝐼2(𝑡)
𝑑𝑡

= −(𝑑 + 𝛾)𝐼2(𝑡) + 𝛽𝑆(𝑡)(𝐼2(𝑡) + 𝐼12(𝑡)) (5)

𝑑𝑅1(𝑡)
𝑑𝑡

= −𝑑𝑅1(𝑡) − 𝛼𝜙𝑅1(𝑡)(𝐼12(𝑡) + 𝐼2(𝑡)) − ∫

∞

0
𝛾𝐼1(𝑡 − 𝑠)𝑃 ′(𝑠)𝑒−𝑑𝑠𝑑𝑠

𝑑𝑅2(𝑡)
𝑑𝑡

= −𝑑𝑅2(𝑡) − 𝛼𝜙𝑅2(𝑡)(𝐼21(𝑡) + 𝐼1(𝑡)) − ∫

∞

0
𝛾𝐼2(𝑡 − 𝑠)𝑃 ′(𝑠)𝑒−𝑑𝑠𝑑𝑠

𝑑𝐼12(𝑡)
𝑑𝑡

= −(𝑑 + 𝛾)𝐼12(𝑡) + 𝛼𝜙𝑅1(𝑡)(𝐼2(𝑡) + 𝐼12(𝑡))

𝑑𝐼21(𝑡)
𝑑𝑡

= −(𝑑 + 𝛾)𝐼21(𝑡) + 𝛼𝜙𝑅2(𝑡)(𝐼1(𝑡) + 𝐼21(𝑡)).

The system is well posed having solutions in the Banach space Ω𝑋 as defined in [37]. Thus, the trivial equilibrium
𝐷0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) is always in the invariant set Ω𝑋 .

Defining

𝑀 ∶= −∫

∞

0
𝑃 ′(𝑠)𝑒−𝑑(𝑠)𝑑𝑠, (6)

we look for the steady states of the system. Note that 0 < 𝑀 < 1.
After some algebraic computation, we are able to find the equilibrium of the system. The values at equilibrium for

the susceptible population are the roots of the cubic polynomial 𝑂(𝑆) = 𝑄(𝑆)(𝑏𝑆 + 𝑎), where

𝑎 = −𝛼𝜙(𝑑 + 𝛾)2

𝑏 = 𝛼𝜙𝛽(𝑑 + 𝛾(1 −𝑀)),

and 𝑄(𝑆) = 𝑎2𝑆2 + 𝑎1𝑆 + 𝑎0, where

𝑎2 = 𝛽[(𝑑 + 𝛾)(𝛼𝜙 − 2𝛽) + 𝛾𝑀𝛼𝜙]

𝑎1 = (𝑑 + 𝛾)2(2𝛽 − 𝛼𝜙) − 𝛼𝜙𝛽(𝑑 + 𝛾 + 𝛾𝑀)

𝑎0 = 𝛼𝜙(𝑑 + 𝛾)2.
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Since 𝑆∗ = −𝑎
𝑏 = (𝑑+𝛾)2

𝛽(𝑑+𝛾(1−𝑀)) gives a negative value for 𝐼∗12 and 𝐼∗21, we look for the roots of the 𝑄(𝑆) polynomial.

While searching for the roots, note that it is necessary that 𝑆∗ > 0, being root of 𝑄(𝑆) polynomial, and 𝑆∗ < 𝑑+𝛾
𝛽 , in

order to have an equilibrium in the positive region. All these information give us the following theorem.

Theorem 1. If 0 =
𝛽

𝑑+𝛾 > 1 the system of equations (5) always have two boundary equilibria in Ω𝑋 , namely,

𝐷1 =
(

𝑑 + 𝛾
𝛽

, 𝑑
𝛽

[

𝛽
𝑑 + 𝛾

− 1
]

, 0,
𝛾
𝑑
(1 −𝑀)𝐼∗

1 , 0,𝑀
𝛾
𝛽

[

𝛽
𝑑 + 𝛾

− 1
]

, 0, 0, 0, 0
)

,

𝐷2 =
(

𝑑 + 𝛾
𝛽

, 0, 𝑑
𝛽

[

𝛽
𝑑 + 𝛾

− 1
]

, 0,
𝛾
𝑑
(1 −𝑀)𝐼∗

2 , 0,𝑀
𝛾
𝛽

[

𝛽
𝑑 + 𝛾

− 1
]

, 0, 0, 0
)

and, a unique positive equilibrium, 𝐷3, in Ω𝑋 , with coexistence of the two strains, where

𝑆∗ =
−𝑎1
2𝑎2

−

√

𝑎21 − 4𝑎0𝑎2
2𝑎2

, (7)

with 𝑎𝑖 being the coefficients of polynomial 𝑄(𝑆) and, satisfies

𝐼∗
1 = 𝐼∗

2 =
𝑑(1 − 𝑆∗)
2(𝑑 + 𝛾)

,

𝐶∗
1 = 𝐶∗

2 =
𝛾(1 −𝑀)

𝑑
𝐼∗
1 ,

𝑅∗
1 = 𝑅∗

2 =
𝑑 + 𝛾 − 𝛽𝑆∗

𝛼𝜙
, (8)

𝐼∗
12 = 𝐼∗

21 =
(𝑑 + 𝛾)𝐼∗

1 − 𝛽𝑆∗𝐼∗
1

𝛽𝑆∗ ,

𝑅∗ = 1 − 𝑆∗ − 𝐼∗
1 − 𝐼∗

2 − 𝐶∗
1 − 𝐶∗

2 − 𝑅∗
1 − 𝑅∗

1 − 𝐼∗
12 − 𝐼∗

21.

PROOF. If 𝛽
𝑑+𝛾 > 1 then, it is easy to see that 𝐷𝑖 is in Ω, for 𝑖 = 1, 2. In addition, since the searched root 𝑆∗ needs

to be smaller than 𝑑+𝛾
𝛽 , let 𝑆𝑚𝑎𝑥 be

𝑆𝑚𝑎𝑥 =
𝑑 + 𝛾
𝛽

.

Then, the quadratic polynomial evaluated in 𝑆𝑚𝑎𝑥 is

𝑄(𝑆𝑚𝑎𝑥) = 𝑄(
𝑑 + 𝛾
𝛽

) = (𝑑 + 𝛾)𝛾𝑀𝛼𝜙
(

𝑑 + 𝛾
𝛽

− 1
)

< 0,

because 𝛽
𝑑+𝛾 > 1.

Moreover, the independent term, 𝑎0, of the polynomial 𝑄(𝑆) is positive. This proves that we have a positive root
satisfying 𝑆∗ < 𝑑+𝛾

𝛽 , and it is given by

𝑆∗ =
(𝑑 + 𝛾)2(−2𝛽 + 𝛼𝜙) + 𝛼𝜙𝛽(𝑑 + 𝛾 + 𝛾𝑀)

2𝛽[(𝑑 + 𝛾)(𝛼𝜙 − 2𝛽) + 𝛾𝑀𝛼𝜙]
(9)

−

√

((𝑑 + 𝛾)2(2𝛽 − 𝛼𝜙) + 𝛼𝜙𝛽(𝑑 + 𝛾 + 𝛾𝑀))2 − 8𝛼𝜙𝛽2𝛾𝑀(𝑑 + 𝛾)2

2𝛽[(𝑑 + 𝛾)(𝛼𝜙 − 2𝛽) + 𝛾𝑀𝛼𝜙]

Therefore, the equilibrium 𝐷3 = (𝑆∗, 𝐼∗1 , 𝐼
∗
2 , 𝐶

∗
1 , 𝐶

∗
2 , 𝑅

∗
1, 𝑅

∗
2, 𝐼

∗
12, 𝐼

∗
21, 𝑅

∗) is in Ω𝑋 , where 𝑆∗ is given by (9), and
satisfies (8).
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3.1. Stability of the equilibrium
In the previous subsection (3) we calculated the equilibria of the limiting system in order to know the equilibria of

system with time delay. Following the results from Brauer et al. [44] and Steindorf et al. [37], here we show the results
regarding the stability of the limiting system and, thus, the local stability of the system with delay.

The stability of the equilibria of the limiting system (5) is a consequence of stability of the zero solution of the
linearised system. And, the asymptotic stability of the zero solution of the linear system 𝑋′(𝑡) = 𝐴𝑋(𝑡) + ∫ ∞

0 𝐵(𝑠)𝑋(𝑡−
𝑠)𝑑𝑠 is equivalent to find no solutions in the right half plane 𝑅𝑒𝜆 ≥ 0 of 𝑑𝑒𝑡(𝜆𝐼 −𝐴− �̂�(𝜆)) = 0, where 𝐼 is the identity
matrix, 𝐴 is a matrix and �̂�(𝜆) denote the Laplace transform of 𝐵 [45, 46]. Therefore, with the results of stability, we
have the necessary assumptions to use Theorem 2 in [44].

For the analysis of the stability of the equilibria on the symmetric case, we need to solve the characteristic equation,

𝑑𝑒𝑡(𝜆𝐼 −𝐻0 − �̂�(𝜆)) = 0,

of the linear associated system.
Solving this equation, we find the following eigenvalues of the linear associated system at 𝐷0,

𝜆1 = −𝑑, 𝜆6 = − (𝑑 + 𝛾)
𝜆2 = −𝑑, 𝜆7 = − (𝑑 + 𝛾)
𝜆3 = −𝑑, 𝜆8 = − (𝑑 + 𝛾) + 𝛽 (10)
𝜆4 = −𝑑, 𝜆9 = − (𝑑 + 𝛾) + 𝛽
𝜆5 = −𝑑.

In the same way, we have the characteristic equations

𝑑𝑒𝑡(𝜆𝐼 −𝐻𝑖 − �̂�(𝜆)) = 0,

for 𝑖 = 1, 2. Thus, the eigenvalues of the linear associated system at

𝐷1 =
(

𝑑 + 𝛾
𝛽

, 𝑑
𝛽
(0 − 1), 0,

𝛾
𝑑
(1 −𝑀)𝐼∗

1 , 0,𝑀
𝛾
𝛽
(0 − 1), 0, 0, 0

)

, (11)

and, at

𝐷2 =
(

𝑑 + 𝛾
𝛽

, 0, 𝑑
𝛽
(0 − 1), 0,

𝛾
𝑑
(1 −𝑀)𝐼∗

2 , 0,𝑀
𝛾
𝛽
(0 − 1), 0, 0

)

, (12)

are the same, and given by

𝜆1 = −𝑑
𝜆2 = −𝑑
𝜆3 = −𝑑
𝜆4 = −(𝑑 + 𝛾) (13)
𝜆5 = −(𝑑 + 𝛾)

𝜆6 = −𝑑
(

1 +
𝛼𝜙
𝛽

(0 − 1)
)

𝜆7 =
1
2

(

−𝑑0 −
√

(𝑑0)2 − 4𝑑(𝑑 + 𝛾)(0 − 1)
)

𝜆8 =
1
2

(

−𝑑0 +
√

(𝑑0)2 − 4𝑑(𝑑 + 𝛾)(0 − 1)
)

𝜆9 =
𝛼𝜙
𝛽

𝛾𝑀(0 − 1),

giving the following theorem about the stability of the equilibria.
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Theorem 2. If 0 < 1 then the Disease Free Equilibrium (DFE) of the system (5) is locally asymptotically stable. It
is unstable if 0 > 1. In addition, the boundary equilibria, 𝐷1 and 𝐷2, given in (11) and (12) respectively, are always
unstable in the Ω𝑋 region, when 0 > 1.

PROOF. If 0 < 1, then, 𝛽 < 𝑑 + 𝛾 . Therefore, the eigenvalues 𝜆8 and 𝜆9 in (10) are negative. It proves the local
asymptotic stability of DFE. If 0 > 1, then 𝛽 > 𝑑 + 𝛾 . And, the eigenvalues 𝜆8 and 𝜆9 in (10) are positive, what
proves the instability of the DFE.

According to the previous theorem, if 0 > 1, 𝐷1 and 𝐷2 are in the positive region Ω𝑋 , then, 𝛽 > 𝑑 + 𝛾 and the
eigenvalue 𝜆6, given in (13), is negative. Also, the eigenvalues 𝜆7 and 𝜆8 have a negative real part. On the other hand,
𝜆9 is positive, since 0 > 1. In this way, the boundary equilibrium are always unstable.

It is important to note that, when 0 = 1, we have 𝑑 + 𝛾
𝛽

= 1. Therefore, the only equilibrium of the system is the
disease-free equilibrium in this case. Biologically speaking, these results mean that if disease invades a disease-free
population, both strains will coexist.

3.1.1. Stability of the solutions of the system with time delay
In the previous section, we showed the equilibria of the unperturbed (limiting) system (5) and the stability of the

equilibria. In addition, having all the assumptions needed to use Theorem 2 in [44], the following results hold.

Corollary 1. If 0 < 1 then the disease-free equilibrium of the system (3) is locally asymptotically stable. And, it is
unstable if 0 > 1. In addition, the boundary equilibria, 𝐷1 and 𝐷2, given in (11) and (12) respectively, are always
unstable when 0 > 1.

Remark 1. As seen for the asymmetric case studied by Steindorf et al. [37], one strain can protects the population from
another strain when one of the strains would have higher transmission rate. As we just proved above, for symmetric
case, either the disease dies out or both strains coexist.

Remark 2. The analysis of the local stability of the coexistence endemic equilibrium (CEE) using this theory was
not successful, since we have to deal with a characteristic transcendental equation having an infinite number of roots.
Thus, in the following section, we will study the stability of the CEE numerically and, using as well, the perturbation
theory.

4. Numerical experiments
Although it was possible to describe analytically the equilibrium with coexistence of two strains, the expression

for the value of 𝑆∗ shows a complexity of dependency of the parameters. In this section, we will perform numerical
experiments to analyse the sign of the eigenvalues of the characteristic equation at the endemic equilibrium, exploring
the effect of different values of the parameter 𝜙 used as a bifurcation parameter. The parameters values used for the
numerical computation are listed in Table 1 from [37] (see also in Appendix B for convenience), as well as, the function
that represent the general immunity period is also chosen as proposed in [37].

In Figure 1, we show the eigenvalues of the endemic equilibrium in the complex plane for different 𝜙 values. A
pair of conjugated complex eigenvalues change the sign of the real part as 𝜙 increases. Therefore, a Hopf bifurcation
occurs when the parameters 𝜙 is ≈ 0.032.

To complete the analysis, Figure 2 shows the maximum of the real part of eigenvalues varying all the values of the
parameter 𝜙. It is also possible to observe that as 𝜙 approaches the value 0.032, the biggest real part of the eigenvalues
crosses the x-axis, remaining positive, verifying the occurrence of Hopf bifurcation. Therefore, coexistence equilibria
is stable for 𝜙 < 0.032, periodic solutions are found close to this critical value, and after the Hopf bifurcation, the
endemic equilibrium is unstable.

4.1. Bifurcation structure
We have shown numerically that the coexistence endemic equilibrium changes the stability as the parameter 𝜙

changes. In detail, as 𝜙 increases from small values to the critical value 𝜙𝑐 , the steady state changes from a stable focus
to an unstable focus. Figure 3 (a) and (b) shows the bifurcation diagrams for the total infected population, with 𝜙 as
the bifurcation parameter. We can observe a a Hopf bifurcation occurring at 𝜙𝑐 = 0.032 (see Fig. 3 (b)). The solution
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Figure 1: Eigenvalues of the endemic equilibrium (symmetric case) in the complex plane, for various values of 𝜙. For
𝛽 = 180, a purely imaginary eigenvalue appears for 𝜙 ≈ 0.032. Parameter values used in the simulations are listed in Table
1 from [37] (also in Appendix B for convenience).

exhibits a small amplitude limit cycle around the endemic equilibrium and a stable limit cycle arises and goes away
from the equilibrium point. Thus, it is possible to conclude that a supercritical Hopf bifurcation occurred.

Different bifurcation structures are identified as 𝜙 increases (see Fig. 3 (a)). Coexistence of strains is only possible
for 𝜙 ∈ (0, 0.032), while periodic outbreaks appear for medium and high values of 𝜙 (𝜙 ∈ (0.032, 0.4) and 𝜙 > 1.2).
Complex dynamics with short term predictability and long term predictability is restricted to 𝜙 ∈ (0.4, 1.2), where
complicated attractors up to chaotic behaviour are observed.
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Figure 2: Maximum value of the real part of the eigenvalues of the endemic equilibrium for values of 𝜙 close to the Hopf
Bifurcation (𝜙 = 0.032).
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(a) 𝜙 ∈ (0, 3)

0 0.02 0.04 0.06 0.08 0.1
-8.6

-8.5

-8.4

-8.3

-8.2

-8.1

-8

In
fe

c
te

d
 S

u
b

p
o

p
u

la
ti
o

n
  

(M
a

x
 a

n
d

 M
in

) 

Bifurcation Diagram (Symmetric) 

(b) 𝜙 ∈ (0, 0.1)

Figure 3: Bifurcation diagram where in (a) the bifurcation parameter 𝜙 varies between 0 and 3 and in (b) 𝜙 varies in the
vicinity of 𝜙𝑐 = 0.032. The vertical axis shows the maximum and minimum values for the the total infected population
𝑙𝑜𝑔(𝐼1 + 𝐼2 + 𝐼12 + 𝐼21) in logarithmic scale.
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5. Stability analysis of the endemic equilibrium
Using perturbation theory, we perform the stability analysis of the symmetric system, where the endemic

equilibrium and its eigenvalues can be directly calculated. We use the method proposed by Domoshnitsky el al. [50],
that reduces a class of IDE to the corresponding ODE system as follows. If the elements of the kernel function in the
integral are constant matrices or have the form

(𝑡 − 𝑠)𝑘𝑒−𝐴(𝑡−𝑠)𝑠𝑖𝑛(𝐵(𝑡 − 𝑠)), (14)

where 𝑘 is an integer non-negative number, and 𝐴, 𝐵 real numbers, then a new corresponding autonomous ODE system
can be written. The generalization of this method is proved in [50] where the authors use Cauchy functions and using
kernel functions for the construction of the Cauchy matrix of an auxiliary ODE system.

Aiming at proving analytically that the endemic equilibrium is unstable after the bifurcation critical value 𝜙𝑐 , we
select for the kernel function 𝑃 (𝑠), functions of the form (14) and we demonstrate for two particular cases.

5.1. Case (i): 𝑃 (𝑠) = 𝑐𝑜𝑠(𝐴𝑠)𝑒−𝜔𝑠, 𝐴 > 0
With the function 𝑃 (𝑠) = 𝑐𝑜𝑠(𝐴𝑠)𝑒−𝜔𝑠 satisfying the necessary assumptions of the model, i.e., with 𝑃 (0) = 1,

𝑃 (∞) = 0 and ∫ ∞
0 𝑒−𝑑𝑠𝑃 (𝑠)𝑑𝑠 < ∞, then,

𝐶𝑖(𝑡) = ∫

𝑡

0
𝛾𝐼𝑖(𝑠)𝑐𝑜𝑠(𝐴(𝑡 − 𝑠))𝑒−(𝜔+𝑑)(𝑡−𝑠)𝑑𝑠,

and,

𝐶
′

𝑖 (𝑡) = 𝛾𝐼𝑖(𝑡) − (𝑑 + 𝜔)𝐶𝑖(𝑡) − 𝐴∫

𝑡

0
𝛾𝐼𝑖(𝑠)𝑠𝑒𝑛(𝐴(𝑡 − 𝑠))𝑒−(𝜔+𝑑)(𝑡−𝑠)𝑑𝑠. (15)

Defining

𝐸𝑖(𝑡) = ∫

𝑡

0
𝛾𝐼𝑖(𝑠)𝑠𝑒𝑛(𝐴(𝑡 − 𝑠))𝑒−(𝜔+𝑑)(𝑡−𝑠)𝑑𝑠,

then,

𝐸
′

𝑖 (𝑡) = −(𝜔 + 𝑑)𝐸𝑖(𝑡) + 𝐴𝐶𝑖(𝑡). (16)

Therefore, using the method in [50] the IDE system (4) can be reduced to the corresponding ODE system, as shown
in the system of equations (17).

𝑆′(𝑡) = 𝑑 − 𝑑𝑆 − 𝛽𝑆(𝐼1 + 𝐼2 + 𝐼12 + 𝐼21)
𝐼1

′(𝑡) = −(𝑑 + 𝛾)𝐼1 + 𝛽𝑆(𝐼1 + 𝐼21)
𝐼2

′(𝑡) = −(𝑑 + 𝛾)𝐼2 + 𝛽𝑆(𝐼2 + 𝐼12)
𝐶1

′(𝑡) = −(𝑑 + 𝜔)𝐶1 + 𝛾𝐼1 − 𝐴𝐸1

𝐶2
′(𝑡) = −(𝑑 + 𝜔)𝐶2 + 𝛾𝐼2 − 𝐴𝐸2 (17)

𝐸1
′
(𝑡) = −(𝜔 + 𝑑)𝐸1 + 𝐴𝐶1

𝐸2
′
(𝑡) = −(𝜔 + 𝑑)𝐸2 + 𝐴𝐶2

𝑅1
′(𝑡) = −𝑑𝑅1 − 𝛼𝜙𝑅1(𝐼2 + 𝐼12) + 𝜔𝐶1 + 𝐴𝐸1

𝑅2
′(𝑡) = −𝑑𝑅2 − 𝛼𝜙𝑅2(𝐼1 + 𝐼21) + 𝜔𝐶2 + 𝐴𝐸2

𝐼12
′(𝑡) = −(𝑑 + 𝛾)𝐼12 + 𝛼𝜙𝑅1(𝐼2 + 𝐼12)

𝐼21
′(𝑡) = −(𝑑 + 𝛾)𝐼21 + 𝛼𝜙𝑅2(𝐼1 + 𝐼21).
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5.1.1. Symmetric manifold - Symmetry in the variables
Since the parameters are symmetric, the dynamic of the model will be also symmetric for symmetric initial

conditions. Thus the variables that represent the sub-populations will be equal for the respective class for different
serotypes. Using the symmetry among the serotypes, we reduce the whole system defining new variables as follow.

𝑠 = 𝑆
𝑥 = 𝐼1 = 𝐼2
𝑐 = 𝐶1 = 𝐶2 (18)
𝑒 = 𝐸1 = 𝐸2

𝑟 = 𝑅1 = 𝑅2

𝑦 = 𝐼12 = 𝐼21.

Thus, the endemic equilibrium of the system will be the same equilibrium of the following associated reduced model

𝑠′(𝑡) = 𝑑 − 𝑑𝑠 − 𝛽𝑠2(𝑥 + 𝑦)
𝑥′(𝑡) = −(𝑑 + 𝛾)𝑥 + 𝛽𝑠(𝑥 + 𝑦)
𝑐′(𝑡) = −(𝑑 + 𝜔)𝑐 + 𝛾𝑥 − 𝐴𝑒 (19)
𝑒′(𝑡) = −(𝑑 + 𝜔)𝑒 + 𝐴𝑐
𝑟′(𝑡) = −𝛼𝜙𝑟(𝑥 + 𝑦) + 𝜔𝑐 − 𝑑𝑟 + 𝐴𝑒
𝑦′(𝑡) = −(𝑑 + 𝛾)𝑦 + 𝛼𝜙𝑟(𝑥 + 𝑦).

There is still a complexity of the direct calculation of the endemic equilibrium and its eigenvalues due to the
parameter dependency. Hence, we will use perturbation theory as an attempt to deal with this complexity as proposed
by Billings et al. [41].

It is important to note that the mortality rate 𝑑 is small compared to the other parameters. Thus, we introduce
another small parameter 𝜇, with 𝜇 being slightly larger than 𝑑, but still small enough to keep the other parameters of
the system in order of 1

𝜇 . However, 𝑑 is of (𝜇).
Upon defining the birth rate 𝜇 and the mortality rate 𝑑, the other parameters are re-scaled in relation to 𝜇, letting

𝛽 = 𝛽0
𝜇 , 𝛼 = 𝛼0

𝜇 , 𝜔 = 𝜔0
𝜇 , 𝛾 = 𝛾0

𝜇 , and hence, close enough to the original system (19). By setting the mortality
parameter 𝑑 = 0 (since 𝑑 is of (𝜇), having a negligible effect on the steady state) the model can be simplified, see
equation system (20), and the endemic equilibrium can be calculated analytically (in terms of the parameters) and the
stability analysis can be carried out.

𝑠′ = 𝜇 − 𝛽𝑠2(𝑥 + 𝑦)
𝑥′ = −𝛾𝑥 + 𝛽𝑠(𝑥 + 𝑦)
𝑐′ = 𝛾𝑥 − 𝜔𝑐 − 𝐴𝑒
𝑒′ = −𝜔𝑒 + 𝐴𝑐 (20)
𝑟′ = −𝛼𝜙𝑟(𝑥 + 𝑦) + 𝜔𝑐 + 𝐴𝑒
𝑦′ = −𝛾𝑦 + 𝛼𝜙𝑟(𝑥 + 𝑦).

The qualitative analysis of this model is an interesting approach to our original system, but it is only valid for small
values of the mortality and birth rate birth rate. With this constraint, considering, 𝑥 ≠ 0 and 𝑦 ≠ 0, the endemic
equilibrium of the system (20) is given by

𝐸𝑆 = (
𝛾0
2𝛽0

,
𝜇2

2𝛾0
,

𝜇2𝜔0

2(𝜔2
0 + 𝐴2𝜇2)

,
𝛾0

2𝛼0𝜙
,
𝜇2

2𝛾0
). (21)

The stability analysis of the endemic equilibrium is performed with the linearisation theory. The Jacobian matrix
of the reduced associated system (20) at the steady state 𝐸𝑆 is given by
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𝐽 (𝐸𝑆 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 2𝛽0𝜇
𝛾0

− 𝛾0
𝜇 0 0 0 − 𝛾0

𝜇
𝛽0𝜇
𝛾0

− 𝛾0
2𝜇 0 0 0 𝛾0

2𝜇
0 𝛾0

𝜇 −𝜔0
𝜇 −𝐴 0 0

0 0 𝐴 −𝜔0
𝜇 0 0

0 − 𝛾0
2𝜇

𝜔0
𝜇 𝐴 − 𝛼0𝜙𝜇

𝛾0
− 𝛾0

2𝜇

0 𝛾0
2𝜇 0 0 𝛼0𝜙𝜇

𝛾0
− 𝛾0

2𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22)

with the characteristic polynomial 𝑚(𝜆) = 𝑚0+𝑚1𝜆+𝑚2𝜆2+𝑚3𝜆3+𝑚4𝜆4+𝑚5𝜆5+𝑚6𝜆6 with the coefficients given
by

𝑚0 =
2𝛼0𝜙𝛽0(𝜔2

0 + 𝐴2𝜇2)

𝜇2

𝑚1 =
4𝐴2𝛼0𝜙𝛽0𝜇

𝛾0
+

𝛽0𝛾𝜔2
0

𝜇3
+

𝛽0(𝐴2𝛾20 + 4𝛼0𝜙𝜔0(𝛾0 + 𝜔0))
𝛾0𝜇

𝑚2 =
2𝐴2𝛼0𝜙𝛽0𝜇2

𝛾20
+

𝛾20𝜔0𝛼𝜙(𝛾0 + 3𝜔0) + 2𝛽0𝜔0𝛾20 (2𝛾0 + 3𝜔0)

2𝛾20𝜇
2

+
6𝐴2𝛽0𝛾20 + 3𝐴2𝛼0𝜙𝛾20 + 4𝛼0𝜙𝛽0(𝛾20 + 4𝛾0𝜔0 + 𝜔2

0)

2𝛾20

𝑚3 =
𝛾0𝜔2

0

𝜇3
+

𝜇(8𝛼0𝜙𝛽0𝛾0 + 2𝐴2𝛾0(2𝛽0 + 𝛼0𝜙) + 8𝛼0𝜙𝛽0𝜔0)
2𝛾20

+
2𝐴2𝛾30 + 2𝛽0𝛾30 + 12𝛽0𝛾20𝜔0 + 4𝛽0𝛾0𝜔2

0 + 𝛼0𝜙𝛾0(𝛾20 + 6𝛾0𝜔0 + 2𝜔2
0)

2𝛾20𝜇

𝑚4 =
2𝛼0𝛽0
𝛾20

+
𝜔0(2𝛾0 + 𝜔0)

𝜇2
+

2𝐴2𝛾20 + 6𝛽0𝛾20 + 8𝛽0𝛾0𝜔0 + 𝛼0𝜙𝛾0(3𝛾0 + 4𝜔0)

2𝛾20

𝑚5 =
2𝛾30𝜇

2 + 4𝛽0𝛾0𝜇4 + 2𝛼0𝜙𝛾0𝜇4 + 4𝛾2𝜔0𝜇2

2𝛾20𝜇
3

𝑚6 = 1.

Since the coefficients of the polynomial are of order (1∕𝜇3) we redefine a polynomial 𝑀(𝜆) = 𝜇3𝑚(𝜆). Thus,
we apply the regular perturbation theory, assuming that the solutions of the polynomial 𝑀(𝜆) are of the form
𝜆 = 𝑧0 + 𝑧1𝜇 + 𝑧2𝜇2 + (𝜇3).

Substituting the solutions 𝜆 in the polynomial 𝑀(𝜆) = 𝜇3𝑚(𝜆) and equalising the terms of the same order, we have

𝑧0 = 0

𝑧1 = −2
𝛼0𝜙
𝛾0

(23)

𝑧2 = 0

and,

𝑧20 = −𝛽0

𝑧1 = − 1
4𝛾0𝜔0

[𝛼0𝜙(𝛾0 − 𝜔0) + 4𝛽0𝜔0] (24)
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𝑧2 = ±𝑣0
√

𝛽0𝑖,

where 𝑣0 =
1

32𝛽𝛾2𝜔2 [16𝐴2𝛽(𝛾 − 1)𝛾2 − 16𝛽2𝜔2 − (𝛼𝜙)2(𝛾2 + 14𝛾𝜔 − 15𝜔2) + 8𝛽𝛼𝜙(𝛾2 − 𝜔2))].
Thus, the (𝜇3) approximation of the eigenvalues gives

𝜆1 = −2
𝛼0𝜙
𝛾0

𝜇 < 0 (25)

and,

𝜆2,3 = − 1
4𝛾0𝜔0

[𝛼0𝜙(𝛾0 − 𝜔0) + 4𝛽0𝜔0]𝜇 ± (1 + 𝑣0𝜇
2)
√

𝛽0𝑖 (26)

with the negative real part for 𝜔 ≤ 𝛾 (using biological assumption).
The magnitude of the other eigenvalues can be determined by analysing the coefficients of the characteristic

polynomial. Performing this analysis, it is possible to verify that the other solutions of the polynomial 𝑚(𝜆) are of
the order ( 1𝜇 ). Dividing 𝑚(𝜆) by the roots found 𝜆1,2,3 (see equations 25 and 26), we find that the real root 𝜆4 has the
form

− 1
3𝜇

(𝛾 + 2𝜔) +
𝛼𝜙
3
(𝛾 + 𝜔)𝜇 + (𝑢) (27)

while, the real part of the complex roots has the form

−1
3𝜇

(𝛾 + 2𝜔) +
𝛼𝜙
3
(𝛾 + 𝜔)𝜇 +

3
√

2𝜇
2𝛾

+ (𝑢2). (28)

Thus, the real part of the eigenvalue is negative since the term of order ( 1𝜇 ) is negative.
While the assumption of symmetry of the parameters and variables lead to a significant system reduction, the

bifurcation structure can not be seen in the symmetric manifold as shown numerically for the initial system. For that,
the whole symmetric system must be considered, without the assumption of symmetric variables, since the symmetry
among the variables does not reflect the stability of the whole system. In fact, it is the assumption of symmetric variables
rather than the perturbation in the mortality term that leads the stable dynamic to appear in the system. This statement
is proved with numerical experiments for the symmetric system (19), without the perturbation in the mortality term,
where the eigenvalues of Jacobian matrix at the endemic equilibrium of the system have always negative real part,
independent of the value of the parameter 𝜙, see Figures 4a to 4f in the A.

5.1.2. Symmetric system - Symmetry only in the parameters
By using perturbation theory in the system (17), the new variables are defined as

𝑠 = 𝑆
𝑥𝑖 = 𝐼𝑖
𝑐𝑖 = 𝐶𝑖 (29)
𝑒𝑖 = 𝐸𝑖

𝑟𝑖 = 𝑅𝑖

𝑦1 = 𝐼21
𝑦2 = 𝐼12,

with the endemic equilibrium of initial system being the same as the equilibrium of the associated system
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𝑠′(𝑡) = 𝑑 − 𝑑𝑠 − 𝛽𝑠(𝑥1 + 𝑥2 + 𝑦1 + 𝑦2)
𝑥′1(𝑡) = −(𝑑 + 𝛾)𝑥1 + 𝛽𝑠(𝑥1 + 𝑦1)
𝑥′2(𝑡) = −(𝑑 + 𝛾)𝑥2 + 𝛽𝑠(𝑥2 + 𝑦2)
𝑐′1(𝑡) = −(𝑑 + 𝜔)𝑐1 + 𝛾𝑥1 − 𝐴𝑒1 (30)
𝑐′2(𝑡) = −(𝑑 + 𝜔)𝑐2 + 𝛾𝑥2 − 𝐴𝑒2
𝑒′1(𝑡) = −(𝑑 + 𝜔)𝑒1 + 𝐴𝑐1
𝑒′2(𝑡) = −(𝑑 + 𝜔)𝑒2 + 𝐴𝑐2
𝑟′1(𝑡) = −𝛼𝜙𝑟1(𝑥2 + 𝑦2) + 𝜔𝑐1 − 𝑑𝑟1 + 𝐴𝑒1
𝑟′2(𝑡) = −𝛼𝜙𝑟2(𝑥1 + 𝑦1) + 𝜔𝑐2 − 𝑑𝑟2 + 𝐴𝑒2
𝑦′1(𝑡) = −(𝑑 + 𝛾)𝑦1 + 𝛼𝜙𝑟2(𝑥1 + 𝑦1)
𝑦′2(𝑡) = −(𝑑 + 𝛾)𝑦2 + 𝛼𝜙𝑟1(𝑥2 + 𝑦2).

Using the same re-scaling approach described above, we introduce the small parameter 𝜇, with 𝑑 of (𝜇) and,
the other parameters of the system re-scaled in order of 1

𝜇 , letting 𝛽 = 𝛽0
𝜇 , 𝛼 = 𝛼0

𝜇 , 𝜔 = 𝜔0
𝜇 , 𝛾 = 𝛾0

𝜇 . We are again
close enough to our original system at the steady state point, with the mortality parameter 𝑑 = 0 (since 𝑑 is of (𝜇)),
simplifying the model near to the equilibrium. The resulting local dynamics can be described by the following system

𝑠′(𝑡) = 𝜇 − 𝛽𝑠(𝑥1 + 𝑥2 + 𝑦1 + 𝑦2)
𝑥′1(𝑡) = −𝛾𝑥1 + 𝛽𝑠(𝑥1 + 𝑦1)
𝑥′2(𝑡) = −𝛾𝑥2 + 𝛽𝑠(𝑥2 + 𝑦2)
𝑐′1(𝑡) = −𝜔𝑐1 + 𝛾𝑥1 − 𝐴𝑒1 (31)
𝑐′2(𝑡) = −𝜔𝑐2 + 𝛾𝑥2 − 𝐴𝑒2
𝑒′1(𝑡) = −𝜔1𝑒1 + 𝐴𝑐1
𝑒′2(𝑡) = −𝜔2𝑒2 + 𝐴𝑐2
𝑟′1(𝑡) = −𝛼𝜙𝑟1(𝑥2 + 𝑦2) + 𝜔𝑐1 + 𝐴𝑒1
𝑟′2(𝑡) = −𝛼𝜙𝑟2(𝑥1 + 𝑦1) + 𝜔𝑐2 + 𝐴𝑒2
𝑦′1(𝑡) = −𝛾𝑦1 + 𝛼𝜙𝑟2(𝑥1 + 𝑦1)
𝑦′2(𝑡) = −𝛾𝑦2 + 𝛼𝜙𝑟1(𝑥2 + 𝑦2).

Again, while the qualitatively analysis of this model is an interesting approximation of our original system, it is
only valid for small values of the mortality rate and different values of the birth rate, suggesting an attempt to the
approximation of the value of the endemic equilibrium, not including the mortality in the long time dynamic and, a
possible estimation analysis of the Hopf bifurcation structure for values of 𝜙.

The endemic equilibrium of the system (31), considering, 𝑥𝑖 ≠ 0 and 𝑦𝑖 ≠ 0, is given by

𝐸𝐴 = (
𝛾0
2𝛽0

,
𝜇2

2𝛾0
,
𝜇2

2𝛾0
,

𝜔0𝜇2

2(𝜔2
0 + 𝐴2𝜇2)

,
𝜔0𝜇2

2(𝜔2
0 + 𝐴2𝜇2)

,
𝛾0

2𝛼0𝜙
,

𝛾0
2𝛼0𝜙

,
𝜇2

2𝛾0
,
𝜇2

2𝛾0
). (32)

The stability of the endemic equilibrium is analysed with the linearisation theory, and the Jacobian matrix of the
reduced associated system (31) at the steady state 𝐸𝐴 is given by
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𝐽 (𝐸𝐴) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 2𝛽0𝜇
𝛾0

− 𝛾0
2𝜇

− 𝛾0
2𝜇

0 0 0 0 0 0 − 𝛾0
2𝜇

− 𝛾0
2𝜇

𝛽0𝜇
𝛾0

− 𝛾0
2𝜇

0 0 0 0 0 0 0 𝛾0
2𝜇

0
𝛽0𝜇
𝛾0

0 − 𝛾0
2𝜇

0 0 0 0 0 0 0 𝛾0
2𝜇

0 𝛾0
𝜇

0 −𝜔0
𝜇

0 −𝐴 0 0 0 0 0
0 0 𝛾0

𝜇
0 −𝜔0

𝜇
0 −𝐴 0 0 0 0

0 0 0 𝐴 0 −𝜔0
𝜇

0 0 0 0 0
0 0 0 0 𝐴 0 −𝜔0

𝜇
0 0 0 0

0 0 − 𝛾0
2𝜇

𝜔0
𝜇

0 𝐴 0 − 𝛼0𝜙𝜇
𝛾0

0 0 − 𝛾0
2𝜇

0 − 𝛾0
2𝜇

0 0 𝜔0
𝜇

0 𝐴 0 − 𝛼0𝜙𝜇
𝛾0

− 𝛾0
2𝜇

0
0 𝛾0

2𝜇
0 0 0 0 0 0 𝛼0𝜙𝜇

𝛾0
− 𝛾0

2𝜇
0

0 0 𝛾0
2𝜇

0 0 0 0 𝛼0𝜙𝜇
𝛾0

0 0 − 𝛾0
2𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (33)

The characteristic polynomial 𝑛(𝜆) is of order 11, which is very difficult to find all the roots. On the other hand,
the characteristic polynomial 𝑚(𝜆) of the reduced model obtained through the assumption of symmetric variables is a
particular case of the model (31). Since in the reduced model there is no bifurcation structure, we will only consider
the quotient polynomial 𝑚(𝜆)

𝑛(𝜆) = 𝑟(𝜆). Hence, if a bifurcation structure exists, thus, it can be only found in the quotient
polynomial 𝑟(𝜆) = 𝑟0 + 𝑟1𝜆 + 𝑟2𝜆2 + 𝑟3𝜆3 + 𝑟4𝜆4 + 𝑟5𝜆5, where

𝑟0 = −𝛼0𝜙𝛾0(
𝜔2
0

𝜇3
+ 𝐴2

𝜇
)

𝑟1 = −
3𝛼0𝜙𝜔(𝛾0 + 𝜔0)

2𝜇2
−

3𝛼𝜙𝐴2

2

𝑟2 = −𝛼0𝜙𝐴2 𝜇
𝛾0

−
𝛾0𝜔2

0

𝜇3
−

𝐴2𝛾0 + 3𝛼0𝜙𝜔0
𝜇

−
𝛼0𝜙(𝛾20 + 2𝜔2

0)
2𝛾0𝜇

𝑟3 = −𝐴2 −
3𝛼0𝜙
2

−
2𝛼0𝜙𝜔0

𝛾0
−

2𝛾0𝜔0 + 𝜔2
0

𝜇2

𝑟4 = −
𝛼0𝜙𝜇
𝛾0

−
𝛾0 + 2𝜔0

𝜇
𝑟5 = −1 .

With the coefficients of the polynomial being of order (1∕𝜇3), we redefine the polynomial 𝑅(𝜆) = 𝜇3𝑟(𝜆),
and apply the regular perturbation theory, assuming that the solutions of the polynomial 𝑅(𝜆) are of the form
𝜆 = 𝑧0 + 𝑧1𝜇 + 𝑧2𝜇2 + (𝜇3).

Substituting the solutions 𝜆 in the polynomial 𝑅(𝜆) = 𝜇3𝑟(𝜆) and equalising the terms of the same order, we have

𝑧20 = −𝛼0𝜙

𝑧1 =
𝛼0𝜙
4𝛾0𝜔0

[𝛾0 − 𝜔0] (34)

𝑧2 = ±𝑣1
√

𝛼0𝜙𝑖 .

where 𝑣1 = 𝛼0𝜙(
1

4𝜔2
0
+ 1

𝛾20
+ 1

4𝛾0𝜔0
),

Thus, the approximation of the (𝜇3) of the eigenvalues are given by

𝜆1,2 =
(

𝛼0𝜙
4𝛾0𝜔0

[𝛾0 − 𝜔0]
)

𝜇 ± (1 + 𝑣1𝜇
2)
√

𝛼0𝜙𝑖 , (35)

with the positive real part, because 𝜔 ≤ 𝛾 . Therefore, we showed that the endemic equilibrium is always unstable.
That also can be numerically verified for all values of 𝜙 > 0, with the eigenvalues of the whole system being always
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negative, except for a pair of complex eigenvalues, which have positive real part, showing unstable dynamic near the
endemic equilibrium.

Note that while the perturbation analysis allowed us to have an analytically result, it was not possible to show the
bifurcation structure obtained numerically for the initial system. We could, however, prove analytically the instability
of the endemic equilibrium, with the bifurcation only occurring outside of the symmetric manifold, while a small
perturbation on the mortality term shows an unstable steady s, and, thus, complex dynamics for the system.

5.2. Case (ii): 𝑃 (𝑡) = 𝑒−𝜔𝑡
Of course this function satisfies the necessary assumptions of the model, such as, 𝑃 (0) = 1, 𝑃 (∞) = 0 and

∫ ∞
0 𝑒−𝑑𝑠𝑃 (𝑠)𝑑𝑠 < ∞. Now, the ODE can be rewritten as

𝑆′(𝑡) = 𝑑 − 𝑑𝑆 − 𝛽𝑆(𝐼1 + 𝐼2 + 𝐼12 + 𝐼21)
𝐼1

′(𝑡) = −(𝑑 + 𝛾)𝐼1 + 𝛽𝑆(𝐼1 + 𝐼21)
𝐼2

′(𝑡) = −(𝑑 + 𝛾)𝐼2 + 𝛽𝑆(𝐼2 + 𝐼12)
𝐶1

′(𝑡) = −(𝑑 + 𝜔)𝐶1 + 𝛾𝐼1
𝐶2

′(𝑡) = −(𝑑 + 𝜔)𝐶2 + 𝛾𝐼2 (36)
𝑅1

′(𝑡) = −𝑑𝑅1 − 𝛼𝜙𝑅1(𝐼2 + 𝐼12) + 𝜔𝐶1

𝑅2
′(𝑡) = −𝑑𝑅2 − 𝛼𝜙𝑅2(𝐼1 + 𝐼21) + 𝜔𝐶2

𝐼12
′(𝑡) = −(𝑑 + 𝛾)𝐼12 + 𝛼𝜙𝑅1(𝐼2 + 𝐼12)

𝐼21
′(𝑡) = −(𝑑 + 𝛾)𝐼21 + 𝛼𝜙𝑅2(𝐼1 + 𝐼21).

5.2.1. Symmetric manifold - Symmetry in the variables
Using the proposed approach in [41] and symmetry between the serotypes, we reduce the whole system by defining

the new variables as

𝑠 = 𝑆 = 𝑆
𝑥 = 𝐼1 = 𝐼2
𝑐 = 𝐶1 = 𝐶2 (37)
𝑟 = 𝑅1 = 𝑅2

𝑦 = 𝐼12 = 𝐼21.

Thus, the endemic equilibrium for the system will be the same equilibrium of the following associated reduced
model

𝑠′(𝑡) = 𝑑 − 𝑑𝑠 − 𝛽𝑠2(𝑥 + 𝑦)
𝑥′(𝑡) = −(𝑑 + 𝛾)𝑥 + 𝛽𝑠(𝑥 + 𝑦)
𝑐′(𝑡) = −(𝑑 + 𝜔)𝑐 + 𝛾𝑥 (38)
𝑟′(𝑡) = −𝛼𝜙𝑟(𝑥 + 𝑦) + 𝜔𝑐 − 𝑑𝑟
𝑦′(𝑡) = −(𝑑 + 𝛾)𝑦 + 𝛼𝜙𝑟(𝑥 + 𝑦).

We re-scale the parameters in relation to 𝜇, letting 𝛽 = 𝛽0
𝜇 , 𝛼 = 𝛼0

𝜇 , 𝜔 = 𝜔0
𝜇 , 𝛾 = 𝛾0

𝜇 , and in the sequence, we set
the birth rate 𝜇 and the mortality rate 𝑑. Again, the assumption of 𝑑 = 0 (because 𝑑 is of (𝜇)) simplifies the model
near the equilibrium point. Then, the resulting local dynamics can be reduced to the following associated system

𝑠′ = 𝜇 − 𝛽𝑠2(𝑥 + 𝑦)
𝑥′ = −𝛾𝑥 + 𝛽𝑠(𝑥 + 𝑦)
𝑐′ = 𝛾𝑥 − 𝜔𝑐 (39)
𝑟′ = −𝛼𝜙𝑟(𝑥 + 𝑦) + 𝜔𝑐
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𝑦′ = −𝛾𝑦 + 𝛼𝜙𝑟(𝑥 + 𝑦).

The endemic equilibrium of the system (39), considering, 𝑥 ≠ 0 and 𝑦 ≠ 0, is giving by

𝐸𝑆 = (
𝛾0
2𝛽0

,
𝜇2

2𝛾0
,
𝜇2

2𝜔0
,

𝛾0
2𝛼0𝜙

,
𝜇2

2𝛾0
). (40)

Using the linearisation theory to analyse the stability of the endemic equilibrium, the Jacobian matrix of the reduced
associated system (39) at the steady state 𝐸𝑆 is given by

𝐽 (𝐸𝑆 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 2𝛽0𝜇
𝛾0

− 𝛾0
𝜇 0 0 − 𝛾0

𝜇
𝛽0𝜇
𝛾0

− 𝛾0
2𝜇 0 0 𝛾0

2𝜇
0 𝛾0

𝜇 −𝜔0
𝜇 0 0

0 − 𝛾0
2𝜇

𝜔0
𝜇 − 𝛼0𝜙𝜇

𝛾0
− 𝛾0

2𝜇

0 𝛾0
2𝜇 0 𝛼0𝜙𝜇

𝛾0
− 𝛾0

2𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)

.
And, the coefficients of the characteristic polynomial 𝑚(𝜆) = 𝑚0 + 𝑚1𝜆 + 𝑚2𝜆2 + 𝑚3𝜆3 + 𝑚4𝜆4 + 𝑚5𝜆5 are given by

𝑚0 = −
2𝛼0𝜙𝛽0𝜔0

𝜇

𝑚1 = −
𝛽0𝛾30𝜔0 + 2𝛼0𝜙𝛽0(𝛾20 + 2𝛾0𝜔0)𝜇2

𝛾20𝜇
2

𝑚2 = −
(2𝛽0 + 𝛼0𝜙)𝛾30𝜇 + 3(2𝛽0 + 𝛼0𝜙)𝛾20𝜔𝜇 + 4𝛼0𝜙𝛽0(𝜔0 + 2𝛾0)𝜇3

2𝛾20𝜇
2

𝑚3 = −
2𝛾30𝜔0 + 4𝛼0𝜙𝛽0𝜇4 + (6𝛽0𝛾20 + 4𝛽0𝛾0𝜔0 + 3𝛼0𝜙𝛾20 + 2𝛼0𝜙𝛾0𝜔0)𝜇2

2𝛾20𝜇
2

𝑚4 = −
𝛾20 (𝛾0 + 𝜔0)𝜇 + (2𝛽0 + 𝛼0𝜙)𝛾0𝜇3

𝛾20𝜇
2

𝑚5 = −1.

Since the coefficients of the polynomial are of order (1∕𝜇2), we redefine a polynomial 𝑀(𝜆) = 𝜇2𝑚(𝜆).
Thus, we apply the regular perturbation theory, assuming that the solutions of the polynomial 𝑀(𝜆) are of the form
𝜆 = 𝑧0 + 𝑧1𝜇 + 𝑧2𝜇2 + (𝜇3).

Substituting the solutions 𝜆 in the polynomial 𝑀(𝜆) = 𝜇2𝑚(𝜆) and equalising the terms of the same order we have

𝑧0 = 0

𝑧1 = −2
𝛼0𝜙
𝛾0

(42)

𝑧2 = 0

and,

𝑧20 = −𝛽0

𝑧1 = − 1
2𝛾0𝜔0

[𝛽0𝛾0𝜔0 + 𝛼0𝜙(𝛾0 − 𝜔0)] (43)
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𝑧2 = ±𝑣0
√

𝛽0𝑖,

where 𝑣0 = 𝑧1(2𝛽0(𝛾0 − 𝜔0) − 𝛼0𝜙(3𝜔0 + 𝛾0)) − 3𝛾0𝜔0𝑧21 +
𝛽20
𝛾0
(2𝜔0 + 2𝛾0) −

𝛽0𝛼0𝜙
2𝛾0

(𝛾0 + 6𝜔0).
Thus, the approximation of the (𝜇3) of the eigenvalues are

𝜆1 = −2
𝛼0𝜙
𝛾0

𝜇 < 0 (44)

and,

𝜆2,3 = −
(

1
2𝛾0𝜔0

[𝛽0𝛾0𝜔0 + 𝛼0𝜙(𝛾0 − 𝜔0)]
)

𝜇 ± (1 + 𝑣0𝜇
2)
√

𝛽0𝑖 (45)

with the negative real part, since 𝜔 ≤ 𝛾 .
The other eigenvalues can be determined by verifying their magnitude, by analysing the coefficients of the

characteristic polynomial. Performing this analysis, it is possible to verify that the other solutions of the polynomial
𝑚(𝜆) are of the order ( 1𝜇 ) . By dividing 𝑚(𝜆) by the roots found 𝜆1,2,3 (see equations 44 and 45), we see that the real
part of the complex roots 𝜆4,5 is of the form

−
(𝛾0 + 𝜔0)

𝜇
−

2𝛽0𝜇
𝛾0

+
(𝛽0𝜔0 + 𝛼0𝜙)𝜇

𝜔0
, (46)

with the real part of the eigenvalue being negative, since the negative term is of order ( 1𝜇 ), the positive term is of the
order (𝜇).

The symmetry of the parameters and variables lead to a reduced system from which it is not possible to find the
bifurcation structure. We can, however, verify numerically that the eigenvalues of this reduced associated model are
always negative, showing a stable dynamic near the endemic equilibrium, that does not necessarily occur as previously
seen numerically. Therefore, we have to work with the whole system, without the assumption of symmetric variables
(since the symmetry among the variables does not reflect the stability of the whole system), but only with symmetry
in the parameters.

As mentioned above, it is the assumption of the symmetry in the variables and not the perturbation in the mortality
term that makes the stable dynamic appear in the system. We can confirm this statement with numerical experiments
of the stability of the system (38), with symmetry in the variables and without the perturbation of the mortality term.
It is possible to see that the eigenvalues of Jacobian matrix at the endemic equilibrium of the system (38) have always
negative real part, independent of the size of the parameter 𝜙, see Figures 5a to 5f in A.

5.2.2. Symmetric system - Symmetry only in the parameters
By using perturbation theory in the system (36), the new variables are defined as,

𝑠 = 𝑆
𝑥𝑖 = 𝐼𝑖
𝑐𝑖 = 𝐶𝑖 (47)
𝑟𝑖 = 𝑅𝑖

𝑦1 = 𝐼21
𝑦2 = 𝐼12.

The endemic equilibrium in the initial system will be the same as of the following associated system

𝑠′(𝑡) = 𝑑 − 𝑑𝑠 − 𝛽𝑠(𝑥1 + 𝑥2 + 𝑦1 + 𝑦2)
𝑥′1(𝑡) = −(𝑑 + 𝛾)𝑥1 + 𝛽𝑠(𝑥1 + 𝑦1)
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𝑥′2(𝑡) = −(𝑑 + 𝛾)𝑥2 + 𝛽𝑠(𝑥2 + 𝑦2)
𝑐′1(𝑡) = −(𝑑 + 𝜔)𝑐1 + 𝛾𝑥1 (48)
𝑐′2(𝑡) = −(𝑑 + 𝜔)𝑐2 + 𝛾𝑥2
𝑟′1(𝑡) = −𝛼𝜙𝑟1(𝑥2 + 𝑦2) + 𝜔𝑐1 − 𝑑𝑟1
𝑟′2(𝑡) = −𝛼𝜙𝑟2(𝑥1 + 𝑦2) + 𝜔𝑐2 − 𝑑𝑟2
𝑦′1(𝑡) = −(𝑑 + 𝛾)𝑦1 + 𝛼𝜙𝑟2(𝑥1 + 𝑦1)
𝑦′2(𝑡) = −(𝑑 + 𝛾)𝑦2 + 𝛼𝜙𝑟1(𝑥2 + 𝑦2).

We re-scale the parameters in relation to 𝜇, letting 𝛽 = 𝛽0
𝜇 , 𝛼 = 𝛼0

𝜇 , 𝜔 = 𝜔0
𝜇 , 𝛾 = 𝛾0

𝜇 , and in the sequence, we set
the birth rate 𝜇 and, the mortality rate 𝑑. The constraint 𝑑 = 0 (because 𝑑 is of (𝜇)) simplifies the model near the
equilibrium. Then, the resulting local dynamics can be described by the following system

𝑠′(𝑡) = 𝜇 − 𝛽𝑠(𝑥1 + 𝑥2 + 𝑦1 + 𝑦2)
𝑥′1(𝑡) = −𝛾𝑥1 + 𝛽𝑠(𝑥1 + 𝑦1)
𝑥′2(𝑡) = −𝛾𝑥2 + 𝛽𝑠(𝑥2 + 𝑦2)
𝑐′1(𝑡) = −𝜔𝑐1 + 𝛾𝑥1 (49)
𝑐′2(𝑡) = −𝜔𝑐2 + 𝛾𝑥2
𝑟′1(𝑡) = −𝛼𝜙𝑟1(𝑥2 + 𝑦2) + 𝜔𝑐1
𝑟′2(𝑡) = −𝛼𝜙𝑟2(𝑥1 + 𝑦2) + 𝜔𝑐2
𝑦′1(𝑡) = −𝛾𝑦1 + 𝛼𝜙𝑟2(𝑥1 + 𝑦1)
𝑦′2(𝑡) = −𝛾𝑦2 + 𝛼𝜙𝑟1(𝑥2 + 𝑦2).

The endemic equilibrium of the system (49), considering, 𝑥𝑖 ≠ 0 and 𝑦𝑖 ≠ 0, is given by

𝐸𝐴 = (
𝛾0
2𝛽0

,
𝜇2

2𝛾0
,
𝜇2

2𝛾0
,
𝜇2

2𝜔0
,
𝜇2

2𝜔0
,

𝛾0
2𝛼0𝜙

,
𝛾0

2𝛼0𝜙
,
𝜇2

2𝛾0
,
𝜇2

2𝛾0
). (50)

And, the Jacobian matrix of the reduced associated system (49) at the steady state 𝐸𝐴 is given by

𝐽 (𝐸𝐴) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 2𝛽0𝜇
𝛾0

− 𝛾0
2𝜇 − 𝛾0

2𝜇 0 0 0 0 − 𝛾0
2𝜇 − 𝛾0

2𝜇
𝛽0𝜇
𝛾0

− 𝛾0
2𝜇 0 0 0 0 0 0 𝛾0

2𝜇
𝛽0𝜇
𝛾0

0 − 𝛾0
2𝜇 0 0 0 0 𝛾0

2𝜇 0
0 𝛾0

𝜇 0 −𝜔0
𝜇 0 0 0 0 0

0 0 𝛾0
𝜇 0 −𝜔0

𝜇 0 0 0 0

0 0 − 𝛾0
2𝜇

𝜔0
𝜇 0 − 𝛼0𝜙𝜇

𝛾0
0 − 𝛾0

2𝜇 0

0 − 𝛾0
2𝜇 0 0 𝜔0

𝜇 0 − 𝛼0𝜙𝜇
𝛾0

0 − 𝛾0
2𝜇

0 0 𝛾0
2𝜇 0 0 𝛼0𝜙𝜇

𝛾0
0 − 𝛾0

2𝜇 0

0 𝛾0
2𝜇 0 0 0 0 𝛼0𝜙𝜇

𝛾0
0 − 𝛾0

2𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (51)

with the characteristic polynomial 𝑛(𝜆) = 𝑛0 + 𝑛1𝜆 + 𝑛2𝜆2 + 𝑛3𝜆3 + 𝑛4𝜆4 + 𝑛5𝜆5 + 𝑛6𝜆6 + 𝑛7𝜆7 + 𝑛8𝜆8 + 𝑛9𝜆9 and
coefficients given by

𝑛0 = −
2𝛼20𝜙

2𝛽0𝜔2
0

𝜇3
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𝑛1 = −
𝛼0𝜙𝛽0𝜔0[𝛾20𝜔0 + 𝛼0𝜙(3𝛾0 + 7𝜔0)𝜇2]

𝜇4

𝑛2 = −
𝛼0𝜙𝛽0𝛾20𝜔0(3𝛾0 + 13𝜔0)

2𝛾0𝜇3
−

𝛼20𝜙
2(𝛾20𝜔0(𝛾0 + 3𝜔0))

2𝛾0𝜇3
−

𝛼20𝜙
22𝛽0(𝛾20 + 12𝛾0𝜔0 + 10𝜔2

0)𝜇
2

2𝛾0𝜇3

𝑛3 = −
4𝛽0𝛾40𝜔

2
0 + 4𝛼0𝜙𝛾40𝜔

2
0

4𝛾20𝜇
4)

−
20𝛼20𝜙

2𝛽0𝛾20 + 76𝛼20𝜙
2𝛽0𝛾0𝜔0 + 28𝛼20𝜙

2𝛽0𝜔2
0

4𝛾20

−
𝛼20𝛾

4
0𝜙

2 + 12𝛼20𝛾
3
0𝜙

2𝜔0 + 13𝛼20𝛾
2
0𝜙

2𝜔2
0 + 2𝛼0𝜙𝛽0𝛾20 (𝛾

2
0 + 23𝛾0𝜔0 + 27𝜔2

0)

4𝛾20𝜇
2

𝑛4 = −
𝜇(18𝛼20𝜙

2𝛽0𝛾20 + 28𝛼20𝛽0𝛾0𝜙
2𝜔0 + 4𝛼20𝛽0𝜙

2𝜔2
0)

2𝛾3

−
4𝛽0𝛾40𝜔0(𝛾0 + 2𝜔0) + 4𝛼0𝛾40𝜙𝜔0(𝛾0 + 2𝜔0)

2𝛾3𝜇3

−
3𝛼20𝛾

4
0𝜙

2 + 13𝛼20𝛾
3
0𝜙

2𝜔0 + 6𝛼20𝛾
2
0𝜙

2𝜔2
0 + 2𝛼0𝛽0𝛾20𝜙(5𝛾

2
0 + 26𝛾0𝜔0 + 12𝜔2

0)

2𝛾30𝜇

𝑛5 = −
𝛾20𝜔

2
0

𝜇4
−

𝜇2(7𝛼20𝛽0𝛾0𝜙
2 + 4𝛼20𝛽0𝜙

2𝜔0)

𝛾30

−
𝛽0𝛾5 + 8𝛽0𝛾40𝜔0 + 6𝛽0𝛾30𝜔

2
0 + 𝛼0𝛾30𝜙(𝛾

2
0 + 8𝛾0𝜔0 + 5𝜔2

0)

𝛾30𝜇
2

−
50𝛼0𝛽0𝛾30𝜙 + 96𝛼0𝛽𝛾20𝜙𝜔0 + 16𝛼0𝛽0𝛾0𝜙𝜔2

0 + 𝛼20𝛾0𝜙
2(13𝛾20 + 24𝛾0𝜔0 + 4𝜔2

0)

4𝛾30

𝑛6 = −
2𝛼20𝜙

2𝛽0𝜇3

𝛾30
−

2𝛾0𝜔0(𝛾0 + 𝜔0)
𝜇3

−
𝜇(12𝛼0𝛾20𝜙 + 8𝛼0𝜙𝛽0𝛾0𝜔0 + 𝛼20𝜙

2𝛾0(3𝛾0 + 2𝜔0))

𝛾30

−
4𝛽0𝛾40 + 10𝛽0𝛾30𝜔0 + 2𝛽0𝛾20𝜔

2 + 2𝛼0𝛾20𝜙(2𝛾
2
0 + 5𝛾0𝜔0 + 𝜔2

0)

𝛾30𝜇

𝑛7 = −
𝛾40 + 𝛼0𝜙(4𝛽0 + 𝛼0𝜙)𝜇4 + 4𝛾30𝜔0 + 4𝛾0𝜔0(𝛽0 + 𝛼0𝜙)𝜇2 + 5𝛾20 (𝛽0 + 𝛼0𝜙)𝜇2 + 𝛾20𝜔

2
0

𝛾2𝜇2

𝑛8 = −
2(𝛾20 + 𝛾0𝜔0 + (𝛽0 + 𝛼0𝜙)𝜇2)

𝛾0𝜇

𝑛9 = −1.

The characteristic polynomial of the reduced model obtained through the symmetry in the variables among the
serotypes are a particular case of the model (49). Since there is no bifurcation structure in the reduced model, we
consider only the quotient polynomial 𝑚(𝜆)

𝑛(𝜆) = 𝑟(𝜆).
If a bifurcation structure exists, that can be only found in the quotient polynomial 𝑟(𝜆) = 𝑟0+𝑟1𝜆+𝑟2𝜆2+𝑟3𝜆3+𝑟4𝜆4,

where

𝑟0 =
𝛼0𝜙𝛾0𝜔0

𝜇2

𝑟1 =
𝛼0𝜙(𝛾0 + 3𝜔0)

2𝜇

𝑟2 =
𝛼0𝜙(3𝛾0 + 2𝜔0)

2𝛾0
+

𝛾0𝜔0

𝜇2
(52)

𝑟3 =
𝛾0 + 𝜔0

𝜇
+

𝛼0𝜇
𝛾0

𝑟4 = 1

The coefficients of the polynomial are of order (1∕𝜇2). We redefine the polynomial 𝑅(𝜆) = 𝜇2𝑟(𝜆) and apply the
regular perturbation theory, assuming that the solutions of the polynomial 𝑅(𝜆) are of the form 𝜆 = 𝑧0 + 𝑧1𝜇+ 𝑧2𝜇2 +
(𝜇3). By substituting the solutions 𝜆 in the polynomial 𝑅(𝜆) = 𝜇2𝑟(𝜆) and equalise the terms of the same order, we
have

𝑧20 = −𝛼0𝜙

𝑧1 =
𝛼0𝜙
4𝛾0𝜔0

[𝛾0 − 𝜔0] (53)
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𝑧2 = ±𝑣1
√

𝛼0𝜙𝑖.

where 𝑣1 =
1

2𝛾0𝜔0𝛼0𝜙

[

𝛼20𝜙
2 − 𝛼20𝜙

2( 3𝛾0+2𝜔0
2𝛾0

) −
𝛼20𝜙

2

4𝛾0𝜔0
(𝛾0 − 𝜔0)(

5𝛾0+3𝜔0
2 )

]

, thus, the approximation of the (𝜇3) of the

eigenvalues are given by

𝜆1,2 =
(

𝛼0𝜙
4𝛾0𝜔0

[𝛾0 − 𝜔0]
)

𝜇 ± (1 + 𝑣1𝜇
2)
√

𝛼0𝜙𝑖, (54)

with the positive real part, since 𝜔 ≤ 𝛾 .
The other eigenvalues can be determined by their magnitude, via the analysis of the coefficients of the characteristic

polynomial, showing that the other solutions of the polynomial 𝑟(𝜆) are of the order ( 1𝜇 ). Dividing 𝑟(𝜆) by the roots
found 𝜆1,2 (see equation 54 ), shows that the roots are real and of the form

𝜆3,4 = −2
(𝛾0 + 𝜔0)

𝜇
− 𝛼0𝜙𝜇(

1
𝛾0

+ 1
𝜔0

) ± ( 2
𝜇

√

(𝛾0 + 𝜔0)2 − (𝜇4)). (55)

Moreover, the roots are negative (with the positive term being smaller than the negative term of the eigenvalue),
hence the endemic equilibrium is always unstable. This can be easily confirmed numerically. On the other hand, the
eigenvalues of the whole system are always negative, except for a pair of complex eigenvalues that have positive real
part, showing a unstable dynamic near the endemic equilibrium. While it was not possible to show analytically the
bifurcation structure, we could prove analytically the instability of the endemic equilibrium, leading to complicated
dynamic.

Remark 3. Note that, Case (ii) is the classical ODE system, assuming the immunity period being exponentially
distributed, i.e. with a constant temporary immunity cross-protection 𝜔, and the classical addition of the temporary
immunity class as described in [32], with different assumption on the disease enhancement process.

Remark 4. Billings at al. [41] used the same method for a similar ODE model, assuming symmetry among variables
and parameters. The authors have used regular perturbation to show analytically the value of the parameter 𝜙 where
the Hopf bifurcation occurs. In that case, bifurcation occurs in the symmetric manifold having the assumption for the
ADE parameter 𝜙 as increasing transmissibility in secondary infections and no temporary cross-immunity.

Remark 5. In this work, the enhancement parameter is assumed to act on the susceptibility of secondary infections,
with additional class for cross-protection which clearly showed a different and more complex dynamics with Hopf
bifurcation and thus, the instability of endemic equilibria occurring only out of symmetric manifold.

6. Discussion and Conclusions
In this paper we have investigated the symmetric case of the mathematical model proposed by Steindorf et

al. [37], an integro-differential equation system motivated by dengue fever epidemiology. The model includes two
important biological features, the temporary cross-immunity period (incorporated as a general form) and susceptibility
enhancement, both occurring after a primary infection.

In the previous work of Steindorf et al. [37], the analysis of the asymmetric model was carried out showing four
equilibria, the disease-free equilibrium, two boundary equilibria and the coexistence equilibrium, with the stability of
each one of them being analysed in detail, showing an important threshold value for invasion scenario of one strain and
extinction of the other. In the asymmetric case, the boundary equilibria can be stable, and thus, the most pathogenic
strain, i.e. with higher transmission rate, will be predominant, protecting the population from the another strain, while
in the symmetric case studied here, that can not occur.

For symmetric case, the disease either dies out or become prevalent with both strains coexisting, i.e, the boundary
equilibria can never be stable. The parameter representing susceptibility enhancement (𝜙) is an important parameter to
described the dynamics of disease, whether the coexistence of strains will persist or periodic outbreaks with coexistence
of strains will occur. In detail, if 𝜙 is small, disease will persist with coexistence of strains. A supercritical Hopf
bifurcation occurs at the threshold value,𝜙𝑐 , leading to periodic solutions. Finally, for larger𝜙, the endemic equilibrium
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is unstable, with complex attractors up to chaotic behaviour occurring. These findings are very important in dengue
fever epidemiology, since the available incidence data resemble chaotic dynamics as revealed by Aguiar et al. [51].
The complex dynamics of the system stabilizes for 𝜙 > 1.2, with only periodic solutions observed.

It is important to mention that, close to the endemic equilibrium, the results for the symmetric case show a very
similar dynamical behaviour found in the asymmetric case, justifying the evaluation of the reduced system obtained by
considering symmetry among serotypes and allowing further analytical computations and results, such as the analytical
proof of the instability of the endemic equilibrium and the changes in the dynamics. Therefore, in the scenario that
represents an endemic region, the study of the behavior of the disease could be accessed by both models. The limitation
of the symmetric model, though, remains in the study of the invasion and persistence of a new strain.

In this work, we have used a specific function for the kernel of the integral to first transform IDE into an ODE system.
Then, using perturbation theory, we have shown that the bifurcation and the instability occur outside of the symmetric
manifold. That is, under the assumption of symmetries in the variables, the dimension of the model could be reduced
and represent the symmetric part of the entire model, showing only stable dynamics. Using the perturbation theory
in the whole model, the analytic form of the endemic equilibrium is obtained when the mortality term is neglected.
And by separating the symmetric manifold, it allows to show the eigenvalues and the instability of the coexistence
equilibrium out of the symmetric manifold. Although the Hopf bifurcation could not be obtained due to the small
perturbation in the mortality term.

Finally, using a method to transform IDEs into ODEs, as proposed by Domoshnitsky et al. [50], we observed
that the choice of the function ( which satisfies the epidemiological conditions and the specific kernel features) had
no effect on the qualitative behavior of the system, when comparing the particular case (ODE case), by using the
exponential distributed function for the immunity period, with the more general case (IDE case) by using a general
function. Nevertheless, future study can be developed with generalizations for the function selection that explain the
immunity phase.

While a rigorous analysis of such systems is required for true predictive power and more accurate disease control
decision making, the findings presented here should be taken into account when mathematical models applied to dengue
fever epidemiology continue to be developed in order to give insights on epidemic scenarios, in collaboration with
public health authorities for disease control measures.
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A. Complementary numerical simulations
A.1. Case (i): 𝑃 (𝑠) = 𝑐𝑜𝑠(𝐴𝑠)𝑒−𝜔𝑠, 𝐴 > 0

Figures show the eigenvalues of Jacobian matrix at the endemic equilibrium of the system (19), with symmetry
in the variables and without the perturbation in the mortality term. The eigenvalues have always negative real part,
independent of the size of the parameter 𝜙.
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Figure 4: The figures show the eigenvalues of the endemic equilibrium in the complex plane, for each value of 𝜙, for
(19) system (with symmetry in the variables and without the perturbation in the mortality term). The values used in the
simulations are found on Table (1) with 𝛽 = 180.

A.2. Case (ii): 𝑃 (𝑡) = 𝑒−𝜔𝑡
Figures show the eigenvalues of Jacobian matrix at the endemic equilibrium of the system (38), with symmetry

in the variables and without the perturbation in the mortality term. The eigenvalues have always negative real part,
independent of the size of the parameter 𝜙.

B. Table for numerical simulations
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Figure 5: Figures show the eigenvalues of the endemic equilibrium in the complex plane, for each value of 𝜙, at symmetric
case, for symmetric system (38) (with symmetry in the variables and without the perturbation in the mortality term). The
values used in the simulations are found on Table (1) with 𝛽 = 180.

Table 1
Parameter values used in the simulations. Source [37, 40].

Parameter Meaning Value Unity Reference
𝑑 Mortality rate 0.015 𝑦−1 [49]
𝛾 Recovery rate 52 𝑦−1 [47, 48]
𝜔 Cross immunity protection rate 2 𝑦−1 [47]
𝛽 Infection rate (susceptible individuals) 40 − 200 - [37]
𝛼 Reinfection rate (recovered 40 − 200 - [37]

individuals from a primary infection)
𝜙 ADE factor 0 − 5 - [28]
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