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separable covariance functions. Nevertheless, as we elucidate,
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innovative ideas. In this article, using kernel convolution of
order-based dependent Dirichlet process, we construct a novel
spatio-temporal model. We show that this satisfies desirable
properties and includes the stationary, separable, parametric
processes as special cases. Our resultant posterior distribution is
variable dimensional, which we attack using Transdimensional
Transformation based Markov Chain Monte Carlo, which can
update all the variables and change dimensions using determin-
istic transformations of a random variable drawn from some
arbitrary density defined on relevant support. We demonstrate
our model’s performance on simulated and real data sets. In all
situations, the findings are highly encouraging.
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1. Introduction

Recent years have witnessed considerable research on spatial and spatio-temporal modeling. The
ajor inferential objectives of spatio-temporal modeling are to predict a plausible value at some
oint in space and time, forecasting the future value at some location, and to make inferences about
he parameters of the spatio-temporal processes. A model must account for the given process’s
patio-temporal dependence structure. It is a common practice to assume that the underlying spatial
r spatio-temporal process is stationary and isotropic Gaussian process, as it facilitates prediction.
n particular, the geostatistical method of kriging assumes a Gaussian process structure for the
nknown spatial or spatio-temporal field. It focuses on calculating the optimal linear predictor
f the field. Researchers generally assume a stationary, often isotropic, covariance function when
erforming kriging. The covariance of responses at any two locations is assumed to be a function
f the separation vector or of the distance between locations but not a function of the actual
ocations. Researchers often estimate the parameters of an isotropic covariance function from the
emivariogram, the estimation of which is based on the squared differences between the responses
s a function of the distance between locations. The standard kriging approach allows one to
stimate a smooth spatial field flexibly, with no pre-specified parametric stochastic model for the
ata. However, these approaches have several drawbacks. The most important is that the actual
ovariance structure may not be stationary. This is because local influences may affect the random
rocess’s correlation structure. For instance, orographic effects influence the atmospheric transport
f pollutants and result in a correlation structure that depends on different spatial locations (Guttorp
nd Sampson, 1994). If one is modeling an environmental variable across the United States, the
ield will likely be much smoother in the topographically-challenged Great Plains than in the Rocky
ountains. This is manifested as different covariance structures in those two regions. Assuming
stationary covariance structure will result in over-smoothing the field in the mountains and
nder-smoothing the field in great plains (Paciorek, 2003).
Realizing the limitations of stationary parametric processes (almost invariably Gaussian pro-

esses), researchers have come up with many novel ideas for constructing nonstationary and/or
onparametric processes. The first significant work in the framework of nonstationary parametric
rocesses is by Sampson and Guttorp (1992), who proposed an approach based on spatial deforma-
ion. This work is followed up by Damian et al. (2001) and Schmidt and O’Hagan (2003), providing
he corresponding Bayesian generalizations. Nonstationarity has been induced in parametric space–
ime models by Haas (1995), by proposing a moving window regression residual kriging. A similar
pproach has been proposed by Nott and Dunsmuir (2002). Higdon (1998) (see also Higdon et al.
1999), Higdon (2001)) proposed a kernel convolution approach for inducing nonstationarity in
aussian processes. Similar approaches are also proposed by Fuentes and Smith (2001) and Fuentes
2002). Approaches that attempt to model the underlying process as nonparametric, in addition to
odeling the covariance structure as nonstationary, are more recent in comparison, the approach
f Gelfand et al. (2005) based on Dirichlet processes (see, for example, Ferguson (1973), Ferguson
1974)) being the first in this regard; see Duan et al. (2007) for a generalization. Duan et al. (2009)
se stochastic differential equations to construct a nonstationary, non-Gaussian process. We discuss
hese proposals in some detail in Section 1.1.

Fuentes and Reich (2013) proposed a nonparametric nonstationary model based on kernel pro-
esses mixing. In their study, they showed that their proposed model outperformed all other models
or several types of simulation designs (Stationary Gaussian, Nonstationary Gaussian, Stationary
on-Gaussian, Nonstationary Non-Gaussian). They illustrated their model with application to the
onthly average values of ammonium and nitrate at 209 monitoring stations in the US. Their
roposed nonstationary non-Gaussian model reduced the root mean square error (RMSE) by 24%
or ammonium and 18% for nitrate when compared to the nonstationary Gaussian approach. RMSE
s also reduced compared to stationary Gaussian and stationary non-Gaussian approaches, although
he gain is more moderate in these cases.

Griffin and Steel (2006) (henceforth GS) proposed the novel order-based dependent Dirichlet
rocesses (ODDP). They introduced a framework for nonparametric modeling with dependence on

ontinuous covariates. Dependence is induced through relevant weights utilizing similarities in the
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covariate information. Each weight is a transformation of independently and identically distributed
(iid) random variables. GS derived an ordering π of these random variables at each covariate value
uch that distributions for similar covariate values are associated with similar orderings and thus
ill be close. These orderings combined with the Poisson point process, give a simple analytical
xpression for the correlation function of the distributions, which ensures that if two points are
imilar in the covariate space, they will get a higher correlation compared to the points that are
ot. Furthermore, when the distance between two points is large enough in the covariate space,
he correlation approaches zero. In spatial/spatio-temporal context, it translates into the fact that
hen two observations are widely separated in space/space–time, the model based correlations
end to zero. Nevertheless, the ODDP process suffers from the limitation of being stationary.

Preserving all the desirable properties of the correlation function of ODDP, we attempt to incor-
orate further flexibility in our spatial/temporal/spatio-temporal model in terms of nonstationarity
nd nonseparability through our proposed kernel convolution-based methodology. Specifically, we
ropose a new class of spatial/temporal/spatio-temporal models that is nonparametric, nonstation-
ry, nonseparable, and such that the correlation tends to zero if either of spatial and temporal
istance tends to infinity. All these properties are desirable in real data scenarios.
In the context of real spatio-temporal data set on particulate matter, we show that empirical

orrelations tend to zero as the spatio-temporal lag increase. Nonstationarity of this data set is also
nferred in a separate paper by Roy and Bhattacharya (2020). Furthermore, another data set on sea
urface temperature used in Bhattacharya (2021) also exhibits lagged correlations tending to zero
ith increasing spatio-temporal lags despite nonstationarity. Moreover, these data sets are far from
aussianity, as simple quantile–quantile plots indicate. Hence, this paper attempts to create a class
f realistic stochastic processes to address these desirable properties in real-life data sets. In order to
rovide additional motivation, we compared our analysis to one of the competent existing models,
amely, Fuentes and Reich (2013). Their proposed model is nonstationary, and nonparametric but
oes not guarantee those correlations fall to zero with increasing lag. Our model better captures the
orrect correlation structure, especially when the actual correlation is close to zero for nonstationary
odels. When considering all of these characteristics, our approach may be worthwhile in modeling
onstationary spatio-temporal data.
The rest of our paper is structured as follows. In Section 1.1, we provide a brief overview of the

xisting approaches to construction of nonstationary, nonseparable space–time processes in both
arametric and nonparametric frameworks, arguing that not all desirable properties are necessarily
ccounted for in these approaches. Such issues necessitate development of new approaches to
he construction of nonstationary, nonparametric, nonseparable space–time models. In Section 2.1
e introduce our proposed space–time model based on kernel convolution of ODDP, and show
hat it satisfies the properties that the existing models do not guarantee. We investigate our
odel’s continuity and smoothness properties in Section 2.3. Since our proposed model involves
n infinite random series, one needs to either truncate the series or assume a random number
f summands and adopt variable dimensional Markov Chain Monte Carlo (MCMC) approaches for
odel fitting. Although we adopt the latter framework for our applications and implement the

ecently developed Transdimensional Transformation based Markov Chain Monte Carlo (TTMCMC)
Das and Bhattacharya, 2019b) for simulating from our variable dimensional model, for the sake
f completeness, we also investigate the truncation approach. Indeed, in Section 2.4, we consider
he difference between the prior predictive models with and without truncation of the infinite
andom series, providing a bound that depends upon the truncation parameter. Thus, the truncation
arameter can be chosen so that the bound falls below any desired level. Section 2.5 discusses the
hoice of suitable kernels and prior distributions. Furthermore, the choice of the spatio-temporal
omain is relevant for the computational purpose. We describe the joint posterior distribution
ssociated with our model and briefly discuss TTMCMC in Section 2.6. We detail a simulation
tudy illustrating the performance of our model and comparison with Fuentes and Reich (2013)
n Section 3.1. Indeed, the model of Fuentes and Reich (2013), despite being very different from
ur ideas, comes closest to our model conceptually among the existing models. In Section 3.4 we
onsider applying our ideas to two real data sets: a spatial ozone data set and a spatio-temporal
ata set on particulate matters. Finally, we summarize our contributions and provide concluding
emarks in Section 4.
3
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Proofs of our results and requisite details of TTMCMC, particularly in the context of our spatio-
emporal model, and details regarding the generation of the data for the simulation experiment, are
rovided in the supplement Das and Bhattacharya (2019a), whose sections and algorithms have the
refix ‘‘S-" when referred to in this paper.

.1. Overview of other available nonstationary approaches

.1.1. Parametric approaches
The deformation approaches of Sampson and Guttorp (1992), Damian et al. (2001), and Schmidt

nd O’Hagan (2003) are based on Gaussian processes. In these approaches replications of the data
re necessary, which the authors relate to temporal independence of the data. This also means that
pace–time data cannot be modeled using these approaches, unless all the temporal dependence
an be captured through a trend term in the mean structure. Moreover, in the deformation-based
pproaches model based theoretical correlations between random observations separated by large
nough distances need not necessarily tend to zero. Letting Y (s, t) denote the response at spatial

location s and time t , Sampson and Guttorp (1992) deal with the variogram of the following form:

Var(Y (s1, t) − Y (s2, t)) = f (∥d(s1, t) − d(s2, t)∥), (1.1)

for any s1, s2, t , where f is an appropriate monotone function and d is a one-to-one nonlinear
mapping. The technique of Sampson and Guttorp (1992) involves appropriately approximating f by
f̂ using the multidimensional scaling method, and obtaining a configuration of points {u1, . . . , un}

in a ‘‘deformed" space, where the process is assumed isotropic. Then using thin-plate splines, a
nonlinear approximation of d, which we denote by d̂, is determined such that d̂(si) ≈ ui, for
i = 1, . . . , n. Bayesian versions of the key idea have been described in Damian et al. (2001),
who use random thin-plate splines and Schmidt and O’Hagan (2003), who use Gaussian process
to implement the nonlinear transformation d. Rather than estimating f nonparametrically, both
specify a parametric functional form from a valid class of such monotone functions.

As is clear, since large differences ∥s1 − s2∥ does not imply that ∥d(s1)− d(s2)∥ is also large, the
odel based correlations between two observations widely separated need not necessarily tend to
ero, in either of the aforementioned deformation-based approaches.
The kernel convolution approaches of Higdon et al. (1999), Higdon (2001), and Fuentes and Smith

2001) overcome some of the difficulties of the deformation approach. In these approaches data
eplication is not necessary, and for appropriate choices of the kernel, stationarity, nonstationarity,
eparability, and nonseparability can be achieved with respect to spatio-temporal data. In the
pproach of Higdon et al. (1999) and Higdon (2001),

Y (x) =

∫
K (x, u)Z(u)du, (1.2)

where K is a kernel function and Z(·) is a white noise process. Then the covariance between Y (x1)
and Y (x2) is given by

C(x1, x2) =

∫
K (x1, u)K (x2, u)du. (1.3)

In general, this does not depend upon x1 and x2 only through x1−x2, thus achieving nonstationarity.
However, it is clear from the covariance structure (1.3) that C(x1, x2) does not generally tend to zero
as d = ∥x1 − x2∥ → ∞, except under seperability, with the additional assumption of isotropy with
respect to either space or time.

The approach of Fuentes and Smith (2001), which may be thought of as a generalization of
Higdon et al. (1999), comes close towards solving the problem of zero covariance in the limit with
large enough separation between observations, but still unfortunately fails to achieve this desirable
property.

A nonstationary process has been constructed by Chang et al. (2011), by representing the
underlying process as a linear combination of basis functions and stationary Gaussian processes.
This approach also does not guarantee that the correlation tends to zero if ∥x1 − x2∥ → ∞. For
other available parametric approaches to nonstationarity we refer to the references provided in

Chang et al. (2011).
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1.1.2. Nonparametric approaches
Gelfand et al. (2005) seem to be the first to propose a nonstationary, noparametric Bayesian

odel based on Dirichlet process mixing. They represent the random field Y D = {Y (x); x ∈ D} as
∞

ℓ=1wℓδθℓ,D , where θℓ,D = {θℓ(x); x ∈ D} are realizations from a specified stationary Gaussian pro-

ess, which we denote as G0, w1 = V1, wℓ = Vℓ
∏ℓ−1

r=1(1−Vr ) for ℓ ≥ 2, where Vr
iid
∼ Beta(1, α); r =

1, 2, . . .. Thus, a random process G is induced on the space of processes of Y D with G0 being the
‘‘central" process. Gelfand et al. (2005) assume the space–time data Y t = (Y (s1, t), . . . , Y (sn, t))′
to be time-independent for t = 1, . . . , T , which is the same assumption of data replication used
in the deformation-based approaches. The temporal-independence assumption allows Gelfand et al.
(2005) to model the data as follows: for t = 1, . . . , T , Y t

iid
∼ G(n) and G(n)

∼ DP(G(n)
0 ), where G(n) and

G(n)
0 denote the n-variate distributions corresponding to the processes G and G0. The development

leads to the following covariance structure: for any s1, s2, t ,

Cov(Y (s1, t), Y (s2, t) | G) =

∞∑
ℓ=1

wℓθℓ(s1)θℓ(s2) −

{
∞∑
ℓ=1

wℓθℓ(s1)

}{
∞∑
ℓ=1

wℓθℓ(s2)

}
, (1.4)

which is nonstationary. However, marginalized over G , the covariance between Y (s1, t) and Y (s2, t)
turns out to be stationary. Since, in Gelfand et al. (2005), the Bayesian inference of the data
Y 1, . . . ,Y n proceeds by integrating out G(n), the entire flavor of nonstationarity is lost. Also, given
G , (1.4) is nonstationary but does not necessarily converge to zero if ∥s1 − s2∥ → ∞.

Duan et al. (2007) attempt to generalize the model of Gelfand et al. (2005) by specifying G as

Pr{Y (x1) ∈ A1, . . . , Y (xn) ∈ An} =

∞∑
i1=1

· · ·

∞∑
in=1

pi1,...,inδθi1 (x1)(A1) · · · δθin (xn)(An), (1.5)

where θj’s are iid G0 as in Gelfand et al. (2005), and {pi1,...,in ≥ 0 :
∑

∞

i1=1 · · ·
∑

∞

in=1 pi1,...,in = 1}
determines the site-specific joint selection probabilities, which also must satisfies simple constraints
to ensure consistency. The resulting conditional covariance (conditional on G) and the marginal
covariance are somewhat modified versions of those of Gelfand et al. (2005), but now even the
marginal covariance is nonstationary. By choosing G0 to be an isotropic Gaussian process it can
be ensured that the marginal covariance tends to zero as two observations are widely separated,
but the same cannot be ensured for the conditional covariance. Moreover, replications of the data
is necessary even for this generalized version of Gelfand et al. (2005), and modeling temporal
dependence is precluded as before. A methodology very similar to that of Duan et al. (2007) is
proposed in Petrone et al. (2009).

Although the aforementioned approaches are temporally independent, Kottas et al. (2007) have
considered a first order autoregressive setup to model temporal dependence as a simple parametric
temporal extension of the temporally independent model proposed in Gelfand et al. (2005).

A nonstationary, nonseparable non-Gaussian spatiotemporal process has been constructed by
Duan et al. (2009) using discretized versions of stochastic differential equations, but again, the
correlations between largely separated observations do not necessarily tend to zero under their
model. Also, stationarity or separability cannot be derived as special cases of this approach.

A flexible approach using kernel convolution of Lévy random measures has been detailed in
Wolpert et al. (2011), but even this approach does not guarantee that correlations tend to zero for
largely separated distances for arbitrarily chosen kernels.

An univariate and multivariate nonparametric spatial model based on kernel process mixing has
been proposed by Fuentes and Reich (2013) (henceforth FR). In this work, the idea of stick-breaking
prior of Sethuraman (1994) was extended to a spatial set up. A different, unknown distribution was
assigned to each location, with a series of space-dependent kernel functions that have a space-
varying bandwidth parameter. Essentially, the Beta-distributed sequence {Vr : r = 1, 2, . . .} in the
stick-breaking construction of the traditional Dirichlet process are multiplied with a sequence of
space-dependent kernels {Kr (s) : r = 1, 2, . . .}, and the G0-distributed sequence is replaced with an
isotropic Gaussian process with nonstationary variance. The kernel functions attempt to impose a

natural ranking for the different mixture components based on distances of locations to knots, which

5
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seems to be an alternative way to mimic the role of the orderings imposed in GS. As the bandwidths
of the kernels tend to zero uniformly, the covariance conditional on {Vr : r = 1, 2, . . .} tends to the
isotropic covariance of the underlying Gaussian process. Marginally, the covariance structure, albeit
nonstationary, need not yield zero covariance even if the distance between the locations tend to
infinity. Moreover, this idea has been considered only for spatial modeling. Although it is simple to
extend the method to spatio-temporal situations, enforcing separability is needed, which does not
seem to be as straightforward.

Nonstationarity in both space and time is researched far less thoroughly than it is for modeling
nonstationarity in space, which has a large body of literature (Shand and Li, 2017). Recently Shand
and Li (2017) proposed a nonstationary space time model using dimension expansion technique.
Compared to the vast literature on continuous nonstationary spatio temporal processes, there are
very few methods available to model non-smooth covariance structures over the space or both
space–time (Guttorp et al., 2013). Among them, Kim et al. (2005) developed a method based on
a Bayesian approach to Voronoi tessellation. Since our approach hinges upon the idea of GS, and
smoothness properties of the ODDP depends on the order generating process, it is discontinuous in
nature. We will discuss in details the smoothness properties of our model in Section 2.3. Another
possible source of nonstationarity is the local influence of some covariates on the spatial process
of interest. Recently, there have been some proposals in the literature that account for covariate
information in the covariance structure of spatial and spatio-temporal processes; see, for example,
Reich et al. (2011), Schmidt et al. (2011), Neto et al. (2014), Ingebrigtsen et al. (2014), Risser and
Calder (2015), Gilani et al. (2016), Risser et al. (2019). Since in our model we introduce dependence
via the ODDP, where weights in the Sethuraman representation are dependent on the covariate
information, we can efficiently incorporate the local influence of covariate information into our
model. The covariate information can also be incorporated in the kernel that we convolve the ODDP
with.

More recent works on spatial and spatio-temporal models focus on the large data context, and
most of them are Gaussian process models. Spatial random effects model (Cressie and Johannesson,
2008; Katzfuss, 2013; Nychka et al., 2015) and predictive process models (Banerjee et al., 2008; Ren
and Banerjee, 2013) were proposed to make the computation feasible in modeling nonstationary
spatial data. For big spatial and spatio temporal data, Banerjee (2017) discusses methods based on
Gaussian processes with a focus on low rank based models and methods based on sparse covariance
matrices. The potential statistical inefficiency of low rank models for spatial interpolation was
illustrated (Stein, 2014).

Very recently Bhattacharya (2021) introduce a new spatial/spatio-temporal model built upon
Lévy processes. Another model based on Hamiltonian equations of physics has been introduced by
Mazumder et al. (2022). The goal of all the models the authors and their collaborators put out is to
create a class of nonstationary spatial/spatio-temporal models that are computationally feasible and
have desirable properties. In the next section we introduce our idea based on kernel convolution of
ODDP and show that it overcomes the issues faced by the traditional approaches to construction of
flexible space–time models.

2. Methods

2.1. Kernel convolution of ODDP

Before introducing our proposal, We will give a brief introduction of ODDP. ODDP hinges upon
the idea of Dirichlet process prior introduced by Ferguson (1973). Dirichlet process are overwhelm-
ingly used as the prior for the unknown distribution. However, the Dirichlet process cannot be used
to establish the relationship between covariates and unknown distribution if one must model the
data with covariates.We briefly introduce the concept of stick-breaking representation of Dirichlet

process proposed by Sethuraman (1994) before delving deeper into the introduction to ODDP.

6
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Fig. 2.1. Stick Breaking Representation of Dirichlet Process.

2.2. Stick breaking representation of Dirichlet process

G D
=

∞∑
i=1

piδψi , (2.1)

where

pi = Vi

∏
j<i

(1 − Vj). (2.2)

Vi
iid
∼ Beta(1, α)

ψi
iid
∼ G0

This representation of Dirichlet process is known as a ‘‘stick-breaking" representation since it
involves breaking off successive ‘‘sticks" of length pi from a single stick of unit length (

∑
∞

i=1 pi = 1)
(Fig : 2.1).

2.2.1. Overview of ODDP
In order to induce spatial dependence between observations at different locations GS modifies

the nonparametric stick-breaking construction of Sethuraman (1994) in the following way:
for each point x ∈ D, where D is some specified domain, they define the distribution:

Gx
D
=

∞∑
i=1

pi(x)δψπi(x) , (2.3)

where

pi(x) = Vπi(x)
∏
j<i

(1 − Vπj(x)). (2.4)

In (2.3) and (2.4), π(x) = (π1(x), π2(x), . . .) denotes the ordering at x, where πi(x) ∈ {1, 2, . . .} and
πi(x) = πj(x) if and only if i = j. For j = 1, 2, . . ., the parameters ψj

iid
∼ G0, where G0 is some specified

parametric centering distribution, and Vj
iid
∼ Beta(1, α), where α > 0 is a specified parameter. The

process associated with specification (2.1) is the ODDP. Clearly, if πi(x) = i for each x and i, then
the Dirichlet process (DP) results at all locations.

GS constructs π(x) in a way such that it is associated with the realization of a point process.
Specifically, they consider a stationary Poisson process Φ and a sequence of sets U(x) for x ∈ D, the
7
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Fig. 2.2. Three covariate values x1, x2, x3 with a section of point process in the U(x) = (−4, 5).

atter determining the relevant region for the ordering purpose. In the case of only spatial problems,
f x ∈ D ⊂ Rd, for d ≥ 1, then GS suggests U(x) = D for all x ∈ D as a suitable construction of
U(x). For time series problems they suggest D = R and U(x) = (−∞, x]. When x = (s′, t)′, that
s, when x consists of both spatial and temporal co-ordinates, for our modeling purpose, we use
(x) = D × (−∞, t].
Letting {z1, z2, . . .} denote a realization of the stationary Poisson point process, the ordering π(x)

s chosen to satisfy ∥x−zπ1(x)∥ < ∥x−zπ2(x)∥ < ∥x−zπ3(x)∥ < · · ·, where ∥ ·∥ is a distance measure
and zπ (x) ∈ Φ ∩ U(x). Thus, although the set of probabilities {pi(x); i = 1, 2, . . .} remains the same
for all locations, they are randomly permuted. This random permutation, in turn, induces spatial
dependence. To explain using a simple example, x1, x2 is spatially closer than x1, x3 in Fig. 2.2. The
stick-breaking representation of ODDP suggests a higher degree of weight similarity between x1 and
x2 than between x1 and x3, as shown in Fig. 2.3. Because the weights are similar, there is a greater
dependence between x1 and x2 than between x1 and x3.

Assuming a homogeneous Poisson point process with intensity λ, ODDP is characterized by G0,
α, and λ. We express dependence of ODDP on these parameters by ODDP(αG0, λ).

Assuming that data {y1, . . . , yn} are available at sites {x1, . . . , xn}, GS embed the ODDP in a
hierarchical Bayesian model:

yi ∼ gψi(·)

ψi ∼ Gxi and
Gxi ∼ ODDP(αG0, λ).

Note that the same theory can be extended to space–time situations with x = (s′, t)′, where s stands
for the spatial location and t stands for the time point.

Next, we introduce our proposed idea of kernel convolution of ODDP.

2.2.2. Kernel convolution of ODDP
We consider the following model for the data Y = {y1, . . . , yn} at locations/times {xi =

(s′

i, ti)
′
; i = 1, . . . , n}:

yi = f (xi) + ϵi, (2.5)

where ϵi
iid
∼ N(0, σ 2), for unknown σ 2. We represent the spatio-temporal process as noisy

measurements yi of an unknown real valued function f (x). The unknown mean function f (·) is
expressed as a convolution of ODDP Gx with a smoothing kernel K (x, ·):

f (x) =

∫
K (x, θ)dGx(θ) =

∞∑
i=1

K (x, θπi(x))pi(x) ∀x ∈ D ⊆ Rd, θ ∈ Rd,

θ ∼ Gx and

Gx ∼ ODDP(αG0, λ), (2.6)

d (≥ 1) being the dimension of x. Note that, theoretically there is no reason to consider the same
dimension for x and θ, since K (x, θ) may be well-defined for different dimensions of x and θ.
However, for our purpose, and for simplicity, we assume the dimensions to be the same.

Thus, given Gxi ,

yi ∼ N
(
f (xi), σ 2) , (2.7)

the normal distribution with mean f (xi) of the form (2.6) and variance σ 2. Thus, given Gxi and Gxj ,
y and y are independent.
i j

8
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Fig. 2.3. Stick Breaking Representation of ODDP at different covariate values a) x1 , (b) x2 , (c) x3 : (Illustrates The higher
degree of weight similarity between two nearby points in space).

Since the ODDP model of GS can also be viewed as a convolution, it is important to clarify its

differences with (2.6) and (2.7). Indeed, note that with respect to GS, the response data yi has the

9
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following distribution:

yi ∼

∫
gψ(·)dGxi (ψ) =

∞∑
j=1

gψπj(xi) (·)pj(xi). (2.8)

Thus, under (2.8) (that is, under the model proposed by GS), for any choice of gψ , yi arises from an
nfinite mixture with mixture density components gψπj(xi) (·) and corresponding mixture probabilities
pj(xi). On the other hand, our model postulates a normal distribution for yi via (2.6) and (2.7), where
the mean is the kernel convolution given by (2.6). The convolutions given by (2.6) and (2.8) also have
different interpretations. The latter is a density, whereas, the former is any real-valued function.
Further implications, with respect to nonstationarity, and correlation structure tending to zero with
widely separated distances, are discussed following Theorem 5.

In spatio-temporal processes we have to specify the joint distribution for an uncountable number
of random variables. But, in practice we observe the process at a finite number of locations only. To
infer about the process, it is better to have finite moments, that ensures existence of the posterior
distribution. It also facilitates the prediction of the process at an arbitrary unobserved location.
The following theorem, the proof of which is presented in Section S-1 of the supplement, gives an
expression of the expectation of f (x).

Theorem 1. Let
∫

|K (x, θ)|dG0(θ) < ∞. Then
∫

|K (x, θ)|dGx(θ) < ∞ with probability one, and

E(f (x)) = E
∫

K (x, θ)dGx(θ) =

∫
K (x, θ)dEGx(θ) =

∫
K (x, θ)dG0(θ) = EG0K (x, θ).

Before deriving the covariance structure of f (·), we define the necessary notation following GS.
Let

T (x1, x2) = {k : there exists i, j such that πi(x1) = πj(x2) = k}.

or k ∈ T (x1, x2), we further define Alk = {πj(xl) : j < i where πi(xl) = k}, Sk = A1k ∩ A2k and
′

k = A1k ∪A2k − Sk. Then the following theorem, the proof of which is deferred to Section S-2 of the
upplement, provides an expression for the covariance structure of f (·), which will be our reference
oint for arguments regarding nonstationarity and other desirable spatial properties in comparison
ith the existing methods.

heorem 2. If
∫

|K (x, θ)|dG0(θ) < ∞ and
∫

|K (x1, θ)K (x2, θ)|dG0(θ) < ∞, then for a fixed ordering
t x1 and x2,

Cov(f (x1), f (x2)) =CovG0 (K (x1, θ), K (x2, θ))

×
2

(α + 1)(α + 2)

∑
k∈T (x1,x2)

(
α

α + 2

)#Sk (
α

α + 1

)#S′
k

, (2.9)

where

CovG0 (K (x1, θ), K (x2, θ)) =

∫
K (x1, θ)K (x2, θ)dG0(θ) − EG0 (K (x1, θ))EG0 (K (x2, θ)). (2.10)

orollary 3. It follows from the above theorem that for i = 1, 2, if
∫
K 2(xi, θ)dG0(θ) < ∞, then

Var(f (xi)) =
VarG0 (K (xi, θ))

α + 1
(2.11)

nd

Corr(f (x1), f (x2)) =CorrG0 (K (x1, θ), K (x2, θ)) × Corr(Gx1 ,Gx2 ), (2.12)

here

Corr(Gx1 ,Gx2 ) =
2

α + 2

∑ (
α

α + 2

)#Sk (
α

α + 1

)#S′
k

. (2.13)

k∈T (x1,x2)

10
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The expression for the correlation in (2.13) has been obtained by GS. The above results provide
n expression for the correlation conditional on a fixed ordering. To obtain the unconditional
orrelation it is necessary to marginalize the conditional correlation over the point process Φ .
ollowing GS we also modify the notation as follows: we now let T (x1, x2) = Φ ∩ U(x1) ∩ U(x2),
ℓk = Aℓ(zk), where Aℓ(z) = {w ∈ Φ ∩ U(xℓ) : ∥w− xℓ∥ < ∥z − xℓ∥}, for z ∈ Φ ∩ U(xℓ). As already
entioned in Section 2.2.1, when x = (s′, t)′, we define U(x) = D × (−∞, t].
Also, for z ∈ T (x1, x2), we let S(z) = A1(z) ∩ A2(z) and S ′(z) = A1(z) ∪ A2(z) − S(z), which imply

that S(z) = {w ∈ T (x1, x2) : ∥w− x1∥ < ∥z − x1∥ and ∥w− x2∥ < ∥z − x2∥}.
We further define, as in GS, S−z (z) and S ′

−z (z) to be translations of S(z) and S ′(z), respectively,
by −z . Then the refined Campbell theorem yields, in the case where Φ is a stationary point process
with intensity λ:

Corr(f (x1), f (x2)) = CorrG0 (K (x1, θ), K (x2, θ))

×
2λ
α + 2

∫
U(x1)∩U(x2)

∫ (
α

α + 2

)φ−z (S−z ) ( α

α + 1

)φ−z (S′
−z )

P0(dφ)dz. (2.14)

n (2.14), P0(dφ) is the Palm distribution of Φ at the origin, and φ−z is the realization of Φ translated
y −z . Note also that the second factor of the above correlation is the unconditional correlation
etween Gx1 and Gx2 (see GS).

emark 4. It is worth pointing out that unlike Gelfand et al. (2005) who obtained covariance
tructure conditional on the random process G , in our case, the covariance structures conditional
n the random measures Gx are not relevant, since it follows from (2.7) and the subsequent
iscussion that Cov

(
y1, y2|Gx1 ,Gx2

)
= 0. Indeed, dependence among the responses is induced

hrough dependence among Gx.

The following theorem, the proof of which is provided in Theorem 5 of the supplement, shows
hat the above correlation structure of our kernel convolution based ODDP satisfies desirable
roperties.

heorem 5. Corr(f (x1), f (x2)) → 1 as ∥x1 −x2∥ → 0 and Corr(f (x1), f (x2)) → 0 as ∥x1 −x2∥ → ∞.

It is clear from the above theorem and model (2.5) that Corr(yi, yj) → 0 as ∥xi − xj∥ → ∞.
Under a stationary Poisson process assumption for Φ , and for particular specifications of U(x)

entioned in Section 2.2.1, the calculations of GS show that the second factor of (2.14) depends
pon x1 and x2 only through ∥x1 − x2∥, leading to isotropy of the process. There does not seem to
xist any result analogous to the refined Campbell theorem in the context of nonstationary Poisson
rocess which might allow one to construct a nonstationary correlation structure in this case. The
nalytic form of the ODDP correlation structure need not be available for other constructions of U(x)
ither. Isotropy results even in the case of the more flexible Cox processes. Note that the correlations
etween any two responses yi and yj may correspond to nonstationarity if their expectations under
he density fθ(·) are nonlinear in θ. However, there is no guarantee that the correlation tends to
ero as ∥xi − xj∥ → ∞.
On the other hand, our kernel convolution idea neatly solves this problem of attainment of non-

tationarity via the first factor of our correlation structure given in (2.14). Indeed, the kernel K (x, θ)
an be chosen in the spirit of Higdon et al. (1999), for instance, such that CorrG0 (K (x1, θ), K (x2, θ))
oes not depend upon x1−x2 alone. In other words, by simply controlling the kernel we can ensure
onstationarity of our process f (·) even if the underlying ODDP is stationary or even isotropic. Of
ourse, our process can be made stationary as well by choosing the kernel, say, in the spirit of
igdon (1998), and setting U(x) to be of the forms specified by GS, when x consists of either only
patial co-ordinates or only temporal co-ordinate. When x = (s′, t)′, then we set U(x) = D×(−∞, t],
s already mentioned before.
We further note that our general space–time correlation structure given by (2.12) is nonsep-

rable, that is, in general, Corr(f (s1, t1), f (s2, t2)) ̸= Corr1(s1, s2) × Corr2(t1, t2), where Corr1 and

orr2 are spatial and temporal structures, respectively. However, if desired, separability can be

11
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easily induced by allowing the kernel to depend upon only the spatial location and by allowing
the ordering π to depend only upon time, or the vice versa. Specifically, letting K (x, θ) = K (s, θ)
and π(x) = π(t), we obtain

Corr(f (s1, t1), f (s2, t2)) = CorrG0 (K (s1, θ), K (s2, θ)) × Corr(Gt1 ,Gt2 ), (2.15)

and letting K (x, θ) = K (t, θ) and π(x) = π(s), we obtain

Corr(f (s1, t1), f (s2, t2)) = CorrG0 (K (t1, θ), K (t2, θ)) × Corr(Gs1 ,Gs2 ). (2.16)

In contrast, under the ODDP approach of GS, it is clear from the correlation structure that
Corr(Gx1 ,Gx2 ) ̸= Corr1(s1, s2)×Corr2(t1, t2), showing that separability cannot be enforced if desired.

Thus, following our approach it is easy to construct nonparametric covariance structures that
are either stationary or nonstationary, which, in turn, can be constructed as either separable or
nonseparable, as desired. These illustrate the considerable flexibility inherent in our approach, while
satisfying at the same time the desirable conditions that the correlation between f (x1) and f (x2)
tends to 1 or zero accordingly as the distance between x1 and x2 tends to zero or infinity.

2.3. Continuity and smoothness properties of our model

For stationary models, properties like continuity and smoothness can be quite generally char-
acterized by the continuity and smoothness of the correlation function. In particular, continuity
and smoothness of stationary processes typically depend upon the behavior of the correlation
function at zero; see Yaglom (1987a) and Yaglom (1987b) for details. For nonstationary processes,
however, such elegant theory is not available. Indeed, the structure of the correlation function
itself may be difficult to get hold of, rendering it difficult to investigate the properties of the
underlying nonstationary stochastic process. For our purpose, we utilize the notions of almost sure
continuity, mean square continuity and mean square differentiability of stochastic processes (see,
for example, Stein (1999), Banerjee and Gelfand (2003)) to study the properties of our nonstationary
spatio-temporal process.

Definition 6. A process {X(x), x ∈ Rd
} is L2 continuous at x0 if lim

x→x0
E[X(x)−X(x0)]2 = 0. Continuity

in the L2 sense is also referred to as mean square continuity and will be denoted by X(x)
L2
→ X(x0).

Definition 7. A process {X(x), x ∈ Rd
} is almost surely continuous at x0 if X(x) → X(x0) a.s. as

x → x0. If the process is almost surely continuous for every x0 ∈ Rd then the process is said to
have continuous realizations.

Theorem 8. Assume the following conditions:

(A1) For all x and θ, |K (x, θ)| < M for some M < ∞.
(A2) Given any θ, K (x, θ) is a continuous function of x.

Then f (·) is both almost surely continuous and mean square continuous in the interior of ∩∞

k=1Akik , where
Akik = {x : πk(x) = ik}, and for each k = 1, 2, . . ., ik ∈ {1, 2, . . .}; ik ̸= ik′ for any k ̸= k′. On the other
hand, f (·) is almost surely discontinuous at any point x0 ∈ ∩

∞

k=1Akik lying on the boundary of Akik , for
any ik.

See Section S-4 for a proof of this result. Now we examine mean square differentiability of our
process.

Definition 9. A process {X(x), x ∈ Rd
} is said to be mean square differentiable at x0 if for any

direction u, there exists a process Lx0 (u), linear in u such that

X(x0 + u) = X(x0) + Lx0 (u) + R(x0, u), where
R(x0, u) L2

→ 0.

∥u∥

12
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Theorem 10. Assume the following conditions:

(B1) For all x and θ, |K (x, θ)| < M for some M < ∞.
(B2) Given any θ, K (x, θ) is a continuously differentiable function of x.

hen f (·) is mean square differentiable in the interior of ∩
∞

k=1Akik .

See Section S-5 for a proof of this theorem.
In real life applications most of the spatio-temporal processes are expected to be irregular in

ature. One of the desirable properties of a spatio-temporal model is that, it allows different degrees
f smoothness across space and time. Our model has achieved this property regarding smoothness.
or example, if we associate the ODDP prior only to the spatial locations, then the process becomes
moother across time than across space depending on the choice of the kernel.

.4. Truncation of the infinite summand

Since our proposed model f (x) =
∑

∞

k=1 K (x, θπ (x))pi(x) is an infinite (random) series, for model-
itting purpose it is necessary to truncate the series to f (x) =

∑N
k=1 K (x, θπ (x))pi(x), where N is to

e determined, or to implement variable-dimensional Markov chain methods. For the latter, N is
o be considered a random variable so that the number of parameters associated with f (x) is also
random variable.
Although we will describe and implement TTMCMC, we first prove a theorem with respect to

runcation of the infinite random series. Note that in the context of traditional Dirichlet process
haracterized by Sethuraman’s stick breaking construction (Sethuraman, 1994) which involves
nfinite random series, Ishwaran and James (2001) proposed a method of truncating the infinite
eries.
We now state our theorem on truncation, the proof of which is provided in Section S-6 of the

upplement. But before stating the theorem it is necessary to define some required notation. Let

PN (xi) =

N∑
i=1

K (xi, θi)pi, and P(xi) =

∞∑
i=1

K (xi, θi)pi,

where N needs to be determined. Also let

PN = (PN (x1), . . . , PN (xn))′ and P = (P(x1), . . . , P(xn))′,

and denote byΘN andΘ the sets of random quantities (Vi, θi) associated with PN and P respectively.
We define the following marginal densities of the vector of observations y = {y1, . . . , yn}, where
[·|·] and [·] denote conditional and marginal densities, respectively:

mN (y) =

∫
ΘN

[y|PN ][PN ]dΘN

=

∫
Θ

[y|PN ][P]dΘ,

and

m∞(y) =

∫
Θ

[y|P][P]dΘ.

Theorem 11. Under the assumption that sup
θ

K (xi, θ) ≤ M for i = 1, . . . , n, where M > 0 is a finite

constant, we have∫
|mN (y) − m∞(y)| dy ≤ 4M2n

(
α

)N

+ 2

√
2
Mn

(
α

)N

.

Rn α + 2 π α + 1

13
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Fig. 2.4. Spatially Evolving Ellipse (Calder, 2014).

Since our proposed model involves a random infinite series, for model fitting one needs to either
runcate the series or assume a random number of summands and adopt variable dimensional
CMC approaches. Although we adopt the latter framework for our applications, for the sake of
ompleteness we also investigate the truncation approach. We consider the difference between the
rior predictive models with and without truncation of the random infinite series, providing a bound
hat depends upon the truncation parameter. Thus, the truncation parameter can be chosen so that
he bound falls below any desired threshold.

.5. Choice of kernel, prior distributions and computational region

The choice of kernel K (·, ·) plays a crucial role in nonstationary spatio-temporal data analysis.
For instance, if K (x, θ) = K (x − θ), then the correlation between Y (x1) and Y (x2) turns out
o be a function of x1 − x2, thus inducing stationarity. For the purpose of nonstationarity, it is
ecessary to make the parameters of the kernel depend upon space and time. In the spatial context
uch nonstationary kernels are considered in Higdon et al. (1999). In this paper, we consider
nonstationary space–time kernel; for the spatial part of the kernel we essentially adopt the
ependence structure and the associated prior distributions proposed by Higdon et al. (1999) and
or the temporal part we allow the relevant coefficient to be time varying, modeled by a stationary
aussian process. Higdon et al. (1999) noted that there is a one-to-one mapping between a bivariate
ean-zero Gaussian density and its one standard deviation ellipse. To achieve nonstationarity in
pace spatially-varying kernel matricesΣ(s) are modeled using a spatially-varying family of ellipses,
Fig : 2.4). Specifically, Higdon et al. (1999) parameterizes the ellipses to be spatially- varying by
llowing the coordinates of the focal points of Σ(s) to be spatially-varying; these coordinates are
ssigned stationary Gaussian process prior distributions.
In particular, we consider the following kernel for our applications:

K (s, t, θ, τ ) = exp
{
−

1
2
(s − θ)TΣ(s)(s − θ) − δ(t)|t − τ |

}
,

where Σ(s) is a 2 × 2 positive definite dispersion matrix depending upon s, and δ(t) > 0 depends
pon time t . We assume that log(δ(t)) is a zero mean Gaussian process with covariance c (t , t ) =
δ 1 2

14



M. Das and S. Bhattacharya Spatial Statistics 55 (2023) 100751

W
ψ

r

w
a

{

t
t
b

2

a

w
a

U

σ 2
δ exp

{
(t1 − t2)2/aδ

}
. We set

Σ(s)
1
2 = ϕ

⎛⎜⎜⎜⎝
[√

4A2+∥ψ(s)∥4π2

2π +
∥ψ(s)∥2

2

] 1
2

0

0
[√

4A2+∥ψ(s)∥4π2

2π −
∥ψ(s)∥2

2

] 1
2

⎞⎟⎟⎟⎠
×

(
cos α(s) sin α(s)

− sin α(s) cos α(s)

)
,

here ψ1, ψ2 are the focal points of the ellipse, and are spatially varying. where ∥ψ(s)∥2
=

2
1 (s) + ψ2

2 (s) and α(s) = tan−1
(
ψ2(s)
ψ1(s)

)
. For the details regarding derivation of Σ (s), intuition and

elevant diagrams for visual explanation, see Higdon et al. (1999).
We assume that ψ1(·) and ψ2(·) are independent and identical zero mean Gaussian processes

ith stationary covariance cψ (s1, s2) = σ 2
ψ exp

{
−∥s1 − s2∥2/bψ

}
. We put the U(3, 200) prior on ϕ,

δ , and bψ ; we set σ 2
δ = σ 2

ψ = 1. Also, we set A = 3.5. Since in our applications we center and scale
the observed time points, for τ we specify the N(0, 1) prior.

The use of Gaussian kernel functions, or a Gaussian correlation function, has the undesirable
property of resulting in process realizations that are infinitely differentiable and, thus, too smooth
for most spatio temporal applications, as detailed in Paciorek and Schervish (2006). To create a non-
smooth covariance structure, we convolved this Gaussian Kernel with ODDP, which is discontinuous.
However, different levels of smoothness can be attained by strategically utilizing ODDP, as was
already mentioned in 2.3.

2.5.1. Choice of G0
In our applications, we center and scale each of the two components {s1i; i = 1, . . . , n} and

s2i; i = 1, . . . , n} of the available spatial locations {si = (s1i, s2i); i = 1, . . . , n}. Consequently,
he choosing G0 to be the bivariate normal distribution with both means zero, both variances equal
o one, and correlation ρ appears to be reasonable. We estimate ρ by the empirical correlation
etween {s1i; i = 1, . . . , n} and {s2i; i = 1, . . . , n}.

.5.2. Prior selection for α
For the choice of prior distributions of the parameters associated with the ODDP we follow Griffin

nd Steel (2004) and GS. In particular, we put the inverted Beta distribution prior on α, given by

p(α) =
n0
ηΓ (2η)αη−1

Γ (η)2(α + n0)2η
,

here the hyperparameter n0 is the prior median of α. Note that the prior variance exists if η > 2,
nd is a decreasing function of η. This prior implies that α

α+n0
follows a Beta(η, η) distribution.

2.5.3. Prior selection for λ
Note that, for small α, only the first few elements of stick breaking representation are important,

so fewer number of points from the underlying Poisson process is needed to induce the second
factor of the correlation structure (2.14), which roughly depends upon the ratio λ/(α + 1) for
(x) = D (spatial problem) and U(x) = (−∞, x] (temporal problem); see GS for the details. Thus a

relatively small value of λ suffices in such cases. Similarly, when α is larger, larger λ is necessary to
obtain the same correlation. Keeping these in mind, we select the log-normal prior for λ with mean
log(α) and variance bλ, say. For our applications, we choose bλ = 20, so that we obtain a reasonably
vague prior.
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2.5.4. Computational region
Following GS, we consider a truncated region for the point process Z which includes the range

of the observed x. This truncated region has been referred to as the computational region by GS.
In particular, we choose a bounding box of the form (a1, b1) × (a2, b2) × · · · × (ad, bd) as the
computational region, where ai = dai − r , bi = dbi − r . Here dai and dbi are the minimum and the

maximum of x in dimension i, and r = 2
(
Γ (d/2)d
2πd/2

α+1
λ

log 1
ϵ

) 1
d
, with ϵ = exp

{
−

λ
α+1

2πd/2

Γ (d/2)d

( r
2

)d}.
See GS for justification of these choices.

2.6. Joint posterior and a briefing of TTMCMC for updating parameters in our variable dimensional
modeling framework

Let k denote the random number of summands in

fk(x) =

k∑
i=1

K (x, θπi(x))pi(x) , ∀x ∈ D ⊆ Rd. (2.17)

Let V = (V1, . . . , Vk), z = (z1, . . . , zk), θ = (θ1, θ2), with θ1 = (θ11, . . . , θ1k) and θ1 = (θ21, . . . , θ2k).
Let also ψ1 = (ψ1(s1), . . . , ψ1(sn)), ψ2 = (ψ2(s1), . . . , ψ2(sn)) and δ = (δ(t1), . . . , δ(tn)). The joint
osterior is of the form

π (k,V , z, θ1, θ2,ψ1,ψ2, δ, τ , σ , α, λ, bψ , aδ|Y )
∝ π (k)π (V , z, θ1, θ2|k)π (ψ1,ψ2, δ)π (τ , ϕ, bψ , aδ)π (σ )π (α)π (λ|α) × L(V , z, θ1, θ2, σ |k,Y ),

(2.18)

here L(V , z, θ1, θ2, σ |k,Y ) is the joint normal likelihood of V , z, θ1, θ2, σ under the model

yi = fk(xi) + ϵi; ϵi
iid
∼ N(0, σ 2); i = 1, . . . , n, (2.19)

onditional on fk(·).
For our applications, as the prior π (k) on k, we assume the discrete uniform prior on {1, 2, . . . ,

0}; in our applications k never even reached 30. Under π (V , z, θ1, θ2|k), Vi
iid
∼ Beta(1, α); i =

, . . . , k, z are realizations from the Poisson process with intensity λ, and for i = 1, . . . , k, (θ1i, θ2i)
iid
∼

0. Under π (ψ1,ψ2, δ), ψ1, ψ2, δ are independent Gaussian processes, as detailed in Section 2.5.
he prior distribution of τ , ϕ, bψ , aδ , denoted by π (τ , ϕ, bψ , aδ), is already provided in Section 2.5.
or the error standard deviation σ , the prior denoted by π (σ ) is the log-normal distribution with
arameters 0 and 1, so that the mean and variance of σ are about 1.6 and 5, respectively. These
uantities appear to be reasonable, and yielded adequate inference.
In order to obtain samples from the joint posterior (2.18) which involve the variable dimensional

k(·), we implement the TTMCMC methodology. In a nutshell, TTMCMC updates all the parameters,
oth fixed and variable dimensional, as well as the number of parameters of the underlying
osterior distribution in a single block using simple deterministic transformations of some low-
imensional random variable drawn from some fixed, but low-dimensional arbitrary distribution
efined on some relevant support. The idea is an extension of Transformation based Markov Chain
onte Carlo (TMCMC) introduced by Dutta and Bhattacharya (2014) for updating high-dimensional
arameters with known dimensionality in a single block using simple deterministic transformations
f some low-dimensional (usually one-dimensional) random variable having arbitrary distribution
n some relevant support. The strategy of updating high and variable dimensional parameters
sing very low-dimensional random variables clearly reduces dimensionality dramatically, thus
reatly improving acceptance rate, mixing properties, and computational speed. In Section S-7 of the
upplement we provide a detailed overview of TTMCMC, propose a general algorithm (Algorithm
-7.1) with certain advantages, and in Section S-8 of the supplement we specialize the algorithm
o our spatio-temporal modeling set-up, providing full updating details (Algorithm S-8.1).
16
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3. Results

3.1. Simulation study

To illustrate the performance of our model we first create a synthetic data generating process
hich is nonstationary and non-Gaussian. One popular method to create such process is the
ernel convolution approach. However, since we have developed our spatio-temporal model itself
sing the kernel convolution approach, it is perhaps desirable to obtain the synthetic data from
ome nonstationary, non-Gaussian process created using some approach independent of the kernel
onvolution method. In Section 3.1.1 we detail such an approach. Then we fit our proposed model
o the data pretending that the data-generating process is unknown.

.1.1. A nonstationary non-Gaussian data generating process
Let X(·) denote a stationary Gaussian process with mean function µ(t, s) = β0+β1t+β2s1+β3s2,

with s = (s1, s2), and covariance function

A(i, j) = c((ti, si), (tj, sj)) = exp
{
−0.5

(√
(ti − tj)2 + (s1i − s1j)2 + (s2i − s2j)2

)}
,

or any ti, tj, si = (s1i, s2i), sj = (s1j, s2j).
Let X = (X(t1, s1), . . . , X(tn, sn))′ denote observed data points from the Gaussian process X at the

esign points {(ti, si); i = 1, . . . , n}. Let t = (t1, . . . , tn)′ and S = (s′

1, . . . , s
′
n)

′. Further, let us denote
y A = (A(i, j); i = 1, . . . , n; j = 1, . . . , n) the covariance matrix and µ = (µ(t1, s1), . . . , µ(tn, sn))′.
hen the posterior process [X(·)|X] is non-stationary Gaussian with mean function µX (t, s) =

(t, s) + A12A−1
22 (X − µ) and variance A11 − A12A−1

22 A21, where A =

(
A11 A12
A21 A22

)
.

Let the posterior nonstationary Gaussian process [X(·)|X] be denoted by X∗(·). Now, conditionally
n the process X∗(·), consider another process Y (·) with mean function µ∗(t, s) = X∗(t, s) and
ovariance function cY ((ti, si), (tj, sj)) = exp

{
−0.5

⏐⏐X∗(ti, si) − X∗(tj, sj)
⏐⏐}. Then marginally, Y (·) is

nonstationary non-Gaussian process.
For our illustration we will simulate the synthetic data set from the process Y (·). The algorithm

or generation of this synthetic data is provided in supplementary material (Section S-9.1).

.2. Results of fitting our model to the simulated data

Note that for this problem the number of parameters to be updated ranges between 300 to 400.
ur TTMCMC based model implementation took 35 mins to yield 900000 realizations following a
urn-in of 100000. Quite encouragingly, TTMCMC exhibited satisfactory acceptance rate and mixing
roperties. Traceplots are shown in Figure S-9.1 of supplement.

.2.1. Leave-one-out cross-validation
We assess the predictive power of our model with the leave-one-out cross validation method. All

he 95 cases were included in the 95% highest posterior densities of the corresponding leave-one-
ut posterior predictive densities, Fig. 3.1 displays the posterior predictive densities of six randomly
elected space–time points, along with the true values, the latter denoted by the vertical lines. Thus,
atisfactory performance of our proposed model is indicated by the results, particularly given the
act that our model does not assume knowledge of the true, data-generating, parametric model.

.2.2. Correlation analysis
Though our simulation mechanism is completely different from our proposed model, the simu-

ated data do exhibit the pattern that the correlations are close to zero for two widely separated
ocations and/or times. Indeed, from the structure of the covariance matrix Σ (95|5), it is easily seen
hat the (i, j)-th element (i ̸= j) of Σ (95|5) is close to zero whenever the distance between ti and tj

nd/or si and sj is large.

17



M. Das and S. Bhattacharya Spatial Statistics 55 (2023) 100751
Fig. 3.1. Simulation study: Posterior predictive densities of Y (s, t) for the 6 different location-time pairs of our model —
the corresponding true values are denoted by the vertical line.

We calculate the posterior densities of correlation for different pairs of space–time points. In
formation of the pair, we select nearby locations, as well as locations which are widely separated,
such that we obtain both high and low correlation values under the true, data-generating model. It
18
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Fig. 3.2. Simulation study: Posterior densities of the correlations for the 12 different pairs of spatio-temporal points of
ur model; the vertical lines indicate the true correlations.

s evident from Fig. 3.2 that the true correlations, ranging from small to high values, lie well within
heir respective 95% credible intervals, vindicating reasonable performance of our model in terms
f capturing the true correlation structure.
19
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3.3. Comparative study with respect to FR’s approach

We now compare the performance of our model with FR. For the purpose of comparison, we
xtended the exclusively spatial model of FR to space–time model, and apply the same to our
imulated data.
We assess the predictive power of their model with the leave-one-out cross validation method.

ll the 95 cases were included in the 95% highest posterior densities of the corresponding leave-
ne-out posterior predictive densities. Fig. 3.3 displays the posterior predictive densities along with
he true values obtained by employing FR’s model for the same six locations that were investigated
n our model. If we consider the CPO measure defined by CPOi = π (yobsi |y−i) (Conditional Predictive
rdinate) (Pettit, 1990; Geisser, 1993), except for a few locations where the CPO measure for our
odel is slightly smaller than the model proposed by FR, our model performance is significantly
etter for most of the locations. Moreover, variabilities of the leave-one-out posterior predictive
ensities associated with the model of FR are substantially larger for all the locations.

.3.1. Correlation analysis
We calculate the posterior densities of the correlation for the same 12 pairs of space–time points

hat were investigated in our model. The main features of the correlation analysis are the following:

• The posterior densities, which are highly multimodal in nature, are in keeping with the
trace plots of the correlations (not shown), which clearly indicate convergence to multimodal
distributions.

• Analogous to the CPO measure described above, here we evaluate the correlation based
performance of the models in terms of the densities of the true correlations under the
corresponding posterior distributions. From Figs. 3.2 and 3.4, except for a few space–time pairs,
our model significantly outperforms that of FR for all the remaining space–time pairs.

• Moreover, when the true correlations are close to zero, for all the space–time pairs, the den-
sities of the true correlations under the corresponding posterior distributions are significantly
higher than that of FR.

• The above facts strengthen our claim that, compared to other models, our correlation structure
is sufficiently rich for capturing the actual correlations, specifically when the true correlation
is close to zero for nonstationary models.

.4. Real data analysis

.4.1. Spatial data
According to the Clean Air Act certain air quality is to be maintained to protect the public health,

nd to maintain proper survival environment of animals and vegetations. As a measure of the quality
f air, the Clean Air Act set standard limits for important air pollutants such as ozone. For our
eal data analysis we use the ozone metric called W126 metric. The impact of ozone exposure on
rees, plants and ecosystems is often assessed using a seasonal index known as a ‘‘W126 index",
hich is the annual maximum of consecutive three month running total of weighted sum of hourly
oncentrations observed between 8AM and 8PM on each day during the high ozone season of April
hrough October. A fundamental principle behind W126 metric is that higher hourly average ozone
oncentrations should be weighted more than middle and lower values when assessing human and
nvironmental effects. The cumulative W126 exposure index uses a sigmoidally weighted function.
he W126 index is a cumulative exposure index and not an ‘‘average" value. As indicated above,
t is a biology based index, which is supported by research results (i.e., under both experimental
nd ambient conditions) that show that the higher hourly average ozone concentrations should
e weighted greater than the mid- and lower-level values. The US EPA reviewed the National
mbient Air Quality Standards (NAAQS) for ozone in 2015, and determined that a 3-month W126
ndex level of 17 ppm-hrs is sufficient to protect the public welfare based on the latest science on
ffects of ozone on vegetation (US Federal Register, 2015). Also, we have information on Community
ultiscale Air Quality indices (CMAQ), which is highly correlated with ozone level, so that we can
se CMAQ as a covariate in our model.
20
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c

Fig. 3.3. Simulation study: Posterior predictive densities of Y (s, t) for the 6 different location-time pairs of FR — the
orresponding true values are denoted by the vertical line.
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F

3

Fig. 3.4. Simulation study: Posterior densities of the correlations for the 12 different pairs of spatio-temporal points of
R; the vertical lines indicate the true correlations.

.4.1.1. Calculating the W126 metric. Let Ql(s, t) denote the observed ozone concentration level in
parts per million (ppm) units at location s at hour l on day t, for t = 1, . . . , T and l = 1, . . . , 12,
where T = 214 days between April 1 and October 31 in a given year. The hours are the 12 day light
hours between 8AM and 7PM. The W126 metric for site s is calculated as follows.
22
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The weighted hourly metric is calculated using the transformation:

Ul(s, t) = Ql(s, t) ×

(
1

1 + 4403 × exp(−126 × Ql(s, t))

)
.

his logistic transformation truncates the values smaller than 0.05 ppm to zero, but does not alter
he magnitude of values larger than 0.10 ppm.

The daily index from the 12-hourly weighted values in each day is obtained as

Z(s, t) =

12∑
l=1

Ul(s, t).

The monthly index is calculated from the daily indices by summing and then adjusting for the
umber of days in the month as follows:

Mj(s) =

∑
t∈monthj

Z(s, t), j = 1, . . . , 7,

where the summation is over all the days l that fall within the calender month j.
The three-month running totals are centered at the last month and are obtained as:

M̄j(s) =

j∑
k=j−2

Mk(s), j = 3, . . . , 7.

Finally, the annual W126 index value is calculated by:

Y (s) =
7

max
j=3

M̄j(s).

The secondary ozone standard is met at a site s at a given year when the true value of Y (s) is
ess than 21 ppm-hours.

Corresponding to each observed ozone concentration Ql(s, t) we have a CMAQ model output
l(A, t), where the site s is contained in the unique grid cell A. Using the output vl(A, t) and the
bove details daily and annual indices of CMAQ values namely X(A, t) and X(A) are constructed.
We have data on annual indices of ozone values (W126) Y (s), and corresponding CMAQ X(A)

alues for 76 locations in the US. Now we fit our model to this real data set. Here we model the
ata on the log scale; we also use the log transformation of the CMAQ values. In other words, we
onsider

log(Y (s)) = α0 + α1 log(X(Ai)) + f (si) + ϵi, i = 1, . . . , 76,

here α0 and α1 are regression coefficients, f (si) is an annual level spatial random effect at location
i and ϵi is an independent nugget effect with variance σ 2. Here f (si) is our proposed spatial model
ased on kernel convolution with ODPP.
It is worth mentioning that we had initially considered a stationary kernel for convolution, but

btained a poor fit. This possibly suggested nonstationary process as an appropriate model, but until
ecently, we were not aware of any formal method for checking stationarity and nonstationarity in
completely nonparametric setup. Indeed, Roy and Bhattacharya (2020) proposed a novel recursive
ayesian methodology for characterizing stationarity and nonstationarity for general stochastic
rocesses, among various other characterizations, and illustrated their ideas with ample examples
n fields as varied as time series, MCMC convergence diagnosis, spatial and spatio-temporal setups,
oint processes, as well as (multiple) frequency determination of oscillating time series. With
heir ideas, they also analyze this ozone data to check stationarity. The details of their analyses
nd the results, presented in Section 13.7.1 of their paper, indicate that the ozone data is indeed
onstationary. Further, a simple quantile–quantile plot shows non-normality of the data.
The above arguments justify our nonparametric model choice and nonstationary kernel used

or convolution with ODDP. All the prior distributions are the same as mentioned before. For the
dditional parameters α and α , we use the vague prior distribution N(0, 104), and for σ we use
0 1
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the log-normal prior with mean zero and variance 104. The TTMCMC trace plots shown in Figure
-10.1 of the supplement bear out adequate performance of our model and methodologies.
As before, we assess the predictive power of the model using leave-one-out cross validation.

or all the locations, the true value of ozone concentration lies within the 95% credible interval of
he respective cross-validation posterior. This is summarized in the top panel of Fig. 3.5, where the
iddle surface represents the observed data; the lower and the upper surfaces represent the lower
nd the upper 95% credible regions associated with the respective leave-one-out posterior predictive
ensities. The surface in the middle of the bottom panel are the posterior medians, while the lower
nd the upper surfaces denote the 95% credible intervals as before. For the convenience of visually
omparing the observed data and the posterior medians, we include Fig. 3.6, which also contains
he 95% credible intervals. The plots clearly show that our proposed model is quite adequate for the
zone data.
Posterior densities of correlations, for 6 pairs of sites, are shown in Figure S-10.2 of supplement.

ll of them seem to give high posterior probability to the approximate range (0.1, 0.3).

3.5. Spatio-temporal data analysis

‘Particulate matter’ (PM) is the general term used for a mixture of solid particles and liquid
droplets found in the air. Airborne PM comes from many different sources. ‘‘Primary" particles are
released directly into the atmosphere from sources such as cars, trucks, heavy equipment, forest
fires, and other burning activities. An extensive body of scientific evidence shows that there are
adverse effects of this PM particles on health, including cardiovascular problems, premature death
and many more. Ambient air monitoring stations generally measure air concentrations of different
ranges of particles, but most monitoring station is for two size ranges: PM2.5 and PM10.

3.5.1. Data
Our data is a part of a big data set analyzed by Paciorek et al. (2009) (Data Source: http://ww

w.stat.berkeley.edu/∼paciorek/data/pm/). They specify stationary spatial structures through the use
of penalized thin plate splines. Assumption of stationarity leads to an important simplification in
their model. The assumption of stationarity is particularly appropriate for PM2.5 values, but there is
evidence of nonstationarity for PM10 values. Indeed, Roy and Bhattacharya (2020) infer with their
novel Bayesian recursive methodology that the PM10 data is strictly, as well as weakly nonstationary
(Section 13.7.2 of their paper) and that the PM2.5 data is strictly stationary (Section 13.7.3 of their
paper).

For illustration purpose, we fit a nonstationary spatio temporal model for a smaller section of the
full data set. We analyze monthly average values of PM10 for the year 1988–2002 (180 time points)
at 50 locations. There are few locations with fewer sample points. Our model will be appropriate
for this kind of data, since we are using the spatial locations and time points as arguments of
our proposed mean functional. Our data consists of total 3934 observations for monthly PM10
values. To increase the predictive performance of the model, we have used available covariate
information for different spatial locations and time points. It is expected that inclusion of covariates
may better explain the spatio-temporal heterogeneity. The details of the covariate selection are
discussed in Yanosky et al. (2008a,b). The non-time-varying covariates are as follows: distances to
the nearest road within four road size classes; particulate point source emissions within 1 and 10
km buffers; the proportion of urban land use of within 1 km; elevation; and block group, tract, and
county population density from the 1990 US Census. The time varying covariates are wind speed,
precipitation and barometric pressure, with hourly values averaged to the month at each station.

We also analyze the properties of the empirical correlations for increasing spatio-temporal lags
with respect to the complete data set consisting of 70572 observations. Fig. 3.7, obtained from the
raw correlations after taking moving averages of length 50 for better visualization, shows that the
correlations tend to zero with increasing lags, as realistically expected, in spite of the data being
nonstationary. Moreover, a simple quantile–quantile plot (not shown for brevity) shows that the

data is far from normality. These very much support our modeling idea.
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Fig. 3.5. Real spatial data analysis: The top panel shows the surface plot of ozone concentrations (middle), the lower
and the upper 95% credible intervals associated with the leave-one-out posterior predictive densities, denoted by the
lower and the upper surfaces, respectively. The bottom panel shows the surface plot of the posterior medians (middle)
along with the lower and the upper 95% credible intervals associated with the leave-one-out posterior predictive densities
(lower and the upper surfaces, respectively). The observed data points are indicated by ‘*’.
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Fig. 3.6. Real spatial data analysis: Posterior predictive distributions summarized by the median (middle line) and the
95% credible intervals as a function of s. The observed data points are denoted by ‘*’.

Fig. 3.7. Empirical correlations for increasing spatio-temporal lags. The raw correlations are smoothed by taking moving
averages of size 50 for better visualization.

3.5.2. Model
We propose the following model for the real data:

log yit = α0 + f (si, t) + g1(z̃ i) + g2(z it ) + ϵit , i = 1, . . . , 50, t = 1, . . . , 180,

where α0 is intercept term, f (si, t) is our proposed spatio-temporal model based on kernel con-
volution with ODDP. In the above, g1 and g2 are function is of non-time varying covariates z̃ i
and time varying covariates z it , respectively. We assume a Gaussian process prior on g1 such that
µ (z) = E [g (z)] = β′z and Cov

(
g (z ), g (z )

)
= exp

(
−

1
∥z − z ∥

)
.
1 1 1 i 1 j 2 i j
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We set g2 as a linear function of time varying covariates: g2(z) = γ ′z . The assumption of linearity
n g2 will simplify our computation to a great extent. Also there is evidence from the previous
nalysis that using linear terms in places of the unknown function led to only negligible decrease
n predictive ability. In our model, ϵit are independent nugget effects with variance σ 2.

All the prior distributions are the same as mentioned before. For the additional parameters
0,β, γ , we use the vague prior distribution N(0, 104), and for σ we use the log-normal prior with
ean zero and variance 104.

.5.3. Implementation
Note that here we have total 3934 number of observations. We have to update the number

f parameters ranging between 300 to 400. Our TTMCMC based algorithm took 25 minutes to
enerate 5000 observations following a burn in of 20000. As in the other cases, TTMCMC exhibited
atisfactory acceptance rate and mixing properties, as evident from the trace plots displayed in n
ection S-10.3 of supplement.

.5.4. Leave-one-out cross validation
As before, we assess the predictive power of the model using leave-one-out cross validation.

or all the spatio-temporal points, the true value of PM10 lies within the 95% credible interval
f the respective cross-validation posterior. Also we calculate the mean square prediction error
MSPE), given by

∑
(yit−ŷit )2

n , where ŷit is the median of the posterior predictive density at the spatial
location (si, t). In this case, we obtain MSPE = 0.101. Fig. 3.8 displays the observed data and
posterior medians for at three spatial locations having data for more than 10 years, which also
contains 95% credible intervals. We have also reportedMSPE for these three locations. The values are
significantly lower than overall MSPE. It reveals the fact that our model have captured more precise
information for the spatial locations, having larger number of time points. We also provide a visual
representation of the model performance at 50 locations summarized over time points. In Fig. 3.9,
the surface represents the posterior median values, averaged over all month-specific predictions
for 50 spatial locations. From the plots, it is clear that our model performs quite satisfactorily for
the data. Posterior densities of correlations, for 6 pairs of sites, are shown in Figure S-10.4 of the
supplement.

4. Summary and conclusion

In this article, we have developed a nonstationary, non-Gaussian spatio-temporal model based
on kernel convolution of ODDP. Dependence is induced in the weights through similarities in the
ordering of the atoms. Using this property, we could ensure that our model-based correlation
between two random data points, which are widely separated, will be close to zero. We incorporated
non-stationarity via appropriate kernels, which would be convolved with ODDP. Although our
proposed model is nonstationary and non-separable, it includes stationarity and separability as
special cases. Moreover, since our model is based on kernel convolution, replication is unnecessary
for inference. If one wishes to achieve different degrees of smoothness across space and across
time, then that is also allowed by our model framework. For example, if we associate the ODDP
prior only to the spatial locations, then the process will become smoother across time than across
space, depending on the choice of the kernel.

From the computational point of view, we have developed a fast and efficient TTMCMC-
based algorithm for implementing our variable dimensional spatio-temporal model. Indeed, our
model consists of a large number of variables, where the number of variables associated with the
summands is random. Using TTMCMC, we could update all the parameters and the number of the
parameters simultaneously, using simple deterministic transformations of some one-dimensional
random variable.

We illustrated the performance of our model with a simulation study and compared our model’s
performance with the FR’s model. The comparative study supports our claim that our model can
capture the zero correlations between two widely separated data points (in space and/or time) more
precisely. We have also applied our model and methods to two real data examples of spatial and
27
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a
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Fig. 3.8. Real spatio-temporal data analysis: Posterior predictive distributions summarized by the median (middle line)
nd the 95% credible intervals as a function of t for three randomly chosen spatial locations. The observed data points
re denoted by ‘*’.
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Fig. 3.9. Real spatio-temporal data analysis: the surface plot of posterior median values at 50 locations, averaged over
ll month specific predictions from 1988–2002. The observed data points are indicated by ‘*’.

patio-temporal dependence. As illustrated in detail, our model exhibited excellent performance in
oth cases.
Although for the current paper we restricted ourselves to spatio-temporal applications only, our

odel is readily applicable in the functional data context. In fact, in the context of nonparametric
unction estimation, a new class of prior distributions can be introduced through our proposed
odel. Note that unknown functions can be modeled as a limit of a weighted sum of kernels or
enerator functions indexed by continuous parameters. In our model the weights will be the pi’s

of ODDP, and kernels are indexed by θi, where for i = 1, 2, . . ., θi
iid
∼ G0. We have already obtained

some sufficient conditions ensuring that our model converges in Lp norm and Besov semi-norm.
These results make our proposed model a promising candidate for function estimation.
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