
A Deep Fourier Residual Method for solving PDEs using

Neural Networks

Jamie M. Taylor1, David Pardo2,3,4, and Ignacio Muga2,5

1Department of Quantitative Methods, CUNEF University, Madrid, Spain
2Basque Center for Applied Mathematics (BCAM), Bilbao, Bizkaia, Spain

3University of the Basque Country (UPV/EHU), Leioa, Spain
4Ikerbasque (Basque Foundation for Sciences), Bilbao, Spain

5Instituto de Matemáticas, Pontificia Universidad Católica de Valparáıso, Chile.

Abstract

When using Neural Networks as trial functions to numerically solve PDEs, a key choice to be
made is the loss function to be minimised, which should ideally correspond to a norm of the error.
In multiple problems, this error norm coincides with–or is equivalent to–the H−1-norm of the
residual; however, it is often difficult to accurately compute it. This work assumes rectangular
domains and proposes the use of a Discrete Sine/Cosine Transform to accurately and efficiently
compute the H−1 norm. The resulting Deep Fourier-based Residual (DFR) method efficiently
and accurately approximate solutions to PDEs. This is particularly useful when solutions lack
H2 regularity and methods involving strong formulations of the PDE fail. We observe that the
H1-error is highly correlated with the discretised loss during training, which permits accurate
error estimation via the loss.

1 Introduction

The use of Deep Learning techniques employing Neural Networks (NNs) have been sucessful to
solve a wide range of data-based problems across fields such as image proccessing, healthcare,
and autonomous cars [1, 2, 20, 23, 34, 43, 52, 54]. Recently, there has been a surge of interest
in the use of neural networks as function spaces that can be employed to obtain numerical
solutions of Partial Differential Equations (PDEs) [5, 9, 37, 40, 47, 48]. Owing to the universal
approximation theorem, and variants in Sobolev spaces [16, 24, 25, 30], it is known that a
sufficiently wide or deep NN is able to approximate any given continuous function on a compact
domain with arbitrary accuracy, and thus they make suitable function spaces for solving PDEs.
The use of automatic differentiation (autodiff) [4] facilitates efficient numerical evaluation of
derivatives, which allows algorithmic differentiation of the neural network itself, as well as the
use of gradient-based optimisation techniques such as Stochastic Gradient Descent (SGD) [8]
and Adam [31] in order to minimise appropriate loss functions over a space of neural networks.

A quantitative version of the Universal Approximation Theorem [3] demostrates that NNs
can approximate without suffering the curse of dimensionality, requiring far fewer degrees of
freedom to approximate functions with high-dimensional inputs than classical piecewise-linear
function spaces, making them an attractive function space for solving PDEs, in particular,
in high-dimensional problems. Beyond solving single instances of PDEs, NNs have shown a
capacity to learn operators that solve families of parametrised PDEs, allowing rapid “online”
evaluation of solutions after an “offline” training of the network [13, 22, 32, 35, 36].

1

ar
X

iv
:2

21
0.

14
12

9v
1

 [
m

at
h.

N
A

]
 2

5
O

ct
 2

02
2

The flexibility of NNs to solve many classes of PDEs is owed to a general and simple frame-
work, whereby one chooses an appropriate architecture of the NN, a loss function, whose min-
imiser should be an exact solution of the PDE, and an optimisation procedure to attempt to
minimise the loss function. In this article, we focus on the choice of loss function when solv-
ing PDEs with NN function spaces. Previous works have considered losses based on strong
[26, 44, 53] and weak [29, 28, 27] formulations of the PDE. However, the choice of a perfect loss
function is generally not obvious as in practice solutions will only reach local minima, and the
loss and error may have distinct or unknown convergence rates as one approaches either a local
minimiser or a practically unattainable global minimiser.

Generally, a PDE operator can be described by a (possibly nonlinear) map R : X → Y ,
where X,Y are Banach spaces. The PDE then takes the form

R(u) = 0. (1)

For example, Poisson’s equation, −∆u(x) = f(x), on a domain Ω with homogeneous Dirichlet
boundary condition and f ∈ L2(Ω) may be interpreted in strong form via the map
Rs : H2(Ω) ∩H1

0 (Ω)→ L2(Ω) given by

Rs(u) = ∆u+ f, (2)

or in weak form via the map Rw : H1
0 (Ω)→ H−1(Ω) := [H1

0 (Ω)]∗ given by

〈Rw(u), v〉H−1×H1 =

∫
Ω

∇u(x) · ∇v(x)− f(x)v(x) dx. (3)

When employing NNs to numerically solve PDEs, a loss is often selected as the norm of the
PDE residual in Y , that is,

L(u) := ||R(u)||Y . (4)

One is generally confronted with two issues within this framework. The first is that norms on
function spaces are generally given by integrals and thus a quadrature rule must be employed
in order to numerically approximate L(u). In contrast to polynomial-based function spaces, an
exact quadrature rule is generally unobtainable. Moreover, a poor choice of quadrature rule can
lead to a form of “overfitting” and poor approximation of solutions [46]. The second issue is
that in infinite dimensional spaces not all norms are equivalent, and thus the choice of norm on
Y can directly affect the convergence of the error during training. Ideally, we should employ
norms on X and Y which are compatible in the sense that the X-norm of the error is equivalent
to the Y -norm of the residual, leading to a residual minimisation method [9, 10, 15].

Related to this second issue, progress has been made in the direction of a priori and a
posteriori error estimates that allow estimation of the error via the loss [6, 7, 18, 38, 50, 51].
The works rely on coercivity-type estimates of the error in terms of the exact norms, as well as
a control of quadrature and training errors.

Many PDEs can be expressed in weak form via (1) with X = U is a space of trial functions,
and Y = V ∗, where V is the space of test functions. That is,

〈R(u), v〉V ∗×V = 0 ∀v ∈ V. (5)

We commonly consider cases where R represents a linear and inhomogeneous PDE, and thus
may be expressed in the form

〈R(u), v〉V ∗×V = b(u, v)− f(v), (6)

where f ∈ V ∗ and b : U × V → R is a bilinear form. It is clear that the PDE, in weak form, is
equivalent to the statement that ||R(u∗)|| = 0 for any norm on V ∗. The most natural norm is
the dual norm, induced by the norm on V , defined via

||f ||V ∗ = sup
v∈V \{0}

|f(v)|
||v||V

. (7)

2

The advantage of employing the dual norm on V ∗ is that, under certain assumptions that
we will outline in more detail in Section 3.1, one can relate the dual norm of the residual to the
norm of the error. Specifically, 1

M
||R(u)||V ∗ ≤ ||u−u∗||U ≤ 1

γ
||R(u)||V ∗ , where u is a candidate

solution, u∗ is the exact solution, and M,γ are positive, problem dependent, constants. This
allows ||R(u)||V ∗ to be used as an error estimator, without needing to know the exact solution.
In addition, if we can find a way to numerically approximate the dual norm, we can employ this
as a loss function to be minimised over a trial function space.

We propose a Deep Fourier Residual (DFR) method to approximate the error of candidate
solutions of PDEs in H1 via an approximation of the dual norm of the residual of the PDE
operator. The dual norm is then employed as a loss function to be minimised. The advantage
of such a method is that the resulting norm is equivalent to the H1-error of the solutions for
certain well-posed problems.

We consider several numerical examples, comparing the DFR approach to other losses em-
ployed to solve differential equations using NNs. Our numerical examples exhibit strong cor-
relation between the proposed loss and H1-error during the training process. For sufficiently
regular problems, our DFR method is qualitatively equivalent to existing methods in the litera-
ture (Section 4.1.2) [27, 44]. However, in less regular problems, our method leads to significantly
more accurate solutions, both for an equation that admits a smooth solution with large gradi-
ents (Section 4.1.3), and for an elliptic equation with discontinuous parameters (Section 4.1.4).
Indeed, methods based on the strong formulation of the PDE, such as PINNs [44], cannot be
implemented for such applications. The DFR method is shown to be advantageous both when
solutions admit H1 \H2 regularity, and in regular problems where the forcing term has a large
discrepency between its L2 and H−1 norm. We then consider further numerical experiments
which demonstrate the DFR method’s capability in a linear equation with point source (Sec-
tion 4.2.1), a nonlinear ODE (Section 4.2.2), and a 2D linear problem (Section 4.2.3).

The DFR method is currently limited to rectangular domains where each face has either
a Dirichlet or a Neumann Boundary condition. We rely on a Fourier-type representation of
the H−1 norm that can be performed efficiently using the one-dimensional Discrete Cosine
Transform and Discrete Sine Transform (DCT/DST), which are based on the Fast Fourier
Transform (FFT), in each coordinate direction. Generally, an extension of our techniques to
PDEs on arbitrary domains Ω would require access to an orthonormal basis of H1(Ω), whose
obtention may prove more costly than solving the PDE itself. Furthermore, the DST/DCT
takes advantage of the FFT, which allows an inexpensive evaluation of the loss and would not
be available in general domains. A possibility for the extension of the DFR method to arbitrary
domains include methods analogous to embedded domain methods [19, 21, 33, 39, 41, 45, 49],
which embeds domains with complex geometry into a simpler fictious computational domain. It
is also possible to borrow ideas from Goal-Oriented adaptivity (e.g., [42]) to the proposed DFR
method, although this will be postponed for a future work.

The structure of the paper is as follows. In Section 2 we cover some preliminary concepts.
The theoretical groundwork for the definition of the DFR method is presented in Section 3, with
our proposed loss defined in Section 3.3. Section 4.1 contains numerical examples comparing our
proposed loss function with the VPINNs and collocation losses, which are roughly equivalent in
regular problems, but we will demonstrate that the DFR method greatly outperforms VPINNs
and PINNs when solutions are less regular. In Section 4.2 we consider further numerical ex-
periments that demonstrate the DFR in equations with a point source, nonlinearities, and 2D
results. Finally, concluding remarks are made in Section 5.

3

2 Preliminaries

2.1 Neural Networks

Neural networks are functions expressed as compositions of more elementary functions. In the
simplest case of a fully connected feed-forward NN, an M -layer neural network is described by
M layer functions, Li : RNi → RNi+1 , that are of the form

Li(x) = σi (Aix+ bi) , (8)

where Ai is an Ni×Ni+1 matrix, bi ∈ RNi+1 , and σi is an activation function that may depend
on the layer index i and acts component-wise on vectors. A fully-connected feed forward neural
network is a function ũ : RN1 → RNM+1 defined by

ũ(x) = LM ◦ LM−1 ◦ . . . ◦ L1(x). (9)

The final activation function σM is taken to be the identity, σM (x) = x. The parameters Ai, bi,
known as the weights and biases of the network, parametrise the neural network. Optimisation
over a neural network space with fixed architecture corresponds to identifying the optimal values
of these trainable parameters.

In the context of NNs for PDEs, we often need to impose homogeneous Dirichlet boundary
conditions on our candidate solutions. In this work, we will do this by introducing a cutoff
function. That is, if we wish to consider functions u : Ω → R so that for a subset of the
boundary ΓD ⊂ ∂Ω, u|ΓD = u0, we take ũ to be of the form (9), and define

u(x) = φ1(x)ũ(x) + φ2(x), (10)

where φ1 is a function satisfying φ1|ΓD = 0 and φ1 > 0 on Ω̄ \ ΓD, and φ2|ΓD = u0.
We include a schematic of this architecture in Figure 1

.

.

.
.
.
.

.

.

.
.
.
.

Input︷ ︸︸ ︷
Hidden layers︷ ︸︸ ︷

Trainable layers

︸ ︷︷ ︸

ũ︷ ︸︸ ︷ Output︷ ︸︸ ︷

Apply B.C.

x ũ(x) u(x)

. . .

. . .

. . .

Figure 1: NN architecture

2.2 PINN and VPINN losses

Whilst there any many discrete losses employed when solving PDEs via NNs, in this section we
outline two particular cases, the PINN (collocation), and the VPINN losses, which are based
on strong and weak formulations of the PDE, respectively. These methods will be used for
comparison in the numerical experiments of Section 4.1.

4

2.2.1 Collocation

We assume that the strong form of the residual can be represented in the form

Lu(x) =0 (x ∈ Ω),

Gu(x) =0 (x ∈ ∂Ω).
(11)

The collocation method considers discretisations of the L2 norms of Lu and Gu as the loss
function to be minimised, according to an appropriate quadrature rule. Explicitly, we consider
the loss

Lcol(u) :=
1

K1

K1∑
i=1

ωi|Lu(xi)|2 +
1

K2

K2∑
i=1

ωbi

∣∣∣Gu(xbi)
∣∣∣2 , (12)

where (xi)
K1
i=1 and (ωi)

K1
i=1 are quadrature points in Ω and quadrature weights, respectively,

which may be taken via a Monte Carlo or a deterministic quadrature scheme. Similarly, (xbi)
K2
i=1

and (ωbi)
K2
i=1 are quadrature points and weights on the boundary.

In PDEs with low regularity, the strong form of the PDE does not hold and minimisers of
Eq. (12) will not accurately represent the PDE. Despite this limitation, the collocation (PINN)
method is one of the most attractive methods for regular problems as it is simple to implement
using autodiff algorithms. Furthermore, by using Monte Carlo integration techniques, integrals
can be estimated in high dimension without suffering from the curse of dimensionality.

2.2.2 VPINNs

VPINNs employ a loss that utilizes the weak formulation of the PDE. They correspond to a
Petrov-Galerkin method where the trial space is given by NNs. Given a set of test functions
(vk)Kk=1, a candidate solution u and the residual R(u) ∈ V ∗ given in weak form, the loss is
defined as

LVP (u) =

K∑
k=1

|〈R(u), vk〉V ∗×V |2. (13)

In [27], this method was shown to be advantageous over classical PINNs method, both
in terms of accuracy and speed. A particular application within their work, relevant to this
manuscript, was to consider ODEs on [0, 1] with a NN architecture that consists of a single
hidden layer with sine activation function, and test functions vk(x) = sin(kπx). For this imple-
mentation, the authors were able to perform an exact quadrature to evaluate 〈R(u), vk〉V ∗×V ,
which was employed in their loss function. In other implementations within their article, Leg-
endre polynomials are considered as test functions. Whilst not directly commented within their
work, in their implementation with sine test functions, the norm may be interpreted as a dis-
cretisation of the L2-norm of the strong form of the residual. As they consider the test functions
(vk)Kk=1 form to be a subset of an orthonormal basis of L2, if there exists a strong form residual
Lu ∈ L2 such that

〈R(u), v〉V ∗×V = 〈Lu, v〉L2

for all v ∈ H1
0 , we observe that

K∑
k=1

|〈R(u), vk〉V ∗×V |2 =

K∑
k=1

〈Lu, vk〉2L2 ≈ ||Lu||2L2 . (14)

In particular, for sufficiently regular problems, this implies that LVP and Lcol each correspond
to distinct discretisations of the same loss, i.e., the L2-norm of the strong-form residual. The
significant difference, however, is that the discretisation (13) is always well defined, even if the
residual cannot be represented by an L2 function, and we will observe the consequences of this
distinction in Section 4.1.4, employing sine-based test functions, as in [27].

5

3 DFR Method

For exposition purposes we will only list the key results necessary for defining the problem, with
the details deferred to appendices.

3.1 Dual Norms and Residual Minimisation

Let us consider a PDE of the form (5), described by a weak-form residual operator R : U → V ∗,
which is linear and inhomogeneous, so that it may be expressed as in (6). We assume V to
be a Hilbert space, and take f ∈ V ∗, and b : U × V → R to be a bilinear form satsifying the
continuity condition

|b(u, v)| ≤M ||u||U ||v||V (15)

and inf-sup stability condition

inf
u∈U\{0}

sup
v∈V \{0}

|b(u, v)|
||u||U ||v||V

≥ γ, (16)

where 0 < γ < M .
If we consider the map B : U → V ∗ given by B : u 7→ b(u, ·), then the conditions (15)

and (16) ensure that B is a boundedly invertible map onto its image B(U), and, in particular,
if B is surjective, then there exists a unique solution to (5) for all f ∈ V ∗ [14, Section 6.12].
Furthermore, if f is in the range of B, given the exact solution u∗ ∈ U to (5), and a candidate
solution u ∈ U , we may estimate the error using the dual norm of the residual via the inequalities

1

M
||R(u)||V ∗ ≤ ||u− u∗||U ≤

1

γ
||R(u)||V ∗ . (17)

Both inequalities are found by noting that since R(u∗) = 0, then

〈R(u), v〉V ∗×V = 〈R(u), v〉V ∗×V − 〈R(u∗), v〉V ∗×V = b(u− u∗, v)

for any test function v ∈ V . Correspondingly, the lower bound is a direct consequence of (15),
as

sup
v∈V \{0}

|〈R(u), v〉V ∗×V |
||v||V

= sup
v∈V \{0}

|b(u− u∗, v)|
||v||V

≤M ||u− u∗||U . (18)

Similarly, the upper bound is a direct consequence of (16), as

sup
v∈V \{0}

|〈R(u), v〉V ∗×V |
||v||V

= sup
v∈V \{0}

|b(u− u∗, v)|
||v||V

≥ γ||u− u∗||. (19)

This makes ||R(u)||V ∗ a natural choice of norm to be utilised as a loss function for training
NNs. Generally, however, it is non-trivial to evaluate || · ||V ∗ , which is defined as in (7), and,
unlike classical Sobolev-type norms, generally cannot be expressed as a single integral of the
function and its derivatives.

3.1.1 Nonlinear equations

Whilst our previous discussion applies only to linear equations, via a linearisation argument it
is possible to obtain a local version of (17) for nonlinear PDE. We consider an abstract PDE
given of the following form. Considering R : U → V ∗ to be nonlinear, we obtain the following
result.

Proposition 3.1. Assume that there exists a (possibly non-unique) solution u∗ ∈ U of R(u∗) = 0
such that:

(i) There exists r0 > 0 such that R is Gateaux differentiable for all u ∈ U with ||u−u∗||U < r0.

6

(ii) The directional derivative δwR(u∗) is bounded below, so that there exists γ > 0 such that
for all w ∈ U

||δwR(u∗)||V ∗ ≥ γ||w||U .

(iii) There exists some r0 > 0 such that the Gateaux derivative of R is Lipschitz on the ball
Br0(u∗).

Then for every 0 < ε < 1 there exists δ > 0 such that if ||u− u∗||U < δ,

1− ε
M
||R(u)||V ∗ ≤ ||u− u∗||U ≤

1 + ε

γ
||R(u)||V ∗ . (20)

We defer the precise definitions of the objects in the proposition and its proof to Appendix C.
If R corresponds to a linear inhomogeneous PDE and is thus equal to its linearisation, δ can
be taken as +∞ and the estimate is global. The significance of this result is that if we have a
PDE described by a sufficiently regular R and a candidate solution sufficiently close to an exact
solution, which need not be unique, they will satisfy estimates analogous to (17). In particular,
if ||R(u)||V ∗ is used as a loss function, and the candidate solution is close enough to the exact
one (which is to be expected at the end of trianing), we should observe strong a correlation
between the loss and the H1-error. We will numerically illustrate this in Section 4.2.2.

3.2 Evaluation of the H−1 norm with the DFR method

This work takes advantage of a Parseval-type inequality to evaluate the dual norm of elements
of the dual space in terms of an orthonormal basis of the original Hilbert space.

Proposition 3.2. Let V be a real separable Hilbert space with inner product 〈·, ·〉V : V × V → R,
and (ϕk)∞k=1 a countable, orthogonal basis of V , with ||ϕk||2V =: λk. Then for all f ∈ V ∗,

||f ||V ∗ := max
v∈V \{0}

|f(v)|
||v||V

=

(
∞∑
k=1

λ−1
k f(ϕk)2

) 1
2

. (21)

Proof. By the Riesz Representation Theorem, there exists a unique solution uf ∈ V of

〈uf , v〉V = f(v) (22)

for all v ∈ V , that satisfies ||uf ||V = ||f ||V ∗ , and thus the mapping f 7→ uf is an isometry. As
(ϕk)∞k=1 is an orthogonal basis of V , we then have via the generalised Parseval identity that

||f ||V ∗ = ||uf ||V =

(
∞∑
k=1

〈uf , ϕk〉2V
||ϕk||2V

) 1
2

=

(
∞∑
k=1

λ−1
k f(ϕk)2

) 1
2

. (23)

Our approach consists of approximating the dual norm of elements f ∈ V ∗ using a truncated
version of this series expression. To do so, we need an appropriate orthogonal basis (ϕk)∞k=1 of
V .

In this work, we restrict ourselves to problems where the space of test functions is V = {u ∈
H1(Ω) : u|ΓD = 0}, where ΓD ⊂ ∂Ω is the region of the boundary corresponding to a Dirichlet
boundary condition of the PDE. For this case, we take our orthogonal basis of V to be the
(weak) solutions of

λk

∫
Ω

v(x)ϕk(x) =

∫
Ω

∇ϕk(x) · ∇v(x) + ϕk(x)v(x) dx (∀v ∈ V)

||ϕk||L2 =1.

(24)

7

In strong form, we may write the PDE as

(1−∆)ϕk(x) = λkϕk(x). (25)

That is, ϕk are eigenvectors of 1−∆ with homogeneous Dirichlet condition on ΓD and homoge-
neous Neumann condition on ∂Ω\ΓD = ΓN , with corresponding eigenvalues λk, and normalised
to have unit norm in L2(Ω). The key properties of ϕk, with proofs deferred to Appendix A and
derived from classical spectral theory, are:

1. (ϕk)∞k=1 forms an orthogonal basis of V , and an orthonormal basis of L2(Ω).

2. ||ϕk||2H1 = λk, where λk is the eigenvalue of 1−∆ corresponding to ϕk.

3. λk ≥ 1 for all k and, under a suitable reordering, λk is non-decreasing and unbounded.

In this case, we see that f and uf are related via (1−∆)uf = f , and we may interpret (21)
as stating that ||f ||V ∗ = ||(1−∆)−1f ||H1 , where our series expression allows us to evaluate the
latter in a straightforward manner.

In general geometries, it is non-trivial to identify the eigenvectors and eigenvalues of 1−∆
on a domain, and thus for the sake of this work we consider only simple geometries described
by n-dimensional cubes, Ω = (0, π)n, with ΓD given by a union of any number of the 2n
faces of ∂Ω. In this case, the eigenvectors of 1 −∆ are simply products of the eigenvectors of
1 − d

dx2i
in each coordinate direction with the appropriate boundary conditions, and thus may

be written explicitly. Moreso, as these eigenvectors are all described as sines and cosines of
varying frequencies, we will be able to take advantage of the Discrete Sine/Cosine Transforms
to efficiently evaluate the residual at the basis functions.

Considering the one-dimensional problem, as ∂[0, π] consists of only two points, there are
only four options for ΓD ⊂ ∂[0, π]. Table 1 lists the four possible boundary conditions, along
with corresponding eigenvalues λk and eigenvectors ϕk.

ΓD λk ϕk 〈·, ϕk〉L2 〈·, ϕ′k〉L2

{0, π} 1 + k2
√

2
π sin(kx) DST-II DCT-II

{0} 1 +
(
k − 1

2

)2 √
2
π sin

((
k − 1

2

)
x
)

DST-IV DCT-IV

{π} 1 +
(
k − 1

2

)2 √
2
π cos

((
k − 1

2

)
x
)

DCT-IV DST-IV

∅ 1 + (1− k)2
√

2
π cos ((k − 1)x)− δk1π−

1
2 DCT-II DST-II

Table 1: Basis functions and eigenvalues for H1(0, π) with various boundary conditions, along with the
relevant transforms for evaluating integrals against the basis functions and their derivatives.

To evaluate PDE residuals acting on basis functions of the above forms, we will need to
numerically evaluate integrals involving basis functions and their derivatives. As these are
global basis functions, a naive calculation of the integrals of each basis function could prove
prohibitively expensive. To remedy this, we consider the Discrete Sine/Cosine transforms as
a means of quadrature, which reduce the number of calculations required to use an N point
midpoint rule for N basis functions from O(N2) to O(N lnN). Table 1 contains in its fourth and
fifth columns the quadrature scheme for evaluating integrals against the basis functions and their
derivatives, respectively. We defer detailed discussion of the transforms to Appendix B. Their
key use is that they are analogous to the Fast Fourier Transform, where the boundary conditions

8

are no longer periodic. In fact, their efficient calculation arises from their representation as
special cases of the Discrete Fourier Transform under particular symmetries.

These basis functions are easily adapted to arbitrary intervals (a, b) by a rescaling argument.
We may define corresponding orthonormal basis functions ϕ̃k ∈ H1(a, b) by

ϕ̃k(x) = ϕk

(
π(x− a)

b− a

)
, (26)

which are eigenvectors of 1−∆ on (a, b) with corresponding eigenvalues

λ̃k =
π2

(b− a)2
(λk − 1) + 1. (27)

Similarly, by considering tensor products of these 1D basis functions, we can obtain an

orthonormal basis for H1(Ω) with the appropriate boundary conditions when Ω =
d∏
i=1

(ai, bi).

3.3 Definition of the discretised loss

Our aim is to define a computable, discretised loss, LV ∗ , such that for a candidate solution u,
we have that

LV ∗(u) ≈ ||R(u)||2V ∗ . (28)

We will do this by employing a truncated series expansion of (21), and taking the sine/cosine
based basis functions outlined in Table 1, with quadrature corresponding to the DCT/DST, as
outlined in Appendix B. Before defining the loss in the general case, we outline its definition in
a simple one-dimensional example for clearer exposition.

3.3.1 One-dimensional example

Let f ∈ L2(0, π) and g ∈ R. Let us consider the ODE, in weak form, to be: find u ∈ H1(0, π)
with u(0) = 0, such that

〈R(u), v〉V ∗×V =

∫ π

0

σ(x)u′(x)v′(x) + f(x)v(x) dx− gv(π) = 0 (29)

for all v ∈ H1(0, π) with v(0) = 0. Consulting Table 1, we see that our relevant basis func-
tions for V corresponding to our homogeneous Dirichlet boundary condition at 0 are given by

ϕk(x) =
√

2
π

sin
((
k − 1

2

)
x
)

with corresponding eigenvalues λk = 1 +
(
k − 1

2

)2
. The derivatives

of our basis functions are readily evaluated as ϕ′k(x) =
(
k − 1

2

)√
2
π

cos
((
k − 1

2

)
x
)
.

First, we choose a truncation frequency, N > 0. For 1 ≤ k ≤ N − 1, we now aim to
approximate 〈R, u, ϕk〉V ∗×V . Recalling the approximations in (57), we may then approximate
the integrals appearing in the residual as∫ π

0

f(x)ϕk(x) dx =

∫ π

0

f(x)

√
2

π
sin

((
k − 1

2

)
x

)
dx

≈SIIN,k(f),∫ π

0

σ(x)u′(x)ϕ′k(x) dx =

∫ π

0

(
k − 1

2

)√
2

π
cos

((
k − 1

2

)
x

)
σ(x)u′(x) dx

≈
(
k − 1

2

)
CIIN,k(σu′),

(30)

9

where autodiff is employed to evaluate u′ for a candidate solution u described by a NN, and
CIIN,k,SIIN,k are the type-II DCT and DST, respectively, as described in Appendix B. The bound-
ary term may be evaluated exactly as

gϕk(π) = g

√
2

π
sin

((
k − 1

2

)
π

)
= g

√
2

π
(−1)k+1. (31)

Thus, we define the discretised transform of the residual, R̂(u)(k) for 1 ≤ k ≤ N − 1 as

R̂(u)(k) :=

(
k − 1

2

)
CIIN,k(σu′) + SIIN,k(f)− g

√
2

π
(−1)k+1. (32)

Finally, our discretised loss, denoted LV ∗ , is defined to be

LV ∗(u) :=

N−1∑
k=1

|R̂(u)(k)|2

1 +
(
k − 1

2

)2 . (33)

3.3.2 The general case

Let Ω = (0, π)d, and take ΓD ⊂ ∂Ω to be a union of faces of the rectangular domain Ω. Take
V = {u ∈ H1(Ω) : u|ΓD = 0}. For a candidate solution u ∈ H1(Ω), consider the residual

〈R(u), v〉V ∗×V =

∫
Ω

F 1
u(x) · ∇v(x) + F 2

u(x)v(x) dx−
∫

ΓN

Gu(x)v(x) dx, (34)

where the functions F 1
u , F

2
u , Gu may be functions of x, u and derivatives of u.

The loss is thus defined according to the following process:

1. Choose a cutoff frequency N > 0.

2. Identify the correct basis functions ϕk1,k2,...,kd(x1, x2, ..., xd) =
d∏
i=1

ϕiki(xi), where ϕiki are

the 1D basis functions described in Table 1 according to the boundary conditions on each
face.

3. Identify the correct eigenvalues λk1,k2,...,kd = 1−d+
d∑
i=1

λki for each basis function according

to Table 1.

4. Express the residual operator R(u) in weak form, evaluate integrals across the interior
and faces by performing the appropriate DCT/DST in each coordinate direction, ac-
cording to the fourth and fifth columns of Table 1 for k1, ..., kd = 1, ..., N − 1 to give
〈R(u), ϕk1,...,kd〉V ∗×V ≈ R̂(u)(k1, ..., kd).

5. Evaluate the loss as

LV ∗(u) :=

d∑
i=1

N−1∑
ki=1

|R̂(u)(k1, k2, ..., kd)|2

λk1,k2,...,kd
.

3.4 Potential limitations

We have two sources of error in the approximation (28). First, the error arising from quadrature,
according to our mid-point rule for integration and evaluation of R̂(u)(k). Second, errors arise
from the truncation of the infinite series in (21). In contrast, the quadrature rule employed by
the DCT/DST is exact when R(u), represented as a function in H1 via the Riesz Represen-

tation Theorem belongs to the span of
(
(ϕk1k2,...,kd)Nki=1

)d
i=1

, where N is the cutoff frequency
employed. That is, our discretisation error corresponds to high-frequencies of the residual–not
to be confused with high frequencies of the solution. In principle, high-frequency components
in the residual may arise as a consequence of the following:

10

1. The residual itself contains high-frequency modes due to the presence of terms with low-
regularity.

2. The function space used has low regularity, such as NNs with a ReLU activation function.

3. The function space is flexible enough and the number of integration points is low enough
that overfitting occurs during minimisation, which would introduce high-frequency modes,
unseen by the loss.

By using a sufficiently high cutoff frequency N > 0, errors corresponding to (1) should be
negligible. To avoid the possibility of (2), we employ smooth activation functions. With regards
to (3), it is known that extreme quadrature issues can arise when training NNs to solve PDEs
[46], which may be interpreted as a form of overfitting. We do not focus on this issue within
this work and we use a validation and a training set to verify if overfitting occurs.

4 Numerical Experiments

4.1 Validation Results

We now consider various linear ODEs to illustrate the differences between different losses for
training a neural network when solving linear PDEs. LV ∗ ,LVP , and Lcol denote our proposed
method, the VPINNs loss, and the collocation method, respectively. The obtained solutions are
denoted as uV ∗ , uVP , and ucol, respectively.

Figure 1 describes the NN architecture of our candidate solutions. It consists of five hidden
layers with tanh activation function and 25 neurons per layer. We only consider homogeneous
Dirichlet boundary conditions, which are implemented according to (10) by taking φ1(x) = x
when ΓD = {0}, and φ1(x) = x(π−x) when ΓD = {0, π}. For consistency between experiments,
each candidate solution is initialised with the same weights and biases.

Our implementation uses Tensorflow 2.8. We use Adam as our optimiser with initial learning
rate 10−2, and an adaptive learning rate, as defined in [55], and implemented via a Callback.
The adaptive learning rate allows the optimiser to select the “correct” learning rate according to
the decay of the loss, and rejects iteration steps which lead to an increase in the loss. This choice
accelerates convergence, and allows a fairer comparison between the three methods considered,
as otherwise the convergence may be highly dependent on the selected learning rate.

In each case, we minimise the loss using 200 points, which in the Fourier-based losses cor-
responds to employing the first 200 basis functions in the truncated series expansions (21) and
(13), and 200 equispaced integration points in the collocation method with a mid-point inte-
gration rule. We also measure the loss on a validation set of 274 points so that we may see if
overfitting takes place, which does not factor into the updating of the NN weights, and is only
used as a metric for comparison after training. In the Fourier-based losses, this also corresponds
to a total of 274 frequencies used to evaluate the validation loss.

4.1.1 Losses implemented

For comparison, we implement the collocation based loss as described in Section 2.2.1, and the
VPINNs loss as described in Section 2.2.2. For the latter, we consider an implementation that
is highly comparable to the loss LV ∗ that we propose. Explicitly, we take

LVP (u) :=

N∑
k=1

|R̂(u)(k)|2. (35)

where R̂(u)(k) is defined in Section 3.3.2, and we evaluate this using DST/DCT. Thus, we have
an application of VPINNs that allows a direct comparison between using an L2-based norm
and an H−1-based norm for evaluating the PDE residual in weak form. When V = H1

0 (0, π),

11

this is consistent with VPINNs as considered in [27, Section 4.1], which used sine-based test
functions albeit with a different quadrature rule. The only difference between (35) and LV ∗ is
the weighting factor λ−1

k imposed in the summation. As discussed in Section 2.2.2, this leads
to the interpretion of LVP as a discretisation of the L2 norm of the strong formulation of the
residual. As Lcol is also a discretisation of the L2 norm of the strong-form residual, we expect
implementations that utilise Lcol and LVP to generally behave the same when the strong form
is well-defined. The key difference, however, is that LVP is still well-defined when the strong
form of the PDE is not equivalent to the weak form.

4.1.2 Model Problem 1 - Smooth solution

We consider the following ODE in variational form: find u ∈ H1
0 (0, π) satisfying∫ π

0

u′(x)v′(x)− 4 sin(2x)v(x) dx = 0 (36)

for all v ∈ H1
0 (0, π). This has exact solution given by u∗(x) = sin(2x).

This example is selected because the weak and strong forms of the PDE are equivalent, and
the solution only admits low-frequency modes. For such problems, we expect that LVP (u) ≈
Lcol(u), with the approximation being exact in the limit as the number of sampling points
tends to infinity. We further expect all three implemented losses to behave similarly since only
low-frequency modes play a significant role in this problem.

0 1 2 3
−1

−0.5

0

0.5

1
u∗

uV ∗

uVP

ucol

x

u

(a) Approximate and exact solutions

100 101 102 103 104 105

10−4

10−2

100

||εV ∗ ||H1

||εVP ||H1

||εcol||H1

Iterations

H
1
-e

rr
or

(b) Evolution of H1 relative error during training

0 1 2 3

−1

0

1

·10−5

εV ∗

εVP εcol

x

u
−
u
∗

(c) Error functions

0 1 2 3

−4

−2

0

2

·10−4

ε′V ∗ ε′VP ε′col

x

(u
−
u
∗)
′

(d) Errors in the gradient

Figure 2: Model Problem 1. Obtained solutions and relative H1-error evolution for the three methods

12

Loss evolution Loss/error correlation

LV ∗

101 102 103 104 105
10−8

10−4

100

Training
Validation

Iterations

L
os

s

10−4 10−3 10−2 10−1 100 101
10−5

10−2

101

√LV ∗

H
1
-e

rr
or

Training
Validation

LVP
101 102 103 104 105

10−8

10−4

100

Training
Validation

Iterations

L
os

s

10−4 10−3 10−2 10−1 100 101
10−5

10−2

101

√LVP

H
1
-e

rr
or

Training
Validation

Lcol
101 102 103 104 105

10−8

10−4

100

Training
Validation

Iterations

L
os

s

10−4 10−3 10−2 10−1 100 101
10−5

10−2

101

√Lcol

H
1
-e

rr
or

Training
Validation

Figure 3: Model Problem 1. Evolution of the loss for the three considered losses on both the training and
validation data sets, and the correlation between the loss and the relative H1-error during training, with a
straight line corresponding to a linear relationship.

13

H1 (%) L2 (%)
uV ∗ 7.11× 10−3 1.26× 10−3

uVP 2.03× 10−3 4.56× 10−4

ucol 2.07× 10−3 5.16× 10−4

Table 2: Model Problem 1: Errors and losses

Figure 2 shows the obtained solutions and their errors, along with the H1-relative error
evolution during training, where we denote errors by ε, so that εX = u∗ − uX for X = V ∗, VP ,
and col. Table 2 presents the numerical H1- and L2-relative errors of the obtained solutions.
We compare the evolution of the loss during training and the relationship between the loss and
error in Figure 3.

We observe that all three approximations uV ∗ , uVP , and ucol converge well to the solution,
and quantitatively we see via Table 2 that the relative H1 and L2 errors are small in each case,
around 10−3%. Generally, all metrics are comparable between the three obtained solutions, as
expected by the theory, due to the presence of only low-frequency modes. In particular, we see
that the implementations of LVP and Lcol are almost identical, which is as expected as they can
both be interpreted as discretisations of the L2-norm of the strong-form residual. The slight
differences in metrics may easily arise from the optimisation procedure, rather than the losses
themselves.

In the column “Loss/error correlation” of Figure 3 we show the relationship between the
square root of the losses and the relative H−1 error during training. As expected, in view of
Equation (17), the square root of the discretised loss LV ∗ is an excellent approximation of the
H−1 norm of the residual. A similar behaviour is observed with the remaining losses: LVP and
Lcol. However, in these cases, we see slight perturbations in this linear relationship, as expected.

4.1.3 Model Problem 2 - Large gradients

Our next model problem is: find u ∈ H1(0, π) with u(0) = 0 that satisfies∫ π

0

u′(x)v′(x)− 2a2 tanh
(
a
(
x− π

2

))
cosh

(
a
(
x− π

2

))2 v(x) dx+ asech
(
a
(π

2

))2

v(π) = 0 (37)

for all v ∈ H1(0, π) with v(0) = 0. The exact solution is given by

u∗(x) = tanh
(
a
(
x− π

2

))
+ tanh

(aπ
2

)
(38)

We consider this example as this admits C∞ solutions for all a, but for a large, a transition
region with high gradients develops in the solution. In particular, the forcing term, whilst being
a smooth L2 function, has a large discrepancy between its norm in V ∗ and L2, and thus we
expect to see significant differences according to the loss implemented. For our implementation,
we take a = 20.

As we have a Neumann condition at x = 0, for the collocation method we need to include
a further term to enforce the constraint. Our implementation for the collocation loss Lcol uses
equal weights for the interior and boundary terms, i.e.

Lcol(u) :=
∣∣∣u′(π)− asech

(aπ
2

)∣∣∣2 +
1

N

N∑
i=1

|Lu(xi)|2, (39)

where Lu is the strong-form residual. Generally, one could choose to weight the two components
of the loss differently, and the choice of weight is an extra parameter which may effect the
convergence of the model. An advantage of the weak formulation, however, is that it does not

14

require such a choice. Whilst methods exist to attempt to estimate optimal weights during
training within certain settings [56], we do not consider them in this work. Despite the need
to choose an appropriate weight, we observe in Figure 4b that there is very little difference
between the H1-error evolution using LVP and Lcol, suggesting that, in this example, the choice
of weight is unimportant.

0 1 2 3

0

1

2

u∗uV ∗ uVP ucol

x

u

(a) Approximate and exact solutions

100 101 102 103 104 105

10−4

10−2

100

||εV ∗ ||H1

||εVP ||H1

||εcol||H1

Iterations

H
1
-e

rr
o
r

(b) Evolution of H1 relative error during training

0 1 2 3

0

2

4

6

·10−3

εV ∗

εVP

εcol

x

u
−
u
∗

(c) Error functions

0 1 2 3

−2

0

2

4

·10−3

ε′V ∗

ε′VP ε′col

x

(u
−
u
∗)
′

(d) Errors in the gradient

Figure 4: Model Problem 2: Obtained solutions and relative H1-error evolution for the three methods

H1 (%) L2 (%)
uV ∗ 0.025 0.004
uVP 0.100 0.184
ucol 0.132 0.242

Table 3: Model problem 2: Errors and losses

Figure 4 shows that all three methods converge to the exact solution, and this is seen
quantitatively in Table 3. We see that uV ∗ shows the best performance, both in terms of
speed of convergence and the error of the solution at the end of training. Similar to Model
Problem 1, we see that LVP and Lcol show similar behaviours in all regards. As before, the
correlation between the H1-error and the square root of LV ∗ is extremely strong, showing a
directly proportional relationship between them. This behaviour however is no longer seen
when LVP and Lcol are implemented. In particular, we observe that during the initial training,
LVP and Lcol decrease by several orders of magnitude before the error itself starts to decrease
significantly. Thus, we demonstrate that even in the case of a highly regular problem with C∞

solution, both Lcol and LVP can fail to be good estimators of the H1-error, whilst the DFR

15

Loss evolution Loss/error correlation

LV ∗

100 101 102 103 104 105
10−7

10−1

105

Training
Validation

Iterations

L
os

s

10−3 10−2 10−1 100 101 102

10−2

100

√LV ∗

H
1
-e

rr
o
r

Training
Validation

LVP
100 101 102 103 104 105

10−7

10−1

105

Training
Validation

Iterations

L
os

s

10−3 10−2 10−1 100 101 102

10−2

100

√LVP

H
1
-e

rr
or

Training
Validation

Lcol
100 101 102 103 104 105

10−7

10−1

105

Training Validation

Iterations

L
os

s

10−2 10−1 100 101 102

10−2

100

√Lcol

H
1
-e

rr
or

Training
Validation

Figure 5: Model Problem 2. Evolution of the loss for the three considered losses on both the training and
validation data sets, and the correlation between the loss and the relative H1-error during training, with a
straight line corresponding to a linear relationship.

16

method, due to its directly proportional relationship, permits good H1-error estimation.

4.1.4 Model Problem 3 - Discontinuous parameters

We next consider an ODE with discontinuous parameters, whose solution is in H1 but is not
C1 nor H2. We take ΓD = {0, π} and aim to solve∫ π

0

σ(x)u′(x)v′(x)− 4 sin(2x)v(x) dx = 0 (40)

for all v ∈ H1
0 (0, π), where

σ(x) =

{
1 x < π

2
,

2 x > π
2
.

(41)

The exact solution to this problem is given by

u∗(x) =

{
sin 2x x < π

2
,

1
2

sin 2x x > π
2
.

(42)

In particular, u∗ admits a jump discontinuity in its gradient at x = π
2

.
Since σ is discontinuous, the strong and weak forms are not equivalent. In particular, as

σ is piecewise constant, outside of its single point of discontinuity there is no difference in the
(strong) PDEs between

(σ(x)u′(x))′ + 4 sin 2x = 0 (43)

and

u′′(x) +
4

σ(x)
sin 2x = 0. (44)

There is a unique C1 function which solves (44) on (0, π) \
{
π
2

}
, given by

ũ(x) =

{
sin 2x+ 1

2
x x < π

2
,

1
2

sin 2x− 1
2
(x− π) x > π

2
.

(45)

We expect the collocation loss Lcol to fail, as it is ill-equipped to handle PDEs that lack an
equivalent strong formulation. Whilst the discretised VPINN loss LVP is well defined at any
canididate solution, due to the discontinuity in σ, for a general, smooth, trial function u, the
series (13) should diverge as the number of basis functions tends to infinity, as the residual
cannot generally be expressed as an L2 function, so we expect the results to not be trustworthy.

17

0 1 2 3

0

1

u∗
uV ∗

uVP

ucol

x

u

(a) Approximate and exact solutions

100 101 102 103 104 105

10−2

10−1

100

||εV ∗ ||H1

||εVP ||H1

||εcol||H1

Iterations

H
1
-e

rr
or

(b) Evolution of H1 relative error during training

0 1 2 3

−0.8

−0.6

−0.4

−0.2

0

εV ∗ εVP

εcol

x

u
−
u
∗

(c) Error functions

0 1 2 3

−0.5

0

0.5

ε′V ∗

ε′VPε′col

x

(u
−
u
∗)
′

(d) Errors in the gradient

Figure 6: Model Problem 3: Obtained solutions and relative H1-error evolution for the three methods

H1 (%) L2 (%)
uV ∗ 1.01 0.0147
uVP 0.988 0.751
ucol 54.0 81.1

Table 4: Model Problem 3: Errors and losses

Both qualitatively in Figure 6 and quantitatively in Table 4 we see that uV ∗ produces a good
approximation of the exact solution. Figure 7 shows overfitting during the training of uV ∗ at
around 2× 104 iterations, as shown by the divergence of the loss on the training and validation
sets. At this point, the H1 relative error stagnates and ceases to decrease significantly. Before
overfitting occurs, we observe a perfect linear relationship between the square root of the loss
on the training data, however the validation loss remains directly proportional until an uptick
corresponding to the region where the validation loss plateaus. This is also the point at which
the H1-error reaches its minimum, and later begins to increase.

Unsurprisingly, we see that ucol approximates (45), rather than u∗, as the loss implemented
corresponds precisely to (44), and thus produces a very poor solution. In contrast to the previous
examples, as the residual is generally not expressable as a function in L2, we observe a very
large discrepancy between the behaviour of LV ∗ and LVP .

Furthermore, during the training of uVP , in Figure 7 we see what would appear to be an
extreme case of overfitting due to a large discrepency between the loss evaluated on the training
and validation set. However this does not translate into errors, and by comparing the H1-error
evolution in Figure 6 with the loss evolution in Figure 7, we see that precisely at the point
during training where this “overfitting” takes place, around 5 × 105 iterations, the H1-error

18

Loss evolution Loss/error correlation

LV ∗

100 101 102 103 104 105
10−7

10−3

101 Training

Validation

Iterations

L
os

s

10−3 10−2 10−1 100 101
10−3

10−2

10−1

100

√LV ∗

H
1
-e

rr
o
r

Training
Validation

LVP
100 101 102 103 104 105

10−7

10−3

101

Training Validation

Iterations

L
os

s

10−3 10−2 10−1 100 101
10−3

10−2

10−1

100

√LVP

H
1
-e

rr
or

Training
Validation

Lcol
100 101 102 103 104 105

10−7

10−3

101

Training

Validation

Iterations

L
os

s

10−3 10−2 10−1 100 101
10−3

10−2

10−1

100

√Lcol

H
1
-e

rr
or

Training
Validation

Figure 7: Model Problem 3. Evolution of the loss for the three considered losses on both the training and
validation data sets, and the correlation between the loss and the relative H1-error during training, with a
straight line corresponding to a linear relationship.

19

begins to drop significantly and we obtain a good approximation to u∗. This is not, however,
paradoxical, as we know that the DCT/DST are exact when only low-frequency Fourier modes
are present. Thus a large discrepency between the loss evaluated on a training and validation
set, which employ both distinct integration points and distinct cutoff frequencies, implies the
presence of high-order Fourier modes in the residual. The smoothing effect of the PDE solution
operator, however, mitigates the influence of the high-order modes in the residual on the H1-
error. Whilst we obtain a good solution, without having the exact solution at hand, it would
not be clear if this overfitting is problematic or not without resorting to some other method to
attempt to quantify the error. Furthermore, if training had been stopped when this overfitting
began to develop, as is traditionally done, we would obtain a solution with relative H1-error
close to 100%. Due to this, we conclude that, despite LVP being a well-defined loss for PDEs in
weak form, it is inappropriate to use when the weak and strong forms are non-equivalent as one
cannot relate the loss on training/validation sets to errors in a clear way, just as Lcol would be
inappropriate in the same situation. This shows the advantage of employing the DFR method
in problems where solutions admit only H1 regularity, making the H−1-norm of the residual
the appropriate loss function to be minimised.

4.2 Further Results

We have seen in Model Problem 3 that a validation set is necessary, as we can identify overfitting
via a divergence in the loss evaluated on the training and validation sets. For the following
examples, inspired by this, we implement an EarlyStopping callback to stop training when
the loss evaluated on the validation set does not show improvement during 200 iterations and
restores the best NN parameters according to the best obtained value of the loss evaluated
on the validation set. In the following, we perform 105 iterations, or until the EarlyStopping
halts training. With only these exceptions, we consider the same architectures and optimisation
proceedures as before.

4.2.1 Model Problem 4: Point source

We take V = H1
0 (0, π) and aim to find u ∈ V such that∫ π

0

u′(x)v′(x) dx− v
(π

2

)
= 0 (46)

for all v ∈ V . This has a unique solution given by

u∗(x) =
π

2
−
∣∣∣x− π

2

∣∣∣ . (47)

The forcing term, given by a Dirac delta function, is in V ∗ but not expressable as an L2 function.
In particular, it would be impossible to solve this equation using classical PINN methods.

20

0 1 2 3

−0.8

−0.6

−0.4

−0.2

0

u∗ uV ∗

x

u

(a) Approximate solution

0 1 2 3
−1

0

1

·10−3

εV ∗

x
u
−
u
∗

(b) Error functions

0 1 2 3

−0.4

−0.2

0

0.2

0.4
ε′V ∗

x

(u
−
u
∗)
′

(c) Errors in the gradient

Figure 8: Model Problem 4. Obtained solution and error

100 101 102 103 104

10−1

100

||εV ∗ ||H1

Iterations

H
1
-e

rr
o
r

(a) H1-relative error during training

100 101 102 103 104
10−4

10−2

100

Training

Validation

Iterations

L
os

s

(b) Training and validation losses

10−2 10−1 100

10−1

100

√LV ∗
H

1
-e

rr
o
r

Training
Validation

(c) Loss/error correlation

Figure 9: Model Problem 4: Loss and relative H1-error during training

We see qualitatively in Figure 8 that we approximate well the exact solution, with absolute
pointwise errors remaining of order 10−3. The exact solution is not C1, and its derivative admits
a jump discontinuity at x = π

2
, thus we observe a Gibbs phenomenon-like error in the gradient

of our obtained solution, which is to be expected as we are approximating with smooth trial
functions.

With our DFR method, we obtain a relative L2 error of 0.039%, and relative H1-error of
3.60%. EarlyStopping halted training at 9610 iterations. Figure 9b shows that that overfitting
develops towards the end of the training process. When this overfitting occurs, in Figure 9c we
observe that the relative H1-error has a sublinear dependency on the training loss; however, the
square root of the validation loss and H1 relative error exhibit a strong linear correlation. In
particular, we see that at the point where training was halted by the EarlyStopping callback,
the H1-error had reached a plateau.

4.2.2 Model Problem 5: Nonlinear

We take V = H1
0 (0, π), and aim to find u ∈ V such that∫ π

0

(
u′(x) +

1

2
sin(u′(x))

)
v′(x) + f(x)v(x) + u(x)v(x) + u(x)3v(x) dx = 0 (48)

21

for all v ∈ V , where f is obtained via the manufactured solution

u∗(x) = 5x
(
x− π

2

)
tanh (5 (x− π)) . (49)

This problem admits a unique solution as it corresponds to the Euler-Lagrange equation of the
strictly convex integral functional given by

F(u) =

∫ π

0

1

2
|u′(x)|2 − 1

2
cos(u′(x)) + f(x)u(x) +

1

2
u(x)2 +

1

4
u(x)4 dx. (50)

The ODE is nonlinear, and thus the classical error estimate (17) does not directly apply.
However, as commented in Section 3.1.1, for a candidate solution close to the exact solution,
the equation can be interpreted as a small perturbation of a linear problem. Consequently, we
expect to see a linear regime towards the end of the training.

0 1 2 3
−10

0

10

u∗ uV ∗

x

u

(a) Approximate solution

0 1 2 3

−5

0

5
·10−3

εV ∗

x

u
−
u
∗

(b) Error functions

0 1 2 3

0

5

·10−2

ε′V ∗

x

(u
−
u
∗)
′

(c) Errors in the gradient

Figure 10: Model Problem 5. Obtained solution and error

100 102 104
10−3

10−2

10−1

100

||εV ∗ ||H1

Iterations

H
1
-e

rr
o
r

100 102 104
10−2

102

106

Training

Validation

Iterations

L
os

s

10−1 100 101 102 103
10−3

10−2

10−1

100

√LV ∗

H
1
-e

rr
or

Training
Validation

Figure 11: Model Problem 5: Loss and relative H1-error during training

After 105 iterations, we obtain a relative H1-error of 0.117% and relative L2 error of 0.036%.
Figure 10 shows that we have a good approximation of the exact solution, and the pointwise
error is of order 10−3, and pointwise error in the gradient is of order 10−2. In Figure 11 we
observe that in early training we have a non-linear and slightly non-monotonic relationship
between the square root of the loss and H1-error; however, once we reach a relative error of
around 10−2, we recover a linear regime with proportional dependence between the two metrics
in accordance with the theory.

22

4.2.3 Model Problem 6 - Discontinuous parameters in 2D

Let Ω = [0, π] × [0, π]. We take ΓD to be three edges of ∂Ω corresponding to x1 = 0, π and
x2 = 0, and ΓN the edge corresponding to x2 = π. We aim to find the weak solution u ∈ V to
the equation∫

Ω

σ(x)∇u(x) · ∇v(x) + f(x)v(x) dx−
∫ π

0

v(x1, π)π(x1 − π)x1(1− π) dx1 = 0 (51)

for all v ∈ V , where

σ(x) =

{
2
∣∣x− (π

2
, π

2

)∣∣ < 1
1
∣∣x− (π

2
, π

2

)∣∣ ≥ 1
,

f(x) =∆

(
(x1 − π) (x2 − π)x1x2

(
1−

∣∣∣x− (π
2
,
π

2

)∣∣∣2)) . (52)

The exact solution is given by

u∗(x) =
1

σ(x)
(x1 − π) (x2 − π)x1x2

(
1−

∣∣∣x− (π
2
,
π

2

)∣∣∣2) . (53)

We use an NN basis of five hidden layers each containing ten neurons and tanh activation
function. 200x200 points are used for integration in the training loss, and 274x274 for validation.
We have an initial learning rate of 10−2 with Adam, and run for 105 iterations

100 102 104

10−1

100

||εV ∗ ||H1

Iterations

H
1
-e

rr
o
r

(a) H1-relative error during training

100 102 104

100

101

102

103

Training

Validation

Iterations

L
os

s

(b) Training and validation losses

100 101

10−1

100

√LV ∗

H
1
-e

rr
or

Training
Validation

(c) Correlation between loss and error

Figure 13: Model Problem 6: Loss and relative H1-error during training

Figure 12 shows that the method produces an accurate solution, with absolute pointwise
errors remaining of the order 10−2. By numerical integration we observe a relative H1-error
of 2.7% at the end of training. We observe more significant errors in ∇uV ∗ near the ring
of discontinuity in σ and ∇u∗, which is to be expected as we are approximating discontinuous
functions with smooth functions. Outside of this ring-shaped region, however, the approximation
of the gradient is generally good. Figure 13a shows a monotonic decay of the H1-error during
training, and Figure 13b shows that there is no overfitting present. Finally, Figure 13c once
again shows a linear relationship between the square root of the loss and the H1-error.

5 Conclusions

There are a wide class of PDEs in weak form, using H1 as their space of test functions, such
that the H1-error of solutions can be controlled by the H−1-norm of the PDE residual, as
outlined in Proposition 3.1. We have developed a framework for implementing the H−1 norm

23

1 2 3

1

2

3

x

y

u∗

−2

0

2

1 2 3

1

2

3

x

y

uV ∗

−2

0

2

1 2 3

1

2

3

x

y

|εV ∗ |

0

0.5

1

·10−2

1 2 3

1

2

3

x

y

|∇εV ∗ |

0

0.5

1

1.5

2

Figure 12: Model Problem 6: Obtained solution and error

24

as a loss function to solve PDEs using NNs, which is numerically implemented via a spectral
decomposition of the residual using DCT/DST to improve efficiency. We have numerically
demostrated that in problems with sufficiently regular solutions, the method is comparable to
the collocation and VPINNs methods; however, it shows a strong advantage when solutions lack
H2 regularity, in particular, when the PDE contains discontinuous material parameters or point
sources. One may also use the proposed loss as a metric to assess the quality of approximate
solutions, even if it is unused for optimisation.

In the absence of overfitting, we observe strong correlations between the training loss and H1-
error of candidate solutions. Moreover, overfitting is identified in our examples when divergence
between the loss evaluated on a training and validation set occurs. This provides a strong
advatange over the PINN and VPINN losses, which are inappropriate to use when solutions
admit low regularity and may lead to erroneous results.

The DFR has several limitations that open the possibility for future research directions.
First, our method suffers from the curse of dimensionality as one must perform DCT/DST in
each coordinate direction. It may be possible to overcome this issue in higher dimensions by
choosing more appropriate basis functions rather than tensor products of 1D basis sets. Second,
our use of DCT/DST to numerically evaluate the dual norm naturally restricts our method
to rectangular domains with appropriate boundary conditions on each face/edge. In arbitrary
domains, one would need to find alternative basis functions and quadrature rules to numerically
approximate the dual norm, which would be dependent on the particular geometry. Finally,
our method approximates the H−1 norm, which in certain PDEs such as the high-frequency
Helmholtz equation, falls short at controlling the energy-norm error. To overcome this, one
would need to find an appropriate basis to estimate the correct norm on the dual space via the
series expansion (21).

6 Acknowledgements

Jamie M. Taylor is supported by the Basque Government through the BERC 2018-2021 program
and by the Spanish State Research Agency through BCAM Severo Ochoa excellence accredi-
tation SEV-2017-0718 and through project PID2020-114189RB-I00 funded by Agencia Estatal
de Investigación (PID2020-114189RB-I00 / AEI / 10.13039/501100011033). David Pardo and
Ignacio Muga have received funding from: the European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie grant agreement No 777778 (MATH-
ROCKS). David Pardo has received funding from: the Spanish Ministry of Science and Inno-
vation projects with references TED2021-132783B-I00, PID2019-108111RB-I00 (FEDER/AEI)
and PDC2021-121093-I00 (AEI/Next Generation EU), the “BCAM Severo Ochoa” accredita-
tion of excellence (SEV-2017-0718); and the Basque Government through the BERC 2022-2025
program, the three Elkartek projects 3KIA (KK-2020/00049), EXPERTIA (KK-2021/00048),
and SIGZE (KK-2021/00095), and the Consolidated Research Group MATHMODE (IT1456-22)
given by the Department of Education

References

[1] Afouras, T., Chung, J. S., Senior, A., Vinyals, O., and Zisserman, A. Deep audio-
visual speech recognition. IEEE transactions on pattern analysis and machine intelligence
(2018).

[2] Alam, M., Samad, M. D., Vidyaratne, L., Glandon, A., and Iftekharuddin, K. M.
Survey on deep neural networks in speech and vision systems. Neurocomputing 417 (2020),
302–321.

[3] Barron, A. R. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory 39, 3 (1993), 930–945.

25

[4] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. Automatic
differentiation in machine learning: a survey. Journal of Marchine Learning Research 18
(2018), 1–43.

[5] Berg, J., and Nyström, K. A unified deep artificial neural network approach to partial
differential equations in complex geometries. Neurocomputing 317 (2018), 28–41.

[6] Berrone, S., Canuto, C., and Pintore, M. Variational physics informed neural net-
works: the role of quadratures and test functions. arXiv preprint arXiv:2109.02035 (2021).

[7] Berrone, S., Canuto, C., and Pintore, M. Solving pdes by variational physics-
informed neural networks: an a posteriori error analysis. arXiv preprint arXiv:2205.00786
(2022).

[8] Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT 2010. Springer, 2010, pp. 177–186.

[9] Brevis, I., Muga, I., and van der Zee, K. G. A machine-learning minimal-residual (ml-
mres) framework for goal-oriented finite element discretizations. Computers & Mathematics
with Applications 95 (2021), 186–199.

[10] Brevis, I., Muga, I., and van der Zee, K. G. Neural Control of Discrete Weak For-
mulations: Galerkin, Least-Squares and Minimal-Residual Methods with Quasi-Optimal
Weights. arXiv preprint arXiv:2206.07475 (2022).

[11] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations. Springer,
2011.

[12] Britanak, V., Yip, P. C., and Rao, K. R. Discrete cosine and sine transforms: general
properties, fast algorithms and integer approximations. Elsevier, 2010.

[13] Chen, T., and Chen, H. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems.
IEEE Transactions on Neural Networks 6, 4 (1995), 911–917.

[14] Ciarlet, P. G. Linear and nonlinear functional analysis with applications, vol. 130. Siam,
2013.

[15] Cier, R. J., Rojas, S., and Calo, V. M. Automatically adaptive, stabilized finite ele-
ment method via residual minimization for heterogeneous, anisotropic advection–diffusion–
reaction problems. Computer Methods in Applied Mechanics and Engineering 385 (2021),
114027.

[16] Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems 2, 4 (1989), 303–314.

[17] Davies, E. B. Spectral theory and differential operators. Cambridge University Press, 1996.
Cambridge Studies in Advanced Mathematics, Series Number 42.

[18] De Ryck, T., Jagtap, A. D., and Mishra, S. Error estimates for physics informed neu-
ral networks approximating the navier-stokes equations. arXiv preprint arXiv:2203.09346
(2022).

[19] Düster, A., Parvizian, J., Yang, Z., and Rank, E. The finite cell method for three-
dimensional problems of solid mechanics. Computer methods in applied mechanics and
engineering 197, 45-48 (2008), 3768–3782.

[20] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou,
K., Cui, C., Corrado, G., Thrun, S., and Dean, J. A guide to deep learning in
healthcare. Nature medicine 25, 1 (2019), 24–29.

[21] Glowinski, R., and Kuznetsov, Y. Distributed Lagrange multipliers based on fictitious
domain method for second order elliptic problems. Computer Methods in Applied Mechanics
and Engineering 196, 8 (2007), 1498–1506.

26

[22] Goswami, S., Yin, M., Yu, Y., and Karniadakis, G. E. A physics-informed varia-
tional DeepONet for predicting crack path in quasi-brittle materials. Computer Methods
in Applied Mechanics and Engineering 391 (2022), 114587.

[23] Gupta, A., Anpalagan, A., Guan, L., and Khwaja, A. S. Deep learning for object
detection and scene perception in self-driving cars: Survey, challenges, and open issues.
Array 10 (2021), 100057.

[24] Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural net-
works 4, 2 (1991), 251–257.

[25] Hornik, K., Stinchcombe, M., and White, H. Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks. Neural networks 3, 5
(1990), 551–560.

[26] Jagtap, A. D., Kharazmi, E., and Karniadakis, G. E. Conservative physics-informed
neural networks on discrete domains for conservation laws: Applications to forward and
inverse problems. Computer Methods in Applied Mechanics and Engineering 365 (2020),
113028.

[27] Kharazmi, E., Zhang, Z., and Karniadakis, G. E. Variational physics-informed neural
networks for solving partial differential equations. arXiv preprint arXiv:1912.00873 (2019).

[28] Khodayi-Mehr, R., and Zavlanos, M. Varnet: Variational neural networks for the
solution of partial differential equations. In Learning for Dynamics and Control (2020),
PMLR, pp. 298–307.

[29] Khodayi-mehr, R., and Zavlanos, M. M. Deep learning for robotic mass transport
cloaking. IEEE Transactions on Robotics 36, 3 (2020), 967–974.

[30] Kidger, P., and Lyons, T. Universal approximation with deep narrow networks. In
Conference on learning theory (2020), PMLR, pp. 2306–2327.

[31] Kingma, D. P., and Ba, J. L. Adam: A method for stochastic optimization.

[32] Lagaris, I. E., Likas, A., and Fotiadis, D. I. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks 9, 5
(1998), 987–1000.

[33] Larsson, K., Kollmannsberger, S., Rank, E., and Larson, M. G. The finite cell
method with least squares stabilized Nitsche boundary conditions. Computer Methods in
Applied Mechanics and Engineering 393 (2022), 114792.

[34] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,
M., Van Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. A survey on deep
learning in medical image analysis. Medical image analysis 42 (2017), 60–88.

[35] Lu, L., Jin, P., and Karniadakis, G. E. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of opera-
tors. arXiv preprint arXiv:1910.03193 (2019).

[36] Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E. Learning nonlinear
operators via DeepONet based on the universal approximation theorem of operators. Nature
Machine Intelligence 3, 3 (2021), 218–229.

[37] Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. DeepXDE: A deep learning library
for solving differential equations. SIAM Review 63, 1 (2021), 208–228.

[38] Mishra, S., and Molinaro, R. Estimates on the generalization error of physics-informed
neural networks for approximating a class of inverse problems for PDEs. IMA Journal of
Numerical Analysis (2021).

[39] Mittal, R., and Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech.
37 (2005), 239–261.

27

[40] Paszyński, M., Grzeszczuk, R., Pardo, D., and Demkowicz, L. Deep learning driven
self-adaptive hp finite element method. In International Conference on Computational
Science (2021), Springer, pp. 114–121.

[41] Peskin, C. S. The immersed boundary method. Acta numerica 11 (2002), 479–517.

[42] Prudhomme, S., and Oden, J. T. On goal-oriented error estimation for elliptic problems:
application to the control of pointwise errors. Computer Methods in Applied Mechanics and
Engineering 176, 1-4 (1999), 313–331.

[43] Purushotham, S., Meng, C., Che, Z., and Liu, Y. Benchmarking deep learning models
on large healthcare datasets. Journal of biomedical informatics 83 (2018), 112–134.

[44] Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational physics 378 (2019), 686–707.

[45] Ramiere, I., Angot, P., and Belliard, M. A fictitious domain approach with spread
interface for elliptic problems with general boundary conditions. Computer Methods in
Applied Mechanics and Engineering 196, 4-6 (2007), 766–781.

[46] Rivera, J. A., Taylor, J. M., Omella, Á. J., and Pardo, D. On quadrature rules
for solving Partial Differential Equations using Neural Networks. Computer Methods in
Applied Mechanics and Engineering 393 (2022), 114710.

[47] Ruthotto, L., and Haber, E. Deep neural networks motivated by partial differential
equations. Journal of Mathematical Imaging and Vision 62, 3 (2020), 352–364.

[48] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V. M., Guo, H., Ham-
dia, K., Zhuang, X., and Rabczuk, T. An energy approach to the solution of partial
differential equations in computational mechanics via machine learning: Concepts, imple-
mentation and applications. Computer Methods in Applied Mechanics and Engineering 362
(2020), 112790.

[49] Schillinger, D., and Ruess, M. The Finite Cell Method: A review in the context of
higher-order structural analysis of CAD and image-based geometric models. Archives of
Computational Methods in Engineering 22, 3 (2015), 391–455.

[50] Shin, Y. On the Convergence of Physics Informed Neural Networks for Linear Second-
Order Elliptic and Parabolic Type PDEs. Communications in Computational Physics 28,
5 (2020), 2042–2074.

[51] Shin, Y., Zhang, Z., and Karniadakis, G. E. Error estimates of residual minimization
using neural networks for linear PDEs. arXiv preprint arXiv:2010.08019 (2020).

[52] Shorten, C., and Khoshgoftaar, T. M. A survey on image data augmentation for deep
learning. Journal of big data 6, 1 (2019), 1–48.

[53] Sirignano, J., and Spiliopoulos, K. DGM: A deep learning algorithm for solving partial
differential equations. Journal of computational physics 375 (2018), 1339–1364.

[54] Sluzalec, T., Grzeszczuk, R., Rojas, S., Dzwinel, W., and Paszynski, M. Quasi-
optimal hp-finite element refinements towards singularities via deep neural network predic-
tion. arXiv preprint arXiv:2209.05844 (2022).

[55] Uriarte, C., Pardo, D., and Omella, Á. J. A Finite Element based Deep Learning
solver for parametric PDEs. Computer Methods in Applied Mechanics and Engineering 391
(2022), 114562.

[56] Wang, S., Yu, X., and Perdikaris, P. When and why PINNs fail to train: A neural
tangent kernel perspective. Journal of Computational Physics 449 (2022), 110768.

28

A The Laplacian basis

The following results are classical, with more detailed discussion available, for example, in [11,
Chapter 6] or [17]. In particular, Corollary 4.2.3 and Theorems 4.5.1 and 6.3.1. We include this
discussion in a relatively self-contained framework for completeness.

Let Ω ⊂ RN be a bounded domain, with ΓD,ΓN disjoint subsets of ∂Ω such that ∂Ω =
ΓD ∪ ΓN . Take V to be the space V = {v ∈ H1(Ω) : v|ΓD = 0}. We consider an orthogonal
basis for V given by the eigenvectors of the operator 1−∆ on V with boundary condition ∂u

∂ν
= 0

on ΓN , that is, a homogeneous Neumann condition on ΓN and homogeneous Dirichlet condition
on ΓD.

First, we show that such a basis exists. We first define the solution operator T : L2(Ω) →
L2(Ω) to be the operator taking f ∈ L2(Ω) to the unique solution u ∈ V of∫

Ω

∇u · ∇v + uv dx =

∫
Ω

fv dx. (54)

for all v ∈ V . We remark that this is equivalent to 〈Tf, v〉H1 = 〈f, v〉L2 for all v ∈ V . T is a
symmetric and positive definite linear map: For any f1, f2 ∈ L2(Ω), from the weak-formulation
(54), as Tf1, T f2 ∈ V , we have that

〈Tf1, f2〉L2 = 〈Tf1, T f2〉H1 = 〈f1, T f2〉L2 . (55)

Furthermore, by the classical Lax-Migram result, we have that ||Tf ||H1 ≤ ||f ||L2 . In particular,
we have that T is a compact symmetric operator from L2(Ω) to itself, and thus, by classical
spectral theory, this implies that T admits a decreasing countable sequence of positive eigenval-
ues that converges monotonically to zero. For notational convenience, we consider their inverses,
so that T admits eigenvalues λ−1

k > 0 where λk is a positive, monotonically increasing sequence
with λ−1

k → ∞. The eigenvalues have corresponding eigenvectors ϕk, where (ϕk)∞k=1 forms an
orthonormal basis of L2(Ω). The weak formulation (55) implies that for any v ∈ V ,

λ−1
k 〈ϕk, v〉H1 = 〈Tϕk, v〉H1 = 〈ϕk, v〉L2 (56)

In particular, as λk 6= 0, the L2-orthogonality of the sequence (ϕk)∞k=1 also impliesH1-orthogonality.
By taking v = ϕk in (56), we also see that ||ϕk||2H1 = λk.

We show by contradiction that ϕk also forms a basis of V , and not just an orthogonal set.
If ϕk were not a basis, there would exist some v ∈ V \ {0} such that 〈ϕk, v〉H1 = 0 for all k. In
light of (56), we must therefore have that 〈ϕk, v〉L2 = 0 for all k. This contradicts that (ϕk)∞k=1

is a basis for L2(Ω).

B Estimation via Fast (Co)Sine Transforms

Discrete Sine/Cosine Transforms (DST/DCT) are efficient methods, based on the Fast Fourier
Transform (FFT), to decompose a finite input vector of dimension N into N sine or cosine
waves with given boundary conditions. There are numerous variations corresponding to different
boundary conditions, and within this work we focus on the type-II and type-IV transforms [12,
Section 4.2]. We use the notation DST-II, DST-IV to refer to the type-II and type-IV DST,
respectively, and DCT-II and DCT-IV to refer to the type-II and type-IV DCT, respectively,
which is employed in the summary of basis functions in Table 1.

As the DST/DCT are linear operations between two N -dimensional vector spaces, each may
be represented by an N × N matrix. We represent the type-II and type-IV DST via matrices
SII and SIV , respectively, and similarly the type-II and type-IV DCT via CII and CIV . Each
matrix is indexed by k, n = 0, ..., N − 1. For an integrable function g, we may approximate

29

integrals via the following four relationships:∫ π

0

g(x) sin(kx) dx ≈SIIN,k(g) :=

N−1∑
n=0

π√
2N

SIIk−1,ng

(
2n+ 1

2N
π

)
,

∫ π

0

g(x) sin

((
k − 1

2

)
x

)
dx ≈SIVN,k(g) :=

N−1∑
n=0

π√
2N

SIVk−1,ng

(
2n+ 1

2N
π

)
,

∫ π

0

g(x) cos(kx) dx ≈CIIN,k(g) :=

N−1∑
n=0

π√
2N

CIIk−1,ng

(
2n+ 1

2N
π

)
,

∫ π

0

g(x) cos

((
k − 1

2

)
x

)
dx ≈CIVN,k(g) :=

N−1∑
n=0

π√
2N

CIVk−1,ng

(
2n+ 1

2N
π

)
.

(57)

In each case, the approximation corresponds to a mid-point integration rule, that is,∫ π

0

f(x) dx ≈ π

N

N−1∑
n=0

f

(
2n+ 1

2N
π

)
. (58)

The matrices in the transformations are defined by:

(SIIN)kn :=

√
2

N
εk sin

(
π

N

(
n+

1

2

)
(k + 1)

)
,

(SIVN)kn :=

√
2

N
sin

(
π

N

(
n+

1

2

)(
k +

1

2

))
,

(CIIN)kn :=

√
2

N
ε′k cos

(
π

N

(
n+

1

2

)
k

)
,

(CIVN)kn :=

√
2

N
cos

(
π

N

(
n+

1

2

)(
k +

1

2

))
,

(59)

for k, n = 0, ..., N − 1 and where

εk =

{
1 k 6= N − 1,
1√
2

k = N − 1.

ε′k =

{
1 k 6= 0,
1√
2

k = 0.

(60)

For both X = II, X = IV , the matrices CXN and SXN are related as follows. Let D denote
the diagonal matrix with diagonal entries Dkk = (−1)k for k = 0, ..., N − 1, and J denote the
matrix which reverses the order of a vector, so that JY = (yN−1, yN−2, ..., y1, y0). Then,

SXN = JCXND (61)

Under this particular normalisation, the corresponding transformation matrices are orthog-
onal, that is, each of them satisfies MT = M−1.

C Nonlinear equations

We now prove Proposition 3.1. We do so by considering a linearisation, at which point we may
invoke results on the linear theory. The reader is directed to [14, Chapter 7] for definitions

30

and properties related to the differentiability of functions between Banach spaces, however we
include below some definitions for completeness.

Given u,w ∈ U , we define the directional derivative δwR(u) ∈ V ∗ via

δwR(u) := lim
τ→0

R(u+ τw)−R(u)

τ
, (62)

when it exists. Furthermore, we state that R is Gateaux differentiable at u if δwR(u) exists for
all w ∈ U , and the map U 3 w 7→ δwR(u) ∈ V ∗ defines a continuous linear function.

The proof of Proposition 3.1 reduces to two lemmas, corresponding to the upper and lower
bounds.

Lemma C.1. For every ε > 0, there exists δ1 > 0 such that for all u ∈ V with ||u−u∗||U < δ1,

||R(u)||V ∗ ≥ γ

1 + ε
||u− u∗||U .

Proof. We consider ||u − u∗||U < r0. For brevity, we denote w = u − u∗. By Taylor’s theorem
with explicit remainder, we can estimate

||R(u)−R(u∗)− δwR(u∗)||V ∗ =

∣∣∣∣∣∣∣∣∫ 1

0

δwR(u∗ + t(u− u∗)) dt− δwR(u∗)

∣∣∣∣∣∣∣∣
V ∗

≤
∫ 1

0

||δwR(u∗ + t(u− u∗))− δwR(u∗)||V ∗ dt

≤L
∫ 1

0

||w||U ||u− u∗||U dt = L||u− u∗||2U .

(63)

Thus, we may define the remainder R : V → V ∗ via

R(u) = R(u)−R(u∗)− δwR(u∗), (64)

which satisfies ||R(u)||V ∗ ≤ L||u − u∗||2U . Via the reverse triangle inequality, and noting that
R(u∗) = 0, we estimate

||R(u)||V ∗ = ||δwR(u∗)−R(u)||V ∗ ≥
∣∣∣||δvR(u∗)||V ∗ − ||R(u)||V ∗

∣∣∣. (65)

As δwR(u∗) is bounded below, ||δwR(u∗)||V ∗ ≥ γ||u− u∗||U . We observe that if

||u− u∗||U <
γε

(1 + ε)L
,

where we interpret the right-hand side as +∞ if L = 0. Then

L||u− u∗||2U ≤
γε

1 + ε
||u− u∗||U

and thus

|||δwR(u∗)||V ∗ − ||R(u)||V ∗ | ≥γ||w||U −
γε

(1 + ε)
||w||U =

γ

(1 + ε)
||u− u∗||U . (66)

By taking δ1 = min
(
r0,

γε
(1+ε)L

)
and combining equations (65) and (66), the result holds.

We now turn to the upper bound.

Lemma C.2. For every 1 > ε > 0, there exists δ2 > 0 such that if ||u− u∗||U < δ2, then

||R(u)||V ∗ ≤ M

1− ε ||u− u
∗||U . (67)

31

Proof. Again, we proceed by assuming that ||u − u∗||U < r0 and invoking Taylor’s theorem.
Taking the remainder R and w = u− u∗ as before, we observe that

||R(u)||V ∗ = ||δwR(u∗) +R(u)||V ∗

≤ ||δwR(u∗)||V ∗ + ||R(u)||V ∗

≤M ||u− u∗||U + L||u− u∗||2U .
(68)

Thus, if ||u− u∗||U < Mε
L(1−ε) , interpreting the right-hand side of the inequality as +∞ if L = 0,

we have that L||u− u∗||2U ≤ Mε
(1−ε) ||u− u

∗||U and

||R(u)||V ∗ ≤
(
M +

Mε

(1− ε)

)
||u− u∗||V ∗ =

M

1− ε ||u− u
∗||V ∗ . (69)

By taking δ2 = min
(
r0,

Mε
(1−ε)L

)
we complete the proof.

32

	1 Introduction
	2 Preliminaries
	2.1 Neural Networks
	2.2 PINN and VPINN losses
	2.2.1 Collocation
	2.2.2 VPINNs

	3 DFR Method
	3.1 Dual Norms and Residual Minimisation
	3.1.1 Nonlinear equations

	3.2 Evaluation of the H-1 norm with the DFR method
	3.3 Definition of the discretised loss
	3.3.1 One-dimensional example
	3.3.2 The general case

	3.4 Potential limitations

	4 Numerical Experiments
	4.1 Validation Results
	4.1.1 Losses implemented
	4.1.2 Model Problem 1 - Smooth solution
	4.1.3 Model Problem 2 - Large gradients
	4.1.4 Model Problem 3 - Discontinuous parameters

	4.2 Further Results
	4.2.1 Model Problem 4: Point source
	4.2.2 Model Problem 5: Nonlinear
	4.2.3 Model Problem 6 - Discontinuous parameters in 2D

	5 Conclusions
	6 Acknowledgements
	A The Laplacian basis
	B Estimation via Fast (Co)Sine Transforms
	C Nonlinear equations

