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Single flagellated bacteria are ubiquitous in nature. They exhibit various swimming
modes using their flagella to explore complex surroundings such as soil and porous
polymer networks. Some single-flagellated bacteria swim with two distinct modes, one
with its flagellum extended away from its body and another with its flagellum wrapped
around it. The wrapped mode has been observed when the bacteria swim under tight
confinements or in highly viscous polymeric melts. In this study we investigate the
hydrodynamics of these two modes inside a circular pipe. We find that the wrap mode is
slower than the extended mode in bulk but more efficient under strong confinement due
to a hydrodynamic increased of its flagellum translation-rotation coupling.

1. Introduction

Bacteria are prokaryotic microorganisms forced to live in a zero Reynolds number
environment. Due to the kinematic reversibility of viscous flows, some bacteria have
developed a non-reciprocal propulsion mechanism for locomotion, the rotation of flagella.
The cell body and the flagella are rotated in opposite directions by molecular motors.
Under rotation the flagella adopt an helical shape and propel the bacterium by working
as a screw. Some bacteria can move both forward or backward, in a push or pull mode,
depending on the direction of rotation of the molecular motors and on the chirality of
their flagella. As bacteria are often found in confined environments they have developed
different strategies to swim while foraging in those conditions. One example is a swimming
mode used by some monotrichous and bipolar bacteria where bacteria wrap their flagella
around their own bodies resembling an Archimedes’ screw Kühn et al. (2017); Tian et al.
(2022); Thormann et al. (2022). These bacteria swim alternating between two different
modes, the wrapped mode and the extended mode, where the later has the flagella
extended away from their bodies.

The wrap mode emerges when a cell encounter highly viscous or strongly confined
environments Kühn et al. (2017). When a cell gets trapped during its forward pushing
mode a buckling instability occurs in the flagellar hook that triggers the flagellum
wrapped mode Kühn et al. (2017); Park et al. (2022). The number of known bacterial
species showcasing a wrap mode under confinement is growing Thormann et al. (2022).
Thus, a natural question arises: is the wrapped mode a mere accident or is it selected
due to some advantage to the bacteria? Some studies suggest that the wrapped mode
confer advantages to the motion in confinement environments. Kühn et al. observed
experimentally that the wrapped mode can enhance the motion in highly viscous and
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structured environments Kühn et al. (2018). Kinosita et al. studied the motion of bacteria
with wrapped mode in very tight confinements and concluded that the wrapped mode
can allow the bacteria to glide over the substrate Kinosita et al. (2018). Along this line
of work we investigate how the flagella motion in the wrapped mode favors the motion
of bacteria under strong confinement by hydrodynamic interactions only. To this end we
investigate the swimming of bacteria inside circular pipes by means of CFD simulations.
We show that the extended mode is more efficient in bulk and wide pipes while the
wrapped mode can be more efficient in tight pipes. The scheme of the paper is the
following. In Sec. 2 we describe our numerical method, describe our results in Sec. 3 and
conclude in Sec. 4.

2. Numerical Method

We model a monotrichous bacterium as a rigid ellipsoid with an helical flagellum
attached to one of its poles. The flagellum is also modeled as a rigid object, which is a
good approximation to study steady state swimming Higdon (1979); Das & Lauga (2018).
The body and the flagellum are connected by inextensible links that allow the flagellum
to rotate freely around its main axis but otherwise it is forced to move concomitant to the
rigid ellipsoid. The rigid objects, Bn, move with linear and angular velocities, un and ωn,
where we use the subindex n to denote either the bacterium body or the flagellum. Due
to the small bacterium size, the flow Reynolds number is vanishingly small, Re ∼ 10−5.
Thus, the flow can be modeled with the Stokes equations

−∇p + µ∇2v = 0, (2.1)

∇ · v = 0, (2.2)

where p and v are the fluid pressure and velocity and µ its viscosity. The no-slip boundary
condition is imposed on the surface of the bacterium body and its flagellum

v(r) = un + ωn × (r − qn) for r on the bacterium, (2.3)

where qn is tracking point of the rigid bodies (e.g. the bacterium body center and the
flagellum attaching point respectively).

To solve the coupled fluid-structure interaction problem we use the rigid multiblob
method for articulated bodies. We summarized the numerical method while a detailed
description can be found elsewhere Balboa Usabiaga & Delmotte (2022). The rigid bodies
are discretized with a finite number of blobs with position ri as shown in Fig. 1. As the
inertia is negligible the conservation of momentum reduces to the balance of force and
torque. The discrete force and torque balance for the rigid object n can be written as,∑

i∈Bn

λi −
∑
i∈Ln

ϕn = fn, (2.4)

∑
i∈Bn

(ri − qn) × λi −
∑
i∈Ln

(∆lnp − qn) × ϕn = τn, (2.5)

where fn and τn are the external forces and torques acting on the rigid objects while
λi are the constrained forces acting on the blobs that ensure the rigid motion of the
bacterium body and the flagellum. The second sums in (2.4)-(2.5) run over the links, Ln,
attached to the rigid object n and ϕn is the force exerted by the link n to keep the rigid
bodies connected while |∆lnp| is the link length.
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Figure 1. Bacteria, 2.04µm long and 0.49µm wide, inside a pipe with its flagellum in the
extended and wrapped configuration. The front of the pipe is not shown to make the bacteria
visible.

The discrete no-slip condition evaluated at each blob i is,

v(ri) =
∑
j

Mijλj = un + ωn × (ri − qn) for i ∈ Bn. (2.6)

The mobility matrix Mij gives the hydrodynamic interaction between any two blobs, i
and j, of radius ai and aj . We use a regularized version of the Oseen tensor, the Rotne-
Prager tensor, Wajnryb et al. (2013).

Mij =
1

(4πaiaj)2

∫
δ(|r′ − ri| − ai)G(r′, r′′)δ(|r′′ − rj | − aj) d3r′d3r′′, (2.7)

where G(r, r′) is the Green’s function of the Stokes equation and δ(r) the Dirac’s delta
function. The advantage of this formulation is that the regularized mobility has no
divergence even when blobs get close and it is not necessary to use special quadrature
rules. The equations (2.4)-(2.6) form a linear system for the unknown velocities, un and
ωn, and constraint forces, λj and ϕn, that can be solved efficiently with iterative methods
such as GMRES Balboa Usabiaga et al. (2016); Balboa Usabiaga & Delmotte (2022).

3. Results and Discussion

In this section we study the swimming of bacteria inside circular pipes of radius r0 and
length L0 ≈ 21r0 aligned along z. Keeping the aspect ratio constant ensures that the flow
disturbance created by a bacterium decays to negligible values at the pipes ends Liron
& Shahar (1978). We model the pipes as immobile rigid objects Balboa Usabiaga et al.
(2016). We place the bacteria in the middle of the pipes and we use that configuration to
compute the bacteria velocity. As the Stokes equation assume a steady state flow solving
one mobility problem is enough to determine the velocities. Later, we will consider the
case where bacteria freely swim in a pipe periodic along its main axis.

We consider two different swimming modes. First, the extended mode where the
flagellum is attached to the body front part and it extends away from it. In the second
mode the flagellum is wrapped around the bacteria body, see Fig. 1. In both cases we
apply constant and opposite torques, of magnitude τ = 0.46 pNµm, to the body and the
flagellum to model the work exerted by a molecular motor. Thus, we assume that the
molecular motor always works on the low frequency (constant torque) regime Xing et al.
(2006). In most numerical experiments the flagellum extends along its main axis a length
similar to the bacterium body. Thus, in the wrapped mode the body is fully covered by
the flagellum. The bacterium body, always 2.04µm long and 0.49µm wide, is discretized
with 292 blobs of radius a = 0.0425µm. The geometric details of the helical flagella and
pipes used in this work are presented in Tables 1 and 2.

All the motion is driven by the rotation of the flagellum. Therefore, we start looking at
its angular velocity, ωz, see Fig. 2a. In bulk the flagellum rotates two times faster in the
extended mode than in the wrapped mode. The slower rotation can be explained by the
additional drag experienced by the flagellum in the wrapped mode, which is caused by
the proximity of the flagellum to the bacterium body. Both modes reduce their angular
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Figure 2. Flagellum angular velocity, ωz, (a) and bacterium swimming speed along the pipe,
uz, (b) versus pipe radius r0. Results for the extended and wrapped mode using the same
flagellum (model VII) with length L = 3.6, µm and amplitude α = 0.32µm. The dashed lines
depict bulk values. The inset in the right panel shows the swimming speed against the flagellum
angular frequency for all the pipe radius used.

velocities as r0 decreases due to the additional hydrodynamic drag generated by the pipe
walls. However, the decrease is proportionally less important in the wrapped mode as its
initial drag was larger. Thus, the ratio between the angular frequencies of the two modes
falls from a factor 2.0 in bulk to a factor 1.6 in the smallest pipe considered.

Next, we look at the swimming speed along the pipe axis, uz, see Fig. 2b. We observe
that in bulk the wrapped mode swims about twice slower than the extended mode.
This result is consistent with experimental observations Kühn et al. (2017); Tian et al.
(2022); Grognot & Taute (2021); Thormann et al. (2022). The slower swimming speed
in the wrapped mode is a consequence of the slower rotation of its flagellum. Under
confinement the swimming speed, uz, decreases for the extended mode as the pipe radius
is decreased. Again, the additional hydrodynamic drag generated by the pipe walls is
responsible for this effect. In contrast, the wrapped mode exhibits a non-monotonic trend
in its swimming speed. As the pipe radius is decreased the bacterium swims faster up
to the point where the ratio between the pipe radius and the flagellum amplitude is
r0/α ≈ 1.5. Beyond that point the swimming speed decreases with r0.

The Stokes equations are linear and thus the linear and angular velocity are pro-
portional when keeping all geometric parameters constant. We could have imagined
that changing the pipe radius would affect the flagellum rotation and the bacterium
translation to a similar degree. That is approximately true for the extended mode but
completely false for the wrapped mode as shown in the inset of Fig. 2a. To understand
this difference and the unusual swimming speed increase observed with the wrapped
mode we consider the motion of a single helical flagellum inside a pipe. We apply a
constant torque on the helical flagellum and measure its translational and rotational
speeds. Note that in this case the flagellum is not a torque-free swimmer, as there is
no body to which apply an opposite torque. Nonetheless, this numerical experiment
is useful to understand the more complex wrapped mode. We observe an increase in
the swimming speed for decreasing pipe radius with respect to the bulk value above
a critical pipe radius, see Fig. 3a, similar to the wrapped mode results. For the single
flagellum its swimming speed can be written as uz = Mtrτz. For moderate confinements
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Figure 3. (a) Swimming speed, uz, and z-component of the angular velocity (inset), ωz, of a
single helical flagellum with amplitude α = 0.32µm (model VII) inside a pipe of radius r0. The
dashed lines depicts the bulk values and a snapshot of the flagellum in a pipe is shown as inset.
(b) Inverse of the efficiency versus radius of the pipe (r0). The dashed lines depicts the bulk
values. The inset figure shows the swimming power.

the hydrodynamic interactions with the wall increase the value of the mobility coupling
term, Mtr, with respect to the bulk values, thus, the swimming speed is increased. For
very tight confinements the lubrication interactions dominate the interactions with the
wall and Mtr decreases below the bulk values. These effects were already reported by
Liu et al. for an infinite flagellum within an infinite pipe Liu et al. (2014). This speed
increase is observed despite the reduction in the flagellum angular velocity, ωz, with r0,
see Fig. 3a inset. The wrapped mode takes advantage of the increased translation-rotation
coupling of its flagellum under confinement to increase its speed. In the extended mode
the flagellum translation-rotation coupling is increased just as in the wrapped mode.
However, the drag on the body increases faster with smaller r0, the combined effect is to
reduce the swimming speed. In the wrapped mode the body is protected by the flagellum,
moving in the same direction, and thus the increase in the body drag is less important.

This interplay between the enhanced translation-rotation coupling, which increases
thrust and the swimming speed, and the drag on the bacterium body which reduces it,
has been observed in a recent experimental study with E. coli Vizsnyiczai et al. (2020).
Vizsnyiczai et al. observed that a bacterium swimming in a extended mode inside a pipe
swims slower than a bacterium in a channel. However, when the bacterium is exiting the
pipe and only its flagella remain inside, the swimming speed is larger than a channel.
The reason is the increased translation-rotational coupling experienced by the flagella
and the lack of an additional drag acting on the bacterium body. This result was nicely
reported in Fig. 5 of Ref. Vizsnyiczai et al. (2020). After the flagella exit the pipe the
speed decreases to the bulk value. Our results agree with their observations.

3.1. Power and Efficiency

The power consumption is an important quantity for a microswimmer propelling
in a viscous environment and the efficiency can be more important than the absolute
swimming speed. Thus, we measure these quantities. Considering the chemical energy
used within the cell is beyond the scope of our work, thus, we limit ourselves to study
the power dissipated by the Stokes flow and the microswimmers hydrodynamic efficiency.
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Model L [µm] α [µm] k [µm−1] Lz [µm] Nλ a [µm] Nb

I 3.2938 0.32 2.2656 2.5681 0.8 0.0425 40
II 3.5372 0.32 2.8280 2.5681 1.0 0.0425 45
III 4.2737 0.32 4.2500 2.5681 1.5 0.0425 52
IV 5.1058 0.32 5.6562 2.5681 2.0 0.0425 60
V 5.9953 0.32 7.0625 2.5681 2.5 0.0425 72
VI 5.1747 0.32 2.8280 3.8414 2.83 0.0425 69
VII 3.6783 0.32 3.1250 2.3982 1.1 0.0425 43

Table 1. Flagella models parameters. Flagella length, L, amplitude, α, wave number, k,
maximum extension along its axis, Lz, number of waves along its axis, Nλ = Lz/λ = Lzk/(2π),
blob radius, a, and number of blobs Nb. The amplitude of the wave was exponentially damped
near the attaching point with a damping factor kE = k as in Ref. Higdon (1979).

Model L [µm] r0 [µm] Nb

I 9.35 0.4125 720
II 10.1 0.45 816
III 11.1 0.50 1008
IV 12.1 0.55 1159
V 13.1 0.60 1386

Model L [µm] r0 [µm] Nb

VI 14.1 0.65 1562
VII 15.1 0.7 1824
VIII 20.1 0.95 3232
IX 30.1 1.45 7248

Table 2. Pipes models dimensions. Length, L, inner radius r0, number of blobs Nb. The blob
radius is a = 0.1µm in all cases.

The power exerted by a microswimmer to the medium and dissipated by the flow is

P =
∑
n

Fn ·Un =
∑
n

[fn · un + τn · ωn] , (3.1)

where the sum is over rigid bodies, in our case the bacterium body and its flagellum.
As the power is generated by the motor, the power consumed by a bacteria during its
swimming can be rewritten as Pm = τm · ωm = τm · (ωflag − ωbody). In the absence of
elastic or soft steric interactions both expressions are equivalent. We will always use (3.1)
to account for soft steric interactions used in Sec. 3.3.

The wrapped mode consume less power for all pipe radii owing to the slower rotation
of its flagellum, see Fig. 3b inset. Under confinement the power exerted by the motor
decays for both swimming modes. Of more interest is the hydrodynamic efficiency of the
swimmers to propel themselves. There are several approaches to define the hydrodynamic
efficiency Childress (2012). We follow a classical approach and define the inverse efficiency
as the power normalized with the power necessary to pull the body with the same speed
Higdon (1979); Lauga & Eloy (2013)

η−1 =
Mzz

u2
z

P, (3.2)

where Mzz = uz/fz is body mobility along the pipe axis and uz the velocity. The Fig. 3b
shows the variation of the inverse efficiency as a function of the pipe radius. It is evident
from the figure that in bulk and wide pipes the extended mode is more efficient. However,
there is a crossover and for tight confinements the wrapped mode becomes more efficient.
This is a result of the lower power consumption of the wrapped mode and, importantly,
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its enhanced velocity within the pipe. This result suggest that the wrapped mode is
beneficial to selfpropel in confined spaces. So far we have only used one flagellum, model
II, and a bacterium placed exactly on the middle of the pipe. In the next two sections
we explore whether these results are robust under a change of these conditions.

3.2. Robustness of results: Effect of Nλ and L

Bacteria species present flagella of different lengths, amplitudes and pitch angles which
affect the bacteria bulk speeds and efficiencies Higdon (1979); Lauga & Eloy (2013).
Here, we explore if the wrapped mode is a more efficient swimming style in confined
environments for a wide variety of flagella models. We build five flagella models by
varying simultaneously the flagellum length, L, and the number of waves along its length,
Nλ = Lz/λ, where Lz is the flagellum extension along its axis and λ the wavelength of
the helical wave, see Fig. 4(a,b) and Table 1. We present the inverse efficiency for all
flagella models and pipe radius in Fig. 4(c,d)

The general trend is the same as before. For wide pipes the extended mode swims more
efficiently than the wrapped mode for all flagella models except one (Nλ = 2.5). Under
confinement both swimmers increase their efficiency but the improvement is stronger
for the wrapped mode which becomes the most efficient for pipes with r0/α ⪅ 1.7.
In those situations the wrapped mode is approximately two times more efficient than
the extended mode. The efficiency, for both swimming modes, is non-monotonous on
Nλ. When Nλ ≪ 1 the flagellum is almost straight, thus, it cannot propel the bacterium.
Therefore, the swimming speed and the efficiency initially grow with Nλ. Beyond a certain
value of Nλ the flagellum tangent forms a large angle with the direction of motion, which
again reduces the propulsion efficiency. For intermediate values of Nλ the flagellum is
helical-shaped which allows propulsion. For both modes the flagellum with Nλ = 1.5
is the most efficient under confinement for the flagella lengths considered. For bacteria
swimming in bulk the optimum is also close to Nλ = 1.5, although the exact optimum
Nλ depends on the flagellum length Higdon (1979). For the extended mode, optimal
swimming occurs around the non-dimensional pipe radius, r0/α = 1.5 for all values of
Nλ. For the wrap mode the optimal swimming occurs for lower values of r0/α.

3.3. Robustness of results: dynamical simulations

So far we have computed the swimming speed when the bacteria are located in the
middle of the pipe and aligned along it. However, freely swimming bacteria can tilt and
move towards the pipe wall. To verify if the results reported so far are robust, we perform
dynamic simulations where the bacteria are free to displace away from the pipe centerline
and to change orientations. We use the same pipe models as before but imposing periodic
boundary conditions along the pipe. To solve the Stokes equations with these boundary
conditions we use a periodic Fast Multipole Method implemented in the library STKFMM
Yan & Shelley (2018). To avoid the overlap of the bacterium with the pipe we include
a steric repulsion interaction between the blobs of pipe and bacterium with a repulsion
strength f = 5× 10−5pNµm for overlapping blobs and with an exponential decay with a
characteristic length ξ = 0.01µm for non-overlapping blobs.

For all models considered in this section we simulate the bacteria for 10 s so the bacteria
can swim at least 70µm. We use the last 8 s to extract the swimming speed and the power
consumption. The results for bacteria with the flagella model VII, the one used in Fig. 2,
are shown as full symbols in Fig. 5. The same general trend as for the static simulations is
observed. However, the efficiency curves do not cross over. The cross over is not observed
because this time the wrapped swimming speed along the pipe, uz, barely increases with
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Figure 4. Shapes of extended (a) and wrapped (b) bacteria modes with different Nλ values.
Inverse of the swimming efficiency versus radius of the pipe (r0) for different values of Nλ for
the extended mode (c) and the wrapped mode (d).

confinement, and the efficiency depends strongly on uz. The magnitude of uz does not
increase because the bacterium swims with a tilt towards the wall, see Fig. 5c and Movie
1. In contrast, the extended mode cannot tilt significantly on small pipes as that is
prevented by its rigid flagellum, which favours the motion along the pipe.

To verify the role of the tilt we run another set of simulations using a longer flagellum,
model VI, that extends beyond the bacterium body, see Fig. 5c and Movie 2. The
results are presented as open symbols in Fig. 5. In this case the speed of the wrapped
mode is approximately independent on the confinement but larger than with the shorter
flagellum. As a result we observe a crossover between the efficiencies of the wrapped and
extended modes. Overall, these results show that (i) the swimming speed is less sensitive
to confinement for the wrapped mode than for the extended mode, (ii), the efficiency
improves strongly for the wrapped mode and (iii), depending on the flagellum details,
the wrapped mode can be the most efficient way to swim.

4. Conclusions

In this paper we have presented the dynamics of two different swimming modes, namely
the extended and wrapped modes of monotrichous type bacteria. Under bulk conditions
the extended mode swims faster and more efficiently than the wrapped mode. However,
under strong confinement the efficiency of the wrapped mode improves faster than for
the extended mode. For a wide number of flagella shapes, with different lengths and
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Figure 5. Swimming speed (a) and hydrodynamic efficiency (b) of wrapped and extended
modes swimming a long a periodic pipe extracted from 10 s long dynamic simulations. Full
symbols use flagellum model VII, which extends the same length as the body, and open symbols
use model flagellum VI, which extends longer. The longer flagellum prevents the tilt of the
wrapped mode which results in higher speeds and better efficiencies. (c) Two bacteria inside
a pipe. A bacterium with a short flagellum performs a precession motion around the pipe axis
while a bacterium with a long flagellum is forced to swim straight. The swimming direction is
shown with a large arrow and the pipe axis with a dashed line.

wavelengths, the bacteria in the wrapped mode swim more efficiently. These results
are complementary to the experimental work of Kinosita et al. where the bacteria
Burkholderia adopting the wrapped mode was observed to glide in very narrow ducts
Kinosita et al. (2018). It seems that, either by gliding over a substrate or by means
of hydrodynamic interactions, the wrapped mode promotes the motion of bacteria on
tight confinements. It is interesting to note that some bipolar flagellated bacteria can
display a wrapped and an extended mode simultaneously, where the flagellum at the
front pole wraps around the body and the rear one remains extended Murat et al. (2015);
Constantino et al. (2018); Thormann et al. (2022); Bansil et al. (2023). Such mixed mode
could present some advantages under confinement that should be investigated.
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