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Abstract

This work proposes a novel supervised learning approach to identify damage in operating bridge structures.

We propose a method to introduce the effect of environmental and operational conditions into the synthetic

damage scenarios employed for training a Deep Neural Network, which is applicable to large-scale complex

structures. We apply a clustering technique based on Gaussian Mixtures to effectively select Q representative

measurements from a long-term monitoring dataset. We employ these measurements as the target response

to solve various Finite Element Model Updating problems before generating different damage scenarios. The

synthetic and experimental measurements feed two Deep Neural Networks that assess the structural health

condition in terms of damage severity and location. We demonstrate the applicability of the proposed method

with a real full-scale case study: the Infante Dom Henrique bridge in Porto. A comparative study reveals

that neglecting different environmental and operational conditions during training detracts the damage

identification task. By contrast, our method provides successful results during a synthetic validation.

Keywords: Structural Health Monitoring, Damage Identification, Deep Learning, Varying Environmental

and Operational Conditions

1. Introduction

Structural Health Monitoring (SHM) is the pro-

cess of continuously assessing the health condition

of a structure (e.g., a bridge B) based on monitor-
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ing data to detect and identify the presence of dam-

age [1]. In SHM, identifying damage is an inverse

problem where we seek to infer the true bridge con-

dition DB from the response measurements (mB)
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obtained through monitoring, such that:

DB = I(mB), (1)

where I denotes the inverse operator. According to

[2], there exist four levels in damage identification:

detection, location, quantification, and forecasting.

In large civil engineering structures, such as

bridges, raw monitoring data may come from sen-

sors of different natures and contain numerous un-

certainty sources [3]. Deciding what to measure is

critical when implementing SHM for damage identi-

fication. The measured observations mB = uB + ϵ

contain the structural response uB and measure-

ment error ϵ. They must be sensitive to damage

for the SHM strategy to be effective. In oper-

ating bridges, many phenomena exist that make

uB fluctuate over time, regardless of the health

condition. These are Environmental and Oper-

ational Conditions (EOCs) and include tempera-

ture, humidity, or traffic level [4, 5, 6]. The struc-

tural response contains two affecting terms, i.e.,

uB = f(uDam,uEOC), where uDam accounts for

the effect of damage and uEOC refers to the effect

of varying EOCs. An ideal measurement would be

sensitive to damage but poorly affected by EOCs.

However, this is not often the case, and both phe-

nomena coexist [6]. The effect of EOCs may mask

the presence of damage or raise false alerts, hinder-

ing the assessment task [7, 8, 9, 10]. Thus, han-

dling EOCs has become one of the main challenges

in transitioning SHM practices from the laboratory

domain to the full-scale application [11].

There are two broad approaches to damage

identification: model-based and data-driven [12].

Model-based approaches rely on numerical approx-

imations, mainly Finite Element (FE) models, to

assess the structural condition. They employ an

iterative procedure such as Finite Element Model

Updating (FEMU) [13]. By changing some struc-

tural properties, FEMU minimizes the discrepancy

between the analytical response and that measured

in the target structure [13, 14].

Many works employing model-based assessment

neglect the effect of varying EOCs and focus on

deterministic FEMU techniques [15, 16, 17, 18,

19, 20]. In [21], Moaveni and Behmanesh study

the effect of changing EOCs in standard FEMU

and demonstrate that uncertainty propagates dur-

ing the updating, yielding wrong predictions. A

powerful approach to tackle varying EOCs in the

model-based domain is bayesian FEMU [22, 23, 24,

25, 26, 27, 28, 29, 30]. However, the main limi-

tation of damage identification approaches based

on FEMU is its high computational cost. Solv-

ing the inverse problem requires intensive computa-

tional calculations and prevents a real-time assess-

ment [31]. Some works, such as [32, 33], employ

surrogated models to hasten the updating process.

As an alternative, data-driven methods employ

measurements from monitoring systems and pro-

vide assessment regardless of the physics governing
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the structural behavior [1]. They are suitable when

long-term monitoring data are available to estab-

lish a baseline on the reference structural condi-

tion [34]. They present the advantage of producing

close to real-time assessment since they avoid FE

simulations. Data-driven approaches have evolved

over the years, from statistical pattern recognition

methods [34, 35] to robust Artificial Intelligence-

based methods [36]. The irruption of Deep Learn-

ing (DL) methods has settled a new paradigm in

the field of SHM, given their capability to accu-

rately approximate complex problems [37, 38]. DL

methods require offline training to learn the desired

relationship and find the model parameters [37]. In

data-driven methods, handling the effect of varying

EOCs is also challenging [39, 40, 41]. The goal is

to separate the contribution of EOCs (uEOC) from

that of damage (uDam) on the measured structural

response. Methods such as Principal Component

Analysis (PCA) have been widely applied in this

task [42, 43, 44, 45, 46]. Some recent works, such as

[47] or [48], employ more sophisticated approaches

based on DL to enhance the performance of PCA.

The main limitation of data-based methods is the

impossibility of accessing data from different dam-

age scenarios. This data scarcity enforces them

to remain in the unsupervised category [49]. In

the context of SHM, unsupervised means that only

level I is attainable according to Rytter scale [2].

Several works have been published on unsuper-

vised SHM applications using data-driven methods

[50, 49, 51, 52].

In light of this situation, hybrid approaches have

been explored [53, 54, 55, 56, 57, 58, 59]. Hybrid ap-

proaches combine monitoring data with computa-

tional simulations and employ both data-driven and

model-based techniques [57]. These methods incor-

porate unmeasurable scenarios through FE simula-

tions to enrich the training phase of data-driven

methods [60]. The goal is to provide high-level

identification (level III [2]) while preserving the ad-

vantage of yielding close to real-time assessment.

However, most works addressing hybrid assessment

strategies apply to laboratory-scale structures, and

their practicability in operating bridges still needs

to be explored.

In our previous work [59], we proposed a hybrid

approach for damage identification in bridges. We

drove the methodology towards its applicability in

large structural systems under service but neglected

the effect of changing EOCs in the synthetic dam-

age scenarios used for training a Deep Neural Net-

work for real-time assessment. Here, we enhance

our previous work [59] by incorporating the effect

of varying EOCs in the synthetic damage scenar-

ios using long-term monitoring data. We apply

a clustering algorithm based on a Gaussian Mix-

ture Model (GMM) to classify healthy data into

Q groups that represent different EOCs. We iden-

tify one representative measurement for each clus-

ter and apply FEMU to obtain the Q correspond-

ing updated parametrizations. The FEMU proce-

3



dures reduce model uncertainty and approximate

the measured responses to represent each particular

EOC. We follow the procedure developed in [59] for

each updated parametrization to obtain synthetic

scenarios labeled by damage severity and location.

The synthetic database now incorporates damage

scenarios occurring under different EOCs, which is

the main contribution of this work. We finally em-

ploy two separate DNNs as the data-driven assess-

ment method. We first estimate the damage sever-

ity. If the estimated severity exceeds a predefined

threshold value indicating damage, we estimate its

location.

We found two hybrid approaches in the literature

tackling the effect of varying EOCs [61, 57]. Liu and

Zhang [61] also employ GMM to classify experimen-

tal eigenfrequencies in a cable-stayed bridge. How-

ever, they apply a model-based assessment strategy

that prevents a fast diagnostic. Instead, our hybrid

methodology provides close to real-time assessment

once the DNNs undergo adequate training. On

the other hand, Figueiredo et al. [57] propose a

hybrid methodology that combines FE simulations

and Machine Learning (ML) to assess the health

condition of a bridge. Their work remains in the

unsupervised learning domain since they include no

damage scenarios.

Our work provides a new methodology that is ap-

plicable for full-scale complex structures in the task

of damage identification under varying EOCs. Us-

ing computational parametrizations to recreate the

damage scenarios poses one limitation to this work

since it introduces modeling errors and uncertain-

ties that affect the assessment. However, we expect

these errors to be sufficiently small compared to the

effect of damage. In addition, a restrictive trade-off

exists between the number of employed measure-

ments to cover most EOC variability and the com-

putational cost of generating the database.

We validate the methodology with data from

bridge Infante Dom Henrique, a very singular arch

bridge in Porto city. Given the lack of real dam-

age scenarios, we perform synthetic testing to ex-

plore and demonstrate the capability of the pro-

posed methodology. We compare the results ob-

tained with the proposed methodology with those

of the original approach described in [59]. Results

reveal that whereas both approaches provide ade-

quate performance in identifying damage that oc-

curs under the EOCs considered during training,

the original methodology fails for different EOCs.

On the other side, the proposed methodology gains

robustness in damage identification under varying

EOCs.

2. Methodology

In our previous work [59], we addressed the dam-

age identification problem as a deterministic task.

We employed the response mh
B acquired during a

short-term ambient vibration test as the reference

to update a FE parametrization. This measure-

ment corresponds to a particular date and time

4



with specific EOCs. We then generated a synthetic

database from the updated parametrization. These

scenarios were assumed to occur under the same

EOCs.

Figure 1 schematically represents the synthetic

database for one zone in the bridge, where we gen-

erated ns synthetic scenarios with varying damage

severity within the interval [0, 0.5]. The same holds

for the other zones. In the figure, the horizon-

tal axis represents a dummy variable including all

the involved environmental and operational factors,

such as temperature, humidity, traffic, etc. This ap-

proach disregards the effect of varying EOCs in the

synthetic damage scenarios database. In this pa-

per, we aim to enhance the methodology by incor-

porating the effect of varying EOCs in the training

database of DNNs for damage assessment.

2.1. Gaussian Mixture Model clustering

Given an instrumented structure where long-

term monitoring data are available (one year or

more), we have access to a set of measurements

MB that corresponds to its healthy or reference be-

havior. These measurements include many healthy

states with different EOCs, such that MB =

{mi
B}Nm

i=1, where Nm is the total number of healthy

samples measured during the monitoring period.

Each measurement contains the eigenfrequencies

and eigenmodes of the structure, mi
B = {f iB ,Φi

B}.

Environmental and operational conditions

mainly include temperature, humidity, and traffic

[62]. During long-term periods, these phenomena

progressively change over time with certain season-

ality. Ideally, we would like to generate a synthetic

database that contains scenarios occurring at any

possible combination of EOCs (see Figure 2).

However, achieving this database is unfeasible. It

requires solving a Finite Element model updating

problem for each of the Nm available measure-

ments to obtain the corresponding calibrated

parametrizations.

Alternatively, here we obtain some representative

measurements that describe the entire dataset and

include most EOC variation. By applying a clus-

tering technique, we classify the long-term moni-

toring data into Q groups that characterize the ex-

isting variability. We employ a Gaussian Mixture

Model (GMM) to address this issue [63]. A GMM is

an unsupervised clustering method that classifies a

dataset X according to probability density estima-

tions on a mixture of gaussians [63]. We define the

GMM as a linear combination of multivariate gaus-

sian distributions such that the probability density

function P (X) is computed by:

P (X) =

Q∑
q=1

πqN (X|µq,Σq), (2a)

0 ≤ πq ≤ 1,

Q∑
q=1

πq = 1, (2b)

where N stands for the gaussian distribution, and

πq indicates the mixing coefficient or weight for the

q-th gaussian represented by its mean µq and co-

variance matrix Σq [63].
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Figure 1: Original synthetic database representation

EOCs
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α
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0.50
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ud1i
Bθ

Healthy

Damaged

Figure 2: Ideal synthetic database representation

The GMM determines the linear combination of

gaussian functions that best separates the measure-

ments into Q clusters using the Expectation Maxi-

mization algorithm [63, 64]. Each of these groups is

expected to represent a set of EOCs sharing some

common characteristics (e.g., high temperatures).
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The number of clusters is often decided based on

metrics such as the Maximum log-likelihood [64].

Figure 3 shows an example of a GMM classification

for two-dimensional measurements inX with Q = 3

clusters. Here, we apply a Q-dimensional GMM to

the available monitoring data MB . Each measure-

ment belongs to a cluster based on the highest prob-

ability among the Q gaussians. We obtain a repre-

sentative point for each cluster as that with minimal

distance to the corresponding gaussian mean:

m
hq

B := argmin
mB

(ρqmB
), q = 1, 2, ..., Q (3)

where we calculate the distance as ρqm =√∑v
j=1(mBj

− µq
j)

2, with v indicating the dimen-

sion of the vectors. We select these representa-

tive meausurements: {mh1

B ,mh2

B , ...,m
hQ

B }. This

approach sets a trade-off between the number of

clusters and the computational cost of building

the database. Figure 4 schematically represents

the proposed database for one zone in the bridge.

The same holds for the other zones. The selected

measurements are representative according to the

GMM clustering. We thus expect that they cover

most EOC variability.

For each of the Q selected representative mea-

surements, we apply the same procedure developed

in our previous work [59] to obtain the synthetic

datasets under different EOCs. Sections 2.2 to 2.5

summarize the methodology step by step. A more

detailed description can be found in [59].

2.2. Bridge parametrization

We build a computational representation of the

bridge using a FE parametrization. We denote

by Bθ = {θ1, ...,θnz
} to a parametrization of the

bridge B with nz different zones. The parametriza-

tion describes the behavior of the structure and

includes elastic material properties, cross-sections,

and spring constants modeling the boundary con-

ditions. We describe each zone Bθ by a subset of

properties, namely: θi = {θ1, ..., θnθi
}. We apply a

FE solver FFE to solve the eigenproblem and ob-

tain the dynamic response of the parametrization

Bθ:

uBθ
= FFE(Bθ), (4)

where uBθ
= {fBθ

,ϕBθ
} contains the parametriza-

tion eigenfrequencies and eigenmodes. For the sake

of simplicity, we denote FFE by F .

2.3. Updating procedure for Q healthy states

Under normal operating conditions, we assume

the bridge is healthy and has a dynamic response

uBh = {fBu
,ϕBu

}. In large-scale structures, we of-

ten measure uh
B through a short-term ambient vi-

bration test with some inherent error: mh
B = uh

B+ϵ.

We subsequently obtain the dynamic properties us-

ing Operational Modal Analysis (OMA) techniques,

yielding m
′h
B = {fhB ,ϕh

B} [65, 66]. For simplicity

in notation, we remove the tilde and refer to the

OMA-processed response as mh
B .

We initialize the parametrization properties to

Bθ = Bθ0 , based on engineering knowledge and de-
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x1

x2

Cluster 1 : N (X|µ1,Σ1) Cluster 2 : N (X|µ2,Σ2)

Cluster 3 : N (X|µ3,Σ3)

µ1

µ2

µ3

Figure 3: Example of GMM clustering with two-dimensional data

sign specifications. We obtain the corresponding

structural response as uθ0 = F(Bθ0). However,

uθ0 is in general far from uh
B , mainly due to un-

certainties in the true material properties of B and

assumptions in the boundary conditions. The up-

dating process yields a parametrization B∗
θ whose

response uB∗
θ

approximates uh
B with reduced er-

ror. We address this inverse problem by minimizing

the discrepancy between both responses (computa-

tional and experimental) using the l2 norm:

B∗
θ := argmin

Bθ

∥F(Bθ)− uh
B∥2. (5)

We establish the variation intervals for Bθ to ensure

a physically meaningful solution representing the

healthy state. We repeat the updating step Q times

to obtain the corresponding calibrated parametriza-

tions that match each representative measurement.

2.4. Damage simulation

We divide the bridge B into nz zones where we

aim to locate damage. We assume that only one

zone experiments damage at a given time. For a

damage occuring at the i-th zone, the location is

given by LBθ
= i. We define a reduction vector

αi ∈ [li, 1]
nθi that affects the structural properties

as:

θd
i = αiθ

∗
i , (6)

where the lower bounds li ∈ Rnθi contain the max-

imum reduction value of the properties in θi to en-

sure structural meaning. We maintain the remain-

ing subsets of properties θj (j ̸= i) to their un-

damaged value in B∗
θ . Hence, for a certain damage

scenario, we obtain the parametrization at the i-th

zone as Bd
θ = {θ∗

1 , ...,θ
d
i , ...,θ

∗
nz
}.

The relationship between the reduction factor
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Figure 4: GMM-based synthetic database representation

and each severity level depends on the type of struc-

tural property. We distinguish material properties

(type a), and boundary conditions (type b). The

distinction is required given the different sensitiv-

ity of the dynamic response. For type a properties,

we calculate the reduction factor as:

si,j = 1− αi,j j = 1, .., na
θi , (7)

where si,j indicates the property damage severity,

and na
θi

indicates the number of a-type properties

at the i-th location. We employ a different scale for

type-b properties to induce damage in the structure

effectively. We define the relationship between the

reduction factor and its corresponding severity level

as:

si,j =
smax

log10(li,j)
log10(αi,j) j = 1, ..., nb

θi , (8)

where nb
θi

= nθi − na
θi

and li,j represent the j − th

element in the lower bound vector li. The expres-

sion in equation 8 is adequate for properties such

as stiffness at supports (boundary conditions) given

its large order of magnitude and the relative sensi-

tivity of the structural response.

We now calculate the damage severity at the af-

fected location as:

SBθ
= G(θi) =

√√√√ 1

nθi

nθi∑
j=1

si,j2, (9)

with si,j representing the individual severity values

for each property in the i-th zone, which are defined
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next.

2.5. Database generation

We now build the synthetic database with dam-

aged scenarios obtained under different EOCs cor-

responding to the Q representative measurements.

For explanation purposes, we particularize to the i-

th zone, but the methodology is extensible to all the

nz zones. We uniformly sweep the severity inter-

val through an iterative process. For each scenario,

we first generate a severity value SBθ
by sampling

from a uniform distribution: SBθ
∼ U(smin, smax).

SBθ
is the target value to achieve with the individ-

ual severity values of each property at the dam-

aged location using equation (9). We then ob-

tain random values for the individual severity at

each property according to a uniform distribution:

s̄i,j = rand(U(0, smax)), with j = 1, ..., nθi . We

calculate the prior severity level S̄ by replacing s̄i,j

in equation (9). We subsequently correct the indi-

vidual severity values to produce the target severity

S by applying:

si =
S

S̄
s̄i. (10)

We obtain the reduction vector αi from equa-

tions (7) and (8). In case any value in αi ex-

ceeds the admissible interval [li, 1), we generate a

new set of individual severity values s̄i and recal-

culate αi. We repeat this step until the constraint

condition holds for all the reduction factors in the

set. We finally calculate the damaged properties

as θd
i = αiθ

∗
i . We describe the damaged bridge

parameterization by Bd
θ = {θ∗

1 , ....,θ
d
i , ...,θ

∗
nz
}.

We follow this procedure to obtain n samples

at the i-th zone. Thus, we produce N = nz × n

scenarios for each of the Q calibrated parametriza-

tions. For each scenario, we calculate the dynamic

responses by solving the eigenproblem:

u
(k)
Bθ

= F
(
Bdk

θ

)
k = 1, ..., N (11)

The k-th sample includes the dynamic response

u
(k)
Bθ

= {f (k)Bθ
,ϕ

(k)
Bθ

} and the corresponding damage

condition label D
(k)
Bθ

= {L(k)
Bθ

, S
(k)
Bθ

}.

2.6. Two-step damage assessment

The final goal of this methodology is to estimate

the true bridge condition (DB). In this work, we

employ DNNs to approximate the inverse problem

(I), such that:

DB ≈ Iγ(mB ;γ), (12)

where Iγ denotes to the DNN and γ contains the

network parameters. Training the DNN consists

of finding the optimal network parameters to ap-

proximate the target function [37]. We define a loss

function that measures the discrepancy between the

predicted damage condition Iγ(mB ;γ) and the real

state DB employing the l2 norm:

Lγ = ∥Iγ(mB ;γ)−DB∥2 (13)

During training, we find the optimal network pa-

rameters by solving the following minimization
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problem:

γ∗ := argmin
γ

(Lγ). (14)

Here, we propose a two-step approach to assess

the bridge condition in terms of damage severity

and location.

2.6.1. Damage severity estimation

We employ a DNN to estimate the damage sever-

ity, denoted by DNNS . For the training stage of

DNNS , we include the available long-term moni-

toring data, MB , which belong to the healthy state

of the bridge. We assume that all the scenarios

in MB correspond to a severity value of S = 0,

whereas the location label is unknown. These mea-

surements contribute to learning different healthy

states and preventing false positives. We then en-

rich MB with the synthetic database of damage sce-

narios previously generated in section 2.1. We de-

fine the loss function LS
γ according to equation (13),

where the inverse operator Iγ refers to DNNS , and

the damage condition is the severity level: DB = S.

Once trained, DNNS receives new measured

data from the monitoring system and provides a

damage severity diagnostic. If the estimated sever-

ity for a specific measurement exceeds the prede-

fined threshold α, we assume that damage exists

and raise an alert.

2.6.2. Damage location estimation

After detecting and quantifying the damage, a

subsequent DNN (DNNL) receives the measure-

ment to indicate its location. We only train DNNL

with damaged samples from the database, i.e.,

those with a severity level S ≥ α. We define the

loss function LL
γ , where Iγ refers to DNNL with

the damage condition being the location (DB =

L). This methodology prevents healthy scenarios

from contributing to the location estimation dur-

ing training since they could mislead the diagnos-

tic. Figure 5 shows a flowchart of the proposed

approach.

3. Numerical Results

We apply the proposed methodology to the case

study of the Infante Dom Henrique bridge, con-

sidering three years of long-term dynamic monitor-

ing data. We introduced the monitoring system in

[59], and it is fully described in [67]. Figure 6 de-

picts the location of the acceleration sensors along

the bridge deck. Four vertical acceleration signals

are employed to calculate the dynamic properties

(eigenfrequencies and eigenmodes) every 30 min-

utes through an automatic OMA technique [66].

Any measurement in MB includes v = 32 variables:

nm = 4 eigenfrequencies and corresponding eigen-

modes. We obtain seven-dimensional eigenmodes

by fitting a spline to the four measurements and es-

timating the intermediate value between every two

sensors. After removing null values, MB contains a

total of Nm = 17, 141 samples.

3.1. GMM-based database

Given the high dimensionality of the dataset, we

first apply Principal Component Analysis (PCA) to
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S = DNNS(m
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Damage condition :
DB = {S,L}L = DNNL(m

new
B )

Figure 5: two-step assessment flowchart

Accelerometers

A1 A2 A3 A4

Figure 6: Dynamic instrumentation system at Infante Dom Henrique bridge

compress the data and obtain relevant features for

the clustering. Table 1 analyzes the explained vari-

ance for the first four principal components. The

table reveals that the first PC explains most of

the variance in the data, whereas the rest explains

a residual part (< 5%). We compress the origi-

nal measurements into one-dimensional features by

transforming them as:

M̂B = TMB , (15)

where the transformation matrix T contains PC1

coordinates.

We apply the GMM clustering technique to the

transformed dataset M̂B .

We would ideally cluster the data into thousands

of groups to include the entire EOC variability, but

using a large number of clusters conflicts with the

computational cost of obtaining the synthetic sce-

narios. With the available computational resources

(Intel(R) Core(TM) i7-7700HQ, CPU 2.80GHz),

each simulation executes in approximately 1.5 sec-

onds. Thus, for the considered battery of damage
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Table 1: Principal Component Analysis results

PC1 PC2 PC3 PC4

Explained Variance (%) 95.55 1.80 0.92 0.72

Cumulated (%) 95.55 97.35 98.27 98.99

scenarios, each cluster adds approximately 17 hours

of computational time, including (i) the FEMU cal-

ibration step and (ii) the generation of the damage

scenarios.

We explore the clustering error by analyzing the

log-likelihood metric for an increasing number of

clusters, Q [68]. This score function founds on the

likelihood, which measures the probability that the

available dataX was generated from the model [69].

The value of this metric depends on the data ampli-

tude and lacks meaningful interpretation, but it is

useful for performance comparison. For the GMM

model, we calculate the log-likelihood l(ϕ|X) as:

l(ϕ|X) =

N∑
i=1

log(

Q∑
q=1

πqN (xi|µq,Σq)), (16)

with ϕ = {π1, ..., πQ, µ1, ..., µQ,Σ1, ...,ΣQ} gather-

ing the mixture parameters, and N being the num-

ber of data samples in X. Figure 7 displays the

log-likelihood value for mixtures with Q in the in-

terval [2, 8]. We observe that the most significant

improvement occurs between Q = 2 and Q = 4,

whereas after Q = 6, the enhancement is unno-

ticeable. Based on this and given that we aim

to include most of the variability in the data but

with the computational restriction, we decide to

l(
ϕ
|X

)

Figure 7: Log-likelihood metric for increasing Q

employ five clusters (Q = 5). This decision results

in 17× 5 = 85 hours to build the database.

Table 2 presents the five mean values of the gaus-

sians. Figure 8b displays the transformed dataset

M̂B colored by cluster label. Figure 8a shows the

distribution of the samples in the Q clusters. Ac-

cording to Figure 8b, we appreciate that the data

dispersion increases with the value of the PCA

transformation feature. Cluster four contains only

54 samples very widely spread, indicating that they

could be outliers. However, the analysis of these

data is out of the scope of this work.

After performing the clustering, we obtain the

five points in the transformed space that lie closer

to the means according to equation (3). Finally, we

extract the corresponding 32-dimensional measure-

ments: MGMM
B = {mh0

B ,mh1

B ,mh2

B ,mh3

B , mh4

B }.

For each of these five measurements, we solve the
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Table 2: Mean vector coordinates for the five clusters

µ0 µ1 µ2 µ3 µ4

Value -1.3867 -1.3112 -1.1325 -0.8167 0.0024
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Figure 8: Dataset clustering results for Q = 5.

Finite Element Model Updating (FEMU) process to

obtain the calibrated parametrizations, yielding the

responses UGMM
Bθ

= {uh∗
0

Bθ
,u

h∗
1

Bθ
, u

h∗
2

Bθ
,u

h∗
3

Bθ
,u

h∗
4

Bθ
}.

We generate the synthetic scenarios and conform

the new database following the steps in section 2.5.

We generate a total of Ns = 80, 000 synthetic sam-

ples containing damage scenarios: ns = 2, 000 sam-

ples for each of the nz = 8 zones in the bridge and

for each of the five responses in UGMM
Bθ

. The com-

putational time of generating this database is of ap-

proximately 85 hours (including the FEMU step).

The entire database contains N = Nm + Ns =

97, 141 samples, including the healthy experimen-

tal measurements and the synthetic samples that

include the damage scenarios.

3.2. Deep Neural Networks for a two-step assess-

ment

Here, we employ fully-connected feedforward

DNNs with ReLU[37] activation functions in the

hidden layers. We employ the complete response

as the input (the four eigenfrequencies and eigen-

modes). Thus, each sample contains v = 32 di-

mensions. Table 3 summarizes the properties of

the Deep Neural Networks. The architectures pro-

vide adequate performance. Optimizing the archi-

tectures is out of the scope of this research.

We first train the severity estimator DNNS . We

randomly split the available data (N samples) into

70% for training, 20% for validation, and 10% for

testing. We evaluate the performance of the net-

work with the validation dataset. Figure 9a shows

the severity cross-plot that compares the ground
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Table 3: Summary of architecture and training specifications

ID Hidden Layers Parameters Optimizer Batch size LR

DNNS 9 36,597 Adam 8,196 10−4

DNNL 6 7,879 Adam 8,196 10−4

truth against the estimated severity values. The fig-

ure shows a high-prediction performance with the

r2 metric reaching 0.96. We follow the same pro-

cedure for the location estimator, DNNL. In this

case, we restrict the training data to those scenar-

ios where S > α, with α = 0.05 indicating the low-

est detectable damage. Figure 9b shows the corre-

sponding cross-plot that compares the ground truth

against the estimated location values. The figure

shows an adequate approximation of DNNL given

the high correlation factor during validation.

3.3. Synthetic testing

Here, we analyze the methodology in the task

of damage identification. Since real damage sce-

narios are unavailable in full-scale operative bridge

applications, we employ synthetic damage cases for

testing.

We aim to analyze the enhancement of the pro-

posed methodology with respect to the original ap-

proach described in our previous work [59] in dam-

age identification. For the comparison, we generate

a database according to Figure 1 that disregards

the effect of changing EOCs. Given that cluster

zero is the most significative in MB according to

Figure 8a, we employ mh0

B as the baseline healthy

measurement to build the database. Hence, the

original database contains the synthetic scenarios

generated from u
h∗
0

Bθ
. We denote DNNoriginal

S and

DNNoriginal
L to the neural networks described in

section 3.2 trained with the original database.

3.3.1. Synthetic testing under seen EOCs

We first evaluate the damage detection perfor-

mance for scenarios occurring under the same EOCs

considered during training. This testing dataset

corresponds to 10% of the available samples accord-

ing to the database splitting (70% training, 20%

validation, and 10% testing).

(A) Performance of the original approach:

Here, we test the damage identification ability of

the original database created from u
h∗
0

Bθ
. In this

case, the testing subset contains damage scenarios

occurring only under the particular EOCs of mh0

B .

We first evaluate DNNoriginal
S to estimate the

severity of the damage. Figure 10a shows the

corresponding cross-plot that displays the ground

truth (real severity label) against the prediction

provided by DNNS . The squared correlation co-

efficient (r2 ≈ 0.94) indicates a high performance.

We subsequently estimate the location of the dam-

age. Figure 10b displays the location cross-plot.

DNNoriginal
L also reveals an extraordinary perfor-

mance during this test (r2 ≈ 0.94).
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(a) Severity cross-plot (b) Location cross-plot

Figure 9: DNNS and DNNL cross-plots during validation

(B) Performance of the GMM-based

method: We now test the damage identifica-

tion ability of the new proposed database. This

database contains synthetic scenarios generated

from the updated parametrizations with responses

stored in UGMM
Bθ

. Hence, the testing damage sce-

narios are assumed to occur under the same EOCs

of the five corresponding measurements in MGMM
B .

We evaluate DNNS to estimate the severity of

the damage. Figure 11a shows the resulting cross-

plot. The squared correlation coefficient indicates a

good performance with r2 ≈ 0.94. We subsequently

estimate the damage location for those scenarios

exceeding the threshold α. Figure 11b displays

the cross-plot, revealing a very high performance

of DNNL (r2 ≈ 0.98). These results demonstrate

that the proposed two-step DNN assessment ade-

quately performs as good as the original approach

when damage occurs under the same EOCs em-

ployed during training.

3.3.2. Synthetic testing under unseen EOCs

We now investigate the performance of the

methodology for damage scenarios occurring under

different EOCs unseen during the training phase.

This test evaluates if applying GMM to select rep-

resentative measurements for the training database

contributes to generalizing the damage assessment

task under different (unseen) EOCs.

We first select three test measurements from the

monitoring data MB that belong to three differ-

ent clusters, denoted by {mt1
B ,mt2

B ,mt3
B}. We em-

ploy only three measurements to restrict the com-

putational cost required by the entire methodol-

ogy. According to the clustering results in Fig-

ure 8a, we extract the measurements from the

most relevant (highest-occurrence frequency) clus-
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ters, namely, zero, one, and two. Table 4 summa-

rizes the main properties of these measurements,

including the value of the four eigenfrequencies, the

PCA compressed feature, and the cluster label.

We solve the FE model updating process to ob-

tain the calibrated parametrizations, yielding the

responses UTest
Bθ

= {ut∗1
Bθ

,u
t∗2
Bθ

,u
t∗3
Bθ

}. We then gen-

erate nt = 50 synthetic scenarios with random

severity within the interval [0, 0.5] for each of the

nz = 8 zones in the bridge. The testing dataset

contains a total of 1, 200 samples (400 for each

parametrization in UTest
Bθ

). Figure 12 shows a rep-

resentative example of the testing samples for one

of the bridge zones with nt = 8 synthetic scenarios.

The figure evidences that the testing EOCs differ

from those considered during training.

(A) Performance of the original approach:

We evaluate the performance of the original

database generated from mh0

B . Figure 13 shows the

cross-plots for severity and location.

Figure 13a reveals that this approach fails to

detect damage, with an overall score r2 ≈ 0.37.

We observe that points from cluster zero present

better estimations than those belonging to clusters

one and two. This result demonstrates that ne-

glecting changes in EOCs during training misleads

the assessment under different conditions. In the

case of location, we also observe poor predictions

from DNNoriginal
L , evidencing the unreliability of

neglecting EOCs.

(B) Performance of the proposed GMM-

based method: We finally evaluate the per-

formance of the GMM-based methodology under

changing EOCs. Figure 14a shows the severity

cross-plot. The squared correlation coefficient in-

dicates an adequate performance with r2 ≈ 0.85.

We subsequently estimate the damage location for

the scenarios with S ≥ α. Figure 14b displays

the corresponding cross-plot. We also observe an

adequate performance of DNNL, with r2 ≈ 0.85.

The color clasification based on clusters prevents

showing clearly the density of points concentrat-

ing around the exact estimator (predicted = ground

truth), but the r2 value demonstrates the good per-

formance. These results reveal that the proposed

methodology gains robustness against the effect of

varying EOCs during assessment. If more compu-

tational resources were available, we would consider

a higher number of clusters to produce a more rep-

resentative database that further enhances perfor-

mance.

4. Discussion

This work employs synthetic measurements sim-

ulated with a FE model. Building a FE model re-

quires assumptions and simplifications that intro-

duce a new source of uncertainty and error. In

work [26], the authors explore the effect of mod-

eling error and uncertainty in the updating pro-

cess for damage assessment. Sources of uncertainty

are the assumptions and simplifications due to a

lack of knowledge of the true system’s behavior, in-
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Table 4: Summary of selected testing points

Case f1 f2 f3 f4 PCA feature Cluster

mt1
B 0.8121 1.1426 1.4123 2.0049 -1.3825 0

mt2
B 0.8165 1.1491 1.4189 2.0184 -1.2678 1

mt3
B 0.8172 1.1429 1.4064 1.9998 -1.1644 2

cluding material properties or boundary conditions

[26]. The discretization level in FE parametriza-

tions also introduces a source of error. There exist

many works in the literature concerned with this

problem [26, 70, 71, 60]. For example, work [72]

analyzes the effect of these modeling errors in the

prediction results of a Convolutional DNN trained

with FE simulations of a lab-scale truss bridge.

Work [73] deals with the uncertainty of using sim-

plified Frequency Response Function (FRF) data as

the damage-sensitive input feature to train a DNN.

In the recent work [74], authors employ a physics-

guided NN method to reduce the effect of uncer-

tainty and modeling error in the damage identifica-

tion task under vehicle-induced excitation.

In our approach, we design a relatively simple FE

model with a rough parametrization and assume

that, after the FEMU process, it will deliver a close

enough approximation to the target experimental

response. Some uncertainties in material properties

and simplifications in modeling pier and abutment

connections are present. We expect these errors to

be sufficiently small compared to the effect of dam-

age. The lack of experimental damage scenarios

precludes a real validation of the SHM methodol-

ogy in damage identification. Our validation fo-

cuses on evaluating the Deep Neural Networks for

new synthetic scenarios corresponding to particular

EOCs different from those employed during train-

ing. However, this strategy overlooks the effect of

modeling errors and uncertainties mentioned above.

The absence of real damage occurs in most full-scale

applications, with very few exceptions in the civil

engineering field, such as the Z24 benchmark case

study [75, 57].

Another critical aspect when using synthetic data

is incorporating the effect of varying EOCs. Many

works employing model-based assessment neglect

the effect of varying EOCs and focus on deter-

ministic FEMU techniques [15, 16, 17, 18, 19, 20].

Work [21] studies the effect of changing EOCs in

standard FEMU and reveals that uncertainty prop-

agates through the updating procedure, yielding

wrong state identifications. In [71], the authors in-

corporate ambient temperature and wind effect in

the iterative updating process. Our work intends

to embed information from the experimental do-

main into the synthetic scenarios using representa-

tive experimental measurements as the target re-

sponse to solve FEMU problems before generating

the damage scenarios. However, it presents a limi-

tation regarding the computational cost associated
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with solving many FE simulations, which constrains

the decision on the extent of the database. For

the considered full-scale case study, each additional

measurement adds 17 computation hours, forcing

us to select a reduced number (five) of represen-

tative measurements. For more accurate results in

damage identification under any EOCs, we need to

extend the database to incorporate these phenom-

ena.

5. Conclusions and future work

In this work, we addressed a hybrid SHM ap-

proach that combines model-based and data-driven

techniques to identify damage in bridge structures.

Starting from the hybrid methodology developed in

our previous work [59], we realized that neglecting

the effect of EOCs might have detrimental conse-

quences in the health diagnostic. We proposed a

novel approach to enhance the assessment capabil-

ity by incorporating varying EOCs in the synthetic

damage scenarios. We applied a Gaussian Mixture

clustering technique to extract Q representative

measurements from a long-term monitoring cam-

paign corresponding to specific EOCs. These mea-

surements constituted the target responses to up-

date a FE parametrization and represent Q differ-

ent undamaged conditions. With these calibrated

models, we generated multiple synthetic scenarios

labeled by damage severity and location. We em-

ployed a two-step Deep Learning approach to eval-

uate the damage condition: once a new response

is measured, a DNN (DNNS) first estimates the

damage severity. If the estimation exceeds a pre-

defined threshold, then a second DNN (DNNL) re-

ceives the measurement to determine the damage

location.

We applied the proposed methodology to the In-

fante Dom Henrique bridge in Porto. During test-

ing, we compared the assessment performance of

our approach against the original one introduced in

[59], where we employed one single measurement in

the synthetic database generation step. The anal-

ysis of the obtained results confirms that neglect-

ing the presence of varying EOCs in real-practice

SHM applications prevents achieving an adequate

assessment. Although both methodologies are ro-

bust in detecting and locating damage occurring

under the same EOCs considered in the training

phase, the original approach fails when tested un-

der different EOCs. Including more measurements

extracted from long-term monitoring data in the

database generation process enhances the method

performance and allows generalizing the assessment

to a wide range of EOCs.

Given the limitation derived from the compu-

tational cost of including more measurements in

the database generation, we consider future work

a more profound investigation for a more effective

measurement selection. We can optimize the num-

ber of clusters and determine the number of ex-

tracted measurements per group according to the

cluster population and dispersion. Besides, many
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uncertainty and error sources coexist in this hybrid

approach, arising from the measurements and the

FE parametrization (simplifications and assump-

tions on the structural behavior). We consider fu-

ture work using Bayesian approaches to leverage

these uncertainties in the FEMU process and ob-

tain more reliable parametrizations. In terms of

assessment, endowing the DNNs with a Bayesian

scope may enhance the robustness of the diagnos-

tic by quantifying the uncertainty. Using physics-

guided approaches to embedding structural knowl-

edge during training poses a new line of interest to

investigate.

Finally, we also contemplate as future work trans-

ferring the methodology to other application ar-

eas, such as offshore wind energy structures, where

complex environmental and operational conditions

hold, and late maintenance and repair tasks have a

high economic impact.
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J. Omella, D. Pardo, D. Garcia-Sanchez, F. Ma-
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(a) Severity cross-plot under seen EOCs

(b) Location cross-plot under seen EOCs

Figure 10: Testing cross-plots for the original approach under seen EOCs
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(a) Severity cross-plot under seen EOCs.

(b) Location cross-plot under seen EOCs.

Figure 11: Cross-plots during testing under seen EOCs for the new database
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Figure 12: Example of synthetic testing samples under unseen EOCs
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Figure 13: Testing cross-plots for the original database under unseen EOCs
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Figure 14: Testing cross-plots for the proposed approach under unseen EOCs
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