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MONODROMY CONJECTURE FOR SEMI-QUASIHOMOGENEOUS
HYPERSURFACES

GUILLEM BLANCO, NERO BUDUR, AND ROBIN VAN DER VEER

Abstract. We give a proof the monodromy conjecture relating the poles of motivic zeta
functions with roots of b-functions for isolated quasihomogeneous hypersurfaces, and more
generally for semi-quasihomogeneous hypersurfaces. We also give a strange generalization
allowing a twist by certain differential forms.

1. Introduction

The strong monodromy conjecture of Igusa and Denef-Loeser predicts that the order of a
pole of the motivic zeta function Zmot

f (s) of a nonconstant polynomial f ∈ C[x0, . . . , xn] is
less than or equal to its multiplicity as a root of the b-function bf(s) of f . The conjecture is
open even in the case f has isolated singularities. In this note we prove it for a subclass of
isolated hypersurface singularities:

Theorem 1.1. The strong monodromy conjecture holds for semi-quasihomogeneous hyper-
surface singularities.

Recall that a germ of holomorphic function on a complex manifold is said to define a quasi-
homogeneous hypersurface singularity if it is analytically isomorphic to the germ at the origin
of a weighted homogeneous polynomial. A hypersurface singularity is semi-quasihomogeneous
if it is analytically isomorphic to the germ at the origin of a polynomial f = fd + f>d where
fd is a weighted homogeneous polynomial of degree d with an isolated singularity at the
origin, and f>d is a finite linear combination of monomials of weighted degree > d. We call
such polynomials f semi-weighted homogeneous of initial degree d.

Theorem 1.1 follows from the next one, which we prove using the main result of [L+20]
allowing computations of motivic zeta functions from partial embedded resolutions:

Theorem 1.2. Let w0, . . . , wn ∈ Zn+1
>0 be a weight vector. Let f ∈ C[x0, . . . , xn] be a semi-

weighted homogeneous polynomial of initial degree d with respect to these weights. Assume
fd is irreducible (this is automatic if n > 1). Then the poles of Zmot

f (s) are of order at most

one and are contained in {−1,−w0+...+wn

d
} if w0 + . . .+ wn 6= d, otherwise −1 is the only

pole of Zmot
f (s) and it has order at most two.

A similar result holds if C is replaced by a field of characteristic zero, see Remark 2.3.1. The
case n = 1 and fd is reducible is also easy to deal with but it depends on some classification,
see Remark 2.2.1.

Both results, even for the isolated weighted homogeneous case, do not seem recorded in
the literature.

The version of Theorem 1.2 for Igusa’s local zeta functions is [Z01, Theorem 3.5]. It is
known that motivic zeta functions specialize to Igusa’s p-adic local zeta functions. Thus
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Theorem 1.2 implies the characteristic-zero case of [Z01, Theorem 3.5], giving it a different
proof. The version of Theorem 1.1 for Igusa local zeta functions of semi-weighted homoge-
neous polynomials with an additional non-degeneracy assumption is [Z01, Corollary 3.6].

Remark 1.1. A homogeneous polynomial with an isolated singularity does not have to be
Newton nondegenerate, e.g. (x+ y)2 + xz + z2, from [Ko76, 1.21]. Thus the existing results
on motivic zeta functions for nondegenerate polynomials do not suffice to prove any of the
two theorems from above.

We also give a strange generalization of Theorem 1.1. Let g(x0, . . . , xn) be another polyno-
mial. One has the twisted motivic zeta function Zmot

f,g (s) obtained by replacing the algebraic
top-form dx with gdx, see (3). One also has the twisted b-function bf,g(s) obtained by re-
placing f s with gf s, see (5). We denote by (∂f) be the Jacobian ideal of f in the ring
O = C{x0, . . . , xn} of convergent power series, that is, the ideal generated by the first order
partial derivatives of f .

Theorem 1.3. With the assumptions of Theorem 1.2, let g = xβ with β ∈ Nn+1 be a
monomial. Let l(β) =

∑n

i=0wi(βi + 1)/d. Assume that

(1) fd contains no monomial xix
k
j of weighted degree d with i 6= j and k > 0 if βi 6= 0

and

(2) g + (∂f) 6⊂
∑

l(γ)>l(β)

Oxγ + (∂f)

(if f = fd is weighted homogeneous (2) is equivalent to g 6∈ (∂f)). Then the order of a pole
of Zmot

f,g (s) is less than or equal to its multiplicity as a root of bf,g(s).

This provides the first cases for which a question of Mustaţă [M10] has a positive answer.
Theorem 1.3 follows from properties of the microlocal V -filtration together with the fol-

lowing (not strange) generalization of Theorem 1.2:

Theorem 1.4. With the assumptions of Theorem 1.2, let g = xβ with β ∈ Nn+1 be a
monomial satisfying (1). Then the poles of Zmot

f,g (s) are of order at most one and are contained

in {−1,−l(β)} if l(β) 6= 1, otherwise −1 is the only pole of Zmot
f,g (s) and has order at most

two.

Remark 1.2. We explain why Theorem 1.3 is a strange generalization of the strong mon-
odromy conjecture. A twisted generalization of Theorem 1.1 relating the poles of Zmot

f,g (s) to
the roots of bf,g(s) is not true. For example, Theorem 1.3 is not true for arbitrary monomials:

(i) Take f = y2 − x3 with weight vector w = (2, 3) for (x, y), and let g = y. Then
−l(β) = −8

6
is a pole of Zmot

f,g (s), but it is not a root of bf,g(s) = (s+1)(s+ 11
6
)(s+ 13

6
).

Here g ∈ (∂f) fails (2).
(ii) Take f = y3 − x7 + x5y with weight vector w = (3, 7), and let g = x6. Then

−l(β) = −28
21

is a pole of Zmot
f,g (s), but it is not a root of bf,g(s), since one can check

that −29
21

is the biggest root of
bf,g(s)

s+1
. Here g fails (2) in a more subtle way since

x4y ∈ g + (∂f) and l(x4y) = 29
21

> 28
21
.

Remark 1.3. A (not strange) generalization of the strong monodromy conjecture was posed
in [Bu15]: for any polynomials f and g, the poles of Zf,g(s) should be roots of the monic
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polynomial b(s) generating the specialization of the Bernstein-Sato ideal B(f,g) ⊂ C[s1, s2] to
(s1, s2) = (s, 1). (In the example (i) from Remark 1.2, b(s) =

∏

k=6,8,10,11,13,14,16(6s + k) so

−8
6
is a root.) In fact, it is more generally conjectured in [Bu15] that the polar locus of the

multi-variable motivic zeta function Zmot
F (s1, . . . , sr) is contained in the zero locus in Cr of

the Bernstein-Sato ideal BF ⊂ C[s1, . . . , sr] for any tuple of polynomials F = (f1, . . . , fr).

Remark 1.4. Condition (2) on g = xβ implies that l(β) is a spectral number of f , see
3.3 and [J+19, 1.6]. More generally, we say that g ∈ C[x0, . . . , xn+1] achieves the spectral
number α > 0 of a polynomial f with an isolated singularity if the class of gdx is nonzero in
GrαVΩ

n+1
f , see 3.3. Then one can view the above results as partial confirmation of:

Question 1.1. Let f ∈ C[x0, . . . , xn+1] be a semi-weighted homogeneous polynomial. Let α
be a spectral number of f at the origin. Does there exist g ∈ C[x0, . . . , xn+1] achieving the
spectral number α such that the only non-integral pole of Zmot

f,g (s) is −α?

Remark 1.5.
(i) The eigenvalue version of the question is true for all polynomials f with an isolated

singularity: if λ is an eigenvalue of the monodromy of f at the origin, there exists g ∈
C[x0, . . . , xn+1] such that Zmot

f,g (s) with only one non-integral pole −α such that e2πiα = λ by
[CV17].

(ii) The b-function version of the question is not true for all polynomials f with an isolated
singularity: − 6

13
is a root of bf(s) if f = xy5 + x3y2 + x4y, but − 6

13
not a pole of Zmot

f,g (s)

for any g by [Bo13, Remark 3.1]. Here f is not semi-weighted homogeneous and 6
13

is not a
spectral number of f .

(iii) The spectral version, namely Question 1.1, is not true for all polynomials f with an
isolated singularity: take f = (y2 − x3)2 − x5y, then 5

12
is a spectral number at the origin.

Here 5
12

is also the log canonical threshold lct(f). It is known, with the same proof as for
g = 1, that the maximal pole of Zmot

f,g (s) is the negative of

lctg(f) = min{α > 0 | g 6∈ J (fα)}

where J (fα) are the multiplier ideals of f , cf. [M10], [DM20]. Thus the only g with Zmot
f,g (s)

having − 5
12

as a pole must satisfy that lctg(f) = lct(f). Therefore g(0) 6= 0 and hence
Zmot

f,g (s) has the same poles as Zmot
f (s). Since f is an irreducible plane curve with 2 Puiseux

pairs, one can compute that − 5
12

and −11
26

are the only non-integral poles of Zmot
f (s).

Remark 1.6. It is known that
bf (s)

s+1
is the minimal polynomial of the action of s on H̃ ′′

f /sH̃
′′
f ,

where H̃ ′′
f is the saturation of the Brieskorn lattice, by a result of Malgrange and Pham, see

[Sa94]. In light of the strong monodromy conjecture, a natural question is if the canonical

splitting of the class of [dx] in H̃ ′′
f /sH̃

′′
f is a linear combination of classes ωα ∈ H̃ ′′

f /sH̃
′′
f ,

such that α are the non-trivial poles of Zmot
f (s) and ωα are eigenvectors for s with eigenvalue

α. While this is true in the isolated weighted homogeneous case, it is not true in general:
example (iii) from Remark 1.5 is a counterexample.

Acknowledgement. Computations were performed with the help of Singular. J. Sebag
informed us he has obtained a preciser version of Theorem 1.2, to appear in [Se21]. We
thank M. Mustaţă, J. Sebag, W. Veys for useful comments, and Universitat de les Illes
Balears for hospitality during writing part of this article. G.B. was supported by an FWO
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KU Leuven and G097819N from FWO. R.v.d.V. was supported by an FWO PhD fellowship.

2. Motivic zeta functions

2.1. Motivic zeta functions. Consider two regular functions f, g : X → C on a smooth
complex algebraic variety X , with f non-invertible. Let µ : Y → X be an embedded
resolution of fg. Let Ei with i ∈ J be the irreducible components of the pullback µ∗(div(f))
of the divisor of f , E◦

I = ∩i∈IEi \ ∪i∈J\IEi for I ⊂ J , and µ∗(div(f)) =
∑

i∈J NiEi. Let
Kµ − µ∗(div(g)) =

∑

i∈J(νi − 1)Ei where Kµ is the relative canonical divisor.
Define

(3) Zmot
f,g (s) := L−(n+1)

∑

∅6=I⊂J

[E◦
I ]
∏

i∈I

(L− 1)L−(Nis+νi)

1− L−(Nis+νi)

where [E◦
I ] is the class of E◦

I in the localization M = K0(V arC)[L
−1] of the Grothendieck

ring of complex varieties along the class L = [A1]. The definition is independent of the choice
of µ.

The smallest set Ω of rational numbers − ν
N

with multiplicities such that Zmot
f,g (s) is a

rational function in 1− L−(Ns+ν) with ν
N

∈ Ω (with pole orders given by the multiplicities)
over the ring M[L−s], is called the set of poles of Zmot

f,g (s).
When g = 1, Zmot

f,g (s) is denoted Zmot
f (s), the usual Denef-Loeser zeta function of f .

2.2. Proof of Theorem 1.2. Let µ : Y → Cn+1 be the w-weighted blowup of the origin.
Let E be the exceptional divisor and H the strict transform of {f = 0}. We show first that µ
is an embedded Q-resolution of f , see [L+20, §1.4]. By definition this means that E∪H has
Q-normal crossings, that is, it is locally analytically isomorphic to the quotient of a union of
coordinate hyperplanes among those given by a local system of coordinates t0, . . . , tn with a
diagonal action of a finite abelian subgroup of G of GLn+1(C), i.e. locally

f ◦ µ = tN0

0 . . . tNn

n : Cn+1/G → C

for some Ni ∈ N.
The exceptional divisor E is isomorphic to the w-weighted projective n-space

Pn
w = (Cn+1 \ 0)/ ∼

with (u0, . . . , un) ∼ (λw0u0, . . . , λ
wnun) for all λ ∈ C∗. Denote by [u0 : . . . : un]w the class of

a point in Pn
w. The chart U0 = {u0 6= 0} of Pn

w is identified with the quotient

1

w0
(w1, . . . , wn) = Cn/µw0

of the action of the w0-roots of unity λ defined by

(x1, . . . , xn) 7→ (λw1x1, . . . , λ
wnxn).

A similar description holds for the other charts.
Write f = fd+f>d, where fd is the degree d term, so that the origin is an isolated singularity

of f and fd. Since we assumed fd is irreducible, f is also since their singularity is isolated.
Thus the strict transformH is irreducible. The intersection E∩H is the hypersurface defined
by fd in Pn

w. By [St77, §4], the intersection E ∩H has, like E ≃ Pn
w, only abelian quotient
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singularities. That proof also implies our claim about µ being an embedded Q-resolution, as
we show next.

By definition Y ⊂ Cn+1×Pn
w and µ is the restriction of the projection onto the first factor.

The chart Y0 = Y ∩ {u0 6= 0} of Y is identified via the surjection

φ0 : C
n+1 → Y0

(x0, u1, . . . , un) 7→ ((xw0

0 , xw1

0 u1, . . . , x
wn

0 un), [1 : u1 : . . . : un]w)

with the quotient 1
w0
(−1, w1, . . . , wn) of Cn+1 by the group of w0-roots of unity. A similar

description holds for the other charts.
In the chart Y0, the exceptional divisor E is given by {x0 = 0}. The pullback of f is given

by
f(xw0

0 , xw1

0 u1, . . . , x
wn

0 un) = xd
0(fd(1, u1, . . . , un) + x0h(x0, u1, . . . , un))

for some polynomial h. Thus the Q-normal crossings condition is satisfied in this chart if
g(u1, . . . , un) := fd(1, u1, . . . , un) is smooth on Cn. We check this with the Jacobian criterion.
Since (∂g/∂ui)(u1, . . . un) = (∂fd/∂xi)(1, u1, . . . , un) for 1 ≤ i ≤ n, smoothness of g follows
from the equation

d · fd =
n

∑

i=0

wixi

∂fd
∂xi

together with the fact that the origin is the only singular point of fd. Note that E ∩ H
is given in Y0 by the image under φ0 of the zero locus of the ideal (x0, g). Since a similar
description holds in the other charts, E ∩H has abelian quotient singularities since φ0 is a
quotient map.

Next we note that

(µ|Y0
◦ φ0)

∗(dx0 ∧ . . . ∧ dxn) = w0x
|w|−1
0 dx0 ∧ du1 ∧ . . . ∧ dun,

where |w| = w0 + . . .+ wn. A similar description holds in the other charts.
We have now all the information needed to apply the formula of [L+20] computing the

motivic zeta function of f . Since µ is an embedded Q-resolution of f , Y is a disjoint
union of strata Sk characterised by the existence of data (Gk,Nk,νk) satisfying the following
conditions. Locally around a generic point of Sk, Y is analytically isomorphic to Cn+1/Gk

for some finite abelian group Gk, acting diagonally on the coordinates t0, . . . , tn of Cn+1 and
small (i.e. not containing rotations around the hyperplanes other than the identity); f ◦ µ

is given by t
N0,k

0 . . . t
Nn,k
n ; and, the relative canonical divisor of µ is given by t

ν0,k−1
0 . . . t

νn,k−1
n .

Then by [L+20, Theorem 4]

(4) Zmot
f (s) = L−(n+1)

∑

k

[Sk] · Tk(s) ·
n
∏

i=0

(L− 1)L−(Ni,ks+νi,k)

1− L−(Ni,ks+νi,k)

where Tk(s) has no poles. We have showed that candidate poles from the product term in
this formula contributed by Sk are the zeros of

1, ds+ |w|, s+ 1, (s+ 1)(ds+ |w|)

if Sk is contained in

Y \ (E ∪H), E \ (E ∩H), H \ (E ∩H), E ∩H,

respectively. This finishes the proof. �
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Remark 2.2.1. If n = 1 and fd is not irreducible, then one has a classification up to a
change of holomorphic coordinates of all possible cases for fd in [K00, Lemmas 3.3 and 3.4].

2.3. Proof of Theorem 1.4. In the proof of Theorem 1.2 one has

(µ|Y0
◦ φ0)

∗(xβ0

0 . . . xβn

n dx0 ∧ . . . ∧ dxn) = w0x
−1+

∑n
i=0

wi(βi+1)
0 uβ1

1 . . . uβn

n dx0 ∧ du1 ∧ . . . ∧ dun.

By [L+20, Theorem 4], the zeta function Zmot
f,xβ(s) is as in (4) but with the relative canonical

divisor replaced by the above form. Running the proof of Theorem 1.2, we note that every-
thing works similarly. The assumption on xβ implies that x0fd(1, u)u

β1

1 . . . uβn
n is Q-snc, since

fd(1, u) is smooth in the variables u and hence its tangent cone at {x0 = u1 = . . . = un = 0}
must be a linear combination of the ui with 1 ≤ i ≤ n. �

Remark 2.3.1. All the results from the introduction admit a slight generalization by re-
placing in the definition (3) of the motivic zeta function the category of C-varieties with that
of k-varieties. This holds since all the morphisms, including the group actions, in the above
proofs concerning motivic zeta functions are defined over k.

3. Bernstein-Sato polynomials

3.1. b-functions. Let f, g : (X, 0) → (C, 0) be germs of holomorphic functions on a complex
manifold with f(0) = 0. We set O = OX,0 and D = DX,0, the ring of germs of analytic
functions, respectively analytic linear differential operators. We denote by bf,g(s) the nonzero
monic generator bf,g(s) of the ideal of polynomials b(s) ∈ C[s] of minimal degree satisfying

(5) b(s)gf s = Pgf s+1 for some P ∈ D[s].

It is a non-trivial well-known result that bf,g(s) is well-defined.
If g/f is not holomorphic, then bf,g(s) is divisible by s+1 by Lemma 3.2.1. Define in this

case the reduced b-function

b̃f,g(s) =
bf,g(s)

s+ 1
.

When g = 1, bf,g(s) (resp. b̃f,g(s)) is denoted bf (s) (resp. b̃f (s)), the usual b-function
(resp. reduced b-function) or Bernstein-Sato polynomial of f .

If f, g : X → C are regular functions on a smooth complex affine variety, one can apply the
same definitions with D replaced by the ring of global algebraic linear differential operators,
and the resulting b-function is the lowest common multiple (well-defined due to finiteness of
b-constant strata) of the local b-functions defined above for germs at points along f−1(0).

3.2. Microlocal b-functions. Let f : (X, 0) → (C, 0) be the germ of a holomorphic function
on a complex manifold with f(0) = 0. Let i : X → X × C, x 7→ (x, f(x)) be the graph

embedding of f . Let t be the coordinate of C. Define the rings R = D[t, ∂t], R̃ = R[∂−1
t ],

with ∂tt− t∂t = 1. Define the V -filtration on R, R̃ by

V pR =
∑

i−j≥p

Dti∂j
t

and similarly for R̃.
Let M be a D-module. Define

Mf = M⊗C C[∂t],
6



the stalk of the D-module direct image i+M at (0, 0) in X × C. Denoting m⊗ ∂i
t by m∂i

tδ
for a local section m of M, the left R-module structure on Mf is defined by

ξ(m∂i
tδ) = (ξm)∂i

tδ − (ξf)m∂i+1
t δ, t(m∂i

tδ) = fm∂i
tδ − im∂i−1

t δ

for ξ a local vector field on (X, 0). Equivalently, δ the delta function of t − f . Define the
algebraic microlocalization

M̃f = M⊗C C[∂t, ∂
−1
t ].

Then M̃f is a left R̃-module with the action defined as above.

Assume from now that M is holonomic. Let u be a local section of Mf (resp. M̃f). The

b-function bu(s) (resp. microlocal b-function b̃u(s)) is the minimal polynomial of the action
of s := −∂tt on V 0R · u/V 1R · u (resp. V 0R̃ · u/V 1R̃ · u). This is a well-defined polyno-

mial by [Ka78], [KK80], [L87] (with b̃u(s) defined in terms of the usual microlocalization
M{{∂−1

t }}[∂t], but this definition can be shown to be equivalent to the one above, see [Sa94,
1.4]). If M has quasi-unipotent local monodromy on subsets forming a suitable Whitney
stratification, this polynomial has rational roots.

It is known that δ can be identified with f s and bmδ(s) is the monic generator of the ideal
of polynomials b(s) ∈ C[s] satisfying

(6) b(s)mf s = Q(s)mf s+1

for some Q ∈ D[s], for m ∈ M. Thus if M = O and g ∈ O, then

bgδ(s) = bf,g(s).

If g = 1, then by [Sa94, Prop. 0.3] the microlocal b-function is the reduced b-function:

b̃f (s) = b̃fδ(s).

The proof can be easily adapted to yield a more general result:

Lemma 3.2.1. Let M be a holonomic D-module and m ∈ M a local section.
(i) If f−1m 6∈ Dm then bmδ(s) is divisible by s+ 1.
(ii) If in addition f is injective on Dm, then

bmδ(s) = (s+ 1)b̃mδ(s).

(iii) In particular, if g ∈ O = M and g/f is not holomorphic, then bf,g(s) is divisible by

s+ 1 and the reduced b-function b̃f,g(s) is the microlocal b-function b̃gδ(s).

Proof. (i) Setting s = −1 we have bmδ(−1)mf−1 = Q(−1)m for Q(s) as in (6). Since
mf−1 6∈ Dm, bmδ(−1) must be zero.

(ii) The proof of [Sa94, Lemma 1.6] gives without using any of the two assumptions on m

that there exists P ∈ ∂−1
t V 0R such that b̃mδ(s)mδ = Pmδ. By multiplying by s+ 1 = −t∂t

one obtains that (s+ 1)b̃mδ(s) is divisible by bmδ(s).

Conversely, we show b̃mδ(s) divides by bmδ(s)/(s + 1). One has Q(s)f = tQ′(s) for some
Q′ ∈ D[s] if Q is as in (6). Then

(s+ 1)

(

bmδ(s)

s+ 1
− ∂−1

t Q′

)

mδ = 0

7



since s + 1 = −t∂t, using (i). It is enough to show that t is injective on the algebraic
microlocalization (Dm)[∂t, ∂

−1
t ], since this implies that

(

bmδ(s)

s+ 1
− ∂−1

t Q′

)

mδ = 0

by the invertibility of ∂t. Since (Dm)[∂t, ∂
−1
t ] is exhausted by the filtration Fp = ⊕i≤pDm∂−i

t δ,
it is enough to show that t is injective on GrFp for all p ∈ Z. This is equivalent to f being
injective on Dm. �

Since M is holonomic, there exists m ∈ M with Dm = M locally. The filtration on Mf

(resp. M̃f) defined by

V pR ·mδ ( resp. V pR̃ ·mδ)

gives rise to the decreasing V -filtration V αMf (resp. microlocal V -filtration V αM̃f) indexed
discretely by α ∈ C with a fixed total order on C (if M has quasi-unipotent local monodromy
one can take α ∈ Q), using the decomposition of the action by s on quotients V p/V q with
p < q, see [Sa93, §1], [Sa94, §2]. The existence of the V -filtration is equivalent to the
existence of b-functions (resp. microlocal b-functions). The V -filtration (resp. microlocal
V -filtration) is uniquely characterized by:

(i) V pR · V αMf ⊂ V α+pMf ,
(ii) V αMf are lattices of Mf , i.e. finite V 0R-modules generating Mf over R, and
(iii) s+ α is nilpotent on GrαVMf

(resp. similar conditions with R̃, M̃f replacing R,Mf).
One has

V αMf = {u ∈ Mf | bu(s) has all roots ≤ −α}

by [S87], [Sa93, Cor. 1.7]. The same proof, relying on the unique characterization from

above, and using that V 1R̃ = ∂−1
t V 0R̃ instead of V 1R = tV 0R in [Sa93, (1.7.1)], gives:

Proposition 3.2.1. V αM̃f = {u ∈ M̃f | b̃u(s) has all roots ≤ −α}.

One defines the microlocal V -filtration Ṽ αO on O by

(Ṽ αO)δ = (Oδ) ∩ V αM̃f

for M = O. Lemma 3.2.1 and Proposition 3.2.1 imply:

Corollary 3.2.1. (Ṽ αO) \ fO = {g ∈ O \ fO | b̃f,g(s) has all roots ≤ −α}.

3.3. Brieskorn lattices. Let f : (X, 0) → (C, 0) be the germ of a holomorphic function on
a complex manifold of dimension n + 1 with f(0) = 0 and f having an isolated singularity
at 0. There is a diagram

H ′′
f := Ωn+1

df∧dΩn−1

�

�

//

��
��

Gf := H ′′
f [∂t]

O/(∂f)
∼

// Ωn+1
f := Ωn+1

df∧Ωn

where the lower map is an isomorphism of C-vector spaces, the vertical map is surjective,
and the top map is an inclusion. Here O = OX,0, (∂f) is the ideal generated by the first
order partial derivatives of f , Ωp consists of the germs of the holomorphic p-forms at the
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origin, O/(∂f) is called the Milnor algebra, H ′′
f is called the Brieskorn lattice, and Gf is

called the Gauss-Manin system. The Brieskorn lattice is a free module of rank equal to the
Milnor number µf = dimCO/(∂f) over C{t} and also over C{{∂−1

t }}, where the action of
t is given by multiplication by f and the action of ∂−1

t is defined by ∂−1
t [ω] = [df ∧ η] for

dη = ω. The Gauss-Manin system is the localization of H ′′
f by the action of ∂−1

t . It is a free

C{{∂−1
t }}[∂t]-module of rank µf with an action of t, and it is a regular holonomic D-module.

Consequently it admits the rational V -filtration such that ∂tt − α is nilpotent on GrαVGf .
The induces a V -filtration on H ′′

f and on the quotient Ωn+1
f . See [Br70, Seb70, Sa89]. On

the other hand, the microlocal V -filtration Ṽ αO defined above induces a filtration on the
quotient. These two filtrations are the same:

Proposition 3.3.1. [J+19, Proposition 1.4] The microlocal V -filtration on the Milnor alge-
bra O/(∂f) agrees with the V -filtration on Ωn+1

f .

3.4. Semi-weighted homogeneous polynomials. Assume now that f = fd + f>d is a
semi-weighted homogeneous polynomial of initial degree d for the weight vector (w0, . . . , wn) ∈
Nn+1. For β ∈ Nn+1 define l(β) =

∑n
i=0wi(βi + 1)/d. Define a new filtration Vω on O by

setting for α ∈ Q

V α
wO =

∑

l(β)≥α

Oxβ

Proposition 3.4.1. [J+19, 1.6] If f = fd+ f>d is a semi-weighted homogeneous polynomial
of initial degree d for the weight vector (w0, . . . , wn) ∈ Nn+1, then the V -filtration on H ′′

f is
the quotient of the filtration Vw.

Corollary 3.4.1. With assumptions as in Proposition 3.4.1, let g ∈
∑

l(β)≥α Oxβ ⊂ O for
some α ∈ Q such that

g + (∂f) 6⊂
∑

l(β)>α

Oxβ + (∂f).

Then −α is the biggest root of b̃gδ(s).

Proof. The assumption is equivalent in general with [gdx] 6= 0 in GrαVΩ
n+1
f , by Proposition

3.4.1. It follows from Proposition 3.3.1 that gδ is non-zero in GrαV M̃f for M = O in the

notation of 3.2. This implies that the maximal root of b̃gδ(s) is −α by Proposition 3.2.1. �

3.5. Proof of Theorem 1.1. Let h ∈ C[x0, . . . , xn] define a semi-quasihomogeneous hy-
persurface singularity locally analytically isomorphic to f as in Theorem 1.2. The proof of
Theorem 1.2 only uses local analytic properties of f , hence it also holds for h. Now, the
local b-function of h is an analytic invariant and thus equals that of f . By Corollary 3.4.1
for the monomial g = 1, one has that (s + 1)(s + |w|/d) divides the local b-function of f .
This finishes the proof for the case n > 1. If n = 1 one can analyze directly the classification
of fd following Remark 2.2.1 (this is also a particular case of result [Lo88] for general plane
curves.) �

3.6. Proof of Theorem 1.3. It follows from Theorem 1.4 together with Corollary 3.4.1
and Lemma 3.2.1 (iii). The equivalency of the assumption in the case f = fd follows by
considering the decomposition into weighted homogeneous terms, since (∂f) is generated by
weighted homogeneous polynomials in this case. �
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[M10] M. Mustaţă, Comments on zeta functions. Email from June 4, 2010. 2, 3
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Erratum (September 7, 2023)

A mistake in Section 3 was pointed out by M. Saito. We thank him for pointing this out.
We address it here. All results in the Introduction remain true.

The definition of the microlocal V -filtration on O before Corollary 3.2.1 should be

(O, Ṽ ) = Gr0F (M̃f , V ).

Corollary 3.2.1 is false for the microlocal V -filtration onO, and counterexamples are provided
by M. Saito in [Sa23, 2.2]. Corollary 3.2.1 is however not used in the rest of the paper. The
mistake propagates though to Corollary 3.4.1 since Propositions 3.3.1 and 3.4.1 should be
used with the correct microlocal V -filtration. Proposition 3.4.1 was first asserted in [J+19,
1.6], see also [Sa23, 2.2d]. We adjust the conclusion of Corollary 3.4.1:

Corollary 3.6.1. With assumptions as in Proposition 3.4.1, let g ∈
∑

l(β)≥α Oxβ ⊂ O for
some α ∈ Q such that

g + (∂f) 6⊂
∑

l(β)>α

Oxβ + (∂f).

Then −α is a root of bf,g(s).

Proof. The assumption is equivalent in general with [gdx] 6= 0 in GrαVΩ
n+1
f , by Propo-

sition 3.4.1. Since V on Ωn+1
f is the quotient of the V -filtration on H ′′

f , it follows that
[gdx] 6= 0 in GrαVH

′′
f . Then −α is a root of bf,g(s), cf. [Sa23, (2.2.4)]. We repeat

that argument here. Let b(s) = bf,g(s). By assumption there is P (s) ∈ D[s] such that
b(s)gf s = P (s)fgf s. Equivalently, b(s)gδ = P (s)fgδ in Mf . The filtered de Rham complex
(DRX(Mf), V ) is strict and the induced filtration is the V -filtration on the Gauss-Manin
system Hn(DRX(Mf)) = Gf = H ′′

f [∂t]. Then one has the relation b(s)[gdx] = [P0(s)fgdx]
in Gf , where dx = dx0 ∧ . . . ∧ dxn and P0(s) ∈ O[s] coincides with P (s) modulo

∑

i ∂xi
D[s]

by definition of DRX . Note that the class of [gdx] is non-zero in GrαVGf since it is non-zero
in GrαVH

′′
f and V on H ′′

f is induced from V on Gf . We show that [P0(s)fgdx] ∈ V >αGf . By
the nilpotency property of V -filtrations, some power of s + α must then divide b(s), which
finishes the proof. To show that [P0(s)fgdx] ∈ V >αGf , by summing over powers of s, it is
enough to show that [hfgdx] lies in V >αH ′′

f for every h ∈ O. This now follows from Proposi-
tion 3.4.1 on the coincidence of the V -filtration and Vw-filtration on H ′′

f in the semi-weighted
homogeneous case, and the assumption on [gdx]. �

We now adjust the proof of Theorem 1.3 from 3.6.

Proof of Theorem 1.3. Using Corollary 3.6.1 instead of Corollary 3.4.1, the theorem is
proved for the case when l(β) 6= 1.

Suppose now l(β) = 1. By Theorem 1.4, it is enough to show that −1 is a root of
multiplicity at least 2 of bf,g(s). Let write fd =

∑

γ cγx
γ where xγ are monomials of weighted

degree d, that is,
∑

iwiγi/d = 1 for each γ ∈ Nn+1 and cγ are finitely many non-zero complex
numbers. Then 1 = l(β) =

∑

iwi(βi + 1)/d implies that γi = βi + 1 for each γ. Hence up to
a non-zero constant factor, fd = xγ is monomial. Since fd has isolated singularities, this can
only happen if n = 1, fd = x0x1, and g = 1. We know that bf,g(s) = bf (s) is divisible by the
local b-function of f at the origin. The latter equals the local b-function of fd at the origin
since it is an local analytic invariant and we can choose a new set of analytic coordinates
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x̃0, x̃1 ∈ C{x0, x1} such that f = x̃0x̃1. The claim then follows from bx0x1
(s) = (s+1)2. This

finishes the proof of Theorem 1.3. �

Note that Theorem 1.3 implies Theorem 1.1. The mistake pointed above does not really
affect the proof of Theorem 1.1 in 3.5: one knows (without invoking the problematic Corollary
3.4.1 or the new Corollary 3.6.1) that (s+ 1)(s+ |w|/d) divides the local b-function of f by
the constancy of the minimal exponent in µ-constant deformations and by the computation
of b-functions of weighted homogeneous isolated hypersurfaces.
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