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Abstract9

We propose to use spline Gauss quadrature rules for solving boundary value problems (BVPs) using the10

Nyström method. When solving BVPs, one converts the corresponding partial differential equation inside11

a domain into the Fredholm integral equation of the second kind on the boundary in the sense of boundary12

integral equation (BIE). The Fredholm integral equation is then solved using the Nyström method, which13

involves a use of a particular quadrature rule, thus, converting the BIE problem to a linear system. We14

demonstrate this concept on the 2D Laplace problem over domains with smooth boundary as well as domains15

containing corners. We validate our approach on benchmark examples and the results indicate that, for a16

fixed number of quadrature points (i.e., the same computational effort), the spline Gauss quadratures return17

an approximation that is by one to two orders of magnitude more accurate compared to the solution obtained18

by traditional polynomial Gauss counterparts.19

Keywords: Boundary value problems; Fredholm integral equation; Nyström method; spline Gauss20

quadratures.21

1. Introduction22

Boundary value problems (BVPs) are well known in engineering and science, where the given partial23

differential equation (PDE) is solved with respect to, e.g., Dirichlet or Neumann boundary conditions.24

When solving BVPs, among other approaches, one converts the corresponding PDE inside the domain25

into the Fredholm integral equation of the second kind on the boundary in the sense of boundary integral26

equation (BIE) [1–3]. The main idea is to use the fundamental solution of the governing PDE, so that27

approximations only occur on the domain’s boundary (the solution inside the domain is then obtained28

via post-processing). Thus, the order of the problem is reduced by one dimension compared to, e.g., finite29

element analysis (FEA) [4] or isogeometric analysis (IGA) [5], where the solution approximation is performed30

throughout the whole domain. Another advantage is that one avoids meshing the entire domain, thus,31

reducing the effects of the mesh quality on the computed results.32

There exist different methods addressing the numerical solution of the Fredholm integral equation of the33

second kind. The well-studied approaches are Galerkin (see, e.g., [3, 6, 7]) and collocation (see, e.g. [8–11])34

methods. The idea of discretizing boundary integrals in the sense of finite elements, commonly known as35

boundary element method (BEM) [12, 13], and its extension to the IGA paradigm [14–18] are also among the36

well-established research in the literature. Another thematically relevant class of research are degenerate37

kernel methods [19, 20] allowing to approximate the integral equation with a degenerate kernel, whose38

solution is determined by solving a linear system of equations. Spline quasi-interpolations are known to be39

very useful for this purpose (c.f. [21–27] and references therein).40

We consider the Nyström method [28, 29] as a classical approach for the numerical solution of Fredholm41

integral equations of the second kind. This method approximates the integral equation using a particular42
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quadrature rule, thus, converting the BIE problem to a linear system of equations. The solution, obtained43

at quadrature points on the boundary, is then used to approximate the solution over the entire domain. In44

combination with other numerical methods such as FEA [30, 31] and IGA [32, 33], the Nyström method has45

been applied to solve problems of great practical interests with applications in, e.g., electromagnetics [34–36],46

fluid mechanics [37, 38] and structural analysis [39, 40].47

Our research aims to point out that the way the quadrature points distribute over the boundary plays48

an important role in the accuracy and efficiency of the Nyström method. The classical polynomial Gaussian49

quadrature rules are among the well-known schemes for this purpose, yet not the only option. A survey of50

research on the application of different quadrature rules in the Nyström method can be found in, e.g., [41].51

In this work, we propose to use spline Gauss quadrature rules for solving boundary value problems via52

the Nyström method. Spline Gauss rules are proved as successful alternatives to classical polynomial (dis-53

continuous) Gauss rules when integrating high continuous functions (see, e.g., [42, 43]). When solving the54

Fredholm integral equation of the second kind arising from a PDE inside a 2D domain, we use a NURBS55

representation of the boundary curve and place the quadrature points within the knot spans of the NURBS56

boundary. In this context, we compare the accuracy of the solution obtained by the numerical integration57

using spline Gauss rules versus the solution obtained by polynomial Gauss rules. We solve the Laplace58

problem with Dirichlet boundary conditions on different geometries with smooth continuous boundary as59

well as domains containing corners. We show that when fixing the total number of quadrature points (i.e.,60

with the same computational effort), the spline rules return an approximation that is by one to two orders of61

magnitude more accurate compared to the solution obtained by traditional polynomial Gauss counterparts.62

The structure of the remainder of this paper is as follows. Section 2 introduces the boundary value63

problem and its solution via the Nyström method. Section 3 briefly recalls the notion of B-splines and Gauss64

quadrature rules for spline spaces. Section 4 discusses the NURBS-based boundary representation and the65

application of the spline Gauss rules to the solution of the BVPs via the Nyström method. Section 5 shows66

numerical results on three test cases, and finally, Section 6 draws some conclusions and indicates possible67

directions for future research.68

2. Solving boundary value problems using Nyström method69

Let us consider a computational domain Ω ⊂ R2 to be the interior of a closed smooth boundary Γ := ∂Ω.70

We consider the following homogeneous Dirichlet boundary value problem (see Fig. 1):71

Find u : Ω→ R such that{
Lu = 0 , in Ω ,

u = ϕ , on Γ ,
(2.1)

where L is the partial differential operator (e.g., L = −∆ for the Laplace equation).72

Ω

Γ

u = ϕ on Γ

Fig. 1. Dirichlet boundary value problem: an example domain Ω, its boundary Γ, and the boundary condition ϕ.

2.1. Fredholm integral equation73

When solving (2.1), one converts the corresponding partial differential equation inside Ω into the Fred-74

holm integral equation of the second kind on Γ in the sense of boundary integral equation (see, e.g., [1, 44]).75

Let us consider x and y as points in R2. We assume that x is a point that lies either inside the domain or76
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on the boundary, and we further use x̂ to emphasize the case when x ∈ Γ. The second point y is assumed77

to lie strictly on the boundary, i.e., y ∈ Γ. Given the solution on the boundary ϕ(x̂), the Fredholm integral78

equation reads79

σ(x̂)−
∫

Γ

K(x̂,y)σ(y) dΓy = −2ϕ(x̂) , x̂,y ∈ Γ , (2.2)

where σ and K are the double-layer density and kernel, respectively. Solving (2.2), one obtains the density σ80

on Γ and, then, the solution u of the original problem (2.1) over Ω, also called the double-layer potential ,81

becomes82

u(x) =
1

2

∫
Γ

K(x,y)σ(y) dΓy , x ∈ Ω\Γ, y ∈ Γ . (2.3)

One obtains the kernel in (2.2) and (2.3) from the normal derivative of the fundamental solution s(x,y)83

with respect to y, that is84

K(x,y) := 2
∂

∂ny
s(x,y) = 2 〈n(y),∇ys(x,y)〉 , (2.4)

where n is the outward unit normal vector on the boundary and 〈, 〉 is the Euclidean scalar product. The85

fundamental solution of the differential operator L is a function of the Euclidean norm ‖y− x‖ satisfying86

Ls = 0 for x 6= y (see, e.g., [1]). Herein and in the following, we restrict ourselves to the 2D Laplace equation87

with the following fundamental solution (for other differential equations, c.f. [1, 2, 18]):88

s(x,y) = − 1

2π
log ‖y− x‖ . (2.5)

Thus, the double-layer kernel, which is a function of the geometry of the domain, is89

K(x,y) = − 1

π

〈n(y),y− x〉
‖y− x‖2

, x ∈ Ω, y ∈ Γ. (2.6)

2.2. Nyström method90

We start from the general form of the Fredholm integral equation over a univariate domain D ⊂ R, that is91

λσ(x)−
∫
D

K(x, y)σ(y) dy = ψ(x) , x, y ∈ D . (2.7)

Considering an mr-point quadrature rule, the approximation of the integral reads92 ∫
D

K(x, y)σ(y) dy ≈
mr∑
j=1

ωjK(x, τj)σr(τj) , (2.8)

where τj and ωj are quadrature points and weights, respectively. In here, we use subscript r ≥ 1 to refer to93

the level of refinement we consider to make the quadrature rule finer and finer. We assume that for every94

continuous function, the numerical integrals converge to the true integral as r →∞. This implies,95

sup
r≥1

mr∑
j=1

|ωj | <∞ . (2.9)

Thus, one obtains96

λσr(x)−
mr∑
j=1

ωjK(x, τj)σr(τj) = ψ(x) . (2.10)

The Nyström method approximates the density σr at quadrature points, that is97

λσr(τi)−
mr∑
j=1

ωjK(τi, τj)σr(τj) = ψ(τi) , i = 1, 2, . . . ,mr , (2.11)

3
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thus, converting the integral equation (2.7) to a mr ×mr linear system98

(λI−Kr)σr = ψr . (2.12)

where I is the unit matrix and99

Kij := ωjK(τi, τj) , (2.13)

σi := σr(τi) , (2.14)

ψi := ψ(τi) . (2.15)

Let us consider the Banach space X = C(D) and the operators K,Kr : X → Xdefined as100

Kσ(x) :=

∫
D

K(x, y)σ(y) dy , (2.16)

Krσr(x) :=

mr∑
j=1

ωjK(x, τj)σr(τj) , (2.17)

associated respectively with the integral equation (2.7) and a sequence of quadrature rules of the form (2.8)101

such that102

‖Kr‖∞ = max
x∈D

mr∑
j=1

|ωjK(x, τj)| . (2.18)

Regarding the convergence of the sequence σr provided by the Nyström method approximation, we state103

the following Theorem [45].104

Theorem 1. Let K(x, y) be a continuous kernel defined on D ×D, and suppose that the sequence (2.8)105

of quadrature rules converges for all continuous functions defined on D. Moreover, let us suppose that the106

integral equation (2.7) admits a unique solution for all function ψ ∈ C(D) with λ 6= 0. Then, for r enough107

large, for instance r ≥ r̃, the operator (λ−Kr)−1 exists and is uniformly bounded. More precisely, there108

exists a constant c such that109

∥∥(λ−Kr)−1
∥∥
∞ ≤

1 +
∥∥(λ−K)−1

∥∥
∞ ‖Kr‖∞

|λ| − ‖(λ−K)−1‖∞ ‖(K −Kr)Kr‖∞
≤ c , r ≥ r̃ . (2.19)

Furthermore, for the solutions of equations (λ−K)σ = ψ and (λ−Kr)σr = ψ, it holds110

‖σ − σr‖∞ ≤
∥∥(λ−Kr)−1

∥∥
∞ ‖(K −Kr)σ‖∞ ≤ c ‖(K −Kr)σ‖∞ , r ≥ r̃ . (2.20)

We recall that the sequences of Gaussian quadrature rules (considered in this work) are convergent for111

all continuous functions because they have positive weights (see, e.g., [46, Theorem 3] and [47, p. 130]).112

Remark 1. If there is no danger of confusion, we omit the subscript r for the number of quadrature points113

mr and will write simply m. Our limiting process, for r →∞, will be realized in terms of refinement of114

the domain D into N subdomains, each corresponding to an m-point quadrature rule. The weighted kernel115

matrix in (2.13) is then evaluated globally for the entire D, i.e., for i, j = 1, 2, . . . ,M , where M := mN .116

The application of the Nyström method to multidimensional PDEs is analogous. Considering (2.2), we117

set λ = 1 and ψ = −2ϕ. In the 2D case, particularly, we consider the quadrature points along the boundary118

curve Γ. Thus, when integrating (2.2), we need to perform a curve rectification to transfer from Γ ⊂ R2 to119

the univariate domain D ⊂ R. For this purpose, we consider a NURBS representation of the boundary that120

maps D onto Γ (see Section 4.3). Once we compute densities on the boundary from (2.12), we obtain the121

point-wise solution u at each arbitrary point x inside the domain from (2.3).122

Remark 2. For every x ∈ Ω\Γ, the kernel is non-singular. For boundary points x̂ ∈ Γ, however, singularity123

may occur in the limit when x̂→ y. At such points, when Γ is at least C2 continuous, we have no singularities124
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as the kernel expresses the (scaled) curvature of the boundary curve (see Fig. 2). More precisely, one obtains125

the kernel as follows [1]:126

lim
x̂→y

K(x̂,y) = − 1

2π
κ(y) , (2.21)

where κ(y) denotes the curvature of Γ at y. For C0 boundaries, the singularity occurs at the vicinity of127

corners, where one observes a discontinuity of the normal vector. For such occasions, the Strain’s locally128

correction algorithm can be used. We refer the readers to [32, 48, 49] for more details.129

Boundary curve Γ

Curvature κ(y)

yrec

x̂rec

K
(x̂
,y

)

− 1

2π
κ(y) when x̂→ y

x̂ = y plane

Fig. 2. Left: A general domain represented by its C2 boundary curve Γ. We show the curvature distribution over the boundary.
Right: 2D representation of the kernel K(x̂,y) on the boundary. When x̂→ y, the kernel is equal to the scaled curvature of
the boundary curve (dashed line). For better representation, we plot the kernel against x̂rec and yrec as the rectified values
of x̂ and y, respectively (see Section 4.3).

3. Spline Gauss quadrature rules130

3.1. B-spline spaces: preliminaries131

We use B-spline spaces both for spline Gauss quadrature rules and for the NURBS representation of the132

domain’s boundary (see Section 4). We define the spline space SNp,c as the set of p-th degree B-spline basis133

functions spanned over the knot sequence134

Ξ := {ξ0, . . . , ξ0︸ ︷︷ ︸
µ0

, ξ1, . . . , ξ1︸ ︷︷ ︸
µ1

, . . . , ξN , . . . , ξN︸ ︷︷ ︸
µN

} = {Ξ0,Ξ1, . . . ,Ξn+p+1}, (3.1)

where N knot spans are characterized by non-repeating knots ξk , k = 0, 1, . . . , N . We denote knot mul-135

tiplicities by µk such that 1 ≤ µk ≤ p+ 1 and
∑N
k=0 µk = n+ p+ 2 where n+ 1 is the dimension of the136

spline space. We also introduce c as the continuity vector whose components are ck := p− µk. For any arbi-137

trary parameter ξ0 ≤ ξ ≤ ξN , we obtain the i-th basis function Bi,p(ξ), i = 0, 1, . . . , n, by the Cox–De Boor138

recursion as follows [50]:139

Bi,0(ξ) =

{
1 , Ξi ≤ ξ < Ξi+1 ,
0 , otherwise ,

(3.2)

Bi,p(ξ) =
ξ − Ξi

Ξi+p − Ξi
Bi,p−1(ξ) +

Ξi+p+1 − ξ
Ξi+p+1 − Ξi+1

Bi+1,p−1(ξ) , (3.3)

where its l-th order derivative (l = 1, 2, . . . , p) is given by:140

B
(l)
i,p(ξ) = p

(
B

(l−1)
i,p−1(ξ)

Ξi+p − Ξi
−

B
(l−1)
i+1,p−1(ξ)

Ξi+p+1 − Ξi+1

)
. (3.4)

When evaluating basis functions and their derivatives at a desired ξ, we find the corresponding nonzero knot141

span in (3.2) and efficiently evaluate (3.3) and (3.4) avoiding any division by zero in dealing with repetitive142

knots. More details are given in [50, Algorithms A2.1–A2.3] and [51, Algorithms A1 and A2].143
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3.2. Spline vs. polynomial Gauss quadrature rules144

LetD be our univariate integration domain and T ⊂ D be a set ofm quadrature points τj , j = 1, 2, . . . ,m,145

inside D. We consider the m-point quadrature rule146 ∫
D

f(x) dx ≈
m∑
j=1

ωjf(τj) , τj ∈ T ⊂ D , (3.5)

that approximates the integral of f(x) over D and converges to the exact integral as m→∞. Typically,147

equation (3.5) is not just an approximation, but it is exact for a certain linear space of functions. A rule148

is said to be Gaussian if m is the minimum required number of quadrature points at which f is evaluated,149

while guaranteeing the exactness of the integration.150

Remark 3. When integrating polynomial functions, the optimal rule in terms of the number of quadrature151

points is known to be the classical Gauss quadrature rule [52] with the order of exactness 2m− 1, that is,152

a set of m evaluations are needed to exactly integrate any polynomial of degree at most 2m− 1 over D.153

Let the integration domain consist of N elements Dk ⊂ D, k = 1, 2, . . . , N , the element-wise integration154

over D using the classical polynomial Gauss quadrature rule entails an m-point rule within each element.155

This is equal to the discontinuous spline Gauss rule when using a spline space with C−1 continuity at all156

elements interfaces. However, when integrating continuous functions, it is computationally inefficient to use157

polynomial Gauss rules on every element. Instead, we use high-continuity spline Gauss rules, thus performing158

the integration over macroelements. In this manner, every macroelement consists of a set of elements159

corresponding to knot spans of the respective spline space and the quadrature points are distributed over160

the macroelement. The existence and uniqueness of Gaussian quadrature rules for spline spaces of uniform161

continuity has been studied in [53] and [54, Theorem 3.4], respectively (herein by uniform we refer to spaces162

with equal multiplicities at all interior knots). Let us consider the spline space SÑp̃,c̃ of p̃-th degree basis163

functions spanned over a macroelement of Ñ uniform elements with a uniform continuity c̃ := p̃− µ̃, where164

µ̃1 = µ̃2 = µ̃Ñ−1 = µ̃ (we use ˜ to distinguish this spline space from the space we employ for the NURBS165

representation of the boundary in Section 4). For spline spaces, there always exists a Gaussian quadrature166

rule [54] where the number of necessary evaluations m is given by:167

p̃+ ι+ 1 = 2m, (3.6)

noting that ι :=
(
Ñ − 1

)
µ̃ is the total number of interior knots, including their multiplicities. This fact is168

in accordance with the dimension of the spline space, which is the maximum number of basis functions to169

be integrated exactly by only half the number of quadrature points. If p̃� ι, then m ≈ ι/2, denoting that170

in the limit, when Ñ →∞, the spline rules converge to the half-point rules of Hughes et al. [55], which are171

exact and Gaussian over the domain.172

We use the polynomial homotopy continuation (PHC), a numerical scheme for solving polynomial systems173

of equations [56], to generate Gaussian quadrature rules for spline spaces of higher continuities (as it has been174

used in, e.g., [42, 43, 57]). The main advantage of using such spaces is that we can integrate using Gaussian175

rules with lower number of quadratures (i.e., evaluations), while preserving the same order of exactness176

(see [58]). In particular, to generate a Gaussian rule in a target spline space, we built an associated source177

space with known Gaussian quadratures (e.g., a union of polynomial Gauss rules) and transform the rule178

from the source space to the target space, while preserving the optimality. The exactness of the quadrature179

rule is formulated as a polynomial system where the quadrature points and weights are zeros of this system.180

Using the homotopy continuation concept, the source space is continuously deformed by changing the source181

knot sequence towards the target configuration and the quadrature rule gets updated numerically by tracing182

the unique root of the continuously modified piecewise polynomial system. We omit details for the sake183

of brevity (see, e.g., [42] for more details). Fig. 3 shows two different cubic spaces with the same order184

of exactness spanned over the same number of elements. In particular, Fig. 3a represents the maximum-185

continuity spline space S9
3,2 (spanned over a macroelement of size Ñ = 9) that needs only 6 quadrature186

points for all elements according to (3.6), while Fig. 3b shows the discontinuous space S9
3,−1 that needs 18187
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quadrature points. Using the latter space is equivalent to the element-wise integration by the classical188

polynomial Gauss rule with two quadrature points within every element. From the computational point of189

view, with the same order of exactness, the spline rule is more efficient than the polynomial rule because it190

has a lower number of quadrature points (i.e., lower evaluations).191

[τj , ωj ] Basis functions

Macroelement border

(a) Maximum-continuity space S93,2

Element border

(b) Discontinuous (polynomial) space S93,−1

Fig. 3. Two different cubic spaces: (a) S93,2 and (b) S93,−1, both spanned over 9 elements. The quadrature points τj and
respective weights ωj are shown with red circles. The spline space in (a) represents a 6-point rule for the entire domain
and obtains the same order of exactness when compared to the discontinuous space in (b) that needs 18 quadrature points
(equivalent to the 2-point element-wise polynomial Gauss rule).

4. NURBS-based boundary representation192

4.1. NURBS curve: a short review193

Given the parametric domain D ⊂ R, we represent the boundary curve Γ ⊂ R2 as a p-th degree piecewise194

continuous NURBS curve C : D → R2 with n+ 1 control points Pi ∈ R2 and corresponding non-negative195

weights wi ∈ R+, i = 0, 1, . . . , n. Considering the control point Pi = (Pi,x , Pi,y), we use the homogeneous196

coordinates and introduce Pw
i := (wiPi,x , wiPi,y , wi) to represent the boundary by a (non-rational) B-spline197

curve in the homogeneous coordinates as follows [50]:198

Cw(ξ) =

n∑
i=0

Bi,p(ξ)Pw
i . (4.1)

Defining199

A(ξ) :=
(
Cwx (ξ), Cwy (ξ)

)
, (4.2)

W (ξ) :=

n∑
i=0

Bi,p(ξ)wi , (4.3)

one writes Cw(ξ) =
(
A(ξ),W (ξ)

)
. Thus, the NURBS representation of the boundary curve Γ is200

C(ξ) =
A(ξ)

W (ξ)
, (4.4)

and its l-th order derivative reads201

C(l)(ξ) =
A(l)(ξ)−

∑l
i=1

(
l
i

)
W (i)(ξ)C(l−i)(ξ)

W (ξ)
. (4.5)

where we obtain A(l)(ξ) and W (l)(ξ) from202

Cw(l)(ξ) =

n∑
i=0

B
(l)
i,p(ξ)P

w
i =

(
A(l)(ξ),W (l)(ξ)

)
. (4.6)

4.2. Continuity, corner modeling, and unclamping203

A piecewise NURBS curve of degree p with a knot sequence in the form of (3.1) is Cp−µk continuous204

at ξk. If µ0 = µN = p+ 1, the curve is clamped at both ends (Figs. 4a–4c). If all interior knots are single,205

the curve has the maximum continuity everywhere (see, e.g., Fig. 4a). In the same manner, if the multiplicity206
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of an interior knot equals to p, the curve is C0 at that knot, allowing us to model corners. The mapped207

position of such multiple knot on the curve coincides with the respective control point (Fig. 4b). The208

boundary curve Γ in the Fredholm integral equation (2.2) is closed and periodic. To have a closed boundary209

curve, we may simply set P0 = Pn (see Fig. 4c), while to maintain the periodicity, we unclamp the curve.210

The unclamping process starts from a closed curve and proceed with changing the first and last p knots,211

and first and last p− 1 control points and weights (Fig. 4d). More details on different unclamping methods212

are given in [50, Algorithm A12.1].213

NURBS curve

P0P1

P2

P3

P4 P5

P6

P7

P8

Control
pointsMapped knots

(a) Clamped cubic NURBS curve with Cp−1 everywhere,
Ξ =

{
0, 0, 0, 0, 1

6
, 1
3
, 1
2
, 2
3
, 5
6
, 1, 1, 1, 1

}

P0P1

P2

P3

P4 P5

P6

P7

P8

C0 corner

(b) Clamped cubic NURBS curve with one C0 corner,
Ξ =

{
0, 0, 0, 0, 1

6
, 1
3
, 1
3
, 1
3
, 5
6
, 1, 1, 1, 1

}

P0 = P9P1

P2

P3

P4 P5

P6

P7

P8

(c) Closed cubic NURBS curve,
Ξ =

{
0, 0, 0, 0, 1

7
, 2
7
, 3
7
, 4
7
, 5
7
, 6
7
, 1, 1, 1, 1

}

P0

P1

P2

P3

P4 P5

P6

P7

P8

P9

(d) Periodic form of the cubic NURBS curve of part (c),
Ξ =

{−3
7
, −2

7
, −1

7
, 0, 1

7
, 2
7
, 3
7
, 4
7
, 5
7
, 6
7
, 1, 8

7
, 9
7
, 10

7

}

Fig. 4. Some possible representations of a cubic NURBS curve with 9 (fixed) control points and different knot sequences over
D : [0, 1]. In (a), (b) and (c), the curve is clamped at both ends. In (c), a new control point is wrapped on the first one to
close the curve. (d) shows the unclamped version of (c), where the first and last two control points and weights are updated.
Although it forces the knot sequence to violate [0, 1], we still consider ξ ∈ [0, 1] in (4.1) to obtain the desired boundary curve.

4.3. Application to BVPs and Nyström method214

We consider boundary curve Γ as a bijective and differentiable mapping of the parameter space D ⊂ R215

onto R2, i.e., Γ := {y = C(ξ) : ξ ∈ D → R2}. We then compute the boundary integrals in (2.2) and (2.3)216

over the parametric domain D. Thus, we write217

dΓy =
∥∥C′(ξ)∥∥ dξ , (4.7)

n(ξ) =

[
C ′y(ξ),−C ′x(ξ)

]∥∥C′(ξ)∥∥ , (4.8)

κ(ξ) =

∥∥C′(ξ)×C′′(ξ)
∥∥∥∥C′(ξ)∥∥3 . (4.9)

Further, we consider the boundary Γ as the union of N segments Γk , k = 1, 2, . . . , N , being the mappings218

of nonzero knot spans Dk := [ξk−1, ξk] ⊂ D. Let ξ ∈ Dk and ζ ∈ D be arbitrary parameters, we write219

y(ξ) = C(ξ) and x̂(ζ) = C(ζ). Then, we obtain the kernel integral in the sense of Remark 1 as follows:220
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∫
Γ

K(x̂,y)σ(y) dΓy =

N∑
k=1

∫
Dk

K
(
x̂(ζ),y(ξ)

)
σ
(
y(ξ)

)
‖y′(ξ)‖ dξ , ζ ∈ D , ξ ∈ Dk . (4.10)

The second kind Fredholm integral equation (2.2) is then221

σ
(
x̂(ζ)

)
−

N∑
k=1

∫
Dk

K
(
x̂(ζ),y(ξ)

)
σ
(
y(ξ)

)
‖y′(ξ)‖ dξ = −2ϕ

(
x̂(ζ)

)
, ζ ∈ D , ξ ∈ Dk . (4.11)

We apply the Nyström method to (4.11), thus selecting the evaluation parameters ξ and ζ at quadrature222

points. Let us consider Tk ⊂ Dk as the set of quadrature points τj,k , j = 1, 2, . . . ,m, corresponding to an223

m-point quadrature rule inside Dk, and T := T1 ∪ T2 ∪ . . . ∪ TN . We write the Nyström approximation of224

the integral equation (4.11) as follows:225

σ
(
x̂(τi)

)
−

N∑
k=1

m∑
j=1

ωj,kK
(
x̂(τi),y(τj,k)

)
σ
(
y(τj,k)

)
‖y′(τj,k)‖ = −2ϕ

(
x̂(τi)

)
, τi ∈ T , τj,k ∈ Tk . (4.12)

In order to qualitatively compare the results produced by the polynomial and spline Gauss rules, we fix226

the total number of quadrature points M for both rules (since it corresponds to the computational effort of227

the numerical integration) and find the required N and m in (4.12) for each method accordingly. We recall228

that for the spline rule, we perform the integration macroelement-wise. Starting from a NURBS boundary229

with N segments, we assume every nonzero knot span [ξk−1, ξk], k = 1, 2, . . . , N , of Γ as one macroelement230

associated with the spline space SÑp̃,c̃ with the same p̃, c̃ and Ñ for all macroelements. Thus, without loss of231

generality, for the spline Gauss rule, we write N = Nme where Nme is the number of macroelements. The232

number of quadrature points of the spline rule ms is governed by (3.6). For the polynomial Gauss rule with233

an mp-point element-wise integration, we use the following formula to obtain the appropriate number of234

elements Np such that we have the same total quadrature points (M) as the spline rule:235

M := Nmems = Npmp . (4.13)

We note that based on the exactness criterion of polynomial Gauss rules (Remark 3), we compare an236

mp-point polynomial rule with a spline rule of degree p̃ = 2mp − 1. When fixing M , we observe a higher237

flexibility of the continuous spline space than the (discontinuous) polynomial alternative. This is because the238

spline space spans over NmeÑ elements, while its polynomial counterpart spans over Np < NmeÑ elements239

(see Fig. 5). This reflects lower approximation errors when using spline Gauss rules while preserving the240

same computational effort (see [58]).241

ξk−2 ξk−1 ξk ξk+1

(a) Spline Gauss quadratures with S93,2 for
every macroelement

ξk−2 ξk−1 ξk ξk+1

(b) Polynomial Gauss quadratures with a 2-point
rule for every element

Fig. 5. Spline vs. polynomial Gauss quadratures over the non-uniform knot spans of an arbitrary NURBS boundary (we
highlight the k-th span for better visualization). When fixing the total number of quadrature points (in here, six points at
every knot span), the spline Gauss rule in (a) corresponds to a higher number elements compared to its polynomial counterpart
in (b), thus resulting in a more accurate integration with the same computational efficiency.

5. Numerical results242

We verify the presented methodology by three case studies. Before reporting the results, some important243

notes need to be considered:244
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• To investigate the numerical accuracy of the spline and polynomial Gauss quadrature rules, we set245

mp = 2, 3 and compare the corresponding 2- and 3-point element-wise polynomial rules with the spline246

rules of the cubic S39
3,2 and quintic S37

5,4 spaces, respectively. These spline spaces both contain 21247

quadrature points at each macroelement. Table 1 represents the quadrature points τj and weights ωj248

of mentioned spaces in [0, 1]. The corresponding polynomial Gauss counterparts are also tabulated.249

We note that it is possible to experiment with different number of macroelements, or even higher250

degrees, (see [42, 43, 57, 58] for more spaces). One could even compute the Gaussian rules recursively,251

deriving a rule for the whole domain, not just a single block (c.f [59]). However, such a rule is of252

reduced continuity (e.g., quintic C1 splines) and is not expected to perform much better in terms of253

the number of quadrature vs. accuracy.254

• In all examples, we construct either spline or polynomial quadrature rules within the nonzero knot255

spans of the parametric domain of the NURBS boundary curve. To improve the numerical accuracy of256

the Nyström method, we follow the h-refinement idea in FEA and IGA (see [32]). Thus, we enrich the257

knot sequence of the original NURBS geometry and increase the total number of quadrature pointsM .258

Depending the domain’s geometry, we may employ the grading algorithm to insert knots in appropriate259

places [32, 60, 61], thus, reaching a better approximation of the solution near corners.260

• We study the maximum point-wise error of the Nyström approximation when doubling the number of261

quadrature points at every refinement level. Let ei be the maximum point-wise error at the i-th level,262

we obtain the numerical convergence order as263

NCOi := log2

(
ei−1

ei

)
, (5.1)

where the theoretical rate is p̃+ 1 (see, e.g., [3]).264

Table 1. Quadrature points and weights of two spline Gauss rules in [0, 1], characterized by cubic S393,2 and quintic S375,4 spline
spaces (see [42, 43, 57, 58] for more spaces). Thanks to the symmetry property of the spline spaces, only the first 11 points and
weights are reported. The corresponding points and weights of the 2- and 3-point polynomial Gauss rules are also tabulated.

j τj ωj τj ωj

S393,2 (C2 cubic spline Gauss rule with Ñ = 39) S375,4 (C4 quintic spline Gauss rule with Ñ = 37)
1 0.0086022074347388 0.0218455595269063 0.0057434073557755 0.0148734239383008
2 0.0423693959303822 0.0433045545577068 0.0306123827542799 0.0343754550330581
3 0.0901289847662636 0.0503213631747089 0.0722191092726851 0.0473488367225914
4 0.1410569521267253 0.0512021143533085 0.1226181175788537 0.0524452767387078
5 0.1923101843694322 0.0512756766459810 0.1758677573121231 0.0537340667590496
6 0.2435899416018961 0.0512815446928528 0.2297657904899482 0.0539935956159231
7 0.2948718106031808 0.0512820110347811 0.2837905183402830 0.0540427493680052
8 0.3461538474036372 0.0512820480845737 0.3378390942637572 0.0540519443566724
9 0.3974358975351839 0.0512820510280155 0.3918921259881264 0.0540536600406546
10 0.4487179487257872 0.0512820512617426 0.4459459881438810 0.0540539780926602
11 0.5000000000000000 0.0512820512788446 0.5000000000000000 0.0540540266687536

2-point element-wise polynomial Gauss rule 3-point element-wise polynomial Gauss rule
1 0.2113248654051871 0.5000000000000000 0.1127016653792583 0.2777777777777778
2 0.7886751345948129 0.5000000000000000 0.5000000000000000 0.4444444444444444
3 – – 0.8872983346207417 0.2777777777777778

5.1. Laplace problem on a square domain265

We consider the benchmark 2D Laplace problem on a unit square with a sinusoidal boundary condition266

along one edge while the other three edges have homogeneous boundary conditions (see, e.g., [62, 63]):267

Find u : Ω→ R with Ω := [0, 1]2 , such that
∆u(x, y) = 0 , in Ω ,

u(x, 0) = sinπx ,

u(x, 1) = u(0, y) = u(1, y) = 0 .

(5.2)
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The analytical solution of (5.2), obtained by separation of variables, is:268

u(x, y) = (coshπy − cothπ sinhπy) sinπx . (5.3)

Fig. 6 shows a NURBS representation of the boundary characterized by five control points P0 to P4 and269

linear B-spline basis functions (i.e., p = 1). The analytical solution over the domain is also depicted in the270

figure.271

Ω

Γ1

Γ2

Γ3

Γ4

P0 = P4 = (0, 0)
w0 = w4 = 1

P1 = (1, 0)
w1 = 1

P2 = (1, 1)
w2 = 1

P3 = (0, 1)
w3 = 1

Ξ = {0, 0, 1, 2, 3, 4, 4}

u = sinπx on Γ1

u = 0 on Γ4

u = 0 on Γ2

u = 0 on Γ3

Fig. 6. Left: NURBS representation of the square boundary of problem (5.2): control points, weights and knot sequence
before unclamping (for better visualization, we name different parts of the boundary as Γ1, . . . ,Γ4). Right: analytical solution
over the domain.

Fig. 7 shows the maximum point-wise error of the Nyström approximation of the solution of the Dirichlet272

boundary value problem (5.2) when doubling the number of quadrature points at every refinement step. To273

do this, we compute the approximation error at different points distributed through the square domain by274

comparing the approximate solution obtained by (2.3) with the analytical expression (5.3). We compare275

the solutions when using the polynomial and spline Gauss rules and integrating with the same total number276

of quadrature points M . The results indicate that the spline rule is at least one order of magnitude more277

accurate than the polynomial rule. Additionally, the numerical convergence order is very close to the278
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(a) p̃ = 3
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(b) p̃ = 5

Fig. 7. Maximum point-wise error of the Nyström approximation of the solution of (5.2) over the square domain. (a) Gauss
cubic spline vs. Gauss 2-point polynomial rule. (b) Gauss quintic spline vs. Gauss 3-point polynomial rule. The respective
numerical convergence orders are shown by the triangles.
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3-point polynomial Gauss rule Quintic spline Gauss rule

M = 168

M = 336

M = 672

M = 1344

M = 2688

M = 5376

M = 10752

2-point polynomial Gauss rule Cubic spline Gauss rule

M = 168

M = 336

M = 672

M = 1344

M = 2688

M = 5376

M = 10752

10010−16

Fig. 8. Error distributions over the square domain at different refinement levels of the Nyström approximation using M
quadrature points. We compare 2- and 3-point polynomial Gauss rules with their cubic and quintic spline counterparts,
respectively. We place the error plots over the analytical solution surface and color-code it by the approximation error.
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theoretical one, that is, NCO ≈ p̃+ 1. It is clear that for a higher p̃, we observe a better approximation.279

It could be thought of as equal to the p-refinement idea in FEA and IGA. In order to visualize how the280

approximation error distributes throughout the domain, we represent the error plots over the square domain281

in Fig. 8. The results indicate that the spline Gauss quadrature rule has a better approximation quality at282

all refinement steps.283

5.2. Laplace problem on a unit disk284

We seek the solution of the Dirichlet boundary value problem of the Laplace equation on a unit disk [64]:285

Find u : Ω→ R with Ω :=
{

(r, θ) : r ∈ [0, 1], θ ∈ [0, 2π]
}
, such that{

∆u = 0 , in Ω ,

u = cos 2θ , on Γ .
(5.4)

The analytical solution of (5.4) in the polar coordinate system is:286

u(r, θ) = r2 cos 2θ . (5.5)

P0 = P8 = (1, 0)
w0 = w8 = 1

P1 = (1, 1)
w1 = 1√

2

P2 = (0, 1)
w2 = 1P3 = (−1, 1)

w3 = 1√
2

P4 = (−1, 0)
w4 = 1

P5 = (−1,−1)
w5 = 1√

2 P6 = (0,−1)
w6 = 1

P7 = (1,−1)
w7 = 1√

2

Ω

Γ

Ξ =
{

0, 0, 0, 1
4
, 1
4
, 1
2
, 1
2
, 3
4
, 3
4
, 1, 1, 1

}

u = cos 2θ on Γ

Fig. 9. Left: NURBS representation of the circular boundary of the problem (5.4): control points, weights and knot sequence
(before unclamping). Right: analytical solution over the domain.
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Fig. 10. Maximum point-wise error of the Nyström approximation of the solution of (5.4) over the unit disk. (a) Cubic spline
vs. 2-point polynomial rule. (b) Quintic spline vs. 3-point polynomial rule. The respective numerical convergence orders are
shown by the triangles.
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3-point polynomial Gauss rule Quintic spline Gauss rule

M = 168

M = 336

M = 672

M = 1344

M = 2688

M = 5376

M = 10752

2-point polynomial Gauss rule Cubic spline Gauss rule

M = 168

M = 336

M = 672

M = 1344

M = 2688

M = 5376

M = 10752

10010−16

Fig. 11. Error distributions over the unit disk at different refinement levels when comparing 2- and 3-point polynomial Gauss
rules with the cubic and quintic spline rules, respectively. We place the error plots over the analytical solution surface.
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Fig. 9 shows a NURBS representation of the circular boundary as well as the analytical solution over287

the domain. We use quadratic basis functions spanned over a knot sequence with double multiplicities at288

interior knots. Fig. 10 shows the maximum point-wise error of the Nyström approximation of the solution289

of the Laplace problem (5.4) over a unit disk with a Dirichlet boundary condition. Again, the solutions290

obtained by the spline Gauss quadrature rules are almost one order of magnitude more accurate compared291

to their polynomial Gauss counterparts when integrating using the same total number of quadrature points292

M . The numerical convergence order is also close to the theoretical rate p̃+ 1. Fig. 11 illustrates the error293

distributions over the circular domain when doubling the number of quadrature points at every refinement294

step. The results well confirm the convergence plots of Fig. 10.295

5.3. Steady-state heat transfer analysis inside a blade cascade296

The third example is adopted from the fluid flow analysis through turbine blades, which is a well-known297

practical case study in the computational fluid dynamics (see, e.g., [65–67]). The main idea is to assess the298

application of the presented methodology in a real-life model problem for which no analytical solution is299

available. Fig. 12a schematically shows the flow passage through blade cascades of a steam turbine. We300

simplify the original problem and only consider the steady-state heat transfer inside our computational301

domain of interest. The heat transfer is governed by the Poisson’s equation [68]:302

−k∇2T = q , (5.6)

where T is the fluid temperature, k is the thermal conductivity of the fluid, and q is the rate of heat generation303

inside the domain. In here, we further assume that no heat source exists, thus, reducing (5.6) to the Laplace304

equation, i.e., ∇2T = 0. We consider Dirichlet boundary conditions as indicated in Fig. 12b and seek305

to compute the temperature distribution through the blade cascade using the Nyström approximation1.306

In particular, the inlet and outlet temperatures are assumed to be fixed as Tin = 380◦ and Tout = 360◦,307

respectively. While the temperature distribution on the upper and lower parts of the cascade is given308

by quintic functions with coefficients described in Table 2. We employ a NURBS parameterization of309

SCALE 2 : 1

Blade

Computational domain
Fluid flow

(a) Flow through turbine cascades

Tin

Tout

Tup

Tdown

340◦

380◦

360◦

(b) Boundary conditions and reference solution

Fig. 12. (a) Schematic view of the fluid flow through blade cascades of a steam turbine. We highlight our computational
domain of interest. (b) Dirichlet boundary conditions are overlaid on the four sides of the domain’s boundary. We slightly
round the corners to reach a better convergence rate in the numerical solution. The reference temperature distribution is
color-coded over the domain.

1In the original problem, only the inlet temperature is known and the temperature on the other three sides and inside the
domain is unknown. It is governed by more parameters such as the pressure, wetness, and turbulence of the fluid.
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Table 2. Boundary conditions on different sides of the computational domain of the third example.

Coefficients (×105)

Side Temperature ξ-range a0 a1 a2 a3 a4 a5

Up
T = a0 + a1ξ + a2ξ2 + a3ξ3 + a4ξ4 + a4ξ5

[0.15,0.47] -0.0026 0.1227 -0.9063 3.0780 -4.8648 2.9088
Down [0.62,1.00] -0.2985 1.8197 -4.3041 5.0020 -2.8601 0.6446

Inlet 380◦

Outlet 360◦

the boundary and slightly round the sharp corners of the domain to improve the convergence rate of our310

approximation. Thus, we use the same parameter ξ when imposing boundary conditions Tup and Tdown.311

Since the analytical solution for this freeform geometry is not available, we obtain the reference temperature312

distribution using an overkill FEA solution with millions of degrees of freedom.313

Fig. 13 shows the maximum point-wise error of the Nyström approximation for the third case study.314

Since the reference solution is also obtained by a numerical method, we observe a plateau in the convergence315

plots. This is mainly because the accuracy of our solution reaches the accuracy of the reference solution316

after a few refinement steps. For both cases of p̃ = 3 and 5, the solutions obtained by the spline Gauss317

quadrature rules are orders of magnitude more accurate than their polynomial Gauss counterparts. Fig. 14318

illustrates the error distributions over the computational domain when doubling the number of quadrature319

points at every refinement step. We observe improvements close to the boundary and, particularly, near320

the corners when using spline Gauss rules. Nevertheless, for the major interior part of the domain, we can321

hardly observe significant improvements in error contours, again, because of the numerical nature of our322

reference solution.323
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Fig. 13. Maximum point-wise error of the Nyström approximation of the solution of the third example. (a) Cubic spline
vs. 2-point polynomial rule. (b) Quintic spline vs. 3-point polynomial rule. The numerical convergence graphs reach a plateau
after a few refinement steps because the reference solution is obtained by FEA, which is a numerical method as well.

6. Conclusions324

We propose to use spline Gauss quadrature rules for solving boundary value problems using the Nyström325

method. The corresponding PDE inside a domain is converted into the Fredholm integral equation of the326

second kind on the boundary. Then, we use spline Gauss quadratures and convert the integral equation to327

a linear system via the Nyström method. We consider the solution of the Laplace equation in 2D domains328

when Dirichlet boundary conditions are applied. We validate our method on three different geometries,329
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3-point polynomial Gauss rule Quintic spline Gauss rule

M = 3444

M = 6888

M = 13776

M = 27552

2-point polynomial Gauss rule Cubic spline Gauss rule

M = 3444

M = 6888

M = 13776

M = 27552

10010−12

Fig. 14. Error distributions through the blade cascade of the third example. We compare 2- and 3-point polynomial Gauss
rules with the cubic and quintic spline rules, respectively, when doubling the total number of quadrature points.
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namely: square, circular, and freeform domains. When using a NURBS representation of the boundary, we330

place the quadrature points within the knot spans of the NURBS geometry. In this context, we compare the331

macroelement-wise integration of the spline Gauss rules with the element-wise integration of the polynomial332

Gauss rules. The results indicate that, when fixing the total number of quadrature points (i.e., with the same333

computational effort), the spline rules return an approximation that is by one to two orders of magnitude334

more accurate compared to the solution obtained by traditional polynomial Gauss counterparts.335

As future work, we aim to consider a non-uniform refinement in terms of non-uniform Gaussian spline336

rules, which are expected to capture better the features of more complicated boundary curves, and possibly337

further reduce the approximation error.338
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