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SELF-IMPROVING POINCARÉ-SOBOLEV TYPE

FUNCTIONALS IN PRODUCT SPACES

MARÍA EUGENIA CEJAS, CAROLINA MOSQUERA, CARLOS PÉREZ,
AND EZEQUIEL RELA

Abstract. In this paper we give a geometric condition which ensures
that (q, p)-Poincaré-Sobolev inequalities are implied from generalized
(1, 1)-Poincaré inequalities related to L1 norms in the context of product
spaces. The concept of eccentricity plays a central role in the paper.
We provide several (1, 1)-Poincaré type inequalities adapted to different
geometries and then show that our selfimproving method can be applied
to obtain special interesting Poincaré-Sobolev estimates. Among other
results, we prove that for each rectangle R of the form R = I1× I2 ⊂ R

n

where I1 ⊂ R
n1 and I2 ⊂ R

n2 are cubes with sides parallel to the
coordinate axes, we have that
(

1

w(R)

∫

R

|f − fR|
p∗δ,w wdx

) 1

p∗
δ,w

≤ c (1−δ)
1

p [w]
1

p

A1,R

(

a1(R)+a2(R)
)

,

where δ ∈ (0, 1), w ∈ A1,R,
1
p
− 1

p∗
δ,w

= δ
n

1
1+log[w]A

1,R

and ai(R) are

bilinear analog of the fractional Sobolev seminorms [u]Wδ,p(Q) (See The-

orem 2.18). This is a biparameter weighted version of the celebrated

fractional Poincaré-Sobolev estimates with the gain (1 − δ)
1

p due to
Bourgain-Brezis-Minorescu.

1. Introduction and Background

Poincaré and Poincaré-Sobolev inequalities have been studied extensively
in a wide variety of scenarios, including the general theory for convex sets.
The particular case of cubes is specially interesting, once we have a good
result on cubes there are mechanisms (sometimes chaining methods) to pass
to more general domains, see for instance Chapter 9 from the very recent
manuscript [KLV] (also [HKST15]). See also the last part of Section 5 in
[FPW98] to see the connection with weights. The classical technique for
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getting this kind of inequalities is through the use of a representation for-
mula in terms of a fractional integral. An approach which avoids the use of
any representation formula to obtain Poincaré-Sobolev inequalities on cubes
(or balls) was introduced in [FPW98] and then sharpened in [MP98]. This
approach merges with the John-Nirenberg theory of the BMO spaces and
others under the phenomenon of the so called self-imroving property. How-
ever this “abstract” general theory has not been developed in the context
of rectangles or, more generally, product spaces as was considered for first
time in [ST93] and later in [LW98], which will be the main purpose of this
article. In this different scenario it is reasonable to expect some sensitivity
with respect to very thin rectangles which is reflected in the dependence
on the notion of eccentricity: roughly, a quantity that indicates how far the
given object is from being a cube. This notion will be essential to our results
and we will properly define it later.

We will study generalized weighted Poincaré and Poincaré-Sobolev type
inequalities related to two product space settings. The most general possible
situation is the case of the family of rectangles in R

n seen as n-fold product
of intervals on R, denoted by R. We will study a variant of this case by
considering rectangles R of the form R = I1 × I2 ⊂ R

n where I1 ⊂ R
n1 and

I2 ⊂ R
n2 are cubes with sides parallel to the coordinate axes, denoted by

R. We will deal with these two situations separately to simplify the presen-
tation. Our approach consists in starting with some generalized unweighted
Poincaré inequality with respect to an L1 mean oscillation and from there
we will improve it in order to gain higher integrability with the minimum
loss in the involved constants.

The motivation to study this situation comes from the following very
interesting (1, 1)-Poincaré inequality valid for any bounded convex domain
Ω ⊂ R

n,

(1.1) −
∫

Ω
|f − fΩ|dx ≤ 1

2
d(Ω)−

∫

Ω
|∇f |dx,

where we used fΩ and −
∫

Ω f dx to denote the average of the function f over the
set Ω and d(Ω) stands for the diameter of the set Ω. This result is due to G.
Acosta and R. Durán in [AD04] where the constant 1

2 in front is best possible.
Of course, it is a classical well-known fact that this estimate holds for any
convex set Ω in R

n with a larger constant in front. In particular, (1.1) holds
in the case of Ω being a rectangle of Rn with sides parallel to the axes. The
key idea here is that inequality (1.1) enjoys a sort of self-improving property,
meaning that we can reach higher integrability and therefore obtain (p, p)-
Poincaré and (p∗, p)-Poincaré-Sobolev type inequalities, with p∗ > p, both in
the unweighted and the weighted settings. This self-improving phenomena is
not new and can be traced back to [SC92, HaK95] in a more classical setting,
but in a more general abstract way in [FPW98] improved in [MP98]. A
strengthened version of the results from these papers can be found in [PR19]
where much more precise Lq−Lp weighted Poincaré-Sobolev inequalities over
cubes in R

n were obtained. To be more precise it is remarkable that the self-
improving property is not so much related to the presence of a gradient on
the right hand side of (1.1), but to a discrete summation condition associated
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to the functional that it defines. In fact, we will consider as a starting point
estimates of the form

(1.2) −
∫

R
|f − fR|dx ≤ a(R) R ∈ F

where F is a given family of sets and a : F → (0,∞) is some general
functional with no restriction. Typical examples of F are the family of cubes
Q, the families of rectangles from R or R, or any other collection of sets.
The key difference when moving from the basis R to the basis R is not on
the selfimproving phenomena, as it will be clear from the proofs. The issue
will be to find the appropriate analogue for (1.2), where the functional a(R)
will be replaced by a sum of two functionals a1(I) + a2(J), with R = I × J .
Part of the effort will be devoted to prove these starting points where the
oscillation is controlled by a sum of functionals.

This kind of generalized Poincaré inequality with a general abstract func-
tional acting on balls (or cubes) over a metric (or quasi-metric) space with
a doubling measure (spaces of homogeneous type) was considered for first
time in [FPW98]. A special geometric condition, denoted by Dp, was intro-
duced with the idea of deriving self-improving properties of the given mean
oscillation of the function on the left hand side. This condition has been re-
cently refined in [PR19], denoted SDp, which produces much more accurate
results. We introduce both conditions Dp and SDp for the families R and
R in Definition 1.3 and Definition 1.1 below in the context of rectangles.
We will make special emphasis on the SDp type condition since it is highly
efficient allowing to improve the estimates obtained in [FPW98] in a much
more precise way.

To present here a preview of the main contributions of this paper, consider
the particular case of a(R) being the average of the L1 norm of the gradient
of f , namely a(R) = d(R)−

∫

R |∇f |. The main goal here would be, starting
from an inequality of the form (1.2) and using certain discrete summability
conditions satisfied by the functional a, to obtain an inequality involving
Lq − Lp norms of the form

(

1

w(R)

∫

R
|f − fR|qw

) 1
q

≤ Cw d(R)

(

1

w(R)

∫

R
|∇f |pw

) 1
p

where w is a certain weight. We will try to reach the best possible q but
keeping controlled the constant Cw extending and improving the results in
[FPW98] and [PR19].

The precise definition that we need is the following. As usual, we will say
that a weight is a non negative locally integrable function defined on R

n.
Also, the Lebesgue measure for a measurable set Ω in R

n is denoted by |Ω|.
Definition 1.1. For a given weight w, and s > 0, we say that a functional
a ∈ SDs

p,R(w) for 0 < p < +∞ if there is a constant c such that for any

family of disjoint dyadic subrectangles {Ri}i of R the following inequality
holds

(1.3)

(

∑

i

a(Ri)
pw(Ri)

w(R)

) 1
p

≤ c

( |⋃iRi|
|R|

)
1
s

a(R).
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The best possible constant c (the infimum of the constants in last inequal-
ity) is denoted by ‖a‖SDs

p,R . Usually, if there is no chance of confusion, we

will drop the subscript for the sake of clarity in the exposition.
Sometimes we will refer to this condition as the smallness preservation

condition. The idea comes from the main application, namely if L > 1 and
if R is a rectangle, and a family of dyadic rectangles is L-small, namely that

(1.4)
|⋃i Ri|
|R| ≤ 1

L
.

then the functional a preserves the smallness by applying (1.3).

Remark 1.2. As it can be easily verified, the exact same definition applies
to the family R using the appropriate notation SDs

p,R(w) and ‖a‖SDs
p,R

.

We also recall the following geometric type condition which is somehow a
“rough” version of (1.3). Again, the same definition applies to R with the
obvious notational modifications.

Definition 1.3. Let w be any weight. We say that the functional a satisfies
the weighted Dp,R(w) condition for 0 < p < ∞ if there is a constant c such
that for any R ∈ R and any family of disjoint dyadic subrectangles {Ri}i of
R the following inequality holds:

(1.5)

(

∑

i

a(Ri)
pw(Ri)

w(R)

)
1
p

≤ c a(R).

The best possible constant c above is denoted by ‖a‖Dp,R(w). We will write

in this case that a ∈ Dp,R(w). Observe that ‖a‖Dp,R(w) ≥ 1.

Condition (1.5) in the context of cubes or balls in R
n, or more generally

in the context of Spaces of Homogeneous type was introduced in [FPW98].
It was also considered in [OP02] in the “non-homogeneous” context where
an abstract self-improving property was obtained.

We conclude this introduction by remarking how condition (1.5) can be
used, in the much easier context of cubes Q with no weight, to derive very
sharp proofs in the theory of fractional Sobolev spaces. Indeed, in this paper,
Corollary 2.11 and many others, are extensions of the fractional Poincaré-
Sobolev inequality

(1.6)

(

−
∫

Q
|u− uQ|p

∗
δdx

)
1
p∗
δ ≤ cn,p∗δ [u]W δ,p(Q), Q ∈ Q.

We are using here the notation p∗δ for the fractional Sobolev exponent

defined by 1
p − 1

p∗δ
= δ

n and also the notation

[u]W δ,p(Q) := ℓ(Q)δ
(

−
∫

Q

∫

Q

|u(x)− u(y)|p
|x− y|n+δp

dy dx

)1/p

.

To illustrate the self-improving philosophy in the case of cubes, we will
discuss the main steps of the proof of (1.6) and a further improvement.
This approach avoids completely the use of classical potential theory (see
[KLV] in the classical case and [NPV12] in the fractional case) and this
is the reason why we can go beyond and consider other geometries and
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degeneracies. Moreover, due to the presence of a more complicated geometry
and to the presence of degeneracies produced by weights, the proofs of the
results in the present paper require substantial work and involve serious
technical difficulties.

We begin with the following easy to get inequality

(1.7) −
∫

Q
|u(x)− uQ| dx ≤ cn [u]W δ,p(Q) Q ∈ Q, δ > 0

which we claim encodes a lot of information, at least in the case δ ∈ (0, 1).
Indeed, it can be shown using the ideas in [FPW98], with the recently ob-
tained improvements from [CP21], the following weak type version of (1.6)

(1.8) ‖u− uQ‖Lp∗
δ
,∞
(

Q, dx|Q|

) ≤ cn p
∗
δ [u]W δ,p(Q),

which holds whenever p ∈ [1,∞) and for 1
p − 1

p∗δ
= δ

n . Inequality (1.8) really

follows from
(

∑

i

a(Qi)
p∗δ
|Qi|
|Q|

) 1
p∗
δ

≤ a(Q),

where a(Q) = [u]W δ,p(Q) for any δ ∈ (0, 1) and any p ∈ [1,∞) (observe that

the constant in front is equal to 1). Now, since the truncation argument
works for the functional [u]W δ,p(Q) as shown in [DIV16], we can replace the

weak norm (1.8) by the strong norm

‖u− uQ‖Lp∗
δ

(

Q, dx|Q|

) ≤ cn p
∗
δ [u]W δ,p(Q)

(actually we can put the Lorentz norm ‖‖
L
p∗
δ
,p as well). On the other hand,

it turns out that this result is far from being optimal. Indeed, motivated
by the works [BBM02, MS02], M. Milman obtained in [M05], using ideas
from interpolation theory, a very general way of proving the following self-
improvement of (1.7),

−
∫

Q
|u− uQ| dx ≤ cn (1− δ)

1
p [u]W δ,p(Q),

where the highly interesting extra gain (1 − δ)
1
p appears in front. Then,

exactly as above, the results in [CP21] combined with the truncation from
[DIV16] yield the following highly interesting improvement of (1.6).

Theorem 1.4. Let 0 < δ < 1 and 1 ≤ p < ∞. Then,
(

−
∫

Q
|u(x)− uQ|p

∗
δdx

) 1
p∗
δ ≤ cn p

∗
δ (1− δ)

1
p [u]W δ,p(Q) Q ∈ Q

Remark 1.5. Standard arguments can be used to obtain the strong global

estimate in R
n with the correction factor in front (1− δ)

1
p .

Some extensions of (1.6) to the case of domains can be found in [HV13].
We also refer to [CDM19] for extensions to the doubling metric case.

We plan to extend this result into the context of the product space R

from which we will derive the corresponding version of (1.6) and then derive
its corresponding Poincaré-Sobolev extension from our general method (see
Theorem 2.20).
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2. Main results

For the sake of clarity on the presentation, we will present our results for
the basis R and R separately.

2.1. Analysis in R.

In this section we will study the self-improving phenomena in the context
of R wich will be served as a model for the case R that will be considered in
Section 2.5. First we will obtain Poincaré-Sobolev type inequalities involving
higher order derivatives for rectangles in R (some references about higher
order Poincaré-Sobolev type inequalities can be found in [AH96, T00]). To
see where is the difficulty here, note in Definition 1.1 that the condition on
the family of rectangles is related to their measure. The classical one param-
eter theory for cubes works fine here, since the n-th power of the diameter
(or the sidelength) of a cube is comparable to its measure. However, in the
multiparametric setting of rectangles, this is no longer true. That is why
the notion of eccentricity comes into play.

Our first main theorem on self-improving functionals is the following. We
use here an oscillation with respect to the polynomial PR defined in Section
3.2, equation (3.4). We anticipate here that this object PR is a projection
to a space of polynomials of certain degree, and is the natural substitute for
the average fR when dealing with functionals involving higher derivatives.
The weighted estimate will be valid for any weight in the Muckenhoupt class
w ∈ A∞ :=

⋃

p>1Ap associated to the basis R (this can be defined for any

basis, see more details about this class in Section 3.3).

Theorem 2.1. Let w be any A∞,R weight in R
n. Consider also the func-

tional a such that for some p ≥ 1 it satisfies the weighted condition SDs
p,R(w)

from (1.3) with s > 0 and constant ‖a‖. Let f be a locally integrable function
such that

(2.1)
1

|R|

∫

R
|f − PRf | ≤ a(R) R ∈ R.

Then, there exists a dimensional constant cn such that for any R ∈ R,

(2.2)

(

1

w(R)

∫

R
|f − PRf |pwdx

) 1
p

≤ cn(1 + s)max{‖a‖s, 1} a(R).

This result generalizes and improves on the corresponding result from
[PR19] Theorem 1.24 where the linear constant s is of exponential type.

As consequences of this sort of general template for a self-improving theo-
rem, we will obtain Poincaré-Sobolev inequalities for higher order derivatives
with a rather precise control on the Ap,R-like quantities involved.

Remark 2.2. We will often (but not always) use a compact notation for the
weighted local Lq average over a rectangle R defined as follows:

‖f‖
Lq

(

w dx
w(R)

) :=

(

1

w(R)

∫

R
|f |qwdx

) 1
q

.
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Similarly, we will use the standard notation for the normalized weak (r,∞)
(quasi)norm: for any 0 < r < ∞, measurable E and weight w, we define

‖f‖
Lr,∞

(

w dx
w(E)

) := sup
t>0

t

(

1

w(E)
w({x ∈ E : |f(x)| > t})

)1/r

.

The general Theorem 2.1 will be used to derive several corollaries. One of
the most important consequences is that we will get Poincaré-Sobolev type
inequalities involving higher derivatives instead of the gradient.

We also present here the following result, which can be seen as a weak
norm version of the main theorem, since we are asking the functional to only
satisfy the “rough” Dp condition (1.5) but obtaining a self-improving for the
weak norm. It is a self-improving result as in [FPW98] but combined with
the recent improvement obtained in [CP21] where linear bounds in both
[w]A∞,R and p are obtained instead of exponential.

Theorem 2.3. Let w be any A∞,R weight in R
n and a ∈ Dp,R(w). Let f

be a locally integrable function such that,

−
∫

R
|f − PRf | ≤ a(R) R ∈ R.

Then there exists a dimensional constant c > 0 such that for every R ∈ R,
∥

∥f − PRf
∥

∥

Lp,∞
(

R, w dx
w(R)

) ≤ c p [w]A∞,R ‖a‖Dp,R(w) a(R).

This result is completely new and has a lot of potential applications. We
will show some of them in next sections.

Recall that
∥

∥g
∥

∥

Lq(X)
≤
(

p

p− q

) 1
q ∥
∥g
∥

∥

Lp,∞(X)

whenever (X,µ) is a probability space, and 0 < q < p < ∞ (sometimes
called Kolmogorov’s inequality.) Then, under the assumption of Theorem
2.3, if q < p,

∥

∥f − PRf
∥

∥

Lq
(

R, w dx
w(R)

) ≤ cp,q [w]A∞,R ‖a‖Dp,R(w) a(R).

2.2. Higher order Poincaré. As a consequence of our general result we
will prove, using condition (1.3) as the key point, inequalities for R ∈ R of
the form

(

1

w(R)

∫

R
|f − PRf |qwdx

)
1
q

≤ Cw d(R)m
(

1

w(R)

∫

R
|∇mf |pwdx

)
1
p

where Cw is a constant and PRf is an appropriate optimal polynomial of
degree less than m, defined in Section 3.2. The goal is to find the best
possible improvement in the exponent q on the left hand side and precise
estimates on Cw. We will refer to the above inequality as a higher order
(q, p)-Poincaré-Sobolev weighted inequality.

A (p, p) version of the above inequality in the case of cubes with p ≥ 1, was
proved in [PR19]. Here we improve on that result achieving a higher Sobolev-
type exponent on the left hand side and also valid for the family of rectangles
R. As usual, when proving weighted inequalities related to rectangles, the
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appropriate class of weights is the strong class defined analogously to the
standard Ap class as follows. We will say that w ∈ Ap,R if

[w]Ap,R := sup
R∈R

(

1

|R|

∫

R
w(x) dx

)(

1

|R|

∫

R
w(x)−

1
p−1 dx

)p−1

< ∞.

The strong A∞,R class is defined in the same way as in the cubic case and
it enjoys the same geometric conditions (see Section 3.3 for the details) and
the corresponding constant [w]A∞,R is defined in (3.6).

The following corollary of a (p, p)-Poincaré inequality (for cubes) was
already obtained as a corollary of [PR19, Theorem 1.24] which is a weaker
version of our Theorem 2.1 for the case of cubes.

Corollary 2.4 ([PR19]). Let p ≥ 1 and let w ∈ Ap in Rn. Then the
following (p, p)-Poincaré inequality holds

(

1

w(Q)

∫

Q
|f − PQf |p w dx

) 1
p

≤ C [w]
1
p

Ap
ℓ(Q)m

(

1

w(Q)

∫

Q
|∇mf |p w dx

) 1
p

,

where C = Cn,m is a structural constant and ℓ(Q) is the sidelength of the
cube Q ⊂ R

n.

The method of proof goes beyond Poincaré to reach Poincaré-Sobolev
type inequalities with a higher exponent on the left hand side. In the fol-
lowing theorem the method seems to work best when the weight adds some
degeneracy, which is a bit surprising. More precisely, we will say that a
weight w ∈ A∞,R is nontrivial whenever [w]A∞,R > 1. The same notion
for other bases of rectangles or cubes will be used as well.

Theorem 2.5. Let 1 ≤ p < n and let w ∈ Aq,R in R
n be a nontrivial

weight with 1 ≤ q ≤ p. Let also p∗w be defined by

(2.3)
1

p
− 1

p∗w
=

δ

n

1

q + log[w]Aq,R
.

For a fixed δ > 0, let a be the functional defined by

(2.4) a(R) = d(R)δ
(

1

w(R)
µ(R)

)1/p

,

where µ is any Radon measure in R
n. Suppose that f satisfies

(2.5)
1

|R|

∫

R
|f − PRf | ≤ a(R)

for every rectangle R ⊂ R
n. Then, there exists a dimensional constant Cn

such that for any rectangle R ⊂ R
n

(

1

w(R)

∫

R
|f − PRf |p

∗
w wdx

)
1

p∗w ≤ Bw,q Cn
1

δ
a(R),

where Bw,q =
1+log[w]

1
q
Aq,R

log[w]
1
q
Aq,R

.
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Note that the dependence on the weight can be disregarded if we are
looking for the asymptotic behavior when [w]Aq,R → ∞ (we can bound that
expression by 2 by considering weights such that [w]Aq,R ≥ eq). The real
problem is with flat weights. We borrow that terminology from [PR18] to
refer to weights with small A∞ constant, close to 1. Those weights are, in
some sense, getting closer to being just a multiple of the Lebesgue measure,
and that is why this situation is counter intuitive, since one would expect
an easier problem for this latter case. Also note that there is some sort of
balance between the exponent p∗w and the constant in the inequality. The
closer the Aq constant gets to 1, the closer the value of p

∗
w gets to the optimal

Sobolev exponent. But it should also be observed that the constant in the
inequality blows up when [w]Aq,R → 1. And that is precisely the reason why
this result can not be specialized on the limit case of the constant weight,
but we can give a reasonable substitute by using weak norms.

Theorem 2.6. Let 1 ≤ p < n and let w ∈ Aq,R in R
n with 1 ≤ q ≤ p. If we

define the exponent p∗w as in (2.3), the functional a as in (2.4) and consider
a function satisfying (2.5), there exists a dimensional constant cn such that
for any rectangle R ⊂ R

n

(2.6) ‖f − PRf‖Lp∗w,∞(R, wdx
w(R)

) ≤ cn
1

δ
a(R).

The idea is to use a specific choice of the functional a as the starting point.
Since a (1, 1)-Poincaré inequality involving higher derivatives is known to
hold on rectangles, we obtain the following result.

Corollary 2.7. Let 1 ≤ p < n and let w ∈ Aq,R in R
n with 1 ≤ q ≤ p. Let

p∗w as in the previous theorem. Then the following inequality holds,

‖f − PRf‖Lp∗w
(

R, w dx
w(R)

) ≤ Bw,qCn
1

m
[w]

1
p

Aq,R
d(R)m ‖∇mf‖

Lp
(

R, w dx
w(R)

)

for every rectangle R ∈ R, where as before, Bw,q =
1+log[w]

1
q
Aq,R

log[w]
1
q
Aq,R

.

We also have the estimate for the weak norm

(2.7) ‖f − PRf‖Lp∗w,∞(R, wdx
w(R)

) ≤ Cn,p
1

m
[w]

1
p

Aq,R
d(R)m ‖∇mf‖

Lp
(

R, w dx
w(R)

) .

The proof of this result can be found in Section 4.

Remark 2.8. We remark that for any nontrivial weight separated from the
constant weight, say for instance [w]Aq,R ≥ eq, we can apply Theorem 2.5 to
an appropriate starting point. Without this non-degeneracy condition, and
in particular in the case of flat weights, we avoid the logarithmic blowup but
at the cost of obtaining only a weak norm estimate. Of course, when m = 1
the truncation argument can be carried out to reach the strong norm from
(2.7), to wit

‖f − PRf‖Lp∗w (R, wdx
w(R)

) ≤ cn[w]
1
p

Aq,R
d(R) ‖∇f‖

Lp
(

R, w dx
w(R)

) .
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2.3. Fractional Poincaré-Sobolev and eccentricity. This section is mo-
tivated by the fractional Poincaré-Sobolev inequalities (1.6). First we will
introduce a fractional type Poincaré estimate adapted to the product space
R from which we will derive the corresponding Poincaré-Sobolev type result.

As before, we will introduce functionals satisfying the smallness preser-
vation condition SDs

p,R for some choice of parameters where the concept of
eccentricity will play a central role in the proofs. It comes from the natural
interplay between the notion of diameter and measure for a given rectangle.

Definition 2.9. Let R ∈ R be any rectangle in R
n. We define the eccen-

tricity as the number

(2.8) e(R) :=
|R| 1n
d(R)

.

The main property we use is the following observation: all the involved
families of rectangles will be obtained from dyadic partitions of a fixed initial
rectangle. Therefore, for each instance of this initial choice of a rectangle,
all of them are dyadic children of a given rectangle. The main feature here
is that all of them have the same eccentricity.

Lemma 2.10. Let R̃ be any dyadic descendant of R ∈ R. Then

e(R̃) = e(R).

Indeed, if j be the dyadic level to which R̃ belongs. Then,

(2.9) e(R̃) =
|R̃|1/n
d(R̃)

=
(|R|2−jn)1/n

d(R)2−j
= e(R).

By introducing this notion of eccentricity, we now are able to formulate
other corollaries from our general self-improving Theorem 2.5. We have the
following intermediate estimate.

Corollary 2.11. Let w ∈ Aq,R in R
n with 1 ≤ q ≤ p < n. Let p∗w as in

(2.3), namely
1

p
− 1

p∗w
=

δ

n

1

q + log[w]Aq,R
.

Let R ∈ R and δ > 0. Consider the function

(2.10) A(R,x) =

∫

R

|f(x)− f(y)|p
|x− y|n+δp

dy, x ∈ R.

Then the following inequality holds,
(2.11)

‖f − fR‖Lp∗w (R, wdx
w(R)

) ≤ Cn,p,q
1

δ
[w]

1
p

Ap,R

d(R)δ

e(R)
n
p

(

1

w(R)

∫

R
A(R, ·)w dx

) 1
p

.

Remark 2.12. We will prove this result from an initial inequality (1.2) with
a non standard functional a(R) involving the quantity A(R,x), namely

1

|R|

∫

R
|f − fR| ≤ [w]

1
p

Ap,R

d(R)δ

e(R)
n
p

(

1

w(R)

∫

R
A(R,x)w(x)dx

)
1
p

.
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Remark 2.13. There should be here a result as in Theorem 2.19 with the
extra factor (1 − δ)

1
p at least in the case w ∈ A1,R. We don’t know how to

do it. However, we proved the corresponding variation of this result in the
context of R in Theorem 2.20.

Note that, on the one hand the above starting point does not involve any
derivative, but on the other hand it is imposing a somewhat stronger control
over the L1 oscillation, since it is known that for any 0 < δ < 1, and any
p ≥ 1 one has

ℓ(Q)δ
(

−
∫

Q

∫

Q

|f(x)− f(y)|p
|x− y|n+δp

dydx

)1/p

. Cδ,p,nℓ(Q)

(

−
∫

Q
|∇f |p

)1/p

.

We will in fact provide the proof of an improved version of this inequality
for the case p = 1 in Lemma 5.3, inequality (5.4). The proof is included in
the Appendix B.

2.4. A weaker starting point. The aim of this section is to show that we
can replace the L1 mean oscillation in (2.1) as initial hypothesis by a weaker
condition to derive the same results. Indeed, as shown in Theorems 2.1 and
Theorem 2.5, the natural starting point is given by the expression

(2.12) −
∫

R
|f(x)− fR| dx ≤ a(R)

where a is a functional satisfying some sort of discrete summation condition.
We show in next theorem that we can replace the L1 mean oscillation in
(2.12) by Lδ, 0 < δ < 1 weakening the initial assumption. This idea was
already considered in [LP02] and [LP05] but the results and the methods
are not so precise as the ones we obtain here within a different context.

Theorem 2.14. Let f be a measurable function and let δ ∈ (0, 1). Suppose
that there is a functional a such that,

(2.13) inf
c∈R

(

−
∫

R
|f(x)− c|δ

)
1
δ

dx ≤ a(R) R ∈ R.

If the functional a satisfies the Dp,R condition for some p > 1 or the SDs
1,R

condition for some s > 0, then there is a self-improving to L1, namely

(2.14) inf
c∈R

−
∫

R
|f(x)− c|dx ≤ C a(R), R ∈ R,

where C depends on p, δ, s, ‖a‖Dp,R or ‖a‖SDs
1,R .

Remark 2.15. This is also very interesting even in the case of BMO. In
that case a(R) = 1 and the question can be phrased in terms of minimal
conditions on the starting estimate (2.13) to conclude the membership to
BMO. An approach to this problem (in the context of cubes) using Bell-
man functions can be found in [LSSVZ15]. However, this result has been
improved in several ways in the more recent work [CPR]. It may be possible
to adapt these ideas to the context of the current paper.
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2.5. Analysis in R.

We will show that we can apply our techniques to obtain other type of
results for the class R which denotes the family formed by rectangles R of
the form R = I1 × I2 ⊂ R

n where I1 ⊂ R
n1 and I2 ⊂ R

n2 are cubes with
sides parallel to the coordinate axes. We will discuss different possibilities for
the starting inequality (1.2) which will lead to different results on Poincaré-
Sobolev type inequalities more in the spirit of [ST93, LW98].

The first results in the product case context were obtained by X. L. Shi
and A. Torchinsky in [ST93]. They obtained (q, p)-Poincaré-Sobolev inequal-
ities with weights satisfying certain strong conditions. Later on, Seng-Kee
Chua [Chu95] obtained some results assuming mixed norm assumptions on
the gradient which we will not consider. Later on, G. Lu and R. Wheeden
also derived in [LW98] Poincaré-Sobolev inequalities in the context of vector
fields. We improve these results in the classical context. This case could be
certainly treated as a particular case of the general theory developed for the
family R, since the selfimproving method works in the same way. But here
we will consider different starting points, better adapted to this particular
geometry.

We will use the following notation: for a given function f : U → R

defined on the open set U ⊂ R
n1 × R

n2 , we will write f(x) = f(x1, x2)
where x1 stands for the first n1 variables and x2 stands for the remaining
n2 variables. ∇1f will denote the partial gradient of f containing the x1-
derivatives and similarly ∇2f will denote the partial gradient of f containing
the x2-derivatives. Recall that the family R is defined by rectangles of the
form R = I1 × I2 where in I1 ⊂ R

n1 and I2 ⊂ R
n2 are cubes with sides

parallel to the coordinate axes and n := n1 + n2. As already mentioned,
the classical method to derive these type of results is based on finding a
representation formula and this is the way was done in the first paper in
this context [ST93]. We follow a completely different path using some of the
key ideas from [FPW98].

Theorem 2.16. Let w ∈ Aq,R in R
n and 1 ≤ q ≤ p. Let also

1

p
− 1

p∗
=

1

n

1

(q + log[w]Aq,R
)
.

Then, there exists a constant c = c(n, p, q) > 0 such that for every Lipschitz
function f and any R = I1 × I2 ∈ R,

‖f − fR‖Lp∗(R, wdx
w(R)

) ≤ c [w]
1
p

Ap,R
(a1(R) + a2(R)) ,

where

a1(R) = ℓ(I1) ‖∇1f‖Lp(R, wdx
w(R)

) and a2(R) = ℓ(I2) ‖∇2f‖Lp(R, wdx
w(R)

) .

This result will be proved in Section 6. As far as we know these results are
not known in the literature (for instance [Chu95, LW98]) even for the case
p > 1 which is usually simpler. We will show that this theorem will follow
essentially from the following (1, 1)-Poincaré inequality in product spaces
which seems to be unknown.
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Lemma 2.17. There exists a dimensional constant c > 0 such that for every
Lipschitz function f : Rn1 × R

n2 → R and for any R = I1 × I2 ∈ R,

(2.15) −
∫

R
|f − fR| ≤ c ℓ(I1)−

∫

R
|∇1f |+ c ℓ(I2)−

∫

R
|∇2f |.

This lemma is inspired by the work of Shi and Torchinsky [ST93] but they
do not consider the case p = 1 since their method fails. Inequality (2.15)
will play a similar role as (1.1). However, there are two different points
which makes the initial estimate (2.15) different to the one we have been
considering so far. First is that we use rectangles in the family R and second
that the right hand side is formed by the sum of two functionals.

We observe that if we enlarge (2.15) replacing both sidelenghts, ℓ(I1) and
ℓ(I2), by the larger quantity d(R), then the new functional is essentially the
right hand side of (1.1) with Ω = R since |∇1f |+ |∇2f | ≈ |∇f |.

We will prove Lemma 2.17 in Section 5 in two ways. The first proof
will follow from Proposition 5.1 as a consequence of a point-wise estimate
obtained by Lu and Wheeden in [LW98]. Additionally, we will provide a
second proof as a consequence of a “fractional” Poincaré type inequality
proven in Proposition 5.2. This proposition will be further improved in the
following theorem which can be seen as a biparametric version of the results
from [BBM02] and improved by M. Milman in [M05] (see also [MS02] and
the recent interesting works [BVY21] [DD] [DM10]).

Theorem 2.18. Let p1, p2 ∈ [1,∞) and let δ1, δ2 ∈ (0, 1). Then there exist
dimensional constants cn1 , cn2 > 0 such that for any rectangle R = I1× I2 ∈
R

−
∫

R
|f − fR| ≤ cn1(1− δ1)

1
p1 a1(R) + cn2 (1− δ2)

1
p2 a2(R),

where

a1(R) = ℓ(I1)
δ1

(

−
∫

R

∫

I1

|f(x1, x2)− f(y1, x2)|p1
|x1 − y1|n1+p1δ1

dy1dx1 dx2

)
1
p1

and

a2(R) = ℓ(I2)
δ2

(

−
∫

R

∫

I2

|f(y1, x2)− f(y1, y2)|p2
|x2 − y2|n2+p2δ2

dy1dx2dy2.

)
1
p2

Once we have Theorem 2.18 proved, it is immediate to obtain Lemma
2.17 from the case p1 = p2 = 1.

This result will be the starting point to derive a bi-parametric version of
the following (one-parameter) result which can be found in [HMPV].

Theorem 2.19. ([HMPV]) Let δ ∈ (0, 1) and w ∈ A1. Also let p∗δ,w be the
weighted fractional Sobolev exponent defined by

(2.16)
1

p
− 1

p∗δ,w
=

δ

n

1

1 + log[w]A1

There is a constant Cn,p > 0 such that for every cube Q in R
n,

(

−
∫

Q
|u− uQ|p

∗
δ,w wdx

) 1
p∗
δ,w ≤ Cn,p (1− δ)

1
p [w]

1
p

A1
a(Q),
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where

a(Q) = ℓ(Q)δ
(

−
∫

Q

∫

Q

|u(x)− u(y)|p
|x− y|n+pδ

dy wdx

) 1
p

.

The bi-parametric counterpart of this result is the following.

Theorem 2.20. Let δ ∈ (0, 1) and w ∈ A1,R. Also, let

(2.17)
1

p
− 1

p∗δ,w
=

δ

n

1

1 + log[w]A1,R

Then there exists a constant c such that for each R = I1 × I2 ∈ R

(

−
∫

R
|f − fR|p

∗
δ,w wdx

)
1

p∗
δ,w ≤ c [w]

1
p

A1,R
(1− δ)

1
p

(

a1(R) + a2(R)
)

where

a1(R) =

(

ℓ(I1)
pδ

w(R)

∫

R

∫

I1

|f(x1, x2)− f(y1, x2)|p
|x1 − y1|n1+pδ

w(x1, x2)dx1dx2 dy1

)

1
p

and

a2(R) =

(

ℓ(I2)
pδ

w(R)

∫

R

∫

I2

|f(y1, x2)− f(y1, y2)|p
|x2 − y2|n2+pδ

w(y1, y2) dy1dy2 dx2

)

1
p

.

This result is completely new and the proof can be found in Section 7. An
interesting question here is to extend this result beyond A1,R, for instance
to the Ap,R case which is not known even in the one parameter situation,
Theorem 2.20.

2.6. Outline. The paper is organized as follows. In Section 3 we will include
some preliminary results needed for our proofs. In particular, we will show
the geometric summability conditions satisfied by different functionals a(R).
In Section 4 we will provide the proofs of the main results in the case of
multiparameter rectangles in the familyR. In Section 5 we obtain the crucial
starting (1, 1)-Poincaré inequalities adapted to the basis R. In Section 6 we
use this starting point as input for our self-improving method to obtain
Poincaré-Sobolev type inequalities for the basis R of rectangles given by
product of cubes. Following the same line of ideas, in Section 7 we obtain
fractional Sobolev-Poincaré inequality for the biparameter case as presented

in Theorem 2.20 even with the extra gain (1− δ)
1
p . Finally, in the Appendix

A we provide the proofs of the so called truncation method and in Appendix
B we give the proof of Lemma 5.3.

2.7. Acknowledgement. The last author is very grateful to Professors Os-
car Domı́nguez and Mario Milman for enlighteling conversations about the
results concerning fractional (uniparametric) Poincaré inequalities with ex-
tra gain like in Theorem 5.4. In particular we ackonwledge the very inter-
esting work [M05].
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3. Preliminaries

We include here some well known preliminaries and some needed lemmas
and further properties. Throughout this section, the ambient space will be
R
n and R will denote an arbitrary rectangle in R, the family of rectangles

defined as n-fold product of intervals on R.

3.1. Smallness preserving functionals. We start with some model ex-
amples of functionals mentioned in the statements of our results. As we will
see, the constant eccentricity is crucial.

Example 3.1. Consider the functional defined by

(3.1) a(R) = d(R)δ
(

1

w(R)

∫

R
A(R,x) dx

)1/p

where A(R,x) is nonnegative and increasing in R. That is, R1 ⊂ R2 implies
that A(R1, x) ≤ A(R2, x). We will verify that this functional satisfies Defi-

nition 1.1, more precisely we will check that a ∈ SD
n/δ
p,R(w) for a weight w

in R
n. More importantly, that ‖a‖

SD
n/δ
p,R(w)

= 1 . Consider q > 1 such that

δpq
n > 1. Then by the key eccentricity property in Lemma 2.10

∑

i

a(Ri)
pw(Ri) =

∑

i

d(Ri)
δp

∫

Ri

A(Ri, x) dx

=
1

e(R)δp

∑

i

|Ri|pδ/n
∫

Ri

A(Ri, x) dx

≤ 1

e(R)δp

(

∑

i

|Ri|
δpq
n

)1/q (
∑

i

[
∫

Ri

A(Ri, x) dx

]q′
)

1
q′

≤ 1

e(R)δp

(

∑

i

|Ri|
)

δp
n ∫

R
A(R,x) dx.

Now, the eccentricity definition gives the desired bound,

∑

i

a(Ri)
pw(Ri) ≤ |R| δpn

e(R)δp

( |
⋃

iRi|
|R|

)
δp
n
∫

R
A(R,x) dx

= d(R)δp
( |⋃iRi|

|R|

)
δp
n
∫

R
A(R,x) dx

=

( |⋃i Ri|
|R|

)
δp
n

a(R)pw(R).

Example 3.2. The example above belongs to a rather wide family of func-

tionals given by averages of general measures: a(R) = d(R)δ
(

µ(R)
w(R)

)1/p
,

δ > 0. The previous computation shows that a ∈ SD
n/δ
p,R(w) for any weight

w in R
n.

The above estimates are sufficient to obtain (p, p)-Poincaré inequalities
since we have that ‖a‖

SD
n/δ
p,R(w)

≤ 1. In order to reach higher exponents of
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integrability on the left hand side and get a Poincaré-Sobolev type inequality,
we need to pay a price allowing ‖a‖SDs

p,R(w) to be larger than 1. A sort of

natural way to do this is to consider the involved weight to be in a “better”
Aq,R class. We follow the line of ideas from [PR19] adapted to our setting
of rectangles.

Lemma 3.3. Consider two indices p, q such that 1 ≤ q ≤ p < n and let
w ∈ Aq,R in R

n. For δ > 0, consider the functional

a(R) = d(R)δ
(

1

w(R)
µ(R)

)1/p

R ∈ R.

For M > 1 we define p∗M := p(n, q,M) by the condition

1

p
− 1

p∗M
=

δ

nqM
.

Then a satisfies Definition 1.1 with parameters p = p∗M and s = nM ′
δ , namely

if R ∈ R and {Ri}i is any family of pairwise disjoint dyadic subrectangles
of R the following inequality holds:

(3.2)

(

∑

i

a(Ri)
p∗M

w(Ri)

w(R)

)
1

p∗
M

≤ [w]
δ

nqM

Aq,R

( |⋃iRi|
|R|

)
δ

nM′
a(R).

Note that p∗M is smaller than the classical Sobolev exponent, namely the
sharp one corresponding to the Lebsegue measure case:

p < p∗M < p∗ =
pn

n− p
1 ≤ p < n.

This condition says that the functional a “preserves smallness” for the ex-
ponent p∗M defined in (2.3) with index s = nM ′

δ and constant

‖a‖
SD

nM′
δ

p∗
M

,R(w)
≤ [w]

δ
nqM

Aq,R
.

That is, a ∈ SD
nM′
δ

p∗M ,R(w). The notation here is somewhat involved, but we

will use it in a more simplified manner in our applications. Recall that, as
in the case of standard cubic Aq weights, the strong Aq,R weights satisfy the
geometric estimate

( |E|
|R|

)q

≤ [w]Aq,R
w(E)

w(R)
,

valid for any subset E ⊂ R and any R ∈ R. Now we can proceed to the
proof of the main estimate for the functional a.

Proof of Lemma 3.3. Let M > 1. For simplicity in the exposition, we will
omit the subindex M and just use p∗ instead of p∗M . To verify the smallness
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preservation for the functional a, we compute, using again the key eccen-
tricity property in Lemma 2.10,

∑

i

a(Ri)
p∗w(Ri) =

∑

i

µ(Ri)
p∗
p

(

d(Ri)
δ

w(Ri)
1
p
− 1

p∗

)p∗

=
1

e(R)δp∗
∑

i

µ(Ri)
p∗
p

(

|Ri|
δ
n

w(Ri)
δ

qnM

)p∗

=
1

e(R)δp∗
∑

i

µ(Ri)
p∗
p

(

|Ri|
w(Ri)

1
qM

)
δp∗
n

≤
[w]

δp∗
nqM

Aq,R

e(R)δp∗

( |R|q
w(R)

)
δp∗
nqM ∑

i

µ(Ri)
p∗
p |Ri|

δp∗
nM′ .

Now consider any t > 1 such that t δp∗

nM ′ ≥ 1 and apply Hölder’s inequality
to the sum above to obtain

∑

i

µ(Ri)
p∗
p |Ri|

δp∗
nM′ ≤

(

∑

i

µ(Ri)
t′p∗
p

) 1
t′
(

∑

i

|Ri|
)

δp∗
nM′

≤
(

∑

i

µ(Ri)

)
p∗
p ( |⋃iRi|

|R|

)
δp∗
nM′

|R|
δp∗
nM′ .

≤ µ(R)
p∗
p

( |⋃iRi|
|R|

)
δp∗
nM′

|R|
δp∗
nM′ .

Therefore,

∑

i

a(Ri)
p∗w(Ri) ≤

(

[w]Aq,R |R|q
w(R)

)

δp∗
nqM

µ(R)
p∗
p

|R|
δp∗
nM′

e(R)δp∗

( |
⋃

iRi|
|R|

)
δp∗
nM′

= [w]
δp∗
nqM

Aq,R

|R| δp
∗

n

w(R)
δp∗
nqM

µ(R)
p∗
p

1

e(R)δp∗

( |⋃i Ri|
|R|

)
δp∗
nM′

= [w]
δp∗
nqM

Aq,R
a(R)p

∗
w(R)

( |
⋃

iRi|
|R|

)
δp∗
nM′

.

�

3.2. Optimal polynomials. We also include here some preliminaries on
optimal polynomials. Given a rectangle R ∈ R and an integer m ≥ 0, we
consider the space Pm of polynomials of degree at most m in n variables
endowed with the inner product given by

< f, g >R:= −
∫

R
fgdx.
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There is an orthonormal basis with respect to this inner product that we
will denote by {φα}, being α = (α1, . . . , αn) a multiindex of non negative
integers such that |α| = α1 + · · · + αn ≤ m. An important feature is that

(3.3) ‖φr‖L∞ ≤ C

(

1

|R|

∫

R
|φr|2dx

)1/2

= C,

since the space Pm is finite dimensional and therefore all norms are equiva-
lent. Let PR the projection defined by the formula

(3.4) PR(f) =
∑

r

(

1

|R|

∫

R
fφrdx

)

φr.

We clearly have from (3.3) that

(3.5) ‖PRf‖L∞ ≤ NC2−
∫

R
|f |,

where N depends on m. Moreover, as it is the case when m = 0 and the
projection is over the constants, we have the following optimality property:

inf
π∈Pm

(

−
∫

R
|f − π|p

)1/p

≈
(

−
∫

R
|f − PRf |p

)1/p

.

3.3. A∞,R weights. We recall that the “strong” A∞,R class of weights is
usually defined as

A∞,R =
⋃

p>1

Ap,R.

There are several different characterizations of the belonging of a weight to
this class. We choose here to work with the so called Fujii-Wilson constant
defined as

(3.6) [w]A∞,R := sup
R∈R

1

w(R)

∫

R
Ms(wχR) dx < ∞.

Although implicit in [Fuj78], this definition was initially considered in [HP13]
and used to derive a quite sharp Reverse Hölder Inequality (RHI) estimate.
We cite here an improved version from [HPR12], which is similar to the
one obtained [LPR17] in the context of rectangles. The proof is an easy
adaptation from cubes to rectangles and therefore will be omitted.

Theorem 3.4. Let w ∈ A∞,R in R
n. Then for any rectangle R ∈ R,

−
∫

R
w1+ε dx ≤ 2

(

−
∫

R
w dx

)1+ε

,

for any ε > 0 such that 0 < ε ≤ 1
2n+1[w]A∞,R−1

.

4. Proofs Part I: Analysis in R
In this section we will present the proof of our main contributions within

the family of rectangles R (n-fold product of one dimensional intervals).
We begin by proving Theorem 2.3. To do this we need some previous

results.
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Given a rectangle R ∈ R, Md
R will stand for the dyadic maximal function

adapted to the rectangle R. That is,

Md
R(f)(x) := sup

J∋x
−
∫

J
|f(y)| dy J ∈ D(R)

where D(R) is the family of dyadic subrectangles of R.
We will also use the appropriate sharp maximal function defined by

M ♯
mf(x) = sup

R∋x
−
∫

R
|f(y)− PRf | dy,

where m is the degree and PRf is the polynomial approximation of degree
less than m.

We will need the following result which is similar to the one obtained in
[CP21] where several extensions of the classical John-Nirenberg’s theorem
has been derived. Our result is the context of the basis R but the proof
is essentially the same as the one given in [CP21] for cubes. It is also an
extension to R of one of the main results of Karagulyan in [Kar02]. The key
point is to use a Calderón–Zigmund (C–Z) dyadic decomposition adapted
to a given fixed rectangle R ∈ R. The validity of such a C–Z decomposition
is immediate from the cubic case: the dyadic structure is exactly the same
in both cases. In addition, we will introduce the following notation for
w ∈ A∞,R, r > 1 and for any rectangle R ∈ R:

wr(R) = |R|
(

−
∫

R
wr

)
1
r

= |R| 1
r′

(∫

R
wr

)
1
r

.

Theorem 4.1. Let f ∈ L1
loc(R

n) and let 1 ≤ p < ∞ and 1 < r < ∞. Then
there is a dimensional constant c such that for any rectangle R ∈ R the
following estimate holds

(4.1)

(

1

wr(R)

∫

R

(

Md
R(f − PRf)(x)

M ♯
mf(x)

)p

w(x)dx

)
1
p

≤ c pr′.

Hence, if further w ∈ A∞,R we have

(4.2)

(

1

w(R)

∫

R

(

Md
R(f − PRf)(x)

M ♯
mf(x)

)p

w(x)dx

)
1
p

≤ c p [w]A∞,R .

The proof of (4.1) follows the same ideas as in the proof of [CP21, Theorem
7.1]. If we assume the extra condition of w being an A∞ weight, then we
can apply the reverse Hölder inequality for R stated in Theorem 3.4 to get
(4.2).

Corollary 4.2. Let f and w as before. Then for any rectangle R ∈ R
∥

∥

∥

∥

Md
R(f − PRf)

M ♯
mf

∥

∥

∥

∥

expL(R, wdx
w(R)

)

≤ c [w]A∞,R

and hence there exist dimensional constants c1, c2 > 0 such that for any
rectangle R ∈ R and λ, γ > 0

w
(

{x ∈ R : Md
R(f − PRf) > λ,M ♯

mf(x) ≤ γλ}
)

≤ c1 e

−c2
γ[w]A∞,R w(R).
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Proof of Theorem 2.3. With all these ingredients, the proof is an adaptation
of the main result in [FPW98] combined wth the exponential decay good-
λ type formula from Corollary 4.2 very much as in [CP21]. We omit the
details.

�

We will provide here the proof of our main general result Theorem 2.1.
Before to proceed with the proof we recall that what we need to prove is
that the quantity

X = sup
R∈R

(

1

w(R)

∫

R

∣

∣

∣

∣

f − PRf

a(R)

∣

∣

∣

∣

p

wdx

)1/p

is bounded with a precise control on the bound. A brief comment on a techni-
cal step in the proof is necessary here. Since the argument involves the trick
of bounding X by some variation of itself, the partial step of proving that it
is finite is crucial. In many standard situations, this can be achieved by as-
suming that the function f is bounded and also by perturbing the functional
a to avoid any possible degeneracy considering aε(R) := a(R) + ε, ε > 0.
Once a uniform bound involving aε is obtained, a limiting argument proves
that the original X is also finite. The problem is that the hypothesis on a
satisfying a SDs

p,R condition is not shared by the perturbed new functional
aε. However, some weaker variant is indeed true and it is sufficient for the
proof. Here (and only here!) is where the A∞ condition pops in, remarkably
absent in the quantitative estimate. We will omit the technical details, we
refer the reader to [PR19] for a detailed discussion.

Proof of Theorem 2.1. For the proof we follow the ideas from [PR19], start-
ing with a standard local C–Z decomposition in the context of R.

We consider the local C-Z decomposition of |f−PRf |
a(R) relative to R at level L

for a large universal constant L > 1 to be chosen. Let D(R) be the family of
dyadic subrectangles of R which also belong to R. The C–Z decomposition
yields a collection {Rj}j of rectangles such that Rj ∈ D(R), maximal with
respect to inclusion, satisfying

(4.3) L <
1

|Rj|

∫

Rj

|f − PRf |
a(R)

dy.

Then, if R is dyadic with R ⊃ Rj

(4.4)
1

|R|

∫

R

|f − PRf |
a(R)

dy ≤ L

and hence

(4.5) L <
1

|Rj |

∫

Rj

|f − PRf |
a(R)

dy ≤ L 2n

for each integer j. Also note that
{

x ∈ R : Md
R

( |f − PRf |
a(R)

χR

)

(x) > L

}

=
⋃

j

Rj =: ΩL
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where Md
R stands for the dyadic maximal function adapted to the rectangle

R. That is,

Md
R(f)(x) := sup

J∋x
−
∫

J
|f(y)| dy x ∈ J, J ∈ D(R).

Then, by the Lebesgue differentiation theorem it follows that

(4.6)
|f(x)− PRf(x)|

a(R)
≤ L a.e. x /∈ ΩL.

Also, observe that by (4.3) (or the weak type (1, 1) property of Md
R) and

recalling our starting assumption (2.1), we have that {Rj}j ∈ S(L), namely

|ΩL| = |
⋃

j

Rj| <
|R|
L

.

Now, given the C-Z decomposition of the cube R, we decompose the

function
f − PRf

a(R)
as

f − PRf = (f − PRf)χΩc
L
+
∑

j

(

PRjf − PRf
)

χRj +
∑

j

(

f − PRjf
)

χRj

= A1 +A2 +A3.

For A1 and A2 we have a pointwise estimate. The bound for A1 follows
from (4.6). Also note that PRjPR = PR and recall the bound (3.5). Then
we can control A2 as

|A2(x)| ≤
∑

j

∣

∣(PRjf(x)− PRf(x))
∣

∣χRj(x)

=
∑

j

∣

∣PRj (f − PRf)
(

x)|χRj (x)

≤
∑

j

NC2−
∫

Rj

|f − PRf |χRj(x)

≤ NC22nLa(R)

since for any given x ∈ Ω there is only one j such that x ∈ Rj . So far we
have pointwise bounds for A1 and A2. Now we move on to the desired Lp

norm estimate. Consider the local weighted Lp space on R with the measure

µ := w(x)dx
w(R) . By the triangle inequality, we have that

∥

∥

∥

∥

f − PRf

a(R)

∥

∥

∥

∥

Lp
µ

≤
∥

∥

∥

∥

A1

a(R)

∥

∥

∥

∥

Lp
µ

+

∥

∥

∥

∥

A2

a(R)

∥

∥

∥

∥

Lp
µ

+

∥

∥

∥

∥

∥

∥

∑

j

f − PRjf

a(R)
χRj

∥

∥

∥

∥

∥

∥

Lp
µ

≤ c̃L+





1

w(R)

∫

R

∑

j

|f − PRjf |p
a(R)p

χRjwdx





1
p

.
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Since the Rj’s are disjoint, we can compute

∫

R

∑

j

|f − PRjf |p
a(R)p

χRjwdx =
∑

j

a(Rj)
pw(Rj)

a(R)pw(Rj)

∫

Rj

|f − PRjf |p
a(Rj)p

wdx

≤ Xp
∑

j

a(Rj)
pw(Rj)

a(R)p
,

where X is the quantity defined as

X = sup
R∈R

(

1

w(R)

∫

R

|f − PRf |p
a(R)p

wdx

)1/p

.

Averaging over w(R) and raising to the 1/p power, we obtain

(

1

w(R)

∫

R

∣

∣

∣

∣

f − PRf

a(R)

∣

∣

∣

∣

p

wdx

)1/p

≤ c̃L+X





∑

j

a(Rj)
pw(Rj)

a(R)pw(R)





1
p

≤ c̃L+X
‖a‖
L1/s

.

Taking the supremum over all R ∈ R, we finally obtain

(4.7) X ≤ c̃L+X
‖a‖
L1/s

,

for any L > 1. Choosing here an appropriate L as L = emax{‖a‖s, 1} and

using the elementary fact that
(

e1/s
)′ ≤ 1 + s, we finally get that, for any

R ∈ R,

(

1

w(R)

∫

R
|f − PRf |p wdx

)1/p

≤ cn(1 + s)max{‖a‖s, 1} a(R),

which is the desired estimate. �

Now we are ready to prove the consequences that can be derived from
our general theorem. We start by proving Theorem 2.5, where we exploit
the membership of the weight w to a better Aq,R class to reach a higher
Poincaré-Sobolev exponent.

Proof of Theorem 2.5. Recall that the functional from (2.4) satisfies a SD
n/δ
p,R

condition with norm 1 (see Example 3.2). This is sufficient to prove (p, p)-
Poincaré inequalities by using Theorem 2.1. Here, in order to achieve a
higher integrability, the problem reduces to prove a better smallness preser-
vation condition that comes with a price: the norm with respect to the
better parameters is no longer uniformly bounded on the weights. Hence,
a careful optimization has to be done. We will use the main estimate from
Lemma 3.3, choosing M > 1 with s = nM ′

δ , namely

(4.8) ‖a‖ := ‖a‖
SD

nM′
δ

p∗
M

,R(w)
≤ [w]

δ
nqM

Aq,R
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where
1

p
− 1

p∗M
=

δ

nqM
. The choice will depend on [w]Aq,R so that the

expression s‖a‖s remains bounded. We choose

(4.9) M = 1 + log[w]
1
q

Aq,R
.

Observe that both M and M ′ =
1+log[w]

1
q
Aq,R

log[w]
1
q
Aq,R

> 1 and also that this choice of

M implies that the exponent p∗M is exactly the value p∗w from (2.3). Hence
applying Theorem 2.1 with p replaced by p∗w and using estimate (4.8) we
obtain

(

1

w(R)

∫

R
|f − PRf |p

∗
w wdx

) 1
p∗w ≤ Cns ‖a‖s a(R)

≤ Cn
M ′

δ
[w]

δ
nqM

nM′
δ

Aq,R
a(R)

≤ Cn
M ′

δ
[w]

1
log[w]Aq,R
Aq,R

a(R)

= cn
1 + log[w]

1
q

Aq,R

log[w]
1
q

Aq,R

1

δ
a(R).

This yields the proof of Theorem 2.5 providing a good estimate for weights
with large nontrivial Aq,R constants. A simple computation shows that for
any weight such that [w]Aq,R > 1, if we choose K large such that [w]Aq,R =

e
q
K , then we obtain a cleaner inequality

(

1

w(R)

∫

R
|f − fR|p

∗
w wdx

) 1
p∗w ≤ cn(K + 1)

1

δ
a(R).

�

Now we present the proof of Theorem 2.6 covering, in particular, the case
of flat weights.

Proof of Theorem 2.6. We can assume that the weight w satisfies [w]Aq ,R ≤
eq, since in the other case we simply use the previous Theorem 2.5. We
claim that for any family {Ri}i of pairwise disjoint dyadic subrectangles of
R, the following inequality holds:

(4.10)

(

∑

i

a(Ri)
p∗1

w(Ri)

w(R)

) 1
p∗
1

≤ e
δ
n a(R),

recalling the notation
1

p
− 1

p∗1
=

δ

n

1

q
. This means that a ∈ Dp∗1,R(w) with

‖a‖Dp∗
1
,R(w) ≤ e

δ
n according to Definition 1.3. Let’s postpone the proof of
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the claim for the time being. Now, applying Theorem 2.3, we get

‖f − fR‖Lp∗
1
,∞
(

R, w dx
w(R)

) ≤ c p∗1 [w]A∞,R ‖a‖Dp∗1 ,R
(w) a(R)

≤ c p∗1 [w]Aq,R ‖a‖Dp∗
1
,R(w) a(R)

≤ c p∗1 e
q e

δ
n a(R).

Consider here the same choice of M = 1 + log[w]
1
q

Aq,R
as in the proof of

Theorem 2.5 above. Since p∗1 > p∗M (just note that p∗M is a decreasing
function on M), by Jensen’s inequality which holds at weak level (simply

use that the inner part of what is inside ()
1
p is less or equal than one) we

have,

‖f − fR‖Lp∗
M

,∞
(

R, w dx
w(R)

) ≤ ‖f − fR‖Lp∗1 ,∞
(

R, w dx
w(R)

)

≤ c p∗1 e
q e

δ
n a(R).

This is the desired weak type estimate. To conclude the proof of the theorem
we need to check claim (4.10). But this is a variant of the proof of Lemma
3.3, indeed by the key eccentricity property in Lemma 2.10,

∑

i

a(Ri)
p∗1w(Ri) =

∑

i

µ(Ri)
p∗1
p





d(Ri)
δ

w(Ri)
1
p
− 1

p∗
1





p∗1

=
1

e(R)δp
∗
1

∑

i

µ(Ri)
p∗1
p

(

|Ri|
δ
n

w(Ri)
δ
qn

)p∗1

=
1

e(R)δp
∗
1

∑

i

µ(Ri)
p∗1
p

(

|Ri|
w(Ri)

1
q

)

δp∗1
n

≤ 1

e(R)δp
∗
1

∑

i

µ(Ri)
p∗1
p

(

[w]
1
q

Aq,R

|R|
w(R)

1
q

)

δp∗1
n

≤ e
δp∗1
n

e(R)δp
∗
1

( |R|q
w(R)

)

δp∗1
nq ∑

i

µ(Ri)
p∗1
p

≤ e
δp∗1
n

e(R)δp
∗
1

( |R|q
w(R)

)

δp∗1
nq

µ(R)
p∗1
p

= e
δp∗1
n a(R)p

∗
1w(R)

since we assumed that [w]Aq ,R ≤ eq. This gives the claim (4.10) finishing
the proof of the theorem. �

Proof of Corollary 2.7. In order to apply our self improving method from
Theorem 2.5 or Theorem 2.6, we need a starting point as (2.5) where the
functional a is of the form (2.4). Regarding the starting point, we know
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from the work of Chua in [Chu06, Lemma 2.5] that the following unweighted
inequality holds 1

1

|R|

∫

R
|f − PRf | dx ≤ C

d(R)m

|R|

∫

R
|∇mf | dx,

where PRf is the “approximating” polynomial as defined in (3.4) and for
a class of Sobolev functions with appropriate smoothness, namely f ∈
Wm,1(R). This result follows from the well known first order (1, 1)-Poincaré
inequality on convex sets. From this inequality and using the standard ar-
gument of introducing an Ap,R weight we derive that

(4.11) −
∫

R
|f − PRf |dx ≤ C [w]

1/p
Ap,R

d(R)m
(

1

w(R)

∫

R
|∇mf |pw dx

)
1
p

.

Hence, we have our starting point

1

|R|

∫

R
|f − PRf |dx ≤ a(R),

where the functional a is defined by

a(R) = C [w]
1
p

Ap,R
d(R)m

(

1

w(R)

∫

R
|∇mf |pw dx

)
1
p

which is a particular case of (3.1). An application of Theorem 2.5 gives the
result for nontrivial weights with Aq constant bounded from below by eq. For
a result valid for flat weights, including the unweighted classical Poincaré-
Sobolev inequality for the Lebesgue measure, we can only use Theorem 2.6
to get a weak inequality. �

Now we move on to prove Corollary 2.11.

Proof of Corollary 2.11. Again, the key resides in proving a suitable starting
point. Consider, for δ > 0, the functional defined by the expression

a(R) := [w]
1
p

Ap,R

d(R)δ

e(R)
n
p

(

1

w(R)

∫

R
A(R,x)w(x)dx

) 1
p

where

(4.12) A(R,x) =

∫

R

|f(x)− f(y)|p
|x− y|δp+n

w(y)dy.

1The results in [Chu06] are derived for cubes but the same results hold for rectangles
as well.
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Note that by Hölder’s inequality combined with the definition, again, of
the Ap,R condition together with the concept of eccentricity we obtain

−
∫

R
|f − fR| ≈ 1

|R|

∫

R

1

|R|

∫

R
|f(x)− f(y)| dy dx

≤ [w]
1
p

Ap,R

(

1

w(R)|R|

∫

R

∫

R
|f(x)− f(y)|p dy w(x)dx

)
1
p

≤ [w]
1
p

Ap,R

(

d(R)δp

e(R)nw(R)

∫

R

∫

R

|f(x)− f(y)|p
|x− y|δp+n

dy w(x)dx

)

1
p

= [w]
1
p

Ap,R

d(R)δ

e(R)
n
p

(

1

w(R)

∫

R

∫

R

|f(x)− f(y)|p
|x− y|δp+n

dy w(x)dx

)
1
p

= a(R).

Note that the functional a here is not exactly the same as in the model
example (2.4) due to the presence of the eccentricity in front. But since we
are testing the smallness preservation on families of dyadic rectangles on a
fixed rectangle R, any function on the eccentricity moves out of the sum and
therefore this kind of functional also satisfies Lemma 3.3. Again, the result
follows from Theorem 2.5. �

Next we present here the proof of Theorem 2.14. Recall that the idea is
that even only being able to start from a weaker starting point (2.13), in the
end we arrive at the same place, namely to the usual L1 oscillation initial
point.

Proof of Theorem 2.14. Note that proving (2.14) is the same as proving that
the following quantity

(4.13) X := sup
R∈R

inf
c∈R

−
∫

R

|f(x)− c|
a(R)

dx

is finite. There are two reductions that make this trivial: the function f
being bounded and the functional a being uniformly away from zero. Both
can be formalized in a standard way. For the functional a it suffices to
consider the perturbed functional aε := a + ε for ε > 0 since this does
not affect the properties assumed on a. This observation may (and should)
be compared to the remark made prior to the proof of Theorem 2.1. The
absence of weights makes these reductions much easier.

The argument below shows how to truncate the function f . Therefore,
we can always assume that the supremum defining X is finite. Let us start
then by observing that we may assume that the function f is bounded.
More precisely, suppose that (2.13) holds and consider m ∈ N. Then the
truncation fm := min{|f |;m} also verifies (2.13). To see why, consider λ ∈ R

and also truncate it by introducing λm := min{|λ|;m}. We can compute
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directly both minima and obtain:

fm − λm = min{|f |;m} −min{|λ|;m}

=
1

2
(|f |+m− ||f | −m| − (|λ|+m− ||λ| −m|))

=
1

2
(|f | − |λ| − ||λ| −m| − ||f | −m|) .

Hence, taking absolute values,

|fm − λm| ≤ 1

2
(||f | − |λ||+ |||λ| −m| − ||f | −m||)

≤ 1

2
(|f − λ|+ ||λ| − |f ||)

≤ 1

2
(|f − λ|+ |f − λ|)

≤ |f − λ|
for all m ∈ N and for all λ > 0. This pointwise estimate yields the following

inf
c∈R

(

−
∫

R
|fm(x)− c|δ

)
1
δ

≤
(

−
∫

R
|fm(x)− λm|δ

)
1
δ

≤
(

−
∫

R
|f(x)− λ|δ

)
1
δ

,

also for any λ > 0. Therefore we obtain that

inf
c∈R

(

−
∫

R
|fm(x)− c|δ

) 1
δ

≤ inf
λ∈R

(

−
∫

R
|f(x)− λ|δ

) 1
δ

≤ a(R).

This means that the same initial hypothesis also holds for any truncation of
f at height m, independently of m.

Now we start with the proof of inequality (2.12) assuming that the func-
tion f is bounded. Given a rectangle R ∈ R, we have by hypothesis that,
for some cR ∈ R,

(

−
∫

R

∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

δ

dx

)
1
δ

≤ 2.

We perform the standard dyadic C-Z decomposition of the function
∣

∣

∣

f−cR
a(R)

∣

∣

∣

δ

adapted to R at level L > 2 to be chosen later. This means that we will
have a collection {Ri}i of disjoint maximal dyadic rectangles satisfying

(4.14) L <

(

−
∫

Ri

∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

δ

dx

)
1
δ

≤ 2
n
δ L.

Lets denote by ΩL the union of such rectangles. As usual, this set is the
level set of the dyadic maximal function relative to R:

(4.15) ΩL =

{

x ∈ R : Md
R

(

∣

∣

∣

∣

f − cR
a(R)

∣

∣

∣

∣

δ
)

(x) > Lδ

}

,

where

(4.16) Md
R(g)(x) = sup

x∈P∈D(R)
−
∫

P
|g(y)|dy.
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Now, consider the following pointwise decomposition.
∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

δ

=

∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

δ

χΩ(x) +

∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

δ

χΩc(x)

≤
∑

i

∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

δ

χRi(x) + Lδ

since the Lebesgue differentiation theorem implies that outside Ω the func-

tion f−cR
a(R) is pointwise bounded by L. The usual argument at this stage

would be to find a way to intercalate some average-like quantity related to
Ri instead of the original object R. We proceed as follows in the sum above.
Denote gR = f−cR

a(R) , then

∑

i

|gR(x)|δχRi(x) =
∑

i

(

|gR(x)|δ −−
∫

Ri

|gR(y)|δdy
)

χRi(x)

+
∑

i

−
∫

Ri

|gR(y)|δχRi(x)

≤
∑

i

(

−
∫

Ri

∣

∣

∣

∣

f(x)− f(y)

a(R)

∣

∣

∣

∣

δ

dy

)

χRi(x) + 2nLδ,

by using the elementary bound ||a|δ − |b|δ| ≤ |a − b|δ for any a, b ∈ R and
0 < δ < 1. The second term is obtained using the maximality from (4.14).
Now, by convexity the δ power can be moved out from the integral and using
that the rectangles are disjoint we obtain

∑

i

|gR(x)|δχRi(x) ≤
(

∑

i

−
∫

Ri

∣

∣

∣

∣

f(x)− f(y)

a(R)

∣

∣

∣

∣

dyχRi(x)

)δ

+ 2nLδ.

Therefore, collecting all estimates, we get

∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

δ

≤
(

∑

i

−
∫

Ri

∣

∣

∣

∣

f(x)− f(y)

a(R)

∣

∣

∣

∣

dyχRi(x)

)δ

+ 2nLδ + Lδ.

Now we can compute the desired L1 norm.

−
∫

R

∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

δ 1
δ

≤ 2
1
δ
−1

|R|
∑

i

|Ri|−
∫

Ri

−
∫

Ri

∣

∣

∣

∣

f(x)− f(y)

a(R)

∣

∣

∣

∣

dydx+ 2
n+2−δ

δ L.

Now, since the double average over Ri of f is less or equal than twice the

infimum of the oscillations on Ri we obtain, writing Cδ = 2
n+2−δ

δ

−
∫

R

∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

dx ≤ 2
1
δ

a(R)|R|
∑

i

a(Ri)|Ri| inf
c∈R

−
∫

Ri

∣

∣

∣

∣

f(x)− c

a(Ri)

∣

∣

∣

∣

dy + CδL

≤ X
2

1
δ

a(R)|R|
∑

i

a(Ri)|Ri|+ CδL
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where X is defined by (4.13). Here there are two options, as it is presented
in the statement of the theorem. In the case of the functional a satisfying
the SDs

1,R condition for some s > 1, we use this to obtain

inf
c∈R

−
∫

R

∣

∣

∣

∣

f(x)− c

a(R)

∣

∣

∣

∣

dx ≤ −
∫

R

∣

∣

∣

∣

f(x)− cR
a(R)

∣

∣

∣

∣

dx

≤ 2
1
δX

‖a‖SDs
1,R

L1/s
+ 2

n+2−δ
δ L.

Therefore, taking the supremum over all rectangles R on the left hand side
we obtain

X ≤ 2
1
δX

‖a‖SDs
1,R

L1/s
+ 2

n+2−δ
δ L.

Now we proceed essentially as in (4.7). Choose L large enough, namely

L = emax{max{2 s
δ ‖a‖sSDs

1,R
, 1} to note that

X ≤ 1

e
1
s

X + 2
n+2−δ

δ emax{2 s
δ ‖a‖sSDs

1,R
, 1}.

As in (4.7), we use that (e
1
s )′ ≤ 1 + s to conclude that

X .δ,s max{‖a‖sSDs
1,R

, 1},
which is the desired estimate.

The other possibility is that the functional a satisfies a standard Dp con-
dition for 1 < p < ∞. In that case, using Hölder’s inequality in the sum
involving the Ri’s, we obtain 2

X ≤ 2
1
δX

1

a(R)|R|
∑

i

a(Ri)|Ri|
1
p
+ 1

p′ + 2
n+2−δ

δ L

≤ 2
1
δX

(∑

i a(Ri)
p|Ri|

a(R)p|R|

)1/p(∑

i |Ri|
|R|

)
1
p′
+ 2

n+2−δ
δ L

≤ 2
1
δX

‖a‖Dp,R

L
1
p′

+ 2
n+2−δ

δ L.

Once again, we are in the same situation as before and we can argue in the
same way: choosing carefully the size of L, we obtain again an inequality of
the form

X .δ,p ‖a‖p
′

Dp,R
.

�

5. Analysis in R: Bi-paramater (1,1)-Poincaré

We start recalling the following (1, 1)-Poincaré inequality

(5.1) −
∫

R
|f − fR| ≤ ℓ(I1)−

∫

R
|∇1f |+ ℓ(I2)−

∫

R
|∇2f | R ∈ R

which is the statement of Lemma 2.17. As already mentioned the idea of
considering this type of Poincaré inequality follows from the work of Shi and
Torchinsky [ST93].

2Actually, we are using that Dp ⊂ SDs
1,R with ‖a‖SDs

1,R
≤

‖a‖Dp,R

L
1

p′
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We will prove inequality (5.1) in two ways, the first one using a point-wise
estimate obtained by Lu and Wheeden in [LW98] and the second proof will
follow as a consequence of a “fractional” Poincaré type inequalities that we
will show in Proposition 5.2 and improve in Theorem 2.18.

Recall that for a function f defined on R
n = R

n1 ×R
n2 , ∇1f will denote

the partial gradient of f containing the x1-derivatives and similarly for ∇2f
the partial gradient of f containing the x2-derivatives. From now on, I1 will
always denote a cube in R

n1 while I2 will be a cube in R
n2 . Let ℓ1 := ℓ(I1)

and ℓ2 := ℓ(I2).

Proposition 5.1. [LW98] Let R ∈ R be of the form R = I1 × I2. If
f ∈ Lip(R), we have the following pointwise estimate

|f(x1, x2)− fR| . −
∫

R

ℓ1|∇1f(y1, y2)|+ ℓ2|∇2f(y1, y2)|
(

|x1−y1|2
ℓ21

+ |x2−y2|2
ℓ22

)
n−1
2

dy1dy2.

From this we provide the first proof of the (1, 1)-Poincaré inequality (5.1).

First proof of Lemma 2.17. Let’s putA :=

∫

R
|f(x1, x2)−fR| dx1dx2. Then,

using the pointwise estimate from Proposition 5.1 we directly obtain

A ≤
∫

R
−
∫

R

ℓ1|∇1f(y1, y2)|+ ℓ2|∇2f(y1, y2)|
(

|x1−y1|2
ℓ21

+ |x2−y2|2
ℓ22

)
n−1
2

dy1dy2dx1dx2

≤
∫

R

ℓ1|∇1f(y1, y2)|
|I1||I2|

∫

R

1
(

|x1−y1|2
ℓ21

+ |x2−y2|2
ℓ22

)
n−1
2

dx1dx2dy1dy2

+

∫

R

ℓ2|∇2f(y1, y2)|
|I1||I2|

∫

R

1
(

|x1−y1|2
ℓ21

+ |x2−y2|2
ℓ22

)
n−1
2

dx1dx2dy1dy2

≤ ℓ1

∫

R
|∇1f(y1, y2)| dy1dy2 + ℓ2

∫

R
|∇2f(y1, y2)| dy1dy2.

In the above argument we have use the following inequality

−
∫

R

dx1dx2
(

|x1−y1|2
ℓ21

+ |x2−y2|2
ℓ22

)
n−1
2

= −
∫

R

dx1dx2
∣

∣

∣(x1
ℓ1
, x2
ℓ2
)− (y1ℓ1 ,

y2
ℓ2
)
∣

∣

∣

n−1
2

=
1

|I1||I2|

∫

I1
ℓ1

× I2
ℓ2

ℓn1
1 ℓn2

2 dz1dz2
∣

∣

∣
(z1, z2)− (y1ℓ1 ,

y2
ℓ2
)
∣

∣

∣

n−1
2

≤
∣

∣

∣

∣

I1
ℓ1

× I2
ℓ2

∣

∣

∣

∣

= 1.

�

We can improve this result using fractional type Poincaré inequalities.
The idea is to “interpolate” between the oscillation

−
∫

I1×I2

|f − fI1×I2 |
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and the right hand side of (5.1) inspired by the following one parameter
(1, 1) fractional type Poincaré inequality which is easy to derive:

(5.2) −
∫

Q
|f(t)− fQ|dt ≤ cn ℓ(Q)δ−

∫

Q

∫

Q

|f(t)− f(s)|
|t− s|n+δ

dt ds.

The result is the following,

Proposition 5.2. Let R = I1 × I2 be a rectangle and δ1, δ2 ∈ (0, 1). Then
there exist dimensional constants cn1 , cn2 > 0 such that

−
∫

R
|f − fR| ≤ cn1ℓ(I1)

δ1−
∫

R

∫

I1

|f(x1, x2)− f(y1, x2)|
|x1 − y1|n1+δ1

dx1dy1dx2(5.3)

+ cn2ℓ(I2)
δ2−
∫

R

∫

I2

|f(y1, x2)− f(y1, y2)|
|x2 − y2|n2+δ2

dy1dx2dy2.

Proof. By the triangle inequality

−
∫

R
|f − fR| ≈ −

∫

R
−
∫

R
|f(x1, x2)− f(y1, y2)| dy1dy2 dx1dx2

≤ −
∫

R
−
∫

R
|f(x1, x2)− f(y1, x2)| dy1dy2 dx1dx2

+ −
∫

R
−
∫

R
|f(y1, x2)− f(y1, y2)| dy1dy2 dx1dx2

= −
∫

R
−
∫

I1

|f(x1, x2)− f(y1, x2)| dy1 dx1dx2

+ −
∫

R
−
∫

I2

|f(y1, x2)− f(y1, y2)| dy1dy2 dx2 = A+B.

We compute A to derive the first term of (5.3). A similar estimate holds
for B to derive the second term of (5.3)

A = −
∫

R
−
∫

I1

|f(x1, x2)− f(y1, x2)||x1 − y1|δ1
|x1 − y1|δ1

dy1dx1 dx2

≤ ℓ(I1)
δ1−
∫

R
−
∫

I1

|f(x1, x2)− f(y1, x2)|
|x1 − y1|δ1

dy1dx1 dx2

≤ cn1 ℓ(I1)
δ1−
∫

R

∫

I1

|f(x1, x2)− f(y1, x2)|
|x1 − y1|n1+δ1

dy1dx1 dx2.

�

We remark that the fractional functional right hand side of (5.3) is smaller
than the gradient functional from (5.1), so we could have avoided the use
of Lu-Wheeden pointwise estimate from Proposition 5.1 and in addition we
are getting a better estimate than we were looking for. Indeed, to verify last
assertion we use the one-parameter fractional estimate from the following
lemma.

Lemma 5.3. There exists a dimensional constant cn > 0 such that for any
δ ∈ (0, 1), and any cube Q in R

n

(5.4) ℓ(Q)δ−
∫

Q

∫

Q

|f(t)− f(s)|
|t− s|n+δ

dt ds ≤ cn
δ(1− δ)

ℓ(Q)−
∫

Q
|∇f | dx.
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Since we do not find the proof of this in the literature we provide an
argument in Appendix B.

Second proof of Lemma 2.17. Let δ1 = δ2 =
1
2 ∈ (0, 1). We compare the first

term in the fractional functional (5.3) with the first term of the gradient
functional (5.1). To verify this we use the one-parameter fractional estimate
from (5.4):

ℓ(I1)
δ1−
∫

I1×I2

∫

I1

|f(x1, x2)− f(y1, x2)|
|x1 − y1|n1+δ1

dx1dy1dx2 =

= ℓ(I1)
δ1−
∫

I2

−
∫

I1

∫

I1

|f(x1, x2)− f(y1, x2)|
|x1 − y1|n1+δ1

dx1dy1dx2

≤ cn1

δ1(1− δ1)
ℓ(I1)−

∫

I2

−
∫

I1

|∇1f | dx1dx2.

= 4cn1ℓ(I1)−
∫

I2

−
∫

I1

|∇1f | dx1dx2.

A similar estimate holds for the second direction I2 with δ2. Then applying
Theorem 2.18 with p1 = p2 = 1 we are done or directly from “rough”
Fractional Poincaré inequality (5.2).

�

To conclude with the proof of the lemma, it remains to prove Theorem
2.18. We recall again that there is very interesting improvement of (5.2)
obtained by Bourgain, Brezis and Mironescu [BBM02] The result is the
following.

Theorem 5.4. Let δ ∈ (0, 1). Then there exists a dimensional constant
cn > 0 such that

−
∫

Q
|f(x)− fQ|dt ≤ cn (1− δ)

1
p ℓ(Q)δ

(

−
∫

Q

∫

Q

|f(x)− f(y)|p
|x− y|n+δp

dy dx

)1/p

.

for every cube Q in R
n.

Remark 5.5. We remark that the case p > 1 does not follow from the case
p = 1 using Jensen’s Also recall that there is sharper model version in
Theorem 1.4.

Our contribution here is the generalization stated in Theorem 2.18.

Proof of Theorem 2.18. The proof follows the same steps as in Proposition
5.2, but using the more precise estimate from Theorem 5.4.
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Let R = I1 × I2 ∈ R. By the triangle inequality

−
∫

R
|f − fR| ≈ −

∫

R
−
∫

R
|f(x1, x2)− f(y1, y2)| dy1dy2 dx1dx2

≤ −
∫

R
−
∫

R
|f(x1, x2)− f(y1, x2)| dy1dy2 dx1dx2

+−
∫

R
−
∫

R
|f(y1, x2)− f(y1, y2)| dy1dy2 dx1dx2

= −
∫

R
−
∫

I1

|f(x1, x2)− f(y1, x2)| dy1 dx1dx2

+−
∫

R
−
∫

I2

|f(y1, x2)− f(y1, y2)| dy1dy2 dx2

:= A+B.

We compute A. A similar estimate holds for B. Now, from Theorem 5.4
we have,

−
∫

Q
−
∫

Q
|u(x)−u(y)| dx dy ≤ cn (1−δ1)

1
p1 ℓ(Q)δ1

(

−
∫

Q

∫

Q

|u(x)− u(y)|p1
|x− y|n+p1δ1

dy dx

) 1
p1

for every cube Q in R
n. Applying this to the cube I1 ⊂ R

n1

A = −
∫

R
−
∫

I1

|f(x1, x2)− f(y1, x2)| dy1dx1 dx2

= −
∫

I2

−
∫

I1

−
∫

I1

|f(x1, x2)− f(y1, x2)| dy1dx1 dx2

≤ −
∫

I2

cn1 (1− δ1)
1
p1 ℓ(I1)

δ1

(

−
∫

I1

∫

I1

|f(x1, x2)− f(y1, x2)|p1
|x1 − y1|n1+p1δ1

dy1dx1

) 1
p1

dx2

≤ cn1 (1− δ1)
1
p1 ℓ(I1)

δ1

(

−
∫

R

∫

I1

|f(x1, x2)− f(y1, x2)|p1
|x1 − y1|n1+p1δ1

dy1dx1 dx2

)
1
p1

by Jensen’s inequality. �

The same idea could be used to obtain similar results involving m-fold
products of cubes. Let R be a rectangle of the form R =

∏m
i=1 Ii in R

n

written as a product of cubes with Ii ⊂ R
ni , n =

∑m
i=1 ni and m ≤ n. We

fix some notation: the points in R
n are of the form x = (x1, . . . , xm), where

each xi is itself a string of ni real numbers forming a vector in R
ni . For any

0 ≤ i ≤ m, we denote

xi =







(x1, . . . , xm) i = 0
(y1, . . . , yi, xi+1, . . . , xm) 1 ≤ i < m

(y1, . . . , ym) i = m.

We also adopt the notation dxi := dy1 . . . dyidxi . . . dxn.

Theorem 5.6. Let R =
∏m

i=1 Ii be a rectangle in R
n written as a product of

cubes with Ii ⊂ R
ni , and n =

∑m
i=1 ni and m ≤ n. Let 0 < δi < 1 ≤ pi < ∞,

1 ≤ i ≤ m. Then there are some dimensional constants cni such that,

−
∫

R
|f−fR| ≤

m
∑

i=1

cni(1−δi)
1
pi

(

−
∫

R

∫

Ii

|f(xi−1)− f(xi)|pi
|xi − yi|ni+piδi

dy1 . . . dyidxi . . . dxm

)
1
pi

.
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Going back to the simplest product case, namely the case of product of
two cubes, in the next section we will prove the self-improving result in
Theorem 2.16.

6. Proofs part II: the Biparameter Poincaré-Sobolev
inequality

The goal of this section is to prove Theorem 2.16, namely, for any R ∈ R

(6.1)

‖f − fR‖Lp∗( w dx
w(R)

) ≤ C[w]
1
p

Aq,R

[

ℓ(I1) ‖∇1f‖Lp( w dx
w(R)

) + ℓ(I2) ‖∇2f‖Lp( w dx
w(R)

)

]

,

where
1

p
− 1

p∗
=

1

n

1

q + log[w]Aq,R

.

Since this result involves a weighted estimate for a weight in the class
Ap,R, let us first introduce its obvious definition adapted to the geometry
of the basis R. For a weight w in R

n1 × R
n2 , n = n1 + n2, we will say that

w ∈ Ap,R if

(6.2) [w]Ap,R
:= sup

R∈R

(

1

|R|

∫

R
w(x) dx

)(

1

|R|

∫

R
w(x)

− 1
p−1 dx

)p−1

< ∞.

and in the case p = 1, for a finite constant c

(6.3)
1

|R|

∫

R
w(x) dx ≤ c inf

R
w R ∈ R

and the smallest of the constants c is denoted by [w]A1,R
.

The strong A∞,R class is defined in the same way as in the cubic or strong
case and it enjoys the same geometric conditions,

A∞,R =
⋃

p>1

Ap,R.

We emphasize here that in the context of R, the main difficulty is not
in the self-improving method. The cube-product structure does not get
affected by dyadic decompositions, so the standard procedures can be used
to obtain Calderón–Zygmund coverings and many consequences of C–Z. In
fact an inspection of the proof of Theorem 2.1, Theorem 2.5 and Theorem
2.6 will show that the dyadic analysis will produce the analogous results for
the basis R. So we leave to the interested reader to check the details to
prove the following claim.

Claim 6.1. There are analogous versions of Theorem 2.1, Theorem 2.3,
Theorem 2.5 and Theorem 2.6 in the context of R with the same hypothesis
and conclusions with the obvious modifications.

Hence, the real problem here is in to find a useful starting point and also
to check appropriate Dp or SDs

p-like conditions for the involved functionals.
The first problem was solved in Section 5, with two proofs for Lemma 2.17.
The second will be studied below, in Lemma 6.2.

Regarding the starting point, we have a sort of unweighted (1, 1)-Poincaré
inequality proved in Lemma 2.17 that can be used as a starting point for
our self-improving method. In the same way as in (4.11), for a weight
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w ∈ Ap,R we can apply Hölder’s inequality to (5.1) to obtain, for a rectangle
R = I1 × I2, that

−
∫

R
|f − fR| ≤ [w]

1
p

Ap,R
ℓ(I1) ‖∇1f‖Lp

(

w dx
w(R)

) + [w]
1
p

Ap,R
ℓ(I2) ‖∇2f‖Lp

(

w dx
w(R)

) .

We can define the functionals

(6.4) ai(R) := [w]
1
p

Ap,R
ℓ(Ii) ‖∇if‖Lp

(

w dx
w(R)

) , i = 1, 2

to obtain our bi-parameter starting point

(6.5) −
∫

R
|f − fR| ≤ a1(R) + a2(R).

The novelty here is that our functional a is a sum of two functionals
with certain structure which is not exactly as in (3.1). The presence of the
sidelenght instead of the diameter makes the situation non standard, so we
need to find what kind of geometric condition is satisfied. We summarize
all those properties in the following lemma.

Lemma 6.2. Let R ∈ R and let R = I1 × I2, where I1 ⊂ R
n1 and I2 ⊂ R

n2

are cubes. Also put n = n1 + n2. For a weight w ∈ Aq with 1 ≤ q ≤ p < n,
consider the functional

(6.6) a(R) = ℓ(Ij)
δ

(

1

w(R)

∫

R
A(R,x) dx

)1/p

j = 1, 2

where A(R,x) is nonnegative and increasing in R, that is, R1 ⊂ R2 implies
that A(R1, x) ≤ A(R2, x).

Then

(1) a ∈ SD
n
δ
p,R(w) with norm less or equal than 1.

(2) Consider the Sobolev-type exponent p∗w defined by the usual condition

1
p − 1

p∗w
= δ

nq . Then a ∈ Dp∗w,R(w) with ‖a‖Dp∗w,R
≤ [w]

δ
nq

Aq,R
.

(3) For a given M > 1, consider now the Sobolev-type exponent p∗w de-

fined by 1
p − 1

p∗w
= δ

nq
1
M . Then a ∈ SDs

p∗w,R(w) with s = nM ′
δ and

‖a‖SDs
p∗w,R

(w) ≤ [w]
δ

nqM

Aq,R
.

Proof. The arguments are very similar to those given before, so we will omit
some of details of the proof, but mention the key idea behind them. As in
all the previous cases, it is crucial to quantify the eccentricity of the objects
that we are dealing with. Motivated by the fact that |R| = ℓ(I1)

n1ℓ(I2)
n2 ,

we will define an eccentricity related quantity as

E(R) =
ℓ(I2)

n2

ℓ(I1)n2
.

This is equivalent to the expression

ℓ(I1)
n.E(R) = |R|.

In other words, the quantity E(R) reflects the relation between the volume
of the n-dimensional cube built from the side length ℓ(I1) with respect to
the actual measure of the rectangle R. The crucial property here is that this
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quantity is invariant with respect to dyadic children from R, namely as in
Lemma 2.10, E(R̃) = E(R) for any R̃ dyadic descendant of R ∈ R

With this idea in mind and using the quantity E(R), the proof of (1)
is a variation of the argument given in Example 3.1, the proof of (2) can
be translated from the proof of (4.10) and finally the proof of (3) is an
appropriate variation of the proof of Lemma 3.3.

Indeed, consider a family of disjoint dyadic subrectangles from R ∈ R

denoted by {Ri}. Of course, each subrectangle is of the form Ri = Ii × Ji
where Ii and Ji are dyadic subcubes of I and J respectively. �

Remark 6.3. To be able to apply our main Theorem, the easiest way to
proceed is to note that any Dp-like condition enumerated in Lemma 6.2, is
preserved when summing two functionals. This can be verified as follows (for
the unweighted Dp,R as an example, the other situations are similar). Let
{Ri}i be a family of pairwise disjoint dyadic subrectangles of R = I1 × I2.
Then, using Minkowsky inequality,

(

∑

i

(a1(Ri) + a2(Ri))
p |Ri|
|R|

)
1
p

≤
(

∑

i

a1(Ri)
p |Ri|
|R|

)
1
p

+

(

∑

i

a2(Ri)
p |Ri|
|R|

) 1
p

≤ ‖a1‖Dp,R
a1(R) + ‖a2‖Dp,R

a2(R)

≤ C (a1(R) + a2(R)) ,

with C = max
{

‖a1‖Dp,R
, ‖a2‖Dp,R

}

.

We can now proceed to present the proof of Theorem 2.16.

Proof of Theorem 2.16. Suppose first that w is a weigh such that [w]Aq,R
≥

eq. Since the functionals from (6.4) namely

ai(R) := [w]
1
p

Ap,R
ℓ(Ii) ‖∇if‖Lp(µ) , i = 1, 2

satisfy a SDs
p∗w,R condition given in Lemma 6.2 (with δ = 1), (3), the same

holds for

a(R) := a1(R) + a2(R).

Hence, we can apply the R-version of Theorem 2.5 to this functional to
obtain the proof with a uniform bound using the assumption on w. More
precisely, we obtain that

‖f − fR‖Lp∗ ( w dx
w(R)

) ≤ cp,q[w]
1
p

Ap,R

[

ℓ(I1) ‖∇1f‖Lp( w dx
w(R)

) + ℓ(I2) ‖∇2f‖Lp( w dx
w(R)

)

]

.

Now suppose that we are dealing with a trivial weight (such as [w]Aq,R
=

1) or more generally with flat weights such that [w]Aq,R
≤ eq. To avoid

the blowup, we can apply the R-version of Theorem 2.3 to get the weak
inequality

‖f − fR‖Lp∗w,∞
(

R, w dx
w(R)

) ≤ c p∗1 e
q e

1
n a(R),
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where 1
p − 1

p∗1
= 1

nq . To finish with the proof, we can use a bi-parameter

version of the truncation method to jump to the strong bound (see Appendix
A.2). �

7. Proofs part III: the local Biparameter Fractional
Poincaré-Sobolev inequality

In this section we will provide a proof of Theorem 2.20. We use the
main argument from Section 6 for proving Theorem 2.16 with a different
functional a(R) given by Theorem 2.18.

Proof of Theorem 2.20. From Theorem 2.18 with p1 = p2 = p we have

−
∫

R
|f − fR| ≤ A+B

where

A ≤ cn1(1− δ)
1
p ℓ(I1)

δ

(

−
∫

R

∫

I1

|f(x1, x2)− f(y1, x2)|p
|x1 − y1|n1+pδ

dy1dx1 dx2

)
1
p

and

B ≤ cn2 (1− δ)
1
p ℓ(I2)

δ

(

−
∫

R

∫

I2

|f(y1, x2)− f(y1, y2)|p
|x2 − y2|n2+pδ

dy1dx2dy2.

)
1
p

Now, recalling the definition of A1,R given in (6.3):

1

|R|

∫

R
w(x) dx ≤ [w]A1,R

inf
R

w R ∈ R

we have,

A ≤ c1 [w]
1
p

A1,R
(1−δ)

1
p ℓ(I1)

δ

(

1

w(R)

∫

R

∫

I1

|f(x1, x2)− f(y1, x2)|p
|x1 − y1|n1+pδ

w(x1, x2)dx1dx2 dy1

)
1
p

.

Similarly we have for B

B ≤ c2 [w]
1
p

A1,R
(1−δ)

1
p ℓ(I2)

δ

(

1

w(R)

∫

R

∫

I2

|f(y1, x2)− f(y1, y2)|p
|x2 − y2|n2+pδ

w(y1, y2) dy1dy2 dx2

)
1
p

Let

a1(R) = c1 [w]
1
p

A1,R
(1−δ)

1
p ℓ(I1)

δ

(

1

w(R)

∫

R

∫

I1

|f(x1, x2)− f(y1, x2)|p
|x1 − y1|n1+pδ

w(x1, x2)dx1dx2 dy1

)
1
p

.

and

a2(R) = c2 [w]
1
p

A1,R
(1−δ)

1
p ℓ(I2)

δ

(

1

w(R)

∫

R

∫

I2

|f(y1, x2)− f(y1, y2)|p
|x2 − y2|n2+pδ

w(y1, y2) dy1dy2 dx2

)
1
p

Observe that each functional aj is of the form (6.6) since each of the inner
integrand of the functional, A(R,x) is increasing in R,

R1 = I1 × I2 ⊆ R2 = J1 × J2 ⇐⇒ I1 ⊆ J1 and I2 ⊆ J2

and we can apply Lemma 6.2. Then ifM > 1, aj ∈ SDs
p∗w,R(w) with s = nM ′

δ

and ‖a‖SDs
p∗w,R

(w) ≤ [w]
δ

nqM

Aq,R
.
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Since the functionals from (6.6) satisfy the SDs
p∗w,R condition given in

Lemma 6.2, (3), namely

1

p
− 1

p∗w
=

δ

n

1

M
.

(

∑

i

aj(Ri)
p∗w

w(Ri)

w(R)

) 1
p∗w

≤ [w]
δ

nM
A1,R

( |⋃iRi|
|R|

) δ
nM′

a(R) j = 1, 2

and hence the corresponding result holds for

a(R) := a1(R) + a2(R),

more precisily

(

∑

i

(a(Ri))
p∗w

w(Ri)

w(R)

) 1
p∗w

≤ 2[w]
δ

nM
A1,R

( |⋃iRi|
|R|

) δ
nM′

a(R) j = 1, 2

Now we are in a position to finish the proof exactly as of Theorem 2.16.
We omit the details.

�

Appendix A. The truncation method

We include here for completeness the different truncation arguments that
we used in our results.

A.1. The classical weak implies strong for the gradient. We include
here the classical truncation argument for Lipschitz functions related to
the functional defined by the integral of the gradient. The general idea of
truncation arguments in the context of Poincaré-Sobolev inequalities is well
known, classical references are [M85] and [BCLSC95].

Lemma A.1. Let g : Rn → R be any nonnegative Lipschitz function. Sup-
pose that for the pair 1 ≤ q < p there is a weak type estimate for a pair of
measures ν, µ of the form:

‖g‖Lp,∞
µ

.

(∫

Rn

|∇g|q dν
)

1
q

.

Then the strong estimate also holds, namely

‖g‖Lp
µ
.

(∫

Rn

|∇g|q dν
)

1
q

.

Proof. Consider the usual truncation of a non negative function g at level
2k given by Tk(g) defined by:

Tkg(x) :=







0 if g(x) ≤ 2k

g(x)− 2k if 2k < g(x) < 2k+1

2k if g(x) ≥ 2k+1.
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Also define for each k ∈ Z the set Gk := {x ∈ R
n : 2k < g(x) ≤ 2k+1}. We

have that, for all x ∈ Gk+1, Tkg(x) = 2k and sop∇(Tkg) ⊂ Gk. We proceed
as follows:

∫

Rn

gp(x)dµ .

k=∞
∑

k=−∞
2kpµ(Gk+1)

.

k=∞
∑

k=−∞
2(k−1)pµ(Tkg(x) > 2k−1)

.

k=∞
∑

k=−∞

(

2k−1µ(Tkg(x) > 2k−1)
1
p

)p
.

Since Tkg is still a Lipschitz function, we can use the hypothesis and get

∫

Rn

gp(x)dµ .

k=∞
∑

k=−∞

(∫

Rn

|∇Tkg|q dν
)

p
q

.

k=∞
∑

k=−∞

(∫

Gk

|∇Tkg|q dν
)

p
q

.

k=∞
∑

k=−∞

(
∫

Gk

|∇g|q dν
)

p
q

.

(∫

Rn

|∇g|q dν
)

p
q

using that p
q > 1 and the disjointness of the family {Gk}. �

A.2. Truncation in the bi-parameter setting.

Lemma A.2. Let g : Rn1×R
n2 → R be any nonnegative Lipschitz function.

Suppose that for p ≥ 1 there is a weak (q, p)-type estimate for a pair of
measures ν, µ of the form:

‖g‖Lp,∞
µ

.

(∫

Rn1×Rn2

(|∇1g|qdν
)1/q

+

(∫

Rn1×Rn2

(|∇2g|qdν
)1/q

.

Then the strong estimate also holds, namely

‖g‖Lp
µ
.

(∫

Rn1×Rn2

(|∇1g|qdν
)1/q

+

(∫

Rn1×Rn2

(|∇2g|qdν
)1/q

.

Proof. This case is as easy as Lemma A.1, since the class of Lipschitz func-
tions enjoys the truncation property. The same proof works here as well. �

Appendix B. The proof of Lemma 5.3

We include here the proof of Lemma 5.3, namely estimate (5.4). We recall
here that estimate:

(B.1) ℓ(Q)δ−
∫

Q

∫

Q

|f(x)− f(y)|
|x− y|n+δ

dydx .n
1

δ(1 − δ)
ℓ(Q)−

∫

Q
|∇f |.



40 M.E. CEJAS, C. MOSQUERA, C. PÉREZ, AND E. RELA

Proof of Lemma 5.3. We start by using the FTC to obtain a representation
formula as follows

Using the FTC, for every x, y ∈ Q,

f(y)− f(x) =

∫ 1

0
∇f(x+ t(y − x)) · (y − x)dt.

Then, for a fixed x ∈ Q, the inner integral in (B.1) can be written as

∫

Q

|f(x)− f(y)|
|x− y|n+δ

dydx ≤
∫

Q

∫ 1

0

|∇f(x+ t(y − x))|
|x− y|n+δ−1

dtdydx

=

∫ 1

0

∫

Q∩B(x,
√
nℓ(Q))

|∇f(x+ t(y − x))|
|x− y|n−(1−δ)

dydtdx

= I

since Q ⊂ B(x,
√
nℓ(Q)) for any x ∈ Q. Now, we change variables putting

z = x+ t(y − x) = (1 − t)x+ ty. Then one has |x− y| = |z − x|/t and the
change of variables theorem yields

I =

∫ 1

0

∫

((1−t)x+tQ)∩B(x,
√
ntℓ(Q))

|∇f(z)|
|z − x|n−(1−δ)

tn−(1−δ)

tn
dzdtdx

≤
∫ 1

0

∫

Q∩B(x,
√
ntℓ(Q))

|∇f(z)|
|z − x|n−(1−δ)

t−(1−δ)dzdtdx

≤
∫

Q

∫ 1

|z−x|√
nℓ(Q)

dt

t1−δ

|∇f(z)|
|z − x|n−(1−δ)

dzdx

by Fubini again. Going back to the beginning and putting all together we
obtain

ℓ(Q)δ

δ
−
∫

Q

∫

Q

|∇f(z)|
|z − x|n−(1−δ)

dzdx =
ℓ(Q)δ

δ
−
∫

Q
|∇f(z)|

∫

Q

dx

|z − x|n−(1−δ)
dz.

Now we use that, for any Lebesgue measurable set Ω and 0 < α < n, we
have the estimate

∫

Ω

dx

|z − x|n−α
≤ v−α/n

n α−1|Ω|α/n, for all z,

where vn is the volume of the unit ball of Rn. We finally obtain that

ℓ(Q)δ−
∫

Q

∫

Q

|f(x)− f(y)|
|x− y|n+δ

dydx ≤ cnℓ(Q)δ
1

δ(1 − δ)
|Q| 1−δ

n −
∫

Q
|∇f(z)|

=
cn

δ(1 − δ)
ℓ(Q)−

∫

Q
|∇f(z)|.

�
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type inequalities on John domains, Ark. Mat. 57.2 (2019), pp. 285–316. 5
[Chu95] S. Chua, Weighted sobolev inequalities of mixed norm, Real Anal. Ex. 21

(1995), no. 2, 555–571. 12
[Chu06] S. Chua, Extension theorems on weighted Sobolev spaces and some applica-

tions, Canad. J. Math. 58 (2006), no. 3, 492–528. 25
[NPV12] E. Di Nezza, G.Palatucci, and E. Valdinoci, Hitchhiker’s guide to the frac-

tional Sobolev spaces, Bull. Sci. Math. 136 (2012), no 5, 521-573. 4
[DM10] O. Domı́nguez and M. Milman, New Brezis-Van Schaftingen-Yung Sobolev

type inequalities connected with maximal inequalities and one parameter fam-

ilies of operators, arXiv:2010.15873v1. 13
[DD] I. Drelichman and R. G. Durán, The Bourgain-Brézis-Mironescu formula in
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[LW98] G. Lu and R. Wheeden, Poincaré inequalities, isoperimetric estimates, and

representation formulas on product spaces, Indiana Univ. Math. J. 47 (1998),
no. 1, 123–151. 2, 12, 13, 30
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