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1. Introduction

We consider the question of pointwise almost everywhere (a.e.) convergence of
solutions to the cubic nonlinear Schrödinger equation (NLS) on T2, namely

(1)

{
i∂tu+ ∆u = ±|u|2u,
u(x, 0) = f(x),

If f ∈ Hs, for what s do we have that u(x, t) → f(x) as t → 0 for (Lebesgue)
almost every x ?

In the linear Euclidean setting, namely when the linear Schrödinger equation
equation is posed on Rd, this question was first posed by Carleson [8]. He proved
Lebesgue (a.e.) convergence eit∆f(x) to f(x) for f ∈ Hs(R) with s ≤ 1

4 . Dahlberg–
Kenig [11] showed that this one dimensional result is sharp, proving the necessity of
the regularity condition s ≥ 1

4 in any dimension. The (considerably more difficult)
higher dimensional problem has been studied by many authors [10, 28, 34, 1, 26,
31, 32, 29, 20, 4, 22, 23, 24, 12, 16]. Recently, Bourgain [5] proved that s ≥ d

2(d+1) is

necessary (see also [24, 21] for some refinements of this result). This has been proved
to be sharp, up to the endpoint, by Du–Guth–Li [15] on R2 and by Du– Zhang [14]
in higher dimensions (the endpoint case is still open in dimensions d ≥ 2).

In the periodic case much less is known. When d = 1 Mouya–Vega [27] proved
the sufficiency of s > 1

3 and necessity of s ≥ 1
4 . Their proof, based on Strichartz

estimates, has been extended to dimension d = 2 in [35] and to higher dimension
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in [9]. In fact, together with recent improvements in periodic Strichartz estimates
[6], one can show that s > d

d+2 is a sufficient condition for almost everywhere
convergence to initial data. On the other hand there are several counterexamples
showing that we have the same necessary conditions than on Rd [27, 9, 17], namely
the necessity of s ≥ d

2(d+1) ; in particular, one can “adapt” the counterexamples

from Rd to the periodic setting. At the moment, in the periodic case almost sure

convergence when s ∈
[

d
2(d+1) ,

d
d+2

]
remains an open question.

In the first part of this paper we show how to extend the a.e. converge statement

(2) lim
t→0

eit∆f(x) = f(x), for a.e. x ∈ T2 and for all f ∈ Hs(T2), s > 1/2

to the case of the cubic equation.

Theorem 1.1. If f ∈ Hs(T2) with s > 1/2 and u is the corresponding solution
to (1), then

(3) lim
t→0

u(x, t) = f(x) for a.e. x ∈ T2 .

Remark 1.2. By the proof will be clear that any improvement of the amount of
Sobolev regularity which is sufficient for the convergence of the linear Schrödinger
flow on T2 would imply an analogous improvement in the statement of Theorem 1.1
as well.

In the second part of this paper we consider probabilistic improvements to the
convergence problem. More precisely, we will show that a randomization of the
Fourier coefficients of the initial data guarantees a better pointwise behavior of the
associated linear (and also nonlinear) evolution. To explain why we may expect this,
it is worth mentioning that counterexamples to the linear pointwise convergence
problem in the periodic setting has been constructed in [17] using as building block
for the initial datum the (squared( Dirichlet kernels

(4)
∏

`=1,...,d

∑
k`∈Z, |k`|≤N

eik`·x` , x := (x1, . . . , xd).

where N � 1 is a large frequency parameter. It is wort recalling that the pointwise
convergence problem is essentially1 equivalent to establish an L2(T2) estimate for
the maximal Schrödinger operator

(5)

∥∥∥∥ sup
t∈[0,1]

|eit∆f |
∥∥∥∥
L2(T2)

. ‖f‖Hs(T2)

It has been observed in [27, 17] that (5) behaves particularly bas with data of
the form (4). It is in fact seen to be false for s < n

2(n+1) , taking N → ∞. The

moral is that if the bad counterexamples are characterized by having a very rigid

1It is indeed easy to check that the maximal estimate (5) with s > 1/2 implies (2) (the
argument is the same used in the proof of Proposition 2.1). The opposite implication requires the
Stein maximal principle. Strictly speaking there is an equivalence with a weak L2 estimate. On

the other hand, the weak L2 estimate can be easily promoted to a strong one with an ε-regularity
loss. Thus, since we are not interested in an endpoint results, we see that (2) and (5) are indeed
equivalent.
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structure. The Fourier coefficients in (4) are indeed all equal to 1. This suggest to
consider as “good” initial data the following randomized Fourier series

(6) fω(x) =
∑
n∈Zd

gωn

〈n〉 d2 +α
ein·x , α > 0 ,

where gωn are independent (complex) standard Gaussian variables. The Japanese

brackets are defined as usual as 〈·〉 = (1 + | · |2)
1
2 .

It is easy to see that if we fix t ∈ R, then eit∆fω(x) belongs to
⋂
s<αH

s(Td)
P-almost surely (a.s.), where P is the probability measure induced by the sequence
{gωn}n∈Z. Thus we are working at the Hα− level. In fact more is true, namely
that eit∆fω(x) belongs to

⋂
s<α C

s(Td), P-a.s.; in particular eit∆fω is P-a. s. a
continuous function of the x variable, On the other hand, the randomization does
not improve the regularity, in the sense that ‖fω‖Hα(Td) = ∞ also holds P-a. s.;
see for example Remark 1.2 in [7] and the introduction of [25].

We have the following improved pointwise (a.e.) convergence result for random-
ized initial data.

Proposition 1.3. Let α > 0 and let fω of the form (6). We have P-a. s. the
following. For all t ∈ R the free solution eit∆fω belongs to

⋂
s<α C

s(Td) and

eit∆fω(x)→ fω(x) as t→ 0

for every x ∈ Td and uniformly.

Finally, we want to prove a similar statement for the cubic NLS (1). In fact,
it will be more convenient working with the Wick ordered version of the equation
(WNLS)

(7)

{
i∂tu+ ∆u = N (u),
u(x, 0) = f(x),

where

(8) N (u) := ±u
(
|u|2 − 2µ

)
, µ :=

 
T2

|u(x, t)|2dx =

 
T2

|f(x)|2dx ,

(recal that µ is a conserved quantity). Since solutions to WNLS are related to
that of the cubic NLS by multiplication with a factor ei2µt, the study of pointwise
convergence turns out to be equivalent to that of NLS.

Theorem 1.4. Let α > 0 and let fω of the form (6). Let u be the solution to
WNLS (7) with initial data fω. We have P-almost surely :

(9) lim
t→0

u(x, t) = fω(x) for a.e. x ∈ Td .

Thus the same is true for solutions to the cubic NLS.

1.1. Acknowledgements. R. Lucà is supported by the ERC grant 676675 FLIRT,
by BERC 2018-2021, by BCAM Severo Ochoa SEV-2017-0718 and IHAIP project
PGC2018-094528-B-I00 (AEI/FEDER, UE).
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1.2. Notations and terminology. For a fixed p ∈ R we often use the nota-
tion p+ := p + ε, p− := p − ε, where ε is any sufficiently small strictly positive
real number. When in the same inequality we have two such quantities we use the
following notation to compare them. We write p + · · ·+ := p + ε · (number of +),
p−· · ·− := p−ε ·(number of −). We will use C > 0 to denote several constants de-
pending only on fixed parameters, like for instance the dimension d. The value of C
may clearly differ from line to line. Let A,B > 0. We may write A . B if A ≤ CB
when C > 0 is such a constant. We write A & B if B . A and A ∼ B when A . B
and A & B. We write A� B if A ≤ cB for c > 0 sufficiently small (and depending
only on fixed parameters) and A � B if B � A. We denote A ∧ B := min(A,B)
and A ∨B := max(A,B). We refer to the following inequality

‖DsPNf‖Lq . Ns+ d
p−

d
q ‖PNf‖Lp , 1 ≤ p ≤ q ≤ ∞ ,

simply as Bernstein inequality. Here PN is the frequency projection on the annu-
lus ξ ∼ N .

It is useful recall that the Strichartz estimates are the main tool to study the
nonlinear Schrödinger flow. We recall the periodic Strichartz estimates from [2, 6]:

(10) ‖eit∆PNf‖Lpx,t(Ωd+1) . N
d
2−

d+2
p +‖PNf‖L2

x(Ωd), p ≥ 2

(
d+ 2

d

)
.

2. Proof of Theorem 1.1

Recall that the flow of (1) is locally well defined for initial data in f ∈ Hs(T2)
for s > 0 [2]. The solutions are constructed via a fixed point argument in the

restriction space Xs,b
δ for δ > 0 sufficiently small (depending polynomially on the

Hs(T2) norm of f). We recall that

‖F‖Xs,bδ := inf
G=F on t∈[0,δ]

‖G‖Xs,b ,

where

‖F‖2Xs,b :=

ˆ
R

∑
n∈Zd
〈τ + |n|2〉2b〈n〉2s|F̂ (n, τ)|2dτ if,

and F̂ is the space-time Fourier transform of F .

Let ΦNt be the flow associated to the truncated NLS equation

(11) i∂tΦ
N
t f + ∆ΦNt f = P≤N N (ΦNt f) ,

with initial datum ΦN0 f := P≤N f . We denote P≤N the frequency projection on the
ball of radius N centered in the origin. We write Φtf := Φ∞t f for the flow of the
NLS equation with initial datum f = P∞ f . We also denote P>N := P∞−P≤N
and as alreday mentioned PN := P≤N −P≤N/2.

A similar well-posedness result holds for the truncated flow, uniformly in N ∈ N.
Of course, at fixedN , since the equation (11) is finite dimensional, one can construct
a global flow in an elementary way using the Cauchy theorem for ODE and the
conservation of ‖ΦNt f‖L2(T2) (which holds for all N ∈ N). However, in the following

we will need (as usual in the study of NLS) a control of ΦNt f uniform over N . This
is not elementary and will be ensured by the local well-posedness theory in the
restriction space.
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As already recalled, the main tool in the study of the pointwise convergence
properties of the linear Schrödinger equation is the maximal Schrödinger operator

t→ sup
0≤t≤δ

|eit∆f(x)|, δ > 0.

Assume indeed that for some δ ∈ (0, 1] one has

(12)

∥∥∥∥ sup
0≤t≤δ

|eit∆f(x)|
∥∥∥∥
L2
x(T2)

. ‖f‖Hsx(T2) ,

then is not hard to see that eit∆f(x)→ f(x) as t→ 0 for almost every (with respect
to the Lebesgue measure) x ∈ T2. The proof is a straightforward modification of
the argument that we will use to prove Proposition 2.1 below.

In the nonlinear setting we need a (nonlinear) replacement of (12). A convenient
replacement is the maximal estimate (13).

Proposition 2.1. Let f ∈ L2(T2) be such that

(13) lim
N→∞

∥∥∥∥ sup
0≤t≤δ

|Φtf(x)− ΦNt f(x)|
∥∥∥∥
L2
x(T2)

= 0.

Then Φtf(x)→ f(x) as t→ 0 for almost every x ∈ T2.

From the proof it will be clear that in (13) we can replace the L2 norm with a
weak L1 norm. However, it is usually convenient to work in the L2 setting.

Proof. To prove Proposition 2.1 we decompose the difference as follows:

|Φtf(x)− f(x)| ≤ |Φtf(x)− ΦNt f(x)|+ |ΦNt f(x)− P≤N f(x)|+ |P>N f(x)|(14)

and pass to the limit t→ 0. It is elementary to show that the second term on the
right hand side is zero, namely

lim
t→0

ΦNt f(x) = P≤N f(x) ,

for all x ∈ T2. So we arrive at2

lim sup
t→0

|Φtf − f | ≤ lim sup
t→0

|Φtf − ΦNt f |+ |P>N f | .

Let λ > 0. Using the Chebyshev inequality

|{x ∈ T2 : lim sup
t→0

|Φtf − f | > λ}| ≤ |{x ∈ T2 : sup
0≤t≤δ

|Φtf − ΦNt f | > λ/2}|

+ |{x ∈ T2 : |P>N f | > λ/2}|

. λ−2

(∥∥∥∥ sup
0≤t≤δ

|Φtf − ΦNt f |
∥∥∥∥2

L2(T2)

+ ‖P>N f‖2L2(T2)

)
,

where | · | is the Lebesgue measure. On the other hand we have ‖P>N f‖L2(T2) → 0

as N →∞ (since f ∈ L2(T2)) and

lim
N→∞

∥∥∥∥ sup
0≤t≤δ

|Φtf − ΦNt f |
∥∥∥∥
L2(T2)

= 0

2Hereafter we remove the x variable in the argument of decompositions like (14) to simplify

the notation.
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by assumption (13). Thus we arrive to

|{x ∈ T2 : lim sup
t→0

|Φtf − f | > λ}| = 0

and the statement follows taking the union over λ > 0. �

It is not easy to verify the condition (13) directly. However, we can take advan-
tage a simple lemma which allows to embed a suitable restriction space into the
relevant maximal space, namely the space induced by the norm∥∥∥∥ sup

t∈[0,δ]

|F (x, t)|
∥∥∥∥
L2
x(T2)

, F : (x, t) ∈ T2 × R→ F (x, t) ∈ C.

In other words, we can bound the L2
x(T2) norm of the associated maximal function

x→ sup
0≤t≤δ

|F (x, t)|

with an appropriate Xs,b
δ norm of F . In fact, this is a rather general property of

the restriction spaces Xs,b
δ with b > 1

2 . The proof can be found in [30, Lemma 2.9],
in the non periodic case. The argument adapts to the periodic case as well.

Lemma 2.2. Let b > 1
2 and let Y be a Banach space of functions

F : (x, t) ∈ Ωd × R→ F (x, t) ∈ C .
Let α ∈ R. Assume

(15) ‖eiαteit∆f(x)‖Y ≤ C‖f‖Hs(Ωd) ,

with a constant C > 0 uniform over α ∈ R. Then

‖F‖Y ≤ C‖F‖Xs,b .

Using Lemma 2.2 with

‖F‖Y =

∥∥∥∥ sup
0≤t≤δ

|F (x, t)|
∥∥∥∥
L2
x(T2)

and the fact that the maximal estimate (12) hold for s > 1/2 we have the following

Lemma 2.3. Let b > 1
2 and s > 1/2. We have

(16)

∥∥∥∥ sup
0≤t≤δ

|F (x, t)|
∥∥∥∥
L2
x(T2)

. ‖F‖Xs,bδ .

We will combine the following lemma with the embedding from Lemma 2.3 to
verify the maximal estimate hypothesis of Proposition 2.1 for the cubic NLS on T2.

Lemma 2.4. Let d = 2 and s > 0. Then

(17) ‖N (u)−N (v)‖
Xs,−

1
2
++ .

(
‖u‖2

Xs,
1
2
+

+ ‖v‖2
Xs,

1
2
+

)
‖u− v‖

Xs,
1
2
+

In fact Lemma 2.4 is a consequence of the following slightly more general state-
ment (that will be useful later) due to Bourgain [3].

Lemma 2.5. Let d = 2 and s > 0. Let M1 ≥M2 ≥M3 be dyadic scales. Then

(18) ‖(PM1
F )(PM2

G)(PM3
H)‖

Xs,−
1
2
++

. ‖PM1
F‖

Xs,
1
2
+‖PM2

G‖
X0+, 1

2
+‖PM3

H‖
X0, 1

2
+ .
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We denote R0 = ‖f‖Hs(T2). Hereafter η will be a smooth cut–off of [0, 1]. Taking
δ = δ(R0) < 1 sufficiently small and combining (25), (26), (27) and Lemma 2.4 one
can show that the map

(19) Γ(u(x, t)) = η(t)eit∆ P≤N f(x)− iη(t)

ˆ t

0

ei(t−t
′)∆ P≤N N (u(x, t′))dt′

is a contraction on the ball {u : ‖u‖
X
s, 1

2
+

δ

≤ 2R0}, for all N ∈ 2N ∪ {∞}. This

is a standard argument, so we omit the proof (see for instance [18, Section 3.5.1]).
Moreover, a similar computation is part of the proof of Theorem 1.1. However, we
stress that the value of δ is uniform in N ∈ 2N ∪ {∞}. In particular we have

(20) ‖ΦNt f‖
X
s, 1

2
+

δ

≤ 2R0, for all N ∈ 2N ∪ {∞} .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.3 we have∥∥∥∥ sup
0≤t≤δ

|Φtf(x)− ΦNt f(x)|
∥∥∥∥
L2
x(T2)

. ‖Φtf − ΦNt f‖
X
s, 1

2
+

δ

.

Thus using Proposition 2.1 it suffices to show that the right hand side goes to zero
as N →∞. For t ∈ [0, δ] we have (see (19))

Φtf(x)− ΦNt f(x)

= η(t)eit∆ P>N f(x)− iη(t)

ˆ t

0

ei(t−t
′)∆
(
N (Φt′f(x))− P≤N N (ΦNt′ f(x))

)
dt′.

Then using (25) and (26) we have

‖Φtf − ΦNt f‖
X
s, 1

2
+

δ

. ‖P>N f‖Hs(T2) + ‖N (Φtf)− P≤N N (ΦNt f)‖
X
s,− 1

2
+

δ

.(21)

To handle the nonlinear contribution we further decompose

N (Φtf)− P≤N N (ΦNt f) = P≤N
(
N (Φtf)−N (ΦNt f)

)
+ P>N N (Φtf)

so that

‖Φtf − ΦNt f‖
X
s, 1

2
+

δ

. ‖P>N f‖Hs(T2) + ‖P>N N (Φtf)‖
X
s,− 1

2
+

δ

(22)

+ ‖P≤N
(
N (Φtf)−N (ΦNt f)

)
‖
X
s,− 1

2
+

δ

.

Then by (27), Lemma 2.4, and (20), we get

‖P≤N
(
N (Φtf)−N (ΦNt f)

)
‖
X
s,− 1

2
+

δ

. δ0+R2
0‖Φtf − ΦNt f‖

X
s, 1

2
+

δ

,(23)

where we recall R0 = ‖f‖Hs(T2). Plugging (23) into (22), taking δ = δ(R0) small
enough and absorbing

δ0+R2
0‖Φtf − ΦNt f‖

X
s, 1

2
+

δ

≤ 1

2
‖Φtf − ΦNt f‖

X
s, 1

2
+

δ

into the left hand side, we arrive to

‖Φtf − ΦNt f‖
X
s, 1

2
+

δ

. ‖P>N f‖Hs(T2) + ‖P>N N (Φtf)‖
X
s,− 1

2
+

δ

(24)



8 RENATO LUCÀ

The right hand side of (24) goes to zero as N →∞ since f ∈ Hs(T2) and N (Φtf) ∈
X
s,− 1

2 +

δ ; in fact applying Lemma 2.4 with v = 0 and recalling (20) we have

‖N (Φtf)‖
X
s,− 1

2
+

δ

. ‖Φtf‖3
X
s, 1

2
+

δ

. R3
0 .

This concludes the proof of (3).

We conclude this section recalling some well known properties of restriction
spaces that we have used (and that we will use in the rest of the paper). Recall
that η is a smooth cut-off of the unit interval.

Lemma 2.6. Let s ∈ R. Then

(25) ‖η(t)eit∆f(x)‖
Xs,

1
2
+ . ‖f‖Hs(Ωd) ,

(26)

∥∥∥∥η(t)

ˆ t

0

ei(t−t
′)∆F (·, t′)dt′

∥∥∥∥
Xs,

1
2
+

. ‖F‖
Xs,−

1
2
+ ,

(27) ‖F‖
X
s,− 1

2
+

δ

. δ0+‖F‖
X
s,− 1

2
++

δ

.

3. Proof of Proposition 1.3

Here we prove almost surely uniform convergence of the randomized Schrödinger
flow to the initial datum, at the H0+ level, namely Proposition 1.3. Thus our goal
is to show that eit∆fω → fω as t → 0 uniformly over x ∈ Td and P-almost surely
for data fω defined as

(28) fω(x) =
∑
n∈Zd

gωn

〈n〉 d2 +α
ein·x, x ∈ Td ,

where α > 0 and each gωn is complex and independently drawn from a standard
normal distribution. In fact, the argument we present works for independent gωn
drawn from any distribution with sufficiently decay of the tails (for instance sub-
Gaussian is enough). This will not be the case in Theorem 1.4, where we will
need to take advantage of the hypercontractivity of (multilinear forms of ) normal
distributions. However, we only present the standard normal case for definiteness,
also in this section.

Fix t ∈ R. We have that P-almost surely

eit∆fω ∈
⋂
s<α

Hs(Td).

This is an immediate consequence of (44) below, taking the union over ε > 0. In
fact, for all t ∈ R we have P-almost surely

eit∆fω ∈
⋂
s<α

Cs(Td),

thus in particular eit∆fω are P-almost surely continuous functions of the x variable.
This is a consequence of the higher integrability property (34) below, from which
one can easily deduce uniform convergence as N → ∞ of the sequence P≤Nf

ω,
with probability larger than 1 − ε. So the limit fω is continuous with the same
probability, and the almost sure continuity follows taking the union over ε > 0.
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Before completing the proof of Proposition 1.3. we recall few lemmata. We start
recalling the following well–known concentration bound:

Lemma 3.1 ([7, Lemma 3.1]). There exists a constant C such that

(29)

∥∥∥∥ ∑
n∈Zd

gωn an

∥∥∥∥
Lrω

≤ Cr 1
2 ‖an‖`2n(Zd)

for all r ≥ 2 and {an} ∈ `2(Zd).

Using (29) with an = ein·x−i|n|
2t〈n〉− d2−α we obtain for r ≥ 2 that for fω an

in (28)

(30) ‖PNe
it∆fω‖Lrω ≤ Cr

1
2N−α ,

with a constant uniform in t ∈ R. From this, we also have improved Lpx estimates
for randomized data.

Lemma 3.2. Let p ∈ [2,∞). Assume fω is as in (28). There exists constants C
and c, independent of t ∈ R, such that

(31) P(‖PNe
it∆fω‖Lpx(Td) > λ) ≤ Ce−cN

2αλ2

.

Thus

(32) P(‖PNe
it∆fω‖L∞x (Td) > λ) ≤ Ce−cN

2α−λ2

.

In particular, for any ε > 0 sufficiently small, we have

(33) ‖PNe
it∆fω‖Lpx(Td) . N

−α (− ln ε)
1/2

, N ∈ 2Z

and

(34) ‖PNe
it∆fω‖L∞x (Td) . N

−α+ (− ln ε)
1/2

, N ∈ 2Z ,

with probability at least 1− ε.

Proof. We prove (31), then (32) follows by Bernstein inequality. By Minkowski’s
inequality and Lemma 3.1 above, we have for any r ≥ p ≥ 2(ˆ

‖PNe
it∆fω‖rLpx(Td)dP(ω)

) 1
r

≤
∥∥∥‖PNe

it∆fω‖Lrω
∥∥∥
Lpx(Td)

≤ CN−αr 1
2 .

which is enough to conclude that ‖PNe
it∆fω‖Lpx(Td) is a sub-Gaussian random

variable satisfying the tail bound (31).

�

Note that using (31)-(32), the triangle inequality

‖P>N (·)‖ ≤
∑

M∈2N:M>N

‖PM (·)‖,

the union bound an the fact that∑
M∈2N:M>N

e−cM
2αk−2

. e−cN
2αk2 ,

we see that, for all t ∈ R and α > 0 we have (p <∞)

(35) P
(
‖eit∆ P>N f

ω‖Lpx(Td) > λ
)
. e−cN

2αλ2
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(36) P
(
‖eit∆ P>N f

ω‖L∞x (Td) > λ
)
. e−cN

2α−λ2

Remark 3.3. Proceeding as we did to prove (35)-(36) we also easily see that the
exceptional set where (33)-(34) are not valid can be chosen to be the same for all
N ∈ N, paying an N0+ loss on the right hand side of the estimates.

Proceeding as in the proof of Lemma 3.2 we also obtain improved Strichartz
estimates for randomized data.

Lemma 3.4. Let p ∈ [2,∞). Assume fω is as in (28). Then we have

(37) P
(
‖eit∆ PNf

ω‖Lpx,t(Td+1) > λ
)
≤ Ce−cN

2αλ2

.

Thus

(38) P
(
‖eit∆ PNf

ω‖L∞x,t(Td+1) > λ
)
≤ Ce−cN

2α−λ2

.

In particular, for any ε > 0 sufficiently small, we have

(39) ‖eit∆ PNf
ω‖Lpx,t(Td+1) . N

−α (− ln ε)
1/2

, N ∈ 2Z

and

(40) ‖eit∆ PNf
ω‖L∞x,t(Td+1) . N

−α+ (− ln ε)
1/2

, N ∈ 2Z ,

with probability at least 1− ε.

The bounds (37)-(38) implies

(41) P
(
‖eit∆ P>N f

ω‖Lpx,t(Td+1) > λ
)
. e−cN

2αλ2

(42) P
(
‖eit∆ P>N f

ω‖L∞x,t(Td+1) > λ
)
. e−cN

2α−λ2

exactly as (31)-(32) imply (35)-(36). Also we have an analogous of Remark (3.3):

Remark 3.5. The exceptional set where (39)-(40) are not valid can be chosen to be
the same for all N ∈ N, paying an N0+ loss on the right hand side of the estimates.

Fix t ∈ R. Later we will also need the following bound for the Hs norm of
eit∆fω with s < α. This is a well know fact that we recall applying again (29) with

an = ein·x−|n|
2t〈n〉− d2−α+s, so that we get for r ≥ 2

‖PN 〈D〉seit∆fω‖Lrω ≤ Cr
1
2Ns−α, s < α .

Here 〈D〉 denotes the Fourier multiplier operator 〈n〉. Proceeding as in the proof
of Lemma 3.2 we also obtain

(43) P
(
‖〈D〉s PNe

it∆fω‖L2
x(Td) > λ

)
≤ Ce−cN

2(α−s)λ2

, s < α

and in particular, for any ε > 0 sufficiently small

(44) ‖eit∆fω‖Hsx(Td) . (− ln ε)
1/2

s < α, t ∈ R ,

with probability at least 1− ε. Again the constant is uniform on t ∈ R.

We are now ready to complete the proof of Proposition 1.3.
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Proof of Proposition 1.3. Invoking the Borel-Cantelli lemma it is enough to show
that

(45) P
(

lim sup
t→0

‖eit∆fω − fω‖L∞x (Td) > 1/k

)
. γk,

for a summable sequence {γk}k∈N. Let us decompose

(46) |eit∆fω − fω| ≤ |eit∆ P>N f
ω|+ |eit∆ P≤N f

ω − P≤N f
ω|+ |P>N fω|.

Using (36) (with t = 0) and (42) we see that

(47) ‖eit∆ P>N f
ω‖L∞x,t(Td+1) + ‖P>N f

ω‖L∞x (Td) ≤
1

2k

holds for all ω outside an exceptional set of measure . e−cN
2αk−2

. We choose

N = Nk via the identity N2α
k = k3, in such a way that e−cN

2α
k k−2

= e−ck is
summable (over k ∈ N). Let s∗ > d/2. Since

eit∆ P≤Nk f
ω − P≤Nk f

ω =
∑
|n|≤Nk

(e−it|n|
2

− 1)ein·x f̂ω(n),

using Cauchy–Schwartz, the summability of 〈n〉−2s∗ (over n ∈ Zd) and (44) with
s = 0, t = 0 (in the last inequality) we get

‖eit∆ P≤Nk f
ω − P≤Nk f

ω‖L∞x (Td) . sup
|n|≤Nk

|e−it|n|
2

− 1|

 ∑
|n|≤Nk

〈n〉2s
∗
| f̂ω(n)|2

1/2

. |t|(Nk)s
∗+2‖fω‖L2 ≤ |t|(Nk)s

∗+2 1

k
,(48)

for ω outside an exceptional set of probability . e−cN
2α
k k−2

= e−ck. From the
previous inequality, looking at t so small that |t|(Nk)s

∗+2 ≤ 1/2, we have

(49) P
(

lim sup
t→0

‖eit∆ P≤N∗ f
ω − P≤N∗ f

ω‖L∞x (Td) > 1/k

)
. e−ck.

Combining (36)-(36) and recalling the decomposition (46) the proof is concluded.

2

4. Proof of Theorem 1.4

In this section, we consider the cubic Wick-ordered NLS (8) on Td (d = 1, 2) as
in the work of Bourgain in [3]. Namely, we look at the nonlinearity

N (u) := ±u
(
|u|2 − 2µ

)
, µ :=

 
Td
|u(x, t)|2dx .

We are interested again in randomized initial data, i.e. fω is taken to be of the
form (28). Recall (see (44)) that such data is P-almost surely in Hs for all s < α
and

(50) ‖fω‖Hs . (− ln ε)
1/2

, s < α ,

with probability at least 1 − ε, for all ε ∈ (0, 1) sufficiently small. Since we work
with any α > 0, we are considering initial data in H0+. We approximate equation



12 RENATO LUCÀ

(8) as in (11), for all N ∈ 2N∪{∞}. Recall that ΦNt f
ω denotes the associated flow,

with initial datum

ΦN0 f
ω := P≤N f

ω =
∑
|n|≤N

gωn

〈n〉 d2 +α
ein·x .

We write Φtf
ω = Φ∞t f

ω for the flow of (8) with datum fω = P∞ fω.

The relevant choice of σ in the following statement is σ = 1
2− (we will use this

to prove Theorem 1.4).

Proposition 4.1. Let d = 1, 2 and α > 0. Let N ∈ 2N ∪ {∞}. For all σ ∈ [0, 1
2 ),

the following holds. Assume

(51) u = u(I) + u(II), u(I) = eit∆ P≤N f
ω, ‖u(II)‖

Xα+σ, 1
2
+ < 1

and the same for v. Then

(52) ‖N (u)‖
Xα+σ,− 1

2
+ . (− ln ε)

3/2

(53) ‖N (u)−N (v)‖
Xα+σ,− 1

2
++ . (− ln ε) ‖u− v‖

Xα+σ, 1
2
+

for initial data of the form (28), with probability at least 1 − ε, for all ε ∈ (0, 1)
sufficiently small. If we take u as in (51) and we instead assume

v = v(I) + u(II), v(I) = eit∆fω, ‖u(II)‖
Xα+σ, 1

2
+ < 1 ,

we have

(54) ‖N (u)−N (v)‖
Xα+σ,− 1

2
++ . N

−α .

Remark 4.2. Recall that α indicates the regularity of the initial datum. We are
denoting by σ the amount of smoothing one can prove for the Wick–ordered cubic
nonlinearity N . More precisely, since the initial data (28) belongs to Hα−, one can
interpret this statement as saying that, with arbitrarily large probability, N is σ+
smoother than fω. Since σ < 1

2 is permissible, we reach 1
2− smoothing for N and,

combining with (26), also for the Duhamel contribution ΦNt f
ω − eit∆P≤Nfω.

In fact a stronger statement than 4.1 has been proved in [13]. Namely that
the reminder can be further decomposed in as a sum of two terms. The first one,
to which one we refer as paracontrolled, lies in X

1
2−,

1
2 + but has a precise random

structure. The second one is a smoother deterministic reminder that lies in X1−, 12 +.

Here we only explain how to get Proposition 4.1 for the first Picard iteration,
namely when 4. Recall that η is a smooth cut-off of the unit interval. Let us
fix α > 0. Using (26), (27) and Proposition 4.1 one can show that for all δ > 0
sufficiently small the following holds. For all N ∈ 2N ∪ {∞}, the map

(55) ΓN (u) := η(t)eit∆ P≤N f
ω − iη(t)

ˆ t

0

ei(t−s)∆ P≤N N (u(·, s)) ds

is a contraction on the set

(56)

{
eit∆ P≤N f

ω + g, ‖g‖
X
α+σ, 1

2
+

δ

< 1

}
equipped with the X

α+σ, 12 +

δ norm, outside an exceptional set (we call it a δ–

exceptional set) of initial data of probability smaller than e−δ
−γ

, with γ > 0 a
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given small constant. Notice that this holds uniformly over N ∈ 2N ∪ {∞}. Again,
this is a standard routine calculation that we omit (see for instance [18, Section
3.5.1]). We only explain how to find the relation between the local existence time
δ and the size of the exceptional set. Given any ε ∈ (0, 1) sufficiently small, using
(26), (27) and Proposition 4.1, we have

‖ΓN (u)− η(t)eit∆ P≤N f
ω‖

X
α+σ, 1

2
+

δ

. δ0+ (− ln ε)
3/2

,

for all fω outside an exceptional set of probability smaller than ε. Letting δ such

that ε = e−δ
−γ

with γ > 0 a fixed small constant, we have Cδ0+ (− ln ε)
3/2

< 1 for

all δ > 0 sufficiently small. Note that the measure e−δ
−γ

of the δ–exceptional set
converges to zero as δ → 0. In particular, for ω outside the δ–exceptional set, the
fixed point ΦNt f

ω of the map (55) belongs to the set (56), namely

(57) ‖ΦNt fω − eit∆ P≤N f
ω‖

X
α+σ, 1

2
+

δ

< 1, N ∈ 2N ∪ {∞} .

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. It suffices to show that

(58) lim
N→∞

∥∥∥∥ sup
0≤t≤δ

|Φtfω(x)− ΦNt f
ω(x)|

∥∥∥∥
L2
x(T2)

= 0

for all fω outside a δ–exceptional set Aδ. Note indeed that (58) imply that given
fω we can find, P-almost surely, a δω (which depends on ω) such that (58) is
satisfied. Indeed, if we could not do so, this would mean that fω ∈

⋂
δ>0Aδ, and

the probability of this event is zero, since P(Aδ)→ 0 as δ → 0.

Once we have (58) with δ = δω, we have P-almost surely

lim
t→0

Φωt f
ω(x)− fω(x) = 0, for a.e. x ∈ T2 ,

as claimed, simply invoking Proposition 2.1.

In order to prove (58) we decompose

|Φtfω − ΦNt f
ω| ≤ |eit∆ P>N f

ω|+ |Φtfω − eit∆fω − (ΦNt f
ω − eit∆ P≤N f

ω)| ,

Thus, recalling the decay of the high frequency linear term given by (36), it remains
to show that

(59) lim
N→∞

∥∥∥∥ sup
0≤t≤δ

|Φtfω − eit∆fω − (ΦNt f
ω − eit∆ P≤N f

ω)|
∥∥∥∥
L2(T2)

= 0 ,

for all fω outside a δ–exceptional set.

For any α > 0, we can choose σ sufficiently close to 1
2 that

(60)
1

2
< α+ σ .

Thus, using the Xs,b space embedding from Lemma 2.3, it suffices to prove

(61) lim
N→∞

∥∥w − wN∥∥
X
α+σ, 1

2
+

δ

= 0 ,

where

wN := ΦNt f − eit∆ P≤N f
ω, w := w∞ .
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Notice that by (57) we have

‖wN‖
X
α+σ, 1

2
+

δ

< 1, N ∈ 2N ∪ {∞} .

Since for t ∈ [0, δ] we have

(62) w − wN = −iη(t)

ˆ t′

0

ei(t−t
′)∆
(
N (Φt′f

ω)− P≤N N (ΦNt′ f
ω)
)
dt′ ,

using (26), (27), we get

(63) ‖w − wN‖
X
α+σ, 1

2
+

δ

. δ0+‖N (Φtf)− P≤N N (ΦNt f)‖
X
α+σ,− 1

2
++

δ

.

We decompose

N (Φtf)− P≤N N (ΦNt f) =

(64)

P≤N
(
N (eit∆ P≤N f

ω + w)−N (eit∆ P≤N f
ω + wN )

)
+ Remainders ,

where

Remainders := P≤N
(
N (eit∆fω + w)−N (eit∆ P≤N f

ω + w)
)

+ P>N N (Φtf) .

Notice that by (52), (54) we have

(65) ‖Remainders‖
X
α+σ,− 1

2
++

δ

→ 0 as N →∞ ,

with probability at least 1− ε. Using (53) we can estimate

‖P≤N
(
N (eit∆ P≤N f

ω + w) −N (eit∆ P≤N f
ω+ wN )) ‖

X
α+σ,− 1

2
++

δ

(66)

. (− ln ε)
∥∥w − wN∥∥

X
α+σ, 1

2
+

δ

and (63), (64), (66) give
(67)∥∥w − wN∥∥

X
α+σ, 1

2
+

δ

. δ0+ (− ln ε)
∥∥w − wN∥∥

X
α+σ, 1

2
+

δ

+ ‖Remainders‖
X
α+σ,− 1

2
++

δ

with probability at least 1 − ε. Since with our choice of ε = e−δ
−γ

we have

Cδ0+ (− ln ε)
3/2

< 1, we can absorb the first term on the right hand side into
the left hand side and we still have that (65) holds outside a δ–exceptional set.
Thus letting N →∞ the proof of (9) is complete.

2

Remark 4.3. It is worthy to remark that, comparing with for instance [3], the
procedure which allows to promote a statement valid on a δ-exceptional set Aδ
for arbitrarily small δ > 0 to a statement which is valid with probability = 1 is
far easier. In particular it does not involve any control on the evolution of the
(Gaussian) measure induced by the random Fourier series. This is because we are
considering a property which has to be verified only at time t = 0 a.s., instead that
in a time interval containing t = 0, as in [3].

We now give some hints on the proof of the smoothing estimates given in Propo-
sition 4.1.
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Proof of Proposition 4.1. Notice that the Wick–ordered nonlinearity can be written
as

(68) N (u(x, ·)) =
∑

n2 6=n1,n3

û(n1)û(n2)û(n3)ei(n1−n2+n3)·x −
∑
n

û(n)|û(n)|2ein·x

where we are looking at the nonlinear term for fixed time and û(·) denotes the space
Fourier coefficients. Looking at a similar expansion for the difference N (u)−N (v)
it is easy to see that we can deduce (4.1) from a slightly more general Lemma 4.4
given below. It implies the desired statement

uj(nj) = u(nj), v(nj), or u(nj)− v(nj) .

2

We will give a proof of the following Lemma in the fully random case Jj = I for
j = 1, 2, 3,, which correspond to the study of the first Picard iterate. Comparing
with 4.4 (and [13]) there is a simplification coming from the fact that our fω is
sligthly more regular, namely we consider α > 0 instead of α = 0.

Lemma 4.4. Let d = 1, 2 and α > 0. Let N ∈ 2N ∪ {∞}. For all σ ∈ [0, 1
2 ) the

following holds. Assume for j = 1, 2, 3

(69) uj(I) = eit∆ P≤N f
ω, ‖uj(II)‖

Xα+σ, 1
2
+ < 1.

Let Jj ∈ {I, II}, j = 1, 2, 3. Then, for all ε ∈ (0, 1) sufficiently small we have the
following

(70) ‖N (u1(J1), u2(J2), u3(J3))‖
Xα+σ,− 1

2
+ . (− ln ε)

3/2
,

and more precisely

(71) ‖N (u1(II), u2(J2), u3(J3))‖
Xα+σ,− 1

2
++ . (− ln ε) ‖u1(II)‖

Xα+σ, 1
2
+ ,

(72) ‖N (u1(J1), u2(II), u3(J3))‖
Xα+σ,− 1

2
++ . (− ln ε) ‖u2(II)‖

Xα+σ, 1
2
+ ,

with probability at least 1− ε. Moreover, if in (69) we replace for some j = j∗ the
projection operator P≤N by P>N , then the estimate (70) with Jj∗ = I holds with
an extra factor N−α on the right hand side.

Remark 4.5. Saying that this estimates holds with probability at least 1−ε means,
more precisely, that they hold for all ω outside an exceptional set of probability ≤ ε.
Moreover, this set can be chosen to be independent on N ∈ 2N ∪ {∞}.

Remark 4.6. Notice that by the symmetry n1 ↔ n3 the estimate (71) implies an
analogous estimate for u3(II).

Here we only consider the case Jj = I for j = 1, 2, 3, namely the case in which all
the contributions are a linear random evolution. We prove the bound (70) relative
to this case and to N = ∞. Moreover we split the nonlinearity as a difference of
two terms (see (68))

N1(u1(J1), u2(J2), u3(J3)) =
∑

n2 6=n1,n3

û1(J1)(n1)û2(J2)(n2)û3(J3)(n3)ei(n1−n2+n3)·x ,

N2(u1(J1), u2(J2), u3(J3)) =
∑
n

û1(J1)(n)û2(J2)(n)û3(J2)(n)ein·x .
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and we prove (70) only for N1, which is the most challenging contribution. The
proof for N2 is indeed elementary.

To prove (70) will be useful to recall that the space-time Fourier transform of
eit∆fω is

êit∆fω(n, τ) =
gω

〈n〉 d2 +α
δ(τ + |n|2) ,

where δ is the delta function. So a direct computation gives

‖eit∆fω‖2
X0+, 1

2
+

=
∑
n

|gωn |2

〈n〉d+2α− ,

which, recalling
´
|gωn |2dω = 1, immediately implies

‖‖eit∆fω‖
X0+, 1

2
+‖2L2

ω
=
∑
n

1

〈n〉d+2α− <∞ .

Since we can expand the LHS as a bilinear form in the Gaussian variables gωn , we
get by Gaussian hypercontractivity

‖‖eit∆fω‖
X0+, 1

2
+‖2Lqω =

∑
n

1

〈n〉d+2α− < Cq <∞ .

Proceeding essentially as in the Proof of Lemmas 3.2-3.4 (recall also the Remarks
3.3-RemarkUniform1Bis) this allows to prove a pointwise bound

(73) ‖eit∆fω‖
X0+, 1

2
+ .

√
ln

(
1

ε

)
,

with probability larger than 1− Cε for all sufficiently small ε > 0.

Let N,N1, N2, N3 be dyadic scales. We denote with Ñ the maximum between
N1, N2, N3. First we perform a reduction to remove frequencies which are far
from the paraboloid. More precisely, we denote with PA the space-time Fourier
projection into the set A and our goal is to reduce∑

N1,N2,N3

‖N1 (PN1
u1(I),PN2

u2(I),PN3
u3(I)) ‖2

Xα+σ,− 1
2
++

(74)

=
∑

N,N1,N2,N3

N2α+2σ‖PN N1 (PN1 u1(I),PN2 u2(I),PN3 u3(I)) ‖2
X0,− 1

2
++

to
(75)∑
N,N1,N2,N3

N2α+2σ‖PN P{
〈τ+|n|2〉≤Ñ1+ 1

10

}N1 (PN1
u1(I) PN2

u2(I) PN3
u3(I)) ‖2

X0,− 1
2
++

To obtain this reduction, it is sufficient to show that projection of the nonlinearity
onto the complementary set is appropriately bounded; i.e. that

∑
N,N1,N2,N3

N2α+2σ‖PN P{
〈τ+|n|2〉>Ñ

11
10

}N1 (PN1
u1(I),PN2

u2(I),PN3
u3(I)) ‖2

X0,− 1
2
++

(76)

. (− ln ε)
3

with probability at least 1− ε. To do so we abbreviate

NN1,N2,N3

1 (·) := N1 (PN1
u1(I),PN2

u2(I),PN3
u3(I)) .
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and we bound∑
N1,N2,N3

N2α+2σ‖PN P{
〈τ+|n|2〉>Ñ

11
10

}NN1,N2,N3

1 ‖2
X0,− 1

2
++

(77)

∼ N2α+2σ
∑

N1,N2,N3
n∼N

ˆ χ
{〈τ+|n|2〉>Ñ

11
10 }

〈τ + |n|2〉1−−

∣∣∣∣NN1,N2,N3

1 (·)
∧

(n, τ)

∣∣∣∣2 dτ
. N2α+2σ−1− 1

10 +3(0+)
∑

N1,N2,N3
n∼N

ˆ ∣∣∣∣NN1,N2,N3

1 (·)
∧

(n, τ)

∣∣∣∣2 dτ
∼ N2α− 1

20

∑
N1,N2,N3

‖PN NN1,N2,N3

1 ‖2L2
x,t
,

recalling that σ < 1/2 (here in fact we may have more smoothing than 1
2−). We

have used the fact that at least one of the frequency scales Nj has to be comparable
to N , otherwise the contribution is zero by orthogonality, and so particular we have
N . Ñ (recall that Ñ = max(N1, N2, N3)). In order to continue the estimate we
assume for definiteness that N1 ∼ N . The other possible case is N2 ∼ N (since
everithing is symmetric under n1 ↔ n3) and one can indeed immediately check that
the estimate (78) below is still valid in this case, with obvious changes. Thus we have
using Hölder’s inequality, the improved Strichartz inequality (40) for randomized
functions (for the L∞ norm of u1(I)), and the Strichartz inequality (10) (for the
L4 norms of u2(I) and u3(I)), we obtain

‖PN NN1,N2,N3

1 ‖2L2
x,t

(78)

≤ ‖PN1
u1(I)‖2L∞x,t‖PN2

u2(I)‖2L4
x,t
‖PN3

u3(I)‖2L4
x,t
.

. (− ln ε)N−2α
1 ‖PN2

u2(I)‖2L4
x,t
‖PN3

w3(I)‖2L4
x,t
,

. (− ln ε)N−2α‖PN2
u2(I)‖2

X0+, 1
2
+
‖PN3

u3(I)‖2
X0+, 1

2
+

this holds on a set of probability larger than 1− ε and this set may be chosen to be
independent on N1 ∈ N∪{∞} (see Remark 3.5) and thus on N ∈ N∪{∞}. Plugging
(78) into (77), summing over the Nj and using (73) we arrive to the needed bound

LHS of (76) . (− ln ε)
∑
N,N1

N−
1
20 ‖u2(I)‖2

X0+, 1
2
+
‖u3(I)‖2

X0+, 1
2
+

. (− ln ε)
3
∑
N,N1

N−
1
40N

− 1
40

1 . (− ln ε)
3

Note that in (78) we could also use a weaker bound replacing the L4 norm with the
L∞, that in the fully random case Jj = I for all j is controlled invoking (40) for all
j = 1, 2, 3. However the L4 bound is more robust since it works also in the other
cases, where the contributions are not all random (namely if some Jj is of the form
II).

So we have reduced to (75). We have

PN P{
〈τ+|n|2〉≤Ñ

11
10

}NN1,N2,N3

1 (·)(79)
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= PN P{
〈τ+|n|2〉≤Ñ

11
10

}
 ∑
|nj |∼Nj

eix·(n1−n2+n3)e−it(|n1|2−|n2|2+|n3|2)


×

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

Thus we see that (75) satisfies the desired inequalities (70) as long as we can bound

N2α+2σ

∥∥∥∥ ∑
N1,N2,N3

PN P{
〈τ+|n|2〉≤Ñ

11
10

}
 ∑
|nj |∼Nj

eix·(n1−n2+n3)e−it(|n1|2−|n2|2+|n3|2)


(80)

×
gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∥∥∥∥2

X0,− 1
2
++

. (− ln ε)
3
N0− ,

on a set of probability larger than 1− ε.
Since

F
(
eix·(n1−n2+n3)e−it(|n1|2−|n2|2+|n3|2)

)
(n, τ)(81)

=
∑

n1−n2+n3=n

δ(τ + |n1|2 − |n2|2 + |n3|2) ,

where F is the space-time Fourier transform and δ is the delta function, we re-
duce (80) to showing that

(82) N2α+2σ
∑

N1,N2,N3

∑
|n|∼N

ˆ χ
{〈τ+|n|2〉≤Ñ

11
10 }

〈τ + |n|2〉1−−

×

∣∣∣∣∣∣∣∣∣∣∣
∑

|nj |∼Nj , n2 6=n1,n3

n=n1−n2+n3

τ+|n1|2−|n2|2+|n3|2=0

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣∣∣∣∣∣

2

dτ . (− ln ε)
3
N0−,

with probability at least 1− ε. Letting

µ := |n|2 + τ = |n|2 − |n1|2 + |n2|2 − |n3|2 ,

(the second identity holds over the integration set, since ew have a factor

δ(τ + |n1|2 − |n2|2 + |n3|2)

in the integrand) and recalling that N . Ñ , this follows by

(83) N2α+2σ
∑

N1,N2,N3

∑
|n|∼N

ˆ χ
{〈µ〉≤Ñ

11
10 }

〈µ〉1−−

×

∣∣∣∣∣∣∣∣∣∣∣
∑

|nj |∼Nj , n2 6=n1,n3

n=n1−n2+n3

−|n|2+|n1|2−|n2|2+|n3|2=µ

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣∣∣∣∣∣

2

dτ . (− ln ε)
3
N0−,
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with probability at least 1 − ε. Using Hölder inquality in dµ we reduce to prove
(here we use the symmetry µ↔ −µ)

(84) N2α+2σÑ0+
∑

N1,N2,N3

sup
|µ|.Ñ

11
10

∑
|n|∼N

×

∣∣∣∣∣∣∣∣∣∣∣
∑

|nj |∼Nj , n2 6=n1,n3

n=n1−n2+n3

µ=|n|2−|n1|2+|n2|2−|n3|2

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣∣∣∣∣∣

2

. (− ln ε)
3
N0−,

with probability at least 1− ε. We rewrite (84) as

(85) N2α+2σÑ0+
∑

N1,N2,N3

sup
|µ|.Ñ

11
10

∑
|n|∼N

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣
2

. (− ln ε)
3
N0− ,

where for fixed n, µ we have denoted

Rn(n1, n2, n3) :=
{

(n1, n2, n3) ∈ (Z2)3 : |nj | ∼ Nj , j = 1, 2, 3,

(86)

n2 6= n1, n3, n1 − n2 + n3 = n, µ = |n|2 − |n1|2 + |n2|2 − |n3|2
}
.

The set Rn(·) depends on µ also (like all the sets we will define below). However
we omit this dependence to simplify the notation. Notice that in the definition of
Rn(·) the condition

|n|2 − |n1|2 + |n2|2 − |n3|2 = µ

can be equivalently replaced by

2(n1 − n2) · (n3 − n2) = µ .

We also note that we have reduced to a case in which at least one of the frequencies
N1, N3 is comparable to Ñ . Indeed, if both N1 � Ñ and N3 � Ñ we must have
N2 = Ñ and µ ∼ N2, which contradicts the fact that µ . N

11
10 . Since the roles

of N1 and N3 are symmetric (they are always the size of the indices of the Fourier
coefficents of u1, u3), hereafter we assume that

N1 ∼ Ñ & N.

To estimate (85) will be also useful to introduce the set

S(n1, n2, n3) :=
{

(n1, n2, n3) ∈ (Z2)3 : |nj | ∼ Nj , j = 1, 2, 3,(87)

n2 6= n1, n3, µ = 2(n1 − n2) · (n3 − n2)
}
.

We recall that the Gaussian variables contracts in the following way

(88)

ˆ
gωng

ω
n′dP(ω) = 0,

ˆ
gωng

ω
n′dP(ω) =

{
0 if n 6= n′

1 if n = n′
.



20 RENATO LUCÀ

along with the fact that the sum is restricted over n1, n3 6= n2 and symmetric under
n1 ↔ n3, we get

ˆ ∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣
2

dP(ω)

(89)

= 2
∑

Rn(n1,n2,n3)

1

〈n1〉2α+2

1

〈n2〉2α+2

1

〈n3〉2α+2
= 2

∑
Rn(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3 .

In other words, the L2(dω) norm of the gaussian trilinear form is controlled by
square root of the right hand side of (89). Using the hypercontractivity of the
Gaussians (see [33, 19]), we can promote this to an Lq(dω) bound, with a multi-
plicative factor which is factor q3/2. Then using Bernstein inequality (as we did in
Section 3), this also gives to us a (uniform) pointwise bound∣∣∣∣∣∣

∑
Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣
2

(90)

. (− ln ε)3N0+
1

∑
Rn(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3 ,

with an extra N0+
1 loss, that is valid for ω outside an exceptional set of probability

≤ ε (again, proceeding as in Section 3, we see that this exceptional set can be
chosen to be independent on N , as required).

We finally distinguish two last possibilities. First restrict the summation over
(n1, n2, n3) ∈ Rn(n1, n2, n3) such that n1 6= n3 (with a small abuse of notation we
do not introduce additional notation for this restriction). In this case we get, with
probability > 1− ε, the following estimate

∑
|n|∼N

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gωn1

〈n1〉1+α

gωn2

〈n2〉1+α

gωn3

〈n3〉1+α

∣∣∣∣∣∣
2

(91)

. (− ln ε)3
∑
|n|∼N

∑
Rn(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3

. (− ln ε)3
∑

S(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3

∼ (− ln ε)3
∑

S(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3

. (− ln ε)3N−2α−2
1 N−2α−2

2 N−2α−2
3 #S(n1, n2, n3)

. (− ln ε)3N−2α−1
1 N−2α

2 N−2α
3 ,

where we used that if n1 6= n3, then

#S(n1, n2, n3) . N1N
2
2N

2
3 ;

this is because once we have fixed n2, n3 in N2
2N

2
3 possible ways, we remain with

at most N1 choices for n1 by the relation µ = 2(n1−n2) · (n3−n2). This fact has a
clear geometric interpretation, namely that this relation force the (two dimensional)
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lattice point n1 to belong to the portion of a line which lie inside a ball of radius
. N1 (and there are . N1 such lattice points n1).

The second possibility is that we sum over (n1, n2, n3) ∈ Rn(n1, n2, n3) such that
n1 = n3. In this case restriction µ = 2|n1 − n2|2 implies that once we have chosen
n2 in N2

2 possible ways, we remain with . µ0+ . N0++
1 choices for n1 = n3 (since

a circle of radius µ contains . µ0+ lattice points). This gives an even better bound
than the one above.

Thus, summing the (91) over N2, N3 and recalling that N1 ∼ Ñ & N , we have
bounded, with probability > 1− ε, the expression (85) by

N2α+2σN0+
1

∑
N1

N−2α−1
1 . (− ln ε)3N2σ−1+0+

1 . (− ln ε)3N0− ,

where we used σ < 1
2 .
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