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Abstract

The choice of the objective functional in optimization problems coming from biomedical and
epidemiological applications plays a key role in optimal control outcomes. In this study, we in-
vestigate the role of the objective functional on the structure of the optimal control solution for
an epidemic model that includes a core group with higher sexual activity levels than the rest of
the population. An optimal control problem is formulated to find a targeted vaccination program
able to control the spread of the infection with minimum vaccine deployment. Both L1− and
L2−objectives are considered as an attempt to explore the trade-offs between control dynamics
and the functional form characterizing optimality. Our results show that the optimal vaccination
policy for both the L1− and the L2−formulation share one important qualitative property, that is,
immunization of the core group should be prioritized by policymakers to achieve a fast reduction
of the epidemic. Nevertheless, quantitative aspects of this result can be significantly affected de-
pending on the objective weightings. Overall, our results suggest that the optimal control profiles
are reasonably robust with respect to the L1− or L2−formulation when the monetary cost of the
vaccination policy is substantially lower than the cost associated with the disease burden but if
this is not the case the optimal control profiles can be radically different for each formulation.

Keywords: Optimal control, Mathematical modeling, Epidemic models, Vaccine allocation

1 Introduction

For a large number of infectious diseases, the presence of population heterogeneity, e.g. the existence of
sub-populations with significant differences in mixing (contact) patterns and activity levels, can play an
important role in disease spread and control [8, 34]. One key challenge for the control and prevention of
infectious diseases is the optimal allocation of a limited vaccine supply in a heterogeneous population.
In the uniform immunization program, the vaccine is administered at the same rate in all subgroups
trying to reach herd immunity while keeping the vaccinated fraction as small as possible. Nevertheless,
neglecting the heterogeneous properties of the population usually leads to inaccuracies in estimating
the critical fraction that needs to be vaccinated to achieve disease eradication [8]. For an effective
immunization program, it is critical to select subgroups that should receive priority for vaccination. In
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the context of sexually transmitted infections (STIs), targeted vaccination programs should consider
the existence of a core group, a group of individuals with much higher rates of sexual activity. Core
groups and their mixing with the general population have been shown to be epidemiologically relevant
(see, for example, the seminal work [19]). Particularly, contact rates in the average population are
often not sufficient for disease persistence. Instead, core groups are required to spread and maintain
the disease in the entire population.

The optimal control theory (OCT) is an essential tool frequently used to solve a wide range of
optimization problems for dynamical systems including vaccine allocation problems in public health
[1, 4, 7, 9, 15, 17, 22, 27, 30, 35, 37, 41, 42, 45]. Probably one of the most relevant issues when
solving optimization problems via OCT is the choice of the performance criterion, that is the objective
functional to be minimized or maximized [11, 20, 16, 26, 43]. For medical and biological applications,
the choice of such criterion is usually not straightforward. However, there is a vast amount of literature
where the control cost is simply postulated to be proportional to a sum of the squares of the considered
controls. These are the so-called L2−type functionals because they consider a weighted L2−norm on
the control. This functional form has its origin in engineering applications where the square of the
controls has a clear interpretation as the energy spent on the control action [16]. One important
attribute of the L2−formulation is that it is amenable to mathematical analysis in the sense that the
optimal control problem (OCP) can be reduced to a two-point boundary value problem which can
be easily solved by standard numerical methods [22]. This mathematical convenience is probably the
main reason that the L2−formulation is so widespread in the literature [4, 3, 5, 7, 15, 16, 20, 23,
26, 30, 35, 36, 45, 48]. Yet, for biomedical and epidemiological applications, the use of L2−objective
functionals is frequently difficult to validate. For example, the authors in [26] have argued that for
anticancer therapies, the financial control cost, including the costs of adverse side effects, is usually
better approximated by a linear function of the magnitude of the corresponding control. In other words,
a linear penalty term on the control, that is, an L1−type functional often leads to a more reasonable
modeling of the cost. In [16] the authors also argued that the L1−formulation should be preferred
over the L2−case to model control cost of mass vaccination campaigns in the context of infectious
diseases. Nevertheless, there can be cases, for instance, if there is an overwhelmed healthcare system,
where nonlinear forms of control cost are likely to occur. Still, a quadratic term is not necessarily
the best modeling choice. Even if L1−objectives are, in general, more appropriate than the L2−ones
for applications in biology, the L1−formulation of the OCP is usually challenging and involves the
analysis of singular and bang-bang controls. In light of these issues, more attention should be paid to
the appropriate selection of the objective functional and its impact on the optimal control solution.

In the present work, a multigroup Kermack-McKendrick-type model is proposed as a parsimonious
approach to include population heterogeneity in the spread of an STI. Particular attention is given to
the two-group case where the contact network only includes one non-core group and one core group.
Contact patterns in the model consider preferential mixing as an improvement over the commonly used
homogeneous mixing [14]. Two time-dependent vaccination rates are introduced, one for each group.
The OCT is then used as a tool to develop an optimal immunization program for STIs that takes into
account the presence of a core group within the population. The resulting targeted vaccination program
will aim to control the spread of the infection by finding, for each group, the optimal vaccine allocation
in terms of order and distribution, but at the same time minimizing the total vaccine deployment. To
achieve this goal, we formulate an OCP that considers both L1− and L2−formulations to investigate
how the objective impacts the resulting optimal control. It is important to remark that the qualitative
analysis for different functionals is a nontrivial task by itself. Furthermore, since the value of the
weight parameters in the objective function can play a significant role in the qualitative properties of
the optimal control solutions [22, 26, 43], the impact of the weights on the solution is also investigated.

In the next section, we introduce the model, compute the basic reproduction number and prove that
the model is epidemiologically well-posed. The analytical properties of the optimal control problems
are discussed in Section 3. In the L2−formulation the control characterization is achieved using the
Maximum Principle’s first-order necessary conditions for optimality. In the L1−formulation, the study
of singular arcs is investigated via the generalized Legendre-Clebsch condition. In Section 4, the
analytical results from the previous sections are complemented with the numerical computation of the
optimal control for a range of scenarios of interest. The discussion of our results is presented in Section
5.

2



2 A multigroup SIR-type model with time-dependent vacci-
nation

In the general case, our system can be described by a SIR-type model in a population N divided
into n mutually exclusive groups of size Ni (i = 1, 2, . . . , n) with heterogeneous sexual activity levels.
Each group Ni is further divided according to infection status as susceptible (Si), infectious (Ii), and
immune individuals (Ri). The transmission dynamics of the system are governed by the following
system of 3n ordinary differential equations (ODEs):

dSi

dt
= µNi − Si

n∑
j=1

paicij
Ij
Nj

− (ui(t) + µ)Si + αRi,

dIi
dt

= Si

n∑
j=1

paicij
Ij
Nj

− (γ + µ)Ii,

dRi

dt
= ui(t)Si + γIi − (µ+ α)Ri,

(1)

where all the parameters and initial conditions are nonnegative. Individuals are recruited into the
susceptible class Si of the group Ni at rate µ, assumed to be equal to the death rate, so each group
has a constant population size Ni. After infection, individuals in class Ii recover naturally at a rate
γ and move to the corresponding immune class Ri (i = 1, 2, . . . , n). Furthermore, immunization by a
vaccine removes individuals from the susceptible class with a time-dependent vaccination rate ui(t).
These individuals go the immune class Ri (natural and vaccine-induced immunity are assumed to act
similarly). Loss of immunity occurs at a rate α proportional to the number of immune individuals, thus
1/(α + µ) is the average duration that people stay in the immune class. The acquisition of infection
occurs with the force of infection given by

n∑
j=1

paicij
Ij
Nj

. (2)

Here, p is the transmission probability per contact (assumed to be constant across groups), and ai
represents the average per capita contact rates of group i (i = 1, 2, . . . , n) i.e. sexual activity levels.
The coefficients cij model the mixing among groups and are defined as the proportion of contacts that
individuals in group i have with group j. The matrix C = [(cij)] is the mixing matrix or contact fraction
matrix. A range of possible mixing patterns of sexual contacts with different degrees of assortative
(within sexual activity groups) and disassortative (between sexual activity groups) mixing are possible
[38]. We assume the so-called preferential mixing that was first introduced in [21], hence the elements
of the contact fraction matrix are

cij = ϵiδij + (1− ϵi)
(1− ϵj)ajNj∑n
k=1(1− ϵk)akNk

, i, j = 1, 2, . . . , n (3)

where ϵi is the fraction of within-group i contacts also called preference level of group i, and δij is the
Kronecker delta (δij = 1 when i = j and δij = 0 otherwise). The coefficients cij given by (3) satisfy
the constraints for mixing functions particularly aiNicij = ajNjcji (i, j = 1, 2 . . . , n) [14].

In this study, we are interested in a particular case of model (1) that considers only two groups.
The size of group N1 is assumed to be way bigger than that of the group N2, hence N1 = (1−f)N , and
N2 = fN with 0 < f ≪ 1 being the fraction of the population that belongs to the core group. Group
N1 is characterized by a low sexual activity level in comparison with the activity level of group N2,
thus a1 < a2. In other words, group N2 constitutes a core group within the population, so individuals
in this group have high levels of sexual activity, and hence may be more likely to acquire and transmit
the infection. A high degree of assortative mixing is also assumed so within-group contacts are stronger
than between-group contacts. Therefore, 0.5 < ϵi < 1 (i = 1, 2). Under these conditions the two-group
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model is defined by the following system:

dS1

dt
= µN1 −

(
c11

I1
N1

+ c12
I2
N2

)
pa1S1 − (u1(t) + µ)S1 + αR1,

dI1
dt

=

(
c11

I1
N1

+ c12
I2
N2

)
pa1S1 − (γ + µ)I1,

dR1

dt
= u1(t)S1 + γI1 − (µ+ α)R1,

dS2

dt
= µN2 −

(
c21

I1
N1

+ c22
I2
N2

)
pa2S2 − (u2(t) + µ)S2 + αR2,

dI2
dt

=

(
c21

I1
N1

+ c22
I2
N2

)
pa2S2 − (γ + µ)I2,

dR2

dt
= u2(t)S2 + γI2 − (µ+ α)R2,

(4)

subject to non-negative initial conditions

Si(0) = Si0 > 0, Ii(0) = Ii0 > 0, Ri(0) = Ri0 ≥ 0, Si0 + Ii0 +Ri0 = Ni, (i = 1, 2). (5)

Baseline parameter values for system (4) are summarized in Table 1. Mean values for some of the
model parameters are obtained using sexual behavior data from [28] and estimations from previous
studies of STIs (see [13, 18, 35] and the references therein). Instead of focusing on a single disease, we
consider a set of scenarios of interest that are feasible for the most frequent STIs. Furthermore, since
in the case of sub-critical dynamics, the use of control is not appealing, contact rates are adjusted to
produce super-critical epidemiological dynamics. The core group is assumed to be three times more
active in terms of per capita contact rate than the non-core group (see Table 1).

In model (4), u1(t) and u2(t) are time-dependent vaccination rates for the low-risk (N1) and high-
risk (N2) groups, respectively, and will be called controls. Due to logistic limitations, under any realistic
scenario, these vaccination rates should be constrained under a maximum vaccination rate umax per
unit of time e.g. daily vaccination rate. As shown in [35], a vaccination rate u can be approximated
by u = − ln(1 − C(τ))/τ where C(τ) is the immunization coverage at time τ . We consider a case in
which health authorities can achieve a vaccination coverage C(τ) = 80% of the population in one year
(τ = 365 days), then the vaccination rate is equal to u ≈ 1.60/365 per day. Therefore, the vaccination
rates are subject to constraints

u1(t), u2(t) ∈ [0, umax], umax = 1.60/365 ≈ 0.0043. (6)

We are interested in studying the dynamics of model (4) over a finite time interval [0, tf ]. Further-
more, if the initial number of infected individuals is zero, then the infectious classes remain with zero
individuals during the whole time period. Therefore, in an epidemiologically appealing case, one needs
to consider positive initial conditions for the susceptible and infectious classes. Let us define the state
vector as X = (S1, I1, R1, S2, I2, R2), then the biologically feasible region for system (4) is

Ω =
{
X ∈ R6

+ : Ni = Si(t) + Ii(t) +Ri(t) > 0, Si(t) > 0, Ii(t) > 0, Ri(t) ≥ 0; t ∈ [0, tf ] (i = 1, 2)
}
.

The set of admissible controls D0(tf ) is defined as the set of all possible Lebesgue-measurable functions
U = (u1(t), u2(t)), which satisfy conditions (6) for almost all t ∈ [0, tf ].

Let X0 = (S10, I10, R10, S20, I20, R20) ∈ Ω, and U(t) ∈ D0(tf ). Observe that model equations
for the infectious classes in (4) present the equilibrium solution I1(t) = I2(t) = 0, and hence if
I10, I20 > 0, as long as the solution exists, the infected classes I1(t) and I2(t) will remain positive.
If Si(0) = Si0 > 0 (i = 1, 2), define t1 = inf{t > 0 : Si(t) = 0}. If t1 is finite, then Si(t1) = 0
implies Ṡi(t1) = µNi+αRi(t1) > 0, which is a contradiction so Si(t) remains positive for all t ∈ [0, tf ].

Likewise, if Ri(t) = 0, then Ṙi(t) > 0 for all t ∈ [0, tf ], therefore Ri (i = 1, 2) will remain nonnegative.
Hence, if the initial condition satisfies X0 ∈ Ω, then the solution of model (4) cannot leave the region
Ω in forward time. This is summarized in the following result.

Proposition 1. Consider an initial condition for model (4) such that X0 ∈ Ω is satisfied. Then for
any admissible controls U(t) ∈ D0(tf ), the corresponding solution X(t) exists and remains in Ω for all
t ∈ [0, tf ].
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Therefore the region Ω is a positively invariant set under the flow of model (4) and the system
is epidemiologically well-posed. Stability properties for the equilibrium points of system (1) in the
no-control case (i.e. with u1(t) = u2(t) = 0 for all t) have been discussed in previous studies [21]
showing that: (i) if R0 < 1, then system (1) has a unique disease-free equilibrium which is globally
asymptotically stable so the disease dies out, and (ii) ifR0 > 1, then there exists an endemic equilibrium
that is globally asymptotically stable thus the disease persists in the population. In the case of the
2-group model (4), the basic reproduction number R0 can be obtained as the spectral radius of the
next-generation matrix

K =


pa1c11
γ + µ

pa1c12
γ + µ

N1

N2

pa2c21
γ + µ

N2

N1

pa2c22
γ + µ

 .
The analytical expression for R0 is

R0 =
1

2

p

γ + µ

(
a1c11 + a2c22 +

√
(a1c11 − a2c22)2 + 4a1a2c12c21

)
. (7)

It is easy to see that R0 is an increasing function of the transmission probability per contact p and the
average per capita contact rates ai (i = 1, 2). Furthermore, observing that N1/N2 = (1 − f)/f > 1
and N2/N1 = f/(1 − f) < 1, a direct computation can show that ∂R0/∂f > 0 so the value of R0

increases as the fraction f in the core group increases (see Figure 1(a)). The case of super-critical
epidemiological dynamics (R0 = 2.09 > 1) is shown in Figure 1(b).

Parameters Mean value – Range

Sexually active life expectancy (1/µ) 50 – (30, 60) year
Average per capita contact rate of group 1 (a1) 30 – (0, 100) year−1

Average per capita contact rate of group 2 (a2) 90 – (0, 100) year−1

Transmission probability per contact (p) 0.50 – (0, 1)
Fraction of within-group 1 contacts (ϵ1) 0.80 – (0, 1)
Fraction of within-group 2 contacts (ϵ2) 0.60 – (0, 1)
Fraction of individuals that belong to the core group N2 (f) 0.20 – (0, 0.5)
Recovery rate (α) 1/365 – (1/3650, 1/30) days
Duration of the infectious period (1/γ) 20 – (10, 100) days
Vaccination rates ui (i = 1, 2) 0.50 – (0.0, 1.60) year−1

Table 1: Baseline parameters for model (4). Observe that the values for the coefficients cij are obtained
via their definition (3) substituting the values of the parameters ai, ϵi, and Ni (i = 1, 2). The total
population is assumed to be N = 100000.

3 Insights from optimal control theory

Here, we use OCT as a tool to develop an optimal immunization program for STIs that takes into
account the presence of a core group within the population. The resulting targeted vaccination program
will aim to control the spread of the infection while trying to minimize the total vaccine deployment.

A key issue when solving optimization problems in biological applications via OCT is the choice
of the objective functional to be minimized or maximized [11, 16, 20, 26, 43]. In the context of
epidemiological applications, the objective functional typically falls into the following general form e.g.
[3, 4, 5, 7, 15, 23, 30, 35, 36, 44, 45, 48]:

J(U) =

∫ tf

0

L(X(t)) + σ(U(t))dt. (8)

Here L is a function that allows the minimization of undesirable state variables. For epidemiological
models, one often needs to minimize the prevalence of the infection, so L is assumed to be proportional
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Figure 1: (a) The basic reproduction number as a function of the fraction f of individuals that belong
to the core group N2. (b) Super-critical dynamics for the fraction Ii/Ni of infected individuals in each
group (i = 1, 2). Model parameters are taken from Table 1.

to the infectious class. The function σ aims to optimize the use of the control. An objective of the
form (8) has as a main goal minimization of the disease burden but also the use of control. We remark
that alternative formulations can also be found in the literature, for instance, using an isoperimetric
constraint to model a specific health budget or minimum-time control problems [1, 20, 37] but these
examples are relatively uncommon, and the majority of OC studies in epidemiology use an objective
within the general form (8).

The function σ(U(t)) in (8) is usually defined as σ(U) =
∑

j Bju
k
j (t) with k = 1 or k = 2, hence,

the control cost is a weighted L1− or L2−norm, respectively. The choice of L1− or L2−norm in
σ(U(t)) is not inconsequential and is a source of constant controversy [16, 26]. The issue is that in the
majority of biological applications, the actual form of the costs and the dependency on these controls
are subject to the modeler’s interpretation and can barely be defined with an acceptable degree of
accuracy. We consider both L1− and L2−objective functionals as an attempt to explore the trade-offs
between control dynamics and the functional form characterizing optimality. To this end, we propose
the next objective functional:

Jk(U) =

∫ tf

0

A1
I1(t)

N1
+A2

I2(t)

N2
+B1,ku

k
1(t) +B2,ku

k
2(t)dt (k = 1, 2). (9)

The OCP is to minimize the objective functional Jk(U) over the set of admissible controls U(t) ∈ D0(tf )
subject to the dynamics of the model (4). The weight parameters Ai > 0 and Bi,k > 0 (i, k = 1, 2)
are meaningful variables of choice to balance the impact of the presence of infected individuals and
the use of control. The value of the weights can play a significant role in the qualitative properties of
the optimal control solutions and hence should be calibrated with care to obtain meaningful results.
An appropriate weighting is particularly relevant when considering both linear and quadratic control
terms. For example, in model (4) the vaccination rates satisfy 0 ≤ u2i ≤ ui ≤ umax < 1 (i = 1, 2),
so in this case L1−cost is proportionally more penalising than L2−cost. Therefore, to make a fair
comparison between formulations, we allow the weights Bi,k (i, k = 1, 2) to vary depending on the
control norm chosen.

3.1 The existence of the optimal control

The existence of the optimal control comes as a direct result of Theorem 4.1 in [12, Chapter III]. The
result is formalized as follows.

Theorem 1. Consider the objective functional (9) subject to model dynamics (4) with the initial
conditions (5). Then there exists an optimal pair of controls U∗ = (u∗1, u

∗
2) and a corresponding

optimal state X∗ that minimizes the objective function Jk(U) over set of admissible controls D0(tf )
for all k ∈ {1, 2}.
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Proof. The following assertions are verified:

(A1) The set of controls and corresponding state variables is nonempty. Since the set of admissible
controls D0(tf ) and the right-hand side of model (4) is bounded, the Carathéodory Theorem
[29, Chapter IX, Theorem 9.2.1] ensures that the set of admissible state variables and control
variables is not empty.

(A2) The admissible control set D0(tf ) is convex and closed. Observe that D0(tf ) is closed and convex
by definition.

(A3) The right-hand side of the state system (4) is bounded by a linear function in states and control
variables. This follows from the fact that the right-hand side of model (4) is linear in the controls
and the solution of (4) is bounded.

(A4) The integrand of the objective functional Lk(X,U) = L(X) + σ(U) is convex on the set D0(tf ).
Observe that the Hessian matrix of Lk for all k ∈ {1, 2} as function of the control is positive
semi-definite on D0(tf ).

(A5) There exists constants ω1 > 0, ω2 and ρ > 1, such that:

Lk(X,U) ≥ ω1∥(u1, u2)∥ρ − ω2,∀k ∈ {1, 2}. (10)

According to Proposition 1, ∥X∥ > 0. Moreover, bounds (6) state that 0 ≤ u1, u2 ≤ umax < 1
so u1 ≥ u21 and u2 ≥ u22. Therefore, for all k ∈ {1, 2},

Lk(X,U) ≥ σ(U) ≥ min(B1,k, B2,k)(u
2
1 + u22)

Hence, choosing ω1 = min(B1,k, B2,k) > 0, ω2 = 0 and ρ = 2 > 1, condition (10) is satisfied.

3.2 Necessary conditions via the Maximum Principle

We obtain the necessary conditions for optimality of a controlled trajectory (X∗, U∗) via the Maximum
Principle. To this end, we consider the control Hamiltonian Hk defined as follows

Hk(X(t), U(t), λ(t), λ0) = λ0

(
A1

I1(t)

N1
+A2

I2(t)

N2
+B1,ku

k
1(t) +B2,ku

k
2(t)

)
+ ⟨λ(t),Φ(X(t), U(t))⟩

(11)
where Φ(X(t), U(t)) is the right-hand side of model (4), so X ′(t) = Φ(X(t), U(t)) and ⟨·, ·⟩ denotes
the usual dot product. The multiplier λ0 is a non-negative constant and λ(t) = (λ1(t), ..., λ6(t)) are
piecewise differentiable adjoint variables which have a classical interpretation in OCP as the marginal
valuation of the associated state variable at time t [22]. We write Hk to remark the explicit de-
pendence on k for the Hamiltonian. The Maximum Principle converts the OCP into a problem of
minimizing pointwise the Hamiltonian over the set of admissible controls U(t) ∈ D0(tf ) along the
optimal controlled trajectory X∗(t), hence

Hk(X
∗(t), U∗(t), λ(t), λ0) ≤ Hk(X

∗(t), U(t), λ(t), λ0), ∀ U(t) ∈ D0(tf ), (12)

and Hk(X
∗(t), U∗(t), λ(t), λ0) = const, so the Hamiltonian is constant with minimim value along the

optimal solution. Furthermore, the co-states λi(t) (i = 1, . . . , 6) satisfy the following adjoint system

dλi
dt

= −∂Hk(X
∗(t), U∗(t), λ(t), λ0)

∂Xi
, λi(tf ) = 0. (13)
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The explicit adjoint system is thus as follows

dλ1
dt

= λ1

[(
c11

I1
N1

+ c12
I2
N2

)
pa1 + (u1(t) + µ)

]
− λ2

(
c11

I1
N1

+ c12
I2
N2

)
pa1 − λ3u1(t),

dλ2
dt

= −λ0
A1

N1
+ λ1c11pa1

S1

N1
− λ2

(
c11pa1

S1

N1
− (γ + µ)

)
− λ3γ + (λ4 − λ5)c21pa2

S2

N1
,

dλ3
dt

= −λ1α+ λ3(µ+ α),

dλ4
dt

= λ4

[(
c21

I1
N1

+ c22
I2
N2

)
pa2 + (u2(t) + µ)

]
− λ5

(
c21

I1
N1

+ c22
I2
N2

)
pa2 − λ6u2(t),

dλ5
dt

= −λ0
A2

N2
+ (λ1 − λ2)c12pa1

S1

N2
+ λ4c22pa2

S2

N2
− λ5

(
c22pa2

S2

N2
− (γ + µ)

)
− λ6γ,

dλ6
dt

= −λ4α+ λ6(µ+ α),

(14)

subject to the terminal condition λi(tf ) = 0 for i = 1, 2, ..., 6.
From the Maximum Principle it follows that λ0 and λ(t) do not vanish simultaneously for an optimal

pair (X∗(t), U∗(t)). Therefore, the terminal condition in (13) implies that λ0 > 0. Normal extremals
are considered assuming λ0 = 1 [25]. Hence, λ0 will be omitted in the notation subsequently. Since
the Hamiltonian (11) is affine in the controls and the control set is compact, the minimum conditions
break into separate scalar minimization problems via the functions

ψi,k(t) =
∂Hk(X

∗(t), U∗(t), λ(t))

∂Ui
, (i, k = 1, 2). (15)

The first-order optimality condition ψi,k(t) = 0, must be satisfied so the Hamiltonian has a minimum
in the set of admissible controls. The epidemic model (4) and the adjoint system (14) constitute a
two-point boundary value problem that is coupled with the OCP via the optimality condition.

3.2.1 The case of an L2−objective functional

In the case of an L2−objective functional (k = 2), the first-order optimality condition can be used to
obtain the control characterization as follows

ψ1,2(t) =
∂H2(X

∗(t), U∗(t), λ(t))

∂u1
= 2B1,2u

∗
1(t)− λ1(t)S

∗
1 (t) + λ3(t)S

∗
1 (t) = 0,

ψ2,2(t) =
∂H2(X

∗(t), U∗(t), λ(t))

∂u2
= 2B2,2u

∗
2(t)− λ4(t)S

∗
2 (t) + λ6(t)S

∗
2 (t) = 0.

(16)

Considering the lower and upper bounds for the controls and the optimality condition (16), we
obtain the following characterization of the optimal controls:

u∗1,2(t) = min

{
max

{
0,

(λ1(t)− λ3(t))S
∗
1 (t)

2B1,2

}
, umax

}
, (17)

u∗2,2(t) = min

{
max

{
0,

(λ4(t)− λ6(t))S
∗
2 (t)

2B2,2

}
, umax

}
. (18)

3.2.2 The case of an L1−objective functional

Now, the case of an L1−objective functional is considered (k = 1). Under these conditions, the ψi,1

(i = 1, 2) functions are known as switching functions because if these functions are different from zero,
the optimal controls satisfy

u∗i,1(t) =

{
0, ψi,1(t) > 0
umax, ψi,1(t) < 0

(19)

where

ψ1,1(t) = B1,1 − (λ1(t)− λ3(t))S1(t),

ψ2,1(t) = B2,1 − (λ4(t)− λ6(t))S2(t).
(20)
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Observe that in the L1−case, the optimality condition ψi,1 = 0 (i = 1, 2) does not depend on the
control functions and hence we cannot directly obtain the control characterization. The bang-bang
solution of the problem is (19), nevertheless, if

ψi,1(t) = 0, t ∈ Ii ⊂ [0, tf ] (i = 1, 2) (21)

where Ii ⊂ [0, tf ] is an open interval, then singular controls and arcs can appear [6, 10, 17]. Let us
assume that (21) holds to investigate the singular solution. First, observe that ψ1,1(t) = 0 implies that

λ1(t)− λ3(t) = B1,1/S1(t) > 0. (22)

In the singular interval I1 the first and second derivatives of ψ1,1(t) also vanish, hence using the chain
rule

0 =
dψ1,1

dt
= S1

(
dλ3
dt

− dλ1
dt

)
+ (λ3 − λ1)

dS1

dt
=

S1

(
−λ1

[(
c11

I1
N1

+ c12
I2
N2

)
pa1 + (u1(t) + µ+ α)

]
+ λ2

(
c11

I1
N1

+ c12
I2
N2

)
pa1 + λ3(u1(t) + µ+ α)

)
+ (λ3 − λ1)

(
µN1 −

(
c11

I1
N1

+ c12
I2
N2

)
pa1S1 − (u1(t) + µ)S1 + αR1

)
=

S1(λ2 − λ3)

(
c11

I1
N1

+ c12
I2
N2

)
pa1 + (λ3 − λ1)(µN1 + αR1)− αB1,1

Solving for λ2 − λ3 in the above equation:

(λ2 − λ3)S1pa1

(
c11

I1
N1

+ c12
I2
N2

)
= (λ1 − λ3)(µN1 + αR1) + αB1,1 > 0. (23)

Lengthy computations allow us to obtain
d2ψ1,1

dt2
= F1(X,λ) + G1(X,λ)u1 where the functions

F1(X,λ) and G1(X,λ) depend only on states and adjoint variables (and model parameters). As a
consequence,

∂

∂u1

d2ψ1,1

dt2
= G1(X,λ) = (λ3 − λ1)(N1µ+ αR1)− αB1,1 + S1pa1(λ3 − λ2)

(
c11

I1
N1

+ c12
I2
N2

)
.

Using the expressions (22) and (23) we get

− ∂

∂u1

d2ψ1,1

dt2
= 2[(λ1 − λ3)(µN1 + αR1) + αB1,1] > 0.

Analogous computations show that
d2ψ2,1

dt2
= F2(X,λ)+G2(X,λ)u2 and − ∂

∂u2

d2ψ2,1

dt2
> 0. Therefore,

the order of the singularity κi of control ui is κi = 1 (i = 1, 2) [10].
The generalized Legendre-Clebsch conditions [10, 24] state that if controls u1, u2 are singular of

order 1 on an interval I, then the matrix M whose entries are given by

Mi,j = (−1)
∂

∂ui

d2

dt2
∂H1

∂uj
= − ∂

∂ui

d2ψj,1

dt2
, (i, j = 1, 2)

must be non-negative definite for the control to be minimizing. For our model, the non-diagonal entries
of the above matrix satisfy

M1,2 = − ∂

∂u1

d2ψ2,1

dt2
= 0, M2,1 = − ∂

∂u2

d2ψ1,1

dt2
= 0.

Hence, the Legendre-Clebsch condition implies that M1,1 = − ∂

∂u1

d2ψ1,1

dt2
and M2,2 = − ∂

∂u2

d2ψ2,1

dt2
should be greater or equal to zero, which is true in our case with strict inequality.
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Since the generalized Legendre-Clebsch condition holds we can solve
d2ψ1,1

dt2
= 0 with respect to

the control variable u1(t) to get its singular part, getting

u1,sing =
f1(X,λ)

g1(X,λ)
,

where

f1(X,λ) = (N1N2c12I2 +N2
2 c11I1)(a2c21pS2(λ4 − λ5)−A1)pa1S1

+ (N2
1N

2
2α

2(R1 + S1 + γI1) +N3
1N

2
2 (2αµ+ µ2)− a21c11p

2N2S
2
1(N1c12I2 +N2c11I1))(λ3 − λ1)

+ a1pN1(N1N2c12I2 +N2
2 c11I1){(µN1 + αR1)(λ1 − 2λ2 + λ3) + αS1(λ1 + λ2 − 2λ3) + µS1(λ3 − λ2)}

+ {a1(N1c12I2 +N2c11I1)
2 − a2c12N1S2(N1c22I2 +N2c21I1)}a1p2S1(λ3 − λ2)

and

g1(X,λ) = N1N2 ([N1µ+ α(R1 + S1)]N1N2(λ1 − λ3) + (N1c12I2 +N2c11I1)a1pS1(λ2 − λ3))

Observe that the inequalities (22) and (23) imply that g1(X,λ) is never zero in all t ∈ [0, tf ]. A similar
analysis can be used to obtain the singular part u2,sing(t).

4 Numerical results

In the case of the L2−formulation, the standard forward-backward sweep method (FBSM) algorithm
can be used to obtain numerical approximations of the optimal control solution [27]. Nevertheless,
in the L1−formulation the presence of singular arcs may cause convergence problems for the FBSM
[27, 26]. Here, the numerical solution to the OCP is obtained by employing a large-scale nonlinear
programming method called IPOPT (short for Interior Point OPTimizer) that implements an interior-
point algorithm with a filter line-search method [46]. It is important to remark that, a priori, there is no
guarantee that a numerical approximation of the control is optimal as only extremals are obtained [26].
For the L2−formulation, sufficient conditions for strong local optimality can be verified by addressing
the issue of conjugate points as developed in [39].

Several numerical scenarios are investigated to evaluate the impact of the form of the dependency
of the objective functional on the considered controls (L2− or L1−norm). It is important to remark
that the parameters Ai and Bi,k (i, k = 1, 2) are meaningful variables of choice to weigh the relative
contribution of each term in the objective functional. For example, if the control weights Bi,k (i = 1, 2)
are too high the costs of the intervention usually limit in excess the use of control, and no vaccines will
be given. On the other hand, if the value of the control weights is too low, it is expected that the optimal
control would suggest the use of control at the maximum rate for long periods of time. Furthermore,
when considering both linear and quadratic control terms, extra care should be put to select appropriate
weights. For instance, in model (4) the vaccination rates satisfy 0 ≤ u2i ≤ ui ≤ umax < 1 (i = 1, 2),
therefore, in this case L1−cost is proportionally more penalising than L2−cost.

For the sake of clarity, in the numerical experiments, it is assumed that the cost of having infected
individuals is the same for both the non-core and core group. This implies that A1 = A2 > 0. Likewise,
it is assumed that B1,k = B2,k > 0 (k = 1, 2) so for all cases, the cost of using vaccines is also the same
for both groups. This is a realistic assumption since the cost of vaccines does not depend on the level
of sexual activity. Under these conditions, minimization of the objective functional (9) is equivalent
to minimize

J̃k(U) =

∫ tf

0

I1(t)

N1
+
I2(t)

N2
+Wk

(
uk1(t) + uk2(t)

)
dt, (k = 1, 2) (24)

where Wk (k = 1, 2) is a positive parameter. One critical observation is that the terms uki in (24) lie
in the intervals [0, umax] and [0, u2max] with umax ≈ 0.0043 and u2max ≈ 0.000018 for k = 1 and k = 2,
respectively. Therefore, one way to have a fair comparison between the L1− and L2−formulations is
to calibrate the weights such that the maximum cost for both formulations is approximately the same.
For our model parameters, one can assume 240W1 =W2 so

W1umax ≈W2u
2
max. (25)

10



0 200 400 600 800 1000
Time (days)

0.000

0.001

0.002

0.003

0.004

Non-core group vaccination u*
1(t)

L2
L1

0 200 400 600 800 1000
Time (days)

Core group vaccination u*
2(t)

L2
L1

0 200 400 600 800 1000
Time (days)

0.000

0.005

0.010

0.015
Non-core group I1/N1

L2
L1

0 200 400 600 800 1000
Time (days)

0.00

0.02

0.04

0.06

Core group I2/N2

L2
L1

Figure 2: (First row) Vaccination rates u∗1(t) (first column) and u∗2(t) (second column) for the non-core
group and the core group, respectively. (Second row) Associated controlled infectious classes. The
shaded area illustrates the difference between the L2− and L1−formulations. The weights are fixed as
W1 =W2 = 15.

We need to remark that if the weights are chosen independently of the control formulation in the
objective, then the quantitative properties of the solution of the OCP can differ considerably between
the formulations. An illustrative example of this scenario is shown in Figure 2 where the weights are
chosen equally for both formulations W1 = W2 = 15. The numerical approximation for the optimal
control profiles and the associated infectious classes are shown in the first and second rows in Figure
2, respectively. Each plot presents the solution for both the L1− and the L2−formulation and the
shaded area illustrates the difference between formulations. Observe that the optimal vaccination rates
in the L2− are radically higher than in the L1−case. In quantitative terms, the optimal vaccination
rate for the core group u∗2(t) should be maintained at the maximum rate for approximately 700 days
for the L2−formulation and less than 100 days for the L1−formulation. For the optimal vaccination
rate of the non-core group u∗1(t), the maximum rate should be given for more than 300 days in the
L2−formulation but this rate should be zero in the whole time horizon for the L1−formulation. As a
consequence, the prevalence levels are substantially lower for the L2−formulation (see Figure 2).

Now we propose the following three scenarios for the weights such that (25) is fulfilled:

(I)W1 = 0.1,W2 = 24, (II)W1 = 1,W2 = 240, (III)W1 = 30,W2 = 7200 (26)

Observe that the fractions Ii/Ni in the objective functional (24) lie, by definition, between zero and one;
yet, for our parameter values the maximum peak size is below 0.2 (see Figure 1(b)) so Ii/Ni ∈ [0, 0.2)
(i = 1, 2). Hence, scenario (I) implies that the maximum cost of the vaccination program is significantly
less expensive than the maximum cost of infection, whereas in scenario (II) the cost of vaccines is just
a bit less expensive than the cost of infection, and in (III) both costs are of similar magnitudes. The
numerical approximation for the optimal control profiles is shown in Figure 3. Row i shows the solution
for Case i (i = I, II, III).

In case I (first row in Figure 3), the control profiles for the L1−solution follow a bang structure where
the vaccination rate for the core group should be maintained for approximately 800 days and almost
400 days for the non-core group. The control profiles for the L2−solution maintain the maximum rates
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Figure 3: Vaccination rates u∗1(t) for the non-core group (first column) and the core group u∗2(t). Row
i shows the solution for Case i (i = I, II, III). Each plot presents the optimal control profiles for both
the L1− and the L2−formulation.
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Figure 4: Associated infectious classes of the model (4) corresponding to the vaccination rates presented
in Figure 3. The dynamics of the non-core and core groups are shown in the first and second columns,
respectively. Row i shows the solution for Case i (i = I, II, III). Each plot presents the states for
both the L1− and the L2−formulation.
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for less time than the L1−control profiles but the L2−controls are gradually reduced to zero at the end
of the time interval. Similar dynamics are observed for case II (second row in Figure 3) but this time
the vaccination rates are maintained for less time due to the increase in the value of the weights and the
L1−solution presents a singular arc. Overall, the total number of vaccines given for both formulations
is very close and the L2-control follows the same qualitative properties of the L1−control. Furthermore,
the associated infectious classes are practically the same for both formulations and each case (see the
first and second rows in Figure 4 for case I and case II, respectively). In contrast, for case III the
behavior of the control profiles (third row in Figure 3) and the associated infectious classes (third row
in Figure 4) differ significantly. As a matter of fact, the optimal control for the L1−formulation is
not to vaccinate any group at all. Correspondingly, the infectious classes follow practically the same
dynamics as in the no-control case (see Figure 1 (b)). Whereas the L2−control suggests vaccinating
both groups but at lower doses with non-monotone behavior so the vaccination rates decrease the
presence of infected individuals in comparison with the no-control case but not enough to eradicate
the infection as in cases I and II.

5 Discussion

The choice of the objective functional in optimization problems coming from biomedical and epidemi-
ological applications plays a key role in optimal control outcomes. Nevertheless, in several real-life
applications, the actual form of the cost and their dependency on the controls can be uncertain or at
least difficult to be defined with an acceptable degree of accuracy. As a result, proposing an appropri-
ate functional form for the objective is a major and habitual challenge in optimal control applications
[11, 16, 20, 26, 43]. From a mathematical point of view, it is essential to investigate the robustness
and reliability of the outcome with respect to perturbations in the functional form of the objective.
Although there are already some advances in the theory of robustness for OCPs much remains to be
understood and the relevance of potential applications urges us to explore this problem further [40].

In this paper, we explored the impact of the objective functional on the structure of the optimal
control and associated optimal states for a compartmental epidemic model. Specifically, a two-group
Kermack-McKendrick-type model where the contact network only includes one non-core and one core
group is proposed as a parsimonious approach to consider heterogeneity in the spread of an STI. The so-
called preferential mixing governs contact patterns in the model as an improvement over the commonly
used homogeneous mixing. The OCT is used to investigate the optimal targeted immunization program
to reduce the spread of the infection while minimizing the total vaccine deployment. We formulate
an OCP that considers both an L2−type objective in which the control cost is postulated to be
proportional to a sum of the squares of the considered controls and an L1−type objective with a
linear dependence on the control. For biological systems the L1−formulation is usually preferred
from a modeling perspective in the sense that leads to a more realistic interpretation of the cost
whereas the L2−formulation is more amenable to mathematical analysis and facilitates the numerical
approximation of the optimal control solution [16, 26, 43]. Besides the choice of the functional form
for the objective, the weight parameters should be properly calibrated to balance the presence of
undesirable state variables and the use of control. If the value of the control weights is too high the
costs of the intervention usually limit in excess the use of control, and no control will be applied. On
the other hand, if the value of the control weights is too low, the optimal control normally suggests
the use of control at the maximum rate for long periods of time. The properties of the optimal control
solution are hence investigated for a practical range of weight parameters.

For the scenarios explored in this work, the optimal vaccination policy for both the L1− and the
L2−formulation share one important qualitative property, that is, immunization of the core group
should be prioritized by policymakers to achieve a fast reduction of the epidemic. However, quan-
titative aspects of this result can be significantly affected depending on the objective weightings.
Overall, our results suggest that the optimal control profiles are reasonably robust with respect to
the L1− or L2−formulation when the monetary cost of the vaccination policy is substantially lower
than the morbidity cost associated with the reduction in health and well-being i.e. the cost of in-
fection. Nevertheless, if this is not the case the optimal control profiles can be radically different for
each formulation. Furthermore, extra care should be put to select appropriate weights when con-
sidering both linear and quadratic control terms. For instance, in model (4) the vaccination rates
satisfy 0 ≤ u2i ≤ ui ≤ umax < 1 (i = 1, 2). Therefore, in this case, L1−cost is proportionally more
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penalizing than L2−cost, and selecting the same weights for both formulations results in radically
different behavior in the optimal control solution for each formulation. In many epidemiological sce-
narios the monetary costs of a healthcare intervention, such as a vaccination program, are usually small
in comparison with the potential losses that an epidemic might inflict. For instance, several studies
have found that COVID-19 vaccination programs were economically efficient and reduced the overall
healthcare costs compared with a scenario without vaccines even with conservative estimates of vaccine
effectiveness and high vaccination costs e.g. [2, 31, 32, 33, 47]. Under these conditions, our research
suggests that the optimal control results obtained for the classical L2−formulation are still able to
provide useful information and aid decision-making for many epidemiological settings. Nevertheless,
we must remark again that this result is only valid if the intervention cost is clearly lower than the
economic cost of illness.

While we examined optimizing objective functionals with either purely L1 or L2 control costs, a
hybrid formulation incorporating both can also provide a realistic representation of the relationship
between vaccination coverage and actual costs in many scenarios. For example, nonlinear forms of
control costs are expected to occur if there is an overload in the healthcare system. With a hybrid
L1 −L2 objective, combinations of bang-bang (discrete) and continuous controls are possible and may
achieve greater health benefits (e.g. infections averted) at lower overall costs than either pure L1 or L2

policies. Hence, investigating the properties of hybrid L1 − L2 objectives is an important avenue for
future research but always bearing in mind that the exponents in the objective can have an uncertain
biological interpretation and should be chosen appropriately to achieve an optimal control structure
that is feasible to be applied in practice.
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