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Abstract

We consider linear and semilinear parabolic problems posed in high-contrast multiscale media in two dimensions.

The presence of high-contrast multiscale media adversely affects the accuracy, stability, and overall efficiency of

numerical approximations such as finite elements in space combined with some time integrator. In many cases,

implementing time discretizations such as finite differences or exponential integrators may be impractical because

each time iteration needs the computation of matrix operators involving very large and ill-conditioned sparse matrices.

Here, we propose an efficient Generalized Multiscale Finite Element Method (GMsFEM) that is robust against the

high-contrast diffusion coefficient. We combine GMsFEM with exponential integration in time to obtain a good

approximation of the final time solution. Our approach is efficient and practical because it computes matrix functions

of small matrices given by the GMsFEM method. We present representative numerical experiments that show the

advantages of combining exponential integration and GMsFEM approximations. The constructions and methods

developed here can be easily adapted to three-dimensional domains.

Keywords: Multiscale approximation, time integration, functions of matrices, finite element methods

1. Introduction

Many applications such as modeling environmental issues and subsurface flow have taken on great relevance in cur-

rent research trends [31, 7, 6]. A central tool in these areas is the correct modeling of diffusion of substances in a

heterogeneous porous media with high-contrast multiscale permeability properties. Mathematical modeling and nu-

merical simulations turn relevant for understanding this model but the presence of multiscale fields and high-contrast

introduce several challenges regarding the accuracy and computational efficiency of the implemented numerical meth-

ods. See [18] and references therein.
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A widely used model of diffusion in porous media is given by the following semilinear parabolic problem posed in a

high-contrast multiscale media, 
∂tp− div(κ(x)∇p) = f(p), in Ω× I,
p = pD, on ∂Ω× I,
p(0, x) = p̂(x), x ∈ Ω.

(1)

Here Ω is a two dimensional convex domain with boundary ∂Ω and I = [0, T ] is the time domain. The field κ(x) is

a multiscale high-contrast heterogeneous field. Additionally, p is an unknown pressure field satisfying the Dirichlet

condition given by pD and the initial condition given by p̂. The constructions and methods developed here can be

easily adapted to the three-dimensional domains.

Approximations of solutions of problem (1) and many other interesting questions have been considered in the liter-

ature. In particular we mention [14, 26, 2, 33] and references therein. We focus our discussion on the numerical

computation of solutions of this problem. In the presence of high-contrast multiscale coefficients, classical methods

for the numerical approximation of solutions need to be revisited due to the lack of robustness and efficiency, see

[21, 22, 15, 16, 1]. In this paper, we design robust numerical approximation procedures against the presence of mul-

tiscale variations and high-contrast in the coefficient κ. We call the attention to two important challenges in order to

design efficient and robust numerical methods for equation (1):

1. In the presence of high-contrast multiscale coefficients, the spatial resolution needed to correctly approximate

the solution of (1) (or its steady steady-state version) is related to the smallest scale at which we find variations of

the coefficient κ. Additionally to the multiscale variations, the discontinuities and high-jumps of the coefficient

bring additional difficulties to the numerical approximation of this time-dependent problem. Accuracy and

efficiency can be negatively affected by solving large and ill-conditioned linear systems at each time step. See

[17, 19, 1, 10].

2. The presence of high-contrast in the coefficients (even without complicated multiscale variations) reduces the

stability region of time discretization methods such as Crank–Nicolson ans similar time integrators. See Sec-

tions 3 and 4 below.

Extensive research have been devoted to these important issues. It is not our intention to present a complete review

of the many works concerning the efforts done to face this issues properly in different contexts. Let us mention first

that the challenge 1 above also affects time-independent problems. For time independent problems classical multi-

scale methods provide good approximations only for moderated-to-low-contrast coefficients. However, Generalized

Multiscale Finite Element Methods (GMsFEM) were designed to correctly handle problems with high-contrast in

the coefficient where the main ingredient was to use local eigenvalue problems to construct appropriate coarse-mesh

approximation spaces. For more details on the construction and analysis related to the the approximation capabilities

of the GMSFEM see [17, 19, 1, 10, 35].

GMsFEM have also been applied to time dependent problems, linear and nonlinear parabolic and hyperbolic par-

tial differential equations as well as sampling and inverse problems. In these cases, some time discretization or

optimization iteration has to be added on top of the space approximation. We consider the case of time marching
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schemes where, in each iteration, a large ill-conditioned linear problem has to be solved. We mention the recent

papers [12, 20, 13, 9, 2, 30, 29] where different time dependent problems have been considered within the GMsFEM

framework. Unfortunately, the loss of stability (due to the high-contrast in the coefficients) requires the reduction of

the time step size (inversely proportional to the contrast in the coefficient) which ends up reducing the gain obtained

by using the GMsFEM method to improve the overall computational time to obtain the final time solution. This bring

us to face challenge 2 above that is the main topic of this article. Our idea to gain stability and accuracy in time

discretizations is to move to exponential integration, see for instance [27, 25, 4, 24, 32]. Exponential integration is a

more effective numerical method to overcome stiff problems and to improve the accuracy of numerical computations.

The main bottleneck of the computations required by exponential integration is the computation of functions of ma-

trices [23, 28]. This is even more critical for finite elements matrices associated with problem (1) since these are huge

and ill-conditioned sparse matrices. In this paper, we show that the function of matrices needed in the exponential

integration can be well approximated using a GMsFEM approach, that is, computed by projecting it to the coarse

scale-space constructed using the GMsFEM approach. In our numerical experiments, we show that computing matrix

functions on the coarse space allows us to advance significant time steps without losing stability and accuracy in the

solution.

In summary, we emphasize that the need for exponential integration comes from the lack of stability in time step-

ping in the presence of high-contrast multiscale coefficient. The usage of GMsFEM approximation improves spatial

approximations of the solutions (in terms of efficiency and dependence on the contrast). However, they still need a

small enough time step (that scales as the inverse of the contrast in the coefficient) due to stability issues in the time

discretization used. For completeness of our paper, we also present a detailed study of the effects of high-contrast

and multiscale variations on the stability and accuracy of implicit Euler and Crank–Nicolson methods. We show that

the use of GMsFEM can improve spatial approximations of the solutions and the overall efficiency of the method.

However, we still need a tiny time step. In comparison the exponential integration allows us to take full advantage of

the usage of GMsFEM methods for space discretization with larger time steps.

We remark that in this work we consider GMsFEM approximations for the space variable. We mention that other

techniques different from the GMsFEM approach have been proposed for the approximation of equation (1) or sim-

ilar partial differential equations. A complete review or comparison with these techniques is out of the scope of this

paper but we mention the works [5, 33, 14, 14, 29, 30, 3]. These works focus on the quality of the space approx-

imation and use a fine enough time step in order to obtain good approximations. In our work, we pay attention to

compute more efficiently as the method advances in time by using exponential integration and we consider only the

GMsFEM method for the space discretization. Once more, we mention that the presence of high-contrast reduces

stability regions of time discretization. See Sections 3 and 4.

The rest of the paper is organized as follows. In Section 2, we review the GMsFEM methodology. Section 3 considers

the finite difference and exponential integrators for the time discretization applied to problem (1). Here we describe

how to use GMsFEM downscaling and upscaling operators and solvers to efficiently advance in time avoiding com-

putations of matrix functions with fine-grid matrices. In Section 4, we present a series of numerical experiments to

show the efficiency and main issues of the proposed approach. We also include experiments to emphasise the lack of
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stability of finite difference approximation due to the high-contrast in the coefficient. In Section 5, we present some

conclusions and final comments.

2. Generalized finite element methods (GMsFEMs)

A variational formulation of problem (1) is: Find p(t) ∈ H1(Ω) with (p(t)−pD) ∈ H1
0 =

{
w ∈ H1(Ω) : w|∂Ω = 0

}
such that

(∂tp, v) + a(p, v) = F (p; v) for all v ∈ H1
0 (Ω), (2)

where (·, ·) denotes the usual inner product in L2(Ω), the bilinear form a is defined by

a(p, v) =

∫
Ω
κ(x)∇p(x)∇v(x)dx, (3)

and the functional F is defined by

F (p; v) =

∫
Ω
f(p(x))v(x)dx, (4)

for p, v ∈ H1
0 (Ω). Let T h be a triangulation of the domain Ω. As it is usual in multiscale methods, we assume that

h is fine enough to completely describe all the variations of the coefficient κ and therefore we refer to T h as the fine

mesh. We denote by V h(Ω) the usual finite elements discretization of piecewise linear continuous functions with

respect to T h. Denote by V h
0 (Ω) the subset of V h(Ω) made of functions that vanish on ∂Ω. The Galerkin formulation

of (2) is to find (p(t)− pD) ∈ V h
0 (Ω) such that{

(∂tp, v) + a(p, v) = F (p; v) for all v ∈ V h
0 (Ω), t ∈ I,

(p(0), v) = (p̂, v) for all v ∈ V h
0 (Ω).

(5)

We consider the following representation for the solution of (5),

p(x, t) =

nv∑
i=1

pi(t)φi(x) (6)

where φi are the usual finite elements basis functions and nv the number of interior nodes of T h . Using (5) and

taking v = φj for j = 1, ..., nv, we have
nv∑
i=1

p′i(t)(φi, φj) +

nv∑
i=1

pi(t)a(φi, φj) = (f(p), φj) j = 1, ..., nv, t ∈ I,

nv∑
i=1

pi(0)(φi, φj) = (p̂, φj) j = 1, ..., nv.

(7)

The equivalent continuous-time matrix form of (7) is

M∂tp+Ap = b(p), (8)

Mp(0) = p̂,
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where the vector p̂ is p̂ = [
∫

Ω pDφj ], and the matrices A,M and the vector b are given by

uTAv =

∫
Ω
κ∇u∇v, uTMv =

∫
Ω
κuv and vT b =

∫
Ω
f(p)v, for all u, v ∈ V h

0 (Ω). (9)

We introduce a coarse-scale mesh T H , where H indicates the coarse-mesh size. In practical applications, the coarse-

grid does not resolve all the variations and discontinuities of the coefficient κ. A main goal in multiscale methods

is to construct approximation strategies to mimic fine-grid approximation properties but only computing solutions of

linear systems at the coarse-scale. The GMsFEM is a multiscale method designed to obtain good approximation of

high-contrast multiscale problems. We next review some important aspects in the construction of GMsFEM basis

functions. See [17, 1, 9] and references therein for further details.

We denote by {yi}Nv
i=1 the vertices of the coarse mesh T H and define the neighborhood of each node yi by

ωi =
⋃{

K ∈ T H : yi ∈ K̄
}
.

See Figure 1 for an illustration of coarse elements and coarse neighborhoods.

Coarse element

Coarse neighborhood

Figure 1: Ilustration of a coarse neighborhood.

Note that Ω =
⋃
yi∈τH {ωi}. Let {χi}Nv

i=1 be a partition of unity subordinated to the covering {ωi} and constructed

such that |∇χi| ≤ 1
H , i = 1, 2, 3, ..., Nv, where Nv is the number of nodes in T H . See [17, 1, 9] for examples of

different partition of unity functions that can be used. Now, define the auxiliary coefficient κ̃ by

κ̃ = κ

Nv∑
j=1

H2|∇χj |2.

Coefficient κ̃ can be interpreted as a total pointwise energy for the functions in the partition of unity {χi}Nv
i=1. We

define the following local bilinear forms,

aωi(p, v) =

∫
ωi

κ∇p∇v and mωi(p, v) =

∫
ωi

κ̃pv for all p, v ∈ H1(ωi), (10)

for every neighborhood ωi. Also, define Ṽ (ωi) =
{
v ∈ H1(ωi) : v = 0 on ∂ωi ∩ ∂Ω

}
if ∂ωi ∩ ∂Ω is non-empty and
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Ṽ (ωi) =
{
v ∈ H1(ωi) :

∫
ωi
v = 0

}
otherwise. We consider the local generalized eigenvalue problem

aωi(ψ, z) = σωimωi(ψ, z) for all z ∈ Ṽ (ωi), (11)

with eigenfunction ψ ∈ Ṽ (ωi) and eigenvalue σ. We order eigenvalues as σωi
1 ≤ σωi

2 ≤ .... and select the the

eigenfunctions corresponding to small eigenvalues. We define the set of GMsFEM coarse basis functions by pointwise

multiplication as follows,

Φi,` = χiψ
ωi
` , for 1 ≤ i ≤ Nv and 1 ≤ ` ≤ Li, (12)

where Li denotes the number of basis functions on the coarse neighborhood ωi. The support of Φi,` is ωi and we

remark that there may be multiple basis functions corresponding to this neighborhood since in general Li ≥ 1. See

[22, 34, 11] for discussion on how to chose Li. We define the coarse GMsFEM space by

V0 = span{Φi,` = χiψ
ωi
` , i = 1, . . . , Nv, ` = 1, . . . , Li}. (13)

Let pHD be a discrete interpolation of the boundary data pD. We denote the classical multiscale solution by pms(t)

with pms(t)− pHD ∈ V0 and such that

(∂tpms, v) + a(pms, v) = F (pms; v) for all v ∈ V0. (14)

We construct the coarse-scale matrix of basis functions,

RT
0 = [Φi,1, ...,Φi,Li ]

where Φi,` was introduced in (12). We then define the coarse-scale stiffness matrix and mass matrix by

A0 = R0AR
T
0 and M0 = R0MRT

0 , (15)

respectively. The coarse-scale load vector is given by bms = R0b. With this, we can define the matrix coarse-scale

nonlinear system associated to (14) as

M0∂tpms +A0pms = bms(pms). (16)

This matrix problem is the GMsFEM coarse-scale version of the fine-scale matrix system (8). Different time stepping

methods could be implemented for either (8) or (16). We could solve system (16) and then downscale the final time

coarse-scale solution of this matrix problem. However, the approximation may deteriorate as the time advances. We

will upscale (project on coarse space) residual vectors and downscale (to the fine-grid) coarse solution at each time

step. If hk denotes the time step, in order to compute the next time solution ph(t+ hk) from the current time solution

ph(t), we proceed as follows:

1. Fine-scale residual: Compute a fine-mesh residual rh(t + hk) using the information from the previous time

step. Computation of the residual only involves find-grid matrix times find-grid vector products. It does not

require solution of fine-grid linear systems neither the computation of functions of fine-grid matrices.
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2. Up-scaling: Perform up-scaling of the residual vector to obtain a coarse-scale residual: rH0 = R0r
h
n.

3. Coarse-scale solve: Solve the linear systems and/or function of matrices using coarse-scale matrices A0, M0.

Here, we obtain a coarse-scale vector representing either the time increment wH0 or the next time approximation

of the solution pH0 (t+ hk).

4. Down-scaling: Compute the next time approximation on the fine grid by downscaling the product of 3. above:

here we have, ph(t+ hk) = ph(t) +RT0 w
H
0 or ph(t+ hk) = RT0 p

H
0 (t+ hk).

In the next section, we exemplify this procedure for finite difference and exponential integration time discretizations.

3. Time discretizations combined with GMsFEM spatial approximation

We now solve the ODE matrix systems (8)-(16) in an interval I = [0, T ] with the procedure described above. We

consider a uniform partition {t0, t1, ... , tM} of I with element size hk = T/M and approximate the coefficients

pms(t) at the partition points.

3.1. GMsFEM finite difference (GMsFEM-FD)

For the FD method, we use the semi-implicit θ-scheme,

M

(
pk+1 − pk

hk

)
= θ

(
bk+1 −Apk+1

)
+ (1− θ)

(
bk −Apk

)
, (17)

where θ ∈ [0, 1] and we call pk ≈ p(tk). We obtain the following solution for pk+1

pk+1 = (M + hk θ A)−1
(

(M − hk(1− θ)A) pk + hk

(
(1− θ)bk + θbk+1

))
, (18)

where bk = b(pk). By taking θ = 1
2 , we obtain the Crank-Nicholson scheme and by taking θ = 1 we obtain the back-

ward Euler method. The term bk+1 is unknown at each time step k so we consider a predictor-corrector algorithm as

follows. We set bk+1 = bk to predict pk+1 by solving (18) and obtain a new value of bk+1 from it, then we use it to

correct pk+1 by solving (18) again. We can repeat this until we achieve the desired precision.

Remark 1. From our numerical experiments we found out that, in the presence of high-contrast coefficients, the

stability of the θ-scheme is deteriorated with the contrast, specially for θ < 1 due to the presence of the term (1 −
θ)(bk−Apk) on the right hand side of the linear system in (18). For this reason we consider only the case θ = 1 with

small enough time step size.

As mentioned before, performing this calculation using fine-scale matrices is not practical because this matrix system

has a huge dimension and is very ill-conditioned. In particular, for (18), we see that the computation of the linear

system solution, (M+hk θ A)−1 is the real bottleneck for this method in terms of computational time. We propose the

use of GMsFEM for the approximation of the solution of this linear system. Therefore, we arrive to the GMsFEM-FD

method

pk+1 = RT0 (M0 + hk θ A0)−1R0

(
(M − hk(1− θ)A) pk + hk

(
(1− θ)bk + θbk+1

))
. (19)
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Note that, before using the GMsFEM approximation of the solution of the linear system, we upscale the residue of

the previous iteration to the coarse mesh. After computing the solution in the coarse space, we downscale it back to

the fine mesh. In summary, we perform the following computation in each time step:

1. Fine scale residue: rh = (M − hk(1− θ)A) pk + hk
(
(1− θ)bk + θbk+1

)
,

2. Up-scaling of residue: rH = R0rh,

3. Coarse-scale solve: pk+1
H = (M0 + hk θ A0)−1rH ,

4. Downscaling of solution: pk+1
h = RT0 p

k+1
H .

3.2. Exponential Integrator (EI)

We know consider the exponential integrator method for integration in time. From (16), we derive the following

equivalent system {
∂tp+Np = F (p) in I,

p(0) = p0,
(20)

where N = M−1A, F = M−1b(p) and p0 = M−1p̂.

We now use exponential integrators to solve (20). All this methods are based on the following integral representation

of the solution of (20) which is called variation-of-constants formula

p(tk) = e−hkNp(tk−1) +

∫ hk

0
e(τ−hk)NF (p(tk−1 + s))dτ. (21)

The main idea here is to find an approximation of the nonlinear term in the variational formula by an algebraic

polynomial. In the case of linear problems, the integral in (21) is approximated using exponential quadrature rules.

Taking s quadrature points ci ∈ [0, 1], we have

pk = e−hkNpk−1 + hk

s∑
i=0

bi(−hkN)Fi, (22)

where pk ≈ p(tk), Fi = F (tk−1 + cihk), and bi(z), satisfies the following recurrence relations

zb0(z) = ez − 1

zbi+1(z) +
1

(i+ 2)!
=

(
1− 1

(i+ 2)!z

)
bi(z) + ...+ (1− z)b0(z).

(23)

The coefficient bi can be rewritten as a linear combination of the ϕ-functions, ϕ0(z) = ez

ϕp(z) =

∫ 1

0
e(1−θ)z θp+1

(p− 1)!
dθ, p ≥ 1,

(24)

which satisfy the following recurrence relation
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ϕp(z) =
1

z

(
ϕp(z)−

1

p!

)
. (25)

We can then construct the following iterative method. If we select one point c1 ∈ [0, 1], we have b0(z) = ϕ1(z) from

(25) that ez = zϕ1(z) + 1, we obtain the following method

pk = pk−1 + hkϕ1(−hkN)
(
F1 −Npk−1

)
. (26)

In the case of semilinear problems, the construction of exponential integrators is more involved. Here, F depends

on p so we need internal stages to approximate the the solution in different integration points. We refer to [25]

for the construction of Exponential integrators of Runge-Kutta type. In this article, we focus in the lowest order

Exponential Runge Kutta method. In (21), we approximate F by the value of the solution in the previous time step,

i.e., F ≈ F k−1 = F (pk−1) and we obtain the following time-marching scheme

pk = pk−1 + hkϕ1(−hkN)
(
F k−1 −Npk−1

)
. (27)

which is called, Exponential Euler method.

Observe that the classical eigenvalue problem ( [23, 28])

−hkNq = λq

is related to the generalized eigenvalue problem

−hkAq = λMq.

Since M and A are symmetric and positive definite and N = M−1A we factor

−hkN = QDQ−1

where the columns of Q are the eigenvectors of −hkN or the generalized eigenvectors of −hkA with respect to M .

The matrix D is the diagonal matrix of eigenvalues of −hkN that are also the generalized eigenvalues of −hkA with

respect to M . Given that the eigenvectors qi are orthonormal with respect to the inner product (u, v)M = uTMv, we

have

QTMQ = I.

Now, using Q−1 = QTM , we rewrite

−hkN = QDQTM. (28)

Using (24) and (28), we obtain

ϕp(−hkN) = Qϕp(D)QTM. (29)
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If we use this in (27), we obtain

pk = pk−1 + hkQϕ1(D)QTM
(
F k−1 −Npk−1

)
= pk−1 + hkQϕ1(D)QT

(
MF k−1 −Apk−1

)
.

(30)

As before, the implementation of this iteration using fine scale matrices is inadequate due to the very large compu-

tational time needed to numerically approximate the matrix functions. Instead, we use a GMsFEM approximation

of the eigenvalue problem to speed up the computations of the ϕ-functions. As a result, we obtain the GMsFEM-EI

iteration. In particular we propose the approximation

ϕp(−hkN) ≈ RT0 ϕp(−hkN0)R0 (31)

where N0 = M−1
0 A0 with A0 and M0 defined in (15). The associated eigenvalue problem is

−hkA0q0 = λM0q0 or − hkN0 = Q0D0Q
T
0 M0. (32)

Here,Q0 is the matrix whose columns are GMsFEM-coarse-scale eigenvectors. Note that we apply the approximation

in (31) to a fine-scale operator. Given the previous time fine-scale approximation, we first upscale the residual vector to

the coarse space, then use the function computed at coarse resolution in the GMsFEM space, and finally, we downscale

the result to the fine-grid. For instance, the approximation of the iteration in equation (27) using the GMsFEM-EI

iteration is given by

pk = pk−1 + hkR
T
0 ϕ1(−hkN0)R0

(
F k−1 −Npk−1

)
. (33)

Note that we can use any other procedure to compute ϕ1(−hkN0). In terms of the coarse approximation of eigen-

vectors and eigenvalues in (32) we get

pk = pk−1 + hkR
T
0 Q0ϕ1(D0)QT0 R0

(
MF k−1 −Apk−1

)
. (34)

In summary we compute as follows

1. Fine scale residue: rh = MF k−1 −Apk−1,

2. Up-scaling of residue: rH = R0rh,

3. Coarse-scale function of matrix: δk+1
H = Q0ϕ1(D0)QT0 rH ,

4. Downscaling of solution: pk+1
h = pkh +RT0 δ

k+1
H .

For the computation of ϕ-functions, we use two different methods. The first one is the procedure described in (34)

that requires the computation of a coarse-scale global generalized eigenvaluen problem. Note that the corresponding

fine-scale formula in equation (30) will require the computation of a fine-scale global generalized eigenvalue problem

involving large sparse and ill conditioned operators. The second method employs the MATLAB package called

EXPINT. It is presented in [8] and use Padé approximations.

Remark 2. Since we are going to solve the time evolution on the coarse space, as initial condition we use the
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orthogonal projection of the initial condition

p̂0 = RT0 M
−1
0 R0Mp0. (35)

That is, we solve the approximated initial condition problem{
∂tp+Np = F (p) in I,

p(0) = p̂0.
(36)

4. Numerical results

In this section we present some representative numerical experiments to show the performance of combining GMs-

FEM with FD and also GMsFEM with EI. We first consider a homogeneous media and later an heterogeneous media

with high-contrast. We chose Ω = (0, 1)2 and structured mesh of triangles obtained from dividing Ω in regularly on

squares and then dividing each square into two triangles from the bottom-left to the upper-right corner. We consider

the following norms,

‖p‖2L2 =

∫
Ω
p2, ‖p‖2L2

w
=

∫
Ω
κp2, ‖p‖2H1

w
=

∫
Ω
κ∇p · ∇p. (37)

4.1. Example 1: constant permeability coefficient and linear equation

We consider the problem 
∂tp− div(∇p) = (5π2 − 1)p in Ω = [0, 1]2

p(0, x1, x2) = sin(2πx1) sin(πx2),

p(t, x1, x2) = 0, on ∂Ω,

(38)

where the exact solution is p(x1, x2, t) = e−t sin(2πx1) sin(πx2). We use a coarse mesh made of squares obtaining

by dividing Ω into 10 × 10 squares obtaining 81 interior coarse nodes. We compute numerical solutions p(Li)
ms by

taking Li = 1, 2, 3, 4, 5, 6, that is, we use up to 6 multiscale basis functions in each neighborhood.
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Figure 2: Final time (T = 0.2) solution for problem (38). Computed solution using MsFEM-FD with 5 basis functions in each neighborhood
and 50 times steps (left). Computed solution using MsFEM-EI with 5 basis functions in each neighborhood and 60 times steps (center).
Reference (exact) solution (right).
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Figure 3: The weighted L2 and H1 errors between the reference and the coarse-scale solution at the final time T = 0.2 for problem (38). The
horizontal axis corresponds to the number of basis functions in each neighborhood used in the GMsFEM coarse spaces.

FD % Error EI (eig) % Error EI (EXPINT) % Error

Li L2
w H1

w L2
w H1

w L2
w H1

w

1 22.1 22.8 2.9 3.5 2.9 3.5

2 11.7 12.3 1.6 2.1 1.6 2.1

3 6.2 6.9 0.9 1.3 0.9 1.3

4 6.2 6.9 0.9 1.3 0.9 1.3

5 1.5 2.0 0.3 0.5 0.3 0.5

6 0.3 0.6 0.1 0.2 0.1 0.2

Table 1: The weighted L2 and H1 errors between the reference and the coarse-scale solution at the final time T = 0.2 for problem (38). In the
last column we have added the relative error when the matrix functions are computed using MatLab expint.

Our reference solution is the exact solution interpolated to the fine-mesh. In this example, the final time of simulation

is T = 0.5 and we use 60 time steps for the GMsFEM-FD and the GMsFEM-EI methods. In Figure 2 we depict

the solution at the final time. We display the exact solution and also the solution obtained by GMsFEM-FD and

GMsFEM-EI methods. In Figure 3 and Table 1 we show the obtained final time weighted H1 and L2 errors. From the

table and figures we see a good agreement between the coarse scale solutions and the reference solution that in this

case is the exact solution. We also observe that the errors, as it is expected, decay as basis functions are added to each

neighborhood. We additionally observe that there is not much difference between using the Matlab expint routing

or the multiscale approximation of eigenvectors and eigenvalues used to computed the matrix functions required in

the calculations.

4.2. Example II: low-contrast coefficient and linear equation

We now consider a high-contrast coefficient example. With this example we want to show the effects of the contrast in

the stability of the FD approximation. Our reference solution is obtained in the fine-mesh using implicit Euler scheme

12



with a small enough time step size. We consider the problem,
∂tp− div(κ(x)∇p) = 0, in Ω = [0, 1]2,

p(0, x1, x2) = x1(1− x1)x2(1− x2),

p(t, x1, x2) = 0, on ∂Ω,

(39)

where the high-contrast coefficient κ is depicted in Figure 4. We consider the case where the value of the contrast is

set to 10 in this subsection and 1000 in the next subsection. The initial value is given for the following function,

u(0, x1, x2) = x1(1− x1)x2(1− x2), for all (x1, x2) ∈ Ω. (40)
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Figure 4: High-contrast coefficients used in the numerical experiment considered in Example 2. We note the presence of three vertical and long
high-contrast channel across the domain. In the background we set the value 1 for the coefficient and equal to the contrast inside the 3 channels.

In Table 2 we show the obtained final time weighted H1 and L2 errors. We observe an increase in the FD errors due

to the presence of a moderated contrast in the coefficient. As motioned before in Remark 1 we need to decrese the

time step in order to obtain a better approximation in the final time. See the next section for a more drastic case. We

stress that the GMsFEM-EI errors remain similar to the case of constant coefficient.

FD % Error EI (eig) % Error EI (EXPINT) % Error

Li L2
w H1

w L2
w H1

w L2
w H1

w

1 10.49 25.20 23.19 28.24 23.19 28.24

2 20.47 28.25 14.53 20.07 14.53 20.07

3 30.15 33.21 6.62 11.98 6.62 11.98

4 30.83 33.61 6.07 11.36 6.07 11.36

5 34.01 35.53 3.50 8.19 3.50 8.19

6 35.23 36.30 2.50 6.72 2.50 6.72

Table 2: The weighted L2 and H1 errors between the reference and the coarse-scale solution at the final time T = 0.2 for problem (39). In
the last column we have added the relative error when the matrix functions are computed using MatLab expint. The contrast is 10 in this
experiment.

.
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4.3. Example III: high-contrast coefficient and linear equation

We consider the same problem as in Example II but now with higher contrast equal to 1000. Recall that we use θ = 1.

See Remark 1. Recall also that our reference solution is obtained using implicit Euler in the fine-mesh with a small

enough time step size. For this example we used 1000 time steps. The final time of simulation is T = 0.2 and we

use 50 and 150 time steps for the GMsFEM-FD and the GMsFEM-EI methods. In Figure 5 we depict the solution at

the final time. We display the references solution and also the solution obtained by GMsFEM-FD and GMsFEM-EI

methods. In Figure 6 and Table 3 we show the obtained final time weighted H1 and L2 errors. From the table and

figures we see a good agreement between the coarse scale solutions and the reference solution for MsFEM-FD with

small enough time step. If the MsFEM-FD time step is not small enough, we observe and increase in error as we add

more basis functions in each neighborhood. On the other hand, for MsFEM-EI we observe that the errors decay as

basis functions are added to the neighborhood. As before, we observe that there there is not much difference between

using the Matlab expint routing or the multiscale approximation of eigenvectors and eigenvalues used to computed

the matrix functions required in the calculations.
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Figure 5: Final time (T = 0.2) solution for problem (39). Computed solution using MsFEM-FD with 50 times steps (top-left). Computed
solution using MsFEM-FD with 150 times steps (top-right). Computed solution using MsFEM-EI with 50 times steps (center-left). Computed
solution using MsFEM-EI with 10 times steps (center-right). Reference fine mesh solution with MsFEM-FD and 30000 times step (bottom-left).
In all solutions, we use 5 basis functions in each neighborhood.
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(a) MsFEM-EI with 10 steps number.
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(b) MsFEM-FD with 150 steps number.
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(c) MsFEM-FD and MsFEM-EI with 50 steps
number.

Figure 6: The weighted L2 and H1 errors between the reference and the coarse-scale solution at the final time T = 0.2 for problem (39). The
horizontal axis corresponds to the number of basis functions in each neighborhood used in the GMsFEM coarse spaces construction.

FD % Error EI (eig) % Error EI (EXPINT) % Error

Li L2
w H1

w L2
w H1

w L2
w H1

w

1 82.80 83.33 86.58 86.90 86.58 86.90

2 35.88 40.70 46.44 49.14 46.44 49.14

3 16.06 24.57 28.91 32.90 28.91 32.90

4 12.37 21.89 25.58 29.80 25.58 29.80

5 9.15 14.22 6.70 11.47 6.70 11.47

6 10.46 14.43 5.50 10.14 5.50 10.14

Table 3: The weighted L2 and H1 errors between the reference and the coarse-scale solution at the final time T = 0.2 with 50 times step for
problem (39). In the last column we have added the relative error when the matrix functions are computed using MatLab expint.

4.4. Example IV: high-contrast coefficient and semilinear equation

In this section we consider a semilinear PDE with a high-contrast permeability coefficient. We use the coefficient

depicted in the Figure 4 with contrast equal to 1000. We see a behaviour similar to the last section where for GMsFEM-

FD we need a small nought time step in order to obtain good approximation at the final time. As expected, the

GMsFEM-EI works better than GMsFEM-FD for a larger time step size. See Figures 8 and 9 and Table 4.
∂tp− div(κ(x)∇p) = −p(1− p)(1 + p) in Ω = [0, 1]2

p(0, x1, x2) = x1(1− x1)x2(1− x2),

p(t, x1, x2) = 0, on ∂Ω,

(41)

where κ has a contrast of 1000. The field κ is represented in the Figure 7.
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Figure 7: High-contrast coefficients used in the numerical experiment considered in Example 4.4.
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Figure 8: Final time (T = 0.2) solution for problem (41). Computed solution using MsFEM-FD with 5 basis functions in each neighborhood
and 50 times steps (left). Computed solution using MsFEM-EI with 5 basis functions in each neighborhood and 50 time steps (center).
Reference fine mesh solution with 30000 time steps (top-right). (right).

FD % Error EI (eig) % Error

Li L2
w H1

w L2
w H1

w

1 70.8 72.5 85.5 85.8

2 21.6 33.1 25.4 29.7

3 25.6 35.3 22.5 27.0

4 27.5 36.4 21.2 25.8

5 28.7 37.2 20.3 25.1

6 34.8 41.1 16.0 21.0

Table 4: The weighted L2 and H1 errors between the reference and the coarse-scale solution at the final time T = 0.2 for problem (41).

5. Final comments

In this paper we considered non-linear parabolic problems posed in a high-contrast multiscale media in two dimen-

sions. We explained how the presence of high-contrast multiscale media adversely affects the accuracy, stability and

overall efficiency of numerical approximations. We used the GMsFEM in order to implement finite differences and

exponential integration in time in an efficient way without the need to compute with large ill-conditioned sparse ma-

trices. We introduced the GMsFEM-FD and the GMsFEM-EI methods. As expected, the GMsFEM-FD requires a
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Figure 9: Error of the solutions of the parabolic problem with medium figure 4 for (FD) and (EI) methods with initial condition (41), for
T = 0.2 with 50 steps, and contrast of 1000.

small-enough time step in order to render a good final time approximation of the solution while the GMsFEM-EI

can handle bigger time-step sizes. We presented numerical results that indeed show that the high-contrast affects

the stability of the time approximation and that exponential integration can be efficiently used in order to deal with

high-contrast time dependent problems.
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Matemáticas Aplicadas a Datos) (https://www.mathdata.science/).

17



References

[1] E. Abreu, C. Diaz, and J. Galvis. A convergence analysis of generalized multiscale finite element methods.

Journal of Computational Physics, 396:303–324, 2019.

[2] Eduardo Abreu, Ciro Diaz, Juan Galvis, and John Pérez. On the conservation properties in multiple scale
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scheme for hyperbolic-transport models. Journal of Computational and Applied Mathematics, 406:114011,

2022.

[4] Awad H. Al-Mohy and Nicholas J. Higham. Computing the action of the matrix exponential, with an application

to exponential integrators. SIAM Journal on Scientific Computing, 33(2):488–511, 2011.

[5] Todd Arbogast and Mary F. Wheeler. A nonlinear mixed finite element method for a degenerate parabolic

equation arising in flow in porous media. SIAM Journal on Numerical Analysis, 33(4):1669–1687, 1996.

[6] Peter Bastian, Johannes Kraus, Robert Scheichl, and Mary Wheeler. Simulation of flow in porous media: appli-

cations in energy and environment, volume 12. Walter de Gruyter, 2013.

[7] Ilenia Battiato, Peter T Ferrero V, Daniel O’Malley, Cass T Miller, Pawan S Takhar, Francisco J Valdés-Parada,

and Brian D Wood. Theory and applications of macroscale models in porous media. Transport in Porous Media,

130(1):5–76, 2019.
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