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Abstract

High-dimensional data is common in multiple ar-
eas, such as health care and genomics, where the
number of features can be tens of thousands. In
such scenarios, the large number of features of-
ten leads to inefficient learning. Constraint genera-
tion methods have recently enabled efficient learn-
ing of L1-regularized support vector machines
(SVMs). In this paper, we leverage such methods
to obtain an efficient learning algorithm for the re-
cently proposed minimax risk classifiers (MRCs).
The proposed iterative algorithm also provides a
sequence of worst-case error probabilities and per-
forms feature selection. Experiments on multiple
high-dimensional datasets show that the proposed
algorithm is efficient in high-dimensional scenar-
ios. In addition, the worst-case error probability
provides useful information about the classifier
performance, and the features selected by the al-
gorithm are competitive with the state-of-the-art.

1 INTRODUCTION

High-dimensional data is common in multiple areas such
as health care and genomics. A typical example of high-
dimensional supervised classification problem in genomics
is to separate healthy patients from cancer patients based
on gene expression data with tens of thousands of features
[Guyon et al., 2002]. In addition to high-dimensional raw
data, learning methods often perform a high-dimensional
representation of the input data vector in order to improve
the classification performance [Sonnenburg et al., 2006,
Rahimi and Recht, 2008, Liu et al., 2017]. Learning in such
high-dimensional settings often leads to highly complex op-
timization processes because the number of variables in-
volved in the optimization increases with the number of
features [Shi et al., 2010, Yuan et al., 2012].

In addition to high-dimensional data, a limited number of
samples is common in the above-mentioned applications
e.g., tens of thousands of features but less than 100 patients
[Guyon and Elisseeff, 2003, Brown et al., 2012]. In such
scenarios, the conventional performance assessment based
on cross-validation can be unreliable [Varoquaux, 2018, Va-
balas et al., 2019]. In addition, these cross-validation esti-
mates also increase the computational cost as they require
learning multiple classifiers.

Multiple methods have been proposed to improve the
learning efficiency in high dimensions (see e.g., Yuan
et al. [2012]). These methods are based on several ap-
proaches such as coordinate descent [Hsieh et al., 2008,
Yu et al., 2011], interior-point method [Koh et al., 2007],
and stochastic subgradient [Shalev-Shwartz et al., 2007].
In addition, multiple classification and regression methods
exploit the parameters’ sparsity induced by convex penal-
ties and regularization terms in high-dimensional settings
[Mignacco et al., 2020, Celentano and Montanari, 2022].
Recently, constraint generation techniques have enabled
the efficient learning of L1-regularized support vector ma-
chines (SVMs) for cases with a large number of features
[Dedieu et al., 2022]. These techniques obtain improved
efficiency for the linear program (LP) corresponding with
binary L1-SVMs due to the sparsity in the solution.

In this paper, we present a learning algorithm for the re-
cently proposed minimax risk classifiers (MRCs) [Mazue-
las et al., 2020, 2023]. The presented algorithm provides
efficient learning in high dimensions, obtains worst-case er-
ror probabilities that can serve to assess performance, and
performs feature selection. Specifically, the main contribu-
tions in the paper are as follows.

• We present a learning algorithm for MRCs that uti-
lizes constraint generation methods to significantly im-
prove the efficiency in high dimensions.

• The presented algorithm utilizes a greedy feature se-
lection approach that achieves a fast decrease in worst-
case error probability while using a small number of
features.
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• Our theoretical results show that the proposed algo-
rithm obtains a sequence of classifiers with decreasing
worst-case error probabilities that converges to the so-
lution obtained using all the features.

• Using multiple benchmark datasets, we experimen-
tally show that the proposed algorithm performs ef-
ficient learning in high-dimensional settings. In addi-
tion, the algorithm obtains an error assessment for the
classifier and performs effective feature selection.

Notations: For a set S, we denote its complement as Sc
and its cardinality as |S|; bold lowercase and uppercase let-
ters represent vectors and matrices, respectively; vectors
subscripted by a set of indices represent subvectors ob-
tained by the components corresponding to the indices in
the set; matrices subscripted by a set of indices represent
submatrices obtained by the columns corresponding to the
indices in the set; I denotes the identity matrix; 1{·} de-
notes the indicator function; 1 denotes a vector of ones; for
a vector v, |v| and (v)+, denote its component-wise abso-
lute value and positive part, respectively; ‖.‖1 denotes the
1-norm of its argument; ⊗ denotes the Kronecker product;
� and � denote vector inequalities; Ep{ · } denotes the ex-
pectation of its argument with respect to distribution p; and
ei denotes the i-th vector in a standard basis.

2 PRELIMINARIES

In this section, we describe the setting addressed in the pa-
per and MRC methods that minimize the worst-case error
probability.

2.1 PROBLEM FORMULATION

Supervised classification uses instance-label pairs to deter-
mine classification rules that assign labels to instances. We
denote by X and Y the sets of instances and labels, respec-
tively, with Y represented by {1, 2, . . . , |Y|}. We denote by
T(X ,Y) the set of all classification rules (both randomized
and deterministic) and we denote by h(y|x) the probabil-
ity with which rule h ∈ T(X ,Y) assigns label y ∈ Y to
instance x ∈ X (h(y|x) ∈ {0, 1} for deterministic classifi-
cation rules). In addition, we denote by ∆(X × Y) the set
of probability distributions on X ×Y and by ℓ(h, p) the ex-
pected 0-1 loss of the classification rule h ∈ T(X ,Y) with
respect to distribution p ∈ ∆(X ×Y). If p∗ ∈ ∆(X ×Y) is
the underlying distribution of the instance-label pairs, then
ℓ(h, p∗) is the classification error probability or classifica-
tion risk of rule h denoted in the following asR(h), that is,
R(h) := ℓ(h, p∗).

Instance-label pairs can be represented as real vectors by
using a feature mapping Φ : X ×Y → R

m. The most com-
mon way to define such feature mapping is using multiple
features over instances together with one-hot encodings of

labels as follows (see e.g., Mohri et al. [2018])

Φ(x, y) = ey ⊗Ψ(x) =
[

1{y = 1}Ψ(x)T, (1)

1{y = 2}Ψ(x)T, . . . ,1{y = |Y|}Ψ(x)T
]T

where the map Ψ : X → R
d represents instances as

real vectors of size d. This map can be just the identity
Ψ(x) = x or given by a feature representation such as that
provided by random Fourier features (RFF) [Rahimi and
Recht, 2008], that is

Ψ(x) =
[

cos(uT
1x), cos(u

T
2x), ..., cos(u

T
Dx), (2)

sin(uT
1x), sin(u

T
2x), ..., sin(u

T
Dx)

]T

for D random Gaussian vectors u1,u2, ...,uD ∼ N(0, γI)
with covariance given by the scaling parameter γ (see e.g.,
Rahimi and Recht [2008]).

In this paper we consider scenarios in which the features’
dimensionality (d) is large, and propose efficient learning
methods for the recently presented MRCs, which are briefly
described in the following.

2.2 MINIMAX RISK CLASSIFIERS

MRCs are classification rules that minimize the worst-case
error probability over distributions in an uncertainty set
[Mazuelas et al., 2020, 2022, 2023]. Specifically, such rules
are solutions to the minimax risk problem defined as

min
h∈T(X ,Y)

max
p∈U

ℓ(h, p) (3)

where U is an uncertainty set of distributions determined
by expectation estimates as

U = {p ∈ ∆(X × Y) : |Ep{Φ(x, y)} − τ | � λ} (4)

where τ denotes the mean vector of expectation estimates
corresponding with the feature mapping Φ, and λ � 0 is
a confidence vector that accounts for inaccuracies in the
estimate. The mean and confidence vectors can be obtained
from the training samples {(xi, yi)}ni=1 as

τ =
1

n

n
∑

i=1

Φ(xi, yi), λ =
s√
n

(5)

where s denotes the vector formed by the component-wise
sample standard deviations of {Φ(xi, yi)}ni=1.

As described in Mazuelas et al. [2020, 2022, 2023] using
the expected 0-1 loss ℓ, the MRC rule h solution of (3) is
given by a linear combination of the feature mapping with
coefficients given by a vector µ∗ ∈ R

m. Specifically, the
MRC rule h given by µ∗ assigns label ŷ ∈ Y to instance
x ∈ X with probability

h(ŷ|x) =
{
(

Φ(x, ŷ)Tµ∗ − ϕ(µ∗)
)

+
/dx if dx 6= 0

1/|Y| if dx = 0
(6)



where ϕ(µ) = max
x∈X ,C⊆Y

(

∑

y∈C Φ(x, y)
Tµ− 1

|C|
)

dx =
∑

y∈Y

(

Φ(x, y)Tµ∗ − ϕ(µ∗)
)

+
.

Note that the corresponding deterministic clas-
sification rule hd assigns a label that maxi-
mizes the probability in (6) and is given by
argmaxy∈Y h(y|x) = argmaxy∈Y Φ(x, y)Tµ∗. In
addition, the classification risk of such classification rule
hd is bounded by twice the error probability of the MRC
rule h, that is,

R(hd) ≤ 2R(h) (7)

since 1− hd(y|x) ≤ 2(1− h(y|x)) for any x ∈ X , y ∈ Y .

The vector µ∗ that determines the 0-1 MRC rule corre-
sponding to (3) is obtained by solving the convex optimiza-
tion problem [Mazuelas et al., 2020, 2023]

R∗ = min
µ

1− τ Tµ+ ϕ(µ) + λT|µ|. (8)

The minimum value R∗ of (8) equals the minimax risk
value of (3). Hence, it is the MRC’s worst-case error proba-
bility for distributions included in the uncertainty set U , and
is an upper bound on the MRC’s classification error when
the underlying distribution is included in such uncertainty
set.

The convex optimization problem (8) of MRCs is
L1-penalized and leads to sparsity in the coefficients µ∗

corresponding to the features in Φ. This sparsity in the
coefficients implies that only a subset of features are suf-
ficient to obtain the optimal worst-case error probability
for MRCs. Therefore, in practice, efficient learning can be
achieved by using the relevant subset of features in Φ to
solve the MRC optimization problem. This intuition leads
to the efficient learning algorithm presented in this follow-
ing.

3 EFFICIENT LEARNING OF MRCS IN

HIGH DIMENSIONS

This section describes the proposed learning algorithm
based on constraint generation over an LP formulation of
MRCs learning (8).

3.1 LP FORMULATION FOR 0-1 MRCS

The theorem below presents an LP formulation (primal and
dual) for the 0-1 MRC convex optimization problem (8).

Theorem 1. Let S be the set of pairs of instances and la-

bels’ subsets, i.e., S = {(x, C) : x ∈ X , C ⊆ Y, C 6= ∅},
and for each i = 1, 2 . . . , |S| corresponding to pair (x, C)

let

gi =

∑

y∈C Φ (x, y)

|C| , bi =
1

|C| − 1. (9)

Then, the 0-1 MRC problem (8) is equivalent to the LP

P : min
µ

1
,µ

2
,ν
−(τ − λ)Tµ1 + (τ + λ)Tµ2 + ν

s.t. F(µ1 − µ2)− ν1 � b

µ1,µ2 � 0

(10)

where the i-th row of matrix F ∈ R
|S|×m is given by gT

i ,

and the i-th component of vector b ∈ R
|S| is given by bi.

In addition, the Lagrange dual of (10) is

D : max
α

−bTα

s.t. τ − λ � FTα � τ + λ

1Tα = 1, α � 0

(11)

and if µ∗
1, µ∗

2, ν∗ is a solution of (10), we have that

µ∗ = µ∗
1 − µ∗

2 is a solution of (8).

Proof. In the convex optimization problem (8), we intro-
duce the additional variable ν ∈ R given by ν = ϕ(µ) + 1.
Then, using gi and b as defined above, we have

ν = max
i∈{1,2,...,|S|}

gT
i µ− bi. (12)

Therefore, the optimization problem (8) becomes

min
µ,ν
−τTµ+ λ

T|µ|+ ν

s.t. Fµ− ν1 � b.
(13)

The optimization in (13) can be reformulated as the LP
in (10) using the change of variables µ1 = (µ)+ and
µ2 = (−µ)+ which implies µ = µ1 − µ2 and |µ| =
µ1 +µ2. Finally, the dual in (11) is directly obtained from
the LP (10) (see e.g., Section 4.2 in Bertsimas and Tsitsiklis
[1997]).

The number of variables of the primal problem P in (10)
(constraints in dual problemD in (11)) is given by the num-
ber of features of Φ, m = d|Y|. Therefore, the complexity
of MRC learning given by such LP formulation is O(m3)
which is not affordable in high-dimensional settings. The
next section presents an efficient learning algorithm for
MRCs in high dimensions based on constraint generation
methods.

3.2 ALGORITHM FOR EFFICIENT LEARNING

MRC learning can be efficiently carried out in
high-dimensional settings because the solution of
(10) is a sparse vector. This sparsity is due to the im-
plicit L1-penalization in (8), λT|µ|, and the fact that



usually only a small subset of features are informative in
high-dimensional settings [Ghosh and Cabrera, 2022]. The
sparsity of the MRCs’ coefficients enables to carry out
the learning process considering only a small subset of
variables in (10) (respectively constraints in (11)). In the
following, we propose an algorithm based on constraint
generation methods that solves the MRC LP problem in
(10) by iteratively selecting small subsets of features of Φ.

Algorithm 1 Efficient learning algorithm for 0-1 MRCs

Input: F, b, τ , λ, initial subset of features I,
dual constraints’ violation threshold ǫ,
maximum number of iterations kmax, and
maximum number of features selected
in each iteration nmax

Output: selected features I∗ ⊆ {1, 2, . . . ,m},
optimal solution µ∗ ∈ R

m, and
optimal worst-case error probability R∗

1: µ1 = [0, 0, . . . , 0] ∈ R
m

2: LPSOLVE
(

PI

)

µ1
1, µ

1
2, ν

1 ← Solution of primal

α1 ← Solution of dual

R1 ← Optimal value (worst-case error probability)

3: µ1
I = µ1

1 − µ1
2

4: J ← SELECT
(

F, τ , λ, nmax, I, ǫ, α1
)

5: k = 1

6: while J \ I 6= ∅ and k ≤ kmax do

7: k = k + 1

8: µk−1
1 = (µk−1

J )+, µ
k−1
2 = (−µk−1

J )+

9: LPSOLVE
(

PJ , µk−1
1 , µk−1

2 , νk−1
)

µk
1 , µ

k
2 , ν

k ← Solution of primal

αk ← Solution of dual

Rk ← Optimal value (worst-case error probability)

10: µk = µk−1

11: µk
J = µk

1 − µk
2

12: I ← J
13: J ← SELECT

(

F, τ , λ, nmax, I, ǫ, αk
)

14: end while

15: I∗ = I, µ∗ = µk, R∗ = Rk

The proposed learning algorithm obtains the optimal solu-
tion µ∗ to the original problem by iteratively solving a se-
quence of subproblems (see details in Algorithm 1). These
subproblems correspond with small subsets of features se-
lected by a constraint generation method (SELECT func-
tion detailed in Algorithm 2).

The subproblem of (10) corresponding to the subset of fea-

tures J ⊆ {1, 2, . . . ,m} is defined as

PJ : min
µ

1
,µ

2
,ν
−(τJ − λJ )Tµ1 + (τJ + λJ )Tµ2 + ν

s.t. FJ (µ1 − µ2) + ν1 � b

µ1,µ2 � 0

(14)

where τJ and λJ denote the subvectors of τ and λ corre-
sponding to the J components, and FJ denotes the subma-
trix of F corresponding to the J columns. In addition, the
dual of (14) is

DJ : max
α

−bTα

s.t. τJ − λJ � FJ
Tα � τJ + λJ

1Tα = 1,α � 0.

(15)

At each iteration k of Algorithm 1 (Line 9), the LPSOLVE
function solves such subproblems and obtains the primal
solution µk

1 ,µ
k
2 , ν

k and dual solution αk along with the
worst-case error probability Rk given by the optimal value.
The dual solution is used by the SELECT function (Line 4
and 13) to obtain a subsequent subset of features. The
primal solution can be used by the LPSOLVE function
(Line 9) to warm-start the optimization in the next iteration.
This iterative process ends when the SELECT function re-
turns a subset of features that does not contain any new
feature.

Notice that at each iteration k, the algorithm obtains coef-
ficients µk, features subset J , and worst-case error prob-
ability Rk. In Section 3.5, we show that such coefficients
µk provide an MRC with worst-case error probability Rk

corresponding with the uncertainty set given by features J .
In addition, we show that such worst-case error probabil-
ity monotonically decreases with the number of iterations
and converges to the optimal corresponding with all the fea-
tures.

3.3 GREEDY FEATURE SELECTION

The SELECT function determines the subset of features
for the next iteration based on the previous subset and the
current solution. Specifically, this greedy selection process
selects features corresponding to the most violated con-
straints in the dual and removes features corresponding to
the constraints satisfied with a positive slack (overlysatis-
fied constraints). Such a process aims to achieve the fastest
decrease in worst-case error probability while using the
smallest number of features. As described in the literature
for constraint generation methods [Bertsimas and Tsitsik-
lis, 1997, Desrosiers and Lübbecke, 2005], this type of
selection process can be implemented in several alterna-
tive ways such as adding any subset of violated constraints
or not removing constraints. In practice, we observe that
adding a subset of violated constraints and removing all



the overlysatisfied constraints achieves the fastest conver-
gence.

Algorithm 2 SELECT (greedy feature selection)

Input: F, τ , λ, nmax, current subset of features I,
dual constraints’ violation threshold ǫ, and
dual solution α

Output: selected features J ⊆ {1, . . . ,m}
1: v = |FTα− τ | − λ

2: J = {i : i ∈ I, vi = 0}
3: A ← ARGNMAX(v, nmax)

4: A = {i : i ∈ A, vi > ǫ}
5: J ← J ∪A

The implementation details for function SELECT are pro-
vided in Algorithm 2. The vector v quantifies the viola-
tions in the dual constraints. In particular, the features cor-
responding to the negative values of vector v (oversatisfied
constraints) are removed, and the features corresponding
to the nmax largest positive values of vector v are added.
Moreover, the selection of features is also restricted by
hyperparameter ǫ ≥ 0 that represents the minimum vio-
lation for dual constraints.

3.4 COMPUTATIONAL COMPLEXITY

The computational complexity of Algorithm 1 is given by
the number of iterations and the complexity per iteration
that depend on the maximum number of features selected
in each iteration nmax and the hyperparameter ǫ. Decreas-
ing nmax results in a reduced complexity per iteration at the
expense of an increased number of iterations. Increasing ǫ
can decrease the number of iterations and complexity per
iteration at the expense of achieving approximate solutions.
For instance, if nmax = m and ǫ = 0 the algorithm finds
the exact solution in only one iteration but the complexity
of such iteration is large. In Section 4, we show that in prac-
tice ǫ = 0.0001 and nmax ∈ [50, 500] obtains efficient and
accurate learning of MRCs.

The number of iterations can be further reduced by using
an adequate choice for the initial subset of features. This
initial subset of features I can be obtained efficiently using
a simple approach for coarse feature selection such as cor-
relation screening [Tibshirani et al., 2012] or few iterations
of a first order optimization method [Mazuelas et al., 2023].
Similarly, the complexity per iteration is reduced by using
a warm-start in LPSOLVE. In the proposed algorithm, a
warm-start for iteration k is obtained directly from the pre-
vious solution µk−1 of the LP at iteration k − 1. Note that
this warm-start is a basic feasible solution for the LP at iter-
ation k since it is obtained by removing and adding features
for which the corresponding coefficients at k − 1 are zero.

3.5 THEORETICAL ANALYSIS OF THE

ALGORITHM

The following shows the theoretical properties of the pro-
posed learning algorithm. In particular, the algorithm’s iter-
ations provide a sequence of MRCs with decreasing worst-
case error probabilities that converges to the MRC corre-
sponding with all the features.

The following theorem shows that the algorithm provides
a decreasing sequence of worst-case error probabilities that
can provide an upper bound to the classification error of the
corresponding MRCs.

Theorem 2. Let µk and Rk be the coefficients and worst-

case error probability obtained by the proposed algorithm

at iteration k. If hk is the MRC given by µk, then we have

that

R(hk) ≤ Rk+(|Ep∗{Φ(x, y)J }−τJ |−λJ )T|µk
J | (16)

where J is the subset of features used at iteration k. In ad-

dition, the algorithm provides MRCs with decreasing worst-

case error probabilities, that is,

Rk+1 ≤ Rk, k = 1, 2, . . . (17)

Proof. At each intermediate step, µk and Rk are the coef-
ficients and worst-case error probability of the MRC corre-
sponding with uncertainty set

Uk = {p ∈ ∆(X × Y) : |Ep∗{Φ(x, y)J } − τJ | � λJ }
(18)

using Theorem 1 for the subproblem (14). Therefore, in-
equality (16) is obtained using the bounds for error prob-
abilities for MRCs in Mazuelas et al. [2023]. The second
result is obtained since the warm-start at iteration k + 1
is a feasible solution with an objective value that equals
the worst-case error probability Rk at iteration k. The
warm-start is feasible at k + 1 and has value Rk because
it is obtained from the solution at iteration k by removing
and adding features corresponding to zero coefficients.

Inequality (16) bounds the classification error of the MRC
classifier at any intermediate iteration. Specifically, the
worst-case error probability Rk at any iteration k corre-
sponding to a feature subset J directly provides such a
bound if the error in the mean vector estimate is not under-
estimated, i.e., λJ � |Ep∗{Φ(x, y)J }−τJ |. In particular,
if λJ is a confidence vector with coverage probability 1−δ,
that is, P{|Ep∗{Φ(x, y)J } − τJ | � λJ } ≥ 1− δ, then

R(hk) ≤ Rk (19)

with probability at least 1 − δ. In other cases, Rk still pro-
vides approximate bounds as long as the underestimation
|Ep∗{Φ(x, y)J } − τJ | − λJ is not substantial. Similar



bounds also hold for the sequence of deterministic classifi-
cation rules due to inequality in (7).

The next theorem shows the convergence of the sequence
of MRCs obtained by the proposed algorithm to the MRC
corresponding with all the features.

Theorem 3. Let µ∗ and R∗ be the MRC coefficients and

worst-case error probability obtained by solving (10) us-

ing all the features. If Rk, k = 1, 2, . . ., is the sequence of

worst-case error probabilities obtained by the proposed al-

gorithm using dual constraints’ violation threshold ǫ. Then,

there exists k0 ≥ 1 such that

R∗ ≤ Rk ≤ R∗ + ǫ‖µ∗‖1 (20)

for any k ≥ k0.

Proof. The first inequality follows by noting that the fea-
sible set of (11) corresponding with all the features is con-
tained in the feasible set of any subproblem given a subset
of features. In the following, we prove the second inequal-
ity.

Let k0 ≥ 1 be an iteration in which SELECT function in
Algorithm 1 does not add any new feature. Such a case oc-
curs after a finite number of iterations due to the properties
of constraint generation methods [Bertsimas and Tsitsiklis,
1997]. If αk0 is the dual solution obtained at iteration k0
with subset of features J , then we have that

τJ − λJ � FJαk0 � τJ + λJ (21)

τJ c − λJ c − ǫ1 � FJ cαk0 � τJ c + λJ c + ǫ1.
(22)

On combining (21) and (22), we have

τ − λ − ǫ1 � Fαk0 � τ + λ + ǫ1. (23)

Now, consider the following primal problem corresponding
to the dual (11) with constraints as in (23).

min
µ

1
,µ

2
,ν
−(τ − λ− ǫ1)Tµ1 + (τ + λ+ ǫ1)Tµ2 + ν

s.t. FT(µ1 − µ2)− ν1 � c

µ1,µ2 � 0.

(24)

If µ∗
1, µ∗

2, and ν∗ correspond to the MRC coefficients ob-
tained by solving (10) using all the features, then it is also
a feasible solution to the problem (24) since they have the
same feasible set. Therefore, using weak duality (Theorem
4.3 in Bertsimas and Tsitsiklis [1997]), we have that

−bTαk0 ≤ −(τ − λ− ǫ1)Tµ∗
1 + (τ + λ+ ǫ1)Tµ∗

2 + ν∗

(25)

Table 1. High-dimensional data sets.

Number Data set Variables Samples Classes

1 Arcene 10000 200 2

2 Colon 2000 62 2

3 CLL_SUB_111 11340 111 3

4 Dorothea 100000 1150 2

5 GLI_85 22283 85 2

6 GLIOMA 4434 50 4

7 Leukemia 7129 72 2

8 Lung 12600 203 5

9 MLL 12582 72 3

10 Ovarian 15154 253 2

11 Prostate_GE 5966 102 2

12 SMK_CAN_187 19993 187 2

13 TOX_171 5748 171 4

since αk0 is a feasible solution for the dual of (24). There-
fore,

Rk0 ≤ R∗ + ǫ1(µ∗
1 + µ∗

2) = R∗ + ǫ‖µ∗‖1 (26)

since µ∗
1 = (µ∗)+ and µ∗

2 = (−µ∗)+. Hence, the second
inequality holds for any k ≥ k0 since Rk ≤ Rk0 due to
the monotonic decrease of the worst-case error probability
shown in Theorem 2.

Inequality (20) shows that if ǫ = 0 the algorithm finds the
MRC corresponding to all the features. In other cases, it
finds an approximate solution whose accuracy depends on
the hyperparameter ǫ. Therefore, the hyperparameter ǫ can
serve to reduce the complexity of the algorithm while ob-
taining near optimal solutions. In the next section, we fur-
ther analyze the effect of hyperparameter ǫ through numer-
ical experiments using multiple real datasets.

4 RESULTS

In this section, we present a set of experimental results
that analyze the effect of hyperparameters and quantify the
training time improvements in practice. In addition, we
describe the benefits of having the worst-case error prob-
abilities and show that the presented algorithm performs
efficient feature selection. The proposed Algorithm 1
(MRC-CG) is compared with the LP formulation for
MRCs in 10 using all the features (MRC-LP), and the
constraint generation method for L1-SVMs (SVM-CG)
[Dedieu et al., 2022]. In addition, the quality of the
feature selection is compared with SVM-CG, recursive
feature elimination (RFE) for SVMs [Guyon et al., 2002],
minimum redundancy maximum relevancy (MRMR), and
analysis of variance (ANOVA) [Ding and Peng, 2005,
Peng et al., 2005]. The experimental results are obtained
using 13 real-world high-dimensional datasets as shown in
Table 1. The datasets 4 and 10 can be obtained from the
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Figure 2: Improved efficiency of MRC-CG over MRC-LP for dif-
ferent values of maximum number of features selected nmax

UCI [Dua and Graff, 2017] repository and the remaining
from https://jundongl.github.io/scikit-

feature/datasets.html. The implementation of
the algorithm proposed is available in the library MRCpy
[Bondugula et al., 2023] and the experimental setup in
https://github.com/MachineLearningBCAM/

Constraint-Generation-for-MRCs.

The hyperparameter ǫ: We present results that show the
influence of ǫ, and illustrate in practice the theoretical prop-
erties of MRC-CG using datasets "Ovarian" and "Arcene".
The worst-case error probability R∗ is obtained by solving
(10) using all the features and the sequence of worst-case
error probabilities Rk is obtained by MRC-CG for increas-
ing number of iterations k. In Figure 1, we show the con-
vergence of Rk to R∗ using ǫ = {0.01, 0.001, 0.0001} and
nmax = 100. In practice, we observe that Rk converges to

R∗ with differences atmost in the order of 10−3 even for
ǫ = 0.01. In addition, the results show that Rk is mono-
tonically decreasing (as shown in Theorem 2) and achieves
significant convergence in few iterations. We also observe
that the smaller values of ǫ lead to more accurate results, as
shown in Theorem 3. On average, highly accurate results
are obtained in 20 iterations using ǫ = 0.0001.

The hyperparameter nmax: We present results that
show the influence of the hyperparameter nmax on the
training time of MRC-CG in comparison with MRC-LP
using datasets "Prostate_GE", "Arcene", "Ovarian" and
"SMK_CAN_187". The parameters of MRC-CG are taken
as ǫ = 0.0001 and kmax = 20, and the training times are
averaged over 50 random repetitions using 90% of the data.
Figure 2 presents the relative time computed as the time
taken by MRC-CG over the time taken by MRC-LP for val-
ues of nmax in the range of 1 to 1,500. The figure shows
the trade-off due to the choice of hyperparameter nmax. In-
creasing the value of nmax decreases the number of itera-
tions for convergence at the expense of increasing the com-
plexity per iteration. In practice, with nmax in the interval
[50, 500], we obtain a good compromise between the num-
ber of iterations required for convergence and the complex-
ity per iteration. On average, for nmax = 100, MRC-CG is
10 times faster than MRC-LP. Based on these results, in the
remainder of this section we take nmax = 100, ǫ = 0.0001,
and kmax = 10.

Scalability with increasing number of features: We
present results to compare the scalability of MRC-CG with
MRC-LP, and SVM-CG for increasing number of features
on the datasets "Ovarian" and "Arcene". In particular, the
results show the effect of the number of features on the
training time of MRC-CG and compare it with MRC-LP
and SVM-CG. The number of features range from 100 to

https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
https://github.com/MachineLearningBCAM/Constraint-Generation-for-MRCs
https://github.com/MachineLearningBCAM/Constraint-Generation-for-MRCs
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Figure 3. Comparison of training times (in secs) of MRC-CG, MRC-LP, and SVM-CG for increasing number of RFF.

Table 2. Comparison of training times (in secs) of MRC-CG and
SVM-CG along with the worst-case error probabilities R

∗ and
cross-validated error estimate for MRC-CG using multiple high
dimensional datasets.

Dataset
MRC-CG SVM-CG

R∗ Error Time (in secs) Time (in secs)

1 0.20 0.30 ± 0.10 3.56 ± 0.04 8.25 ± 0.54

2 0.24 0.13 ± 0.12 0.20 ± 0.02 0.58 ± 0.07

3 0.16 0.15 ± 0.09 6.84 ± 0.04 3.55 ± 0.35

4 0.07 0.07 ± 0.01 31.4 ± 0.64 220 ± 10.5

5 0.13 0.18 ± 0.17 1.50 ± 0.07 1.36 ± 0.18

6 0.18 0.38 ± 0.20 4.55 ± 0.02 2.58 ± 0.24

7 0.11 0.02 ± 0.05 0.70 ± 0.05 0.37 ± 0.08

8 0.15 0.05 ± 0.05 44.9 ± 0.96 16.6 ± 0.76

9 0.11 0.04 ± 0.06 5.06 ± 0.03 1.45 ± 0.20

10 0.10 0.00 ± 0.00 3.86 ± 0.26 3.35 ± 0.32

11 0.14 0.08 ± 0.07 0.79 ± 0.09 1.00 ± 0.10

12 0.23 0.25 ± 0.11 2.65 ± 0.13 8.9 ± 0.63

13 0.18 0.03 ± 0.03 17.7 ± 0.21 10.5 ± 0.22

25,000 obtained using RFFs. Figure 3 presents the average
training times for MRC-CG, MRC-LP, and SVM-CG over
20 random repetitions. We observe that MRC-CG is faster
than MRC-LP for all cases and improves the scaling with
the number of features significantly better than MRC-LP.
In addition, the training times of MRC-CG are competitive
with training times of SVM-CG, especially for large num-
ber of features.

Comparison using real-world datasets: Table 2
presents results to compare the average training times for
MRC-CG and SVM-CG using the 13 high-dimensional
datasets. We observe that MRC-CG is competitive with
the SVM-CG in terms of training times. In addition,
Table 2 presents worst-case error probability R∗ given

by MRC-CG along with the 10-fold cross-validated error
estimate. We observe that the worst-case error probability
R∗ obtained using all the data at training can provide
an error assessment for MRC-CG without requiring
cross-validation. For instance, the R∗ is in the confidence
interval of the estimated error in 8 out of 13 datasets, and is
an upper bound to the confidence interval of the estimated
error in the remaining datasets. This worst-case error
probability is particularly useful in the addressed setting
since the scarcity of training samples results in a high
variability for the error estimates based on cross-validation,
as shown in the table.

Feature selection: Table 3 presents results to com-
pare the MRC-CG as a feature selection approach with
SVM-CG, RFE, MRMR, and ANOVA. The table shows the
10-fold cross-validated errors for logistic regression (LR)
and decision tree (DT) using the features selected by the dif-
ferent methods. We assess the quality of features selected
based on the errors and the number of features selected.
Note that the number of features selected by RFE, MRMR,
and ANOVA were set to the number of features selected
by SVM-CG. The errors show that the presented MRC-CG
provides state-of-the-art results for feature selection and
can effectively select the most relevant features.

5 CONCLUSION

In this paper, we presented a learning algorithm for the re-
cently proposed minimax risk classifiers (MRCs) that is
efficient in high-dimensional settings. The algorithm uti-
lizes a greedy feature selection approach that iteratively
removes and selects features achieving a fast decrease in
worst-case error probability while using a small number
of features. We prove theoretically that the proposed iter-
ative algorithm obtains a sequence of MRCs with decreas-



Table 3. Comparison of number of features selected and the error estimate obtained for logistic regression (LR) and decision tree (DT)
using MRC-CG in comparison with multiple methods for feature selection.

Dataset

MRC-CG SVM-CG RFE MRMR ANOVA

Error No. of Error No. of Error Error Error

LR DT features LR DT features LR DT LR DT LR DT

1 .29 ± .10 .33 ± .06 172 ± 3 .27 ± .11 .41 ± .09 150 ± 3 .28 ± .05 .31 ± .12 .31 ± .10 .39 ± .12 .27 ± .07 .31 ± .09

2 .20 ± .10 .19 ± .10 33 ± 2 .19 ± .10 .22 ± .13 32 ± 1 .24 ± .11 .20 ± .10 .22 ± .10 .29 ± .17 .22 ± .08 .26 ± .16

5 .23 ± .13 .17 ± .12 76 ± 0 .14 ± .07 .29 ± .11 51 ± 2 .20 ± .11 .31 ± .13 .14 ± .12 .20 ± .11 .13 ± .10 .20 ± .09

7 .04 ± .06 .12 ± .09 63 ± 1 .02 ± .05 .15 ± .12 37 ± 2 .05 ± .06 .16 ± .18 .04 ± .06 .15 ± .16 .04 ± .06 .16 ± .12

10 .00 ± .00 .02 ± .02 118 ± 6 .00 ± .00 .01 ± .02 33 ± 2 .00 ± .00 .03 ± .02 .00 ± .00 .02 ± .04 .00 ± .00 .01 ± .02

11 .08 ± .06 .16 ± .08 77 ± 2 .10 ± .08 .13 ± .10 45 ± 1 .10 ± .10 .18 ± .12 .08 ± .07 .14 ± .12 .08 ± .06 .16 ± .14

12 .29 ± .12 .41 ± .11 135 ± 3 .27 ± .09 .37 ± .09 127 ± 4 .33 ± .08 .41 ± .11 .32 ± .12 .39 ± .09 .30 ± .08 .37 ± .09

ing worst-case error probabilities that converge to the solu-
tion obtained using all the features. The numerical results
asses the efficiency of the presented algorithm and com-
pare it with the state-of-the-art using 13 high-dimensional
datasets with a large number of features. The results show
that the presented algorithm converges to the solution ob-
tained using all the features in a few iterations, and pro-
vides a significant efficiency increase, especially in cases
with a large number of features. In addition, the algorithm
provides the worst-case probability error that is particularly
useful in high-dimensional scenarios with limited number
of samples, which can suffer from a high variability of as-
sessments based on cross-validation. The results also show
that the algorithm can provide state-of-the-art results for
feature selection and can effectively select the most rele-
vant features.
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